JP2004288497A - Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same - Google Patents

Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same Download PDF

Info

Publication number
JP2004288497A
JP2004288497A JP2003079888A JP2003079888A JP2004288497A JP 2004288497 A JP2004288497 A JP 2004288497A JP 2003079888 A JP2003079888 A JP 2003079888A JP 2003079888 A JP2003079888 A JP 2003079888A JP 2004288497 A JP2004288497 A JP 2004288497A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
acid
derivative
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079888A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
弘樹 佐野
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003079888A priority Critical patent/JP2004288497A/en
Publication of JP2004288497A publication Critical patent/JP2004288497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte having practically sufficient durability using a cheap sulfonated aromatic polymer compound which is easy to manufacture, by solving the problem that the sulfonated aromatic polymer compound used in exchange for an expensive fluorine group electrolyte film useful as a solid polymer electrolyte is inferior to the fluorine group electrolyte in an oxidation resistant property, and to provide a solid polymer electrolyte film made of the above solid polymer electrolyte. <P>SOLUTION: The solid polymer electrolyte is obtained by introducing sulfonic acid expressed in formula (2) or sulfonamide sulfonic acid expressed in formula (3) as a proton conductive substituent in a side chain of an aromatic hydrocarbon group polymer of which a principal chain is structured by repeating a repetition unit having a sulfur element with a degree of oxidation x of 1.2 to 2.0, expressed in formula (1). In formula (1), Ar denotes a bivalent aromatic series or a derivative thereof, and x a degree of oxidation of sulfur atom. In formulae (2) and (3), R<SB>1</SB>, R<SB>2</SB>denote alkyl group or a derivative thereof, and an aromatic group and a derivative thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いられる電解質膜等に好適な耐酸化性等に優れた低コスト高耐久性固体高分子電解質、それを用いた触媒電極層、固体高分子電解質膜及び該固体高分子膜を用いた燃料電池に関する。
【0002】
【従来の技術】
固体高分子電解質は高分子鎖中にスルホンアミド基、スルホン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合して、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されている。
【0003】
燃料電池はプロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、水素ガスやメタノールなどを燃料として一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造するものである。
【0004】
ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)の商品名で知られる高いプロトン伝導性を有するパーフルオロスルホン酸膜に代表されるフッ素系電解質膜は化学的安定性に優れていることから燃料電池や水電解等の固体高分子電解質膜として、広く使用されている。
【0005】
また、食塩電解は固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウム、塩素と水素を製造するものである。この場合、固体高分子電解質膜は塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。
【0006】
ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に大きく、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはプロトン伝導性を利用して、湿度センサー、ガスセンサー、酸素濃縮器等にも広く応用されている。
【0007】
しかしながら、フッ素系電解質は製造が困難で、非常に高価であるという欠点がある。そのため、フッ素系電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等、限られた用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池等、民生用への応用を困難なものとしていた。
【0008】
そこで、安価な固体高分子電解質膜として、エンジニアリングプラスチックに代表される芳香族炭化水素系高分子をスルホン酸化した電解質膜が提案された。(例えば、特許文献1、2、3、4、5参照)。これらエンジニアリングプラスチックをスルホン酸化した芳香族炭化水素系電解質膜をナフィオンに代表されるフッ素系電解質膜と比較すると、製造が容易で低コストという利点がある。しかし、耐酸化性という面で非常に弱いという欠点も有している。
【0009】
非特許文献1によると、例えばスルホン酸化ポリエーテルエーテルケトンやポリエーテルスルホンはスルホン酸に隣接したエーテル部位から劣化すると報告している。このことから、スルホン酸の近傍に電子供与性基が存在すると、そこから酸化劣化が開始すると考えられる。そこで耐酸化性の向上を目的として、特許文献6に主鎖が電子吸引性基と芳香族環のみからなるスルホン酸化ポリフェニレンスルホンが、非特許文献2にスルホン基の隣接部位にスルホン酸を導入したスルホン酸化ポリスルホンが提案された。
【0010】
だが、特許文献7によると、芳香族炭化水素系電解質膜の劣化は酸化劣化以外にも、芳香族環に直接結合しているプロトン伝導性置換基であるスルホン酸基が、強酸、高温下において脱離してイオン伝導率が低下することも一因として考えられ、特許文献6や非特許文献2にあるようなスルホン酸化ポリフェニレンスルホンやスルホン酸化ポリスルホンではスルホン酸の脱離による劣化が避けられない。従って、プロトン伝導性置換基がスルホン酸であることは望ましくなく、特許文献7ではスルホン酸の代わりにアルキルスルホン酸を用いることを提案している。こちらはスルホン酸の脱離によるイオン伝導率の低下の改善には有効だが、使用する芳香族高分子の主鎖に電子供与性基が含まれ、耐酸化性に劣っている。
【0011】
【特許文献1】
特開平6−93114号公報
【0012】
【特許文献2】
特開平9−245818号公報
【0013】
【特許文献3】
特開平11−116679号公報
【0014】
【特許文献4】
特表平11−510198号公報
【0015】
【特許文献5】
特表平11−515040号公報
【0016】
【特許文献6】
特開2000−80166号公報
【0017】
【特許文献7】
特開2002−110174号公報
【0018】
【非特許文献1】
高分子論文集 Vol.59、No.8、460〜473頁
【0019】
【非特許文献2】
Journal of Polymer Science:PartA:Polymer Chemistry,Vol.34、2421−2438(1996)
【0020】
【発明が解決しようとする課題】
本発明の目的は、固体高分子電解質として有用なフッ素系電解質膜が高価であることから、代替品として用いられているスルホン酸化された芳香族高分子化合物の有する耐酸化性に劣るという欠点を解消し、フッ素系電解質膜に比して安価なスルホン酸化された芳香族高分子化合物を用いて実用上十分な高耐久特性を有し、しかも製造容易な固体高分子電解質、該固体高分子電解質からなる固体高分子電解質膜、さらには該個体高分子電解質からなる触媒電極層、該電極層を用いた膜/電極接合体と該膜/電極接合体を用いた燃料電池を提供することにある。
【0021】
【課題を解決するための手段】
上記課題を解決するために、主鎖に下記式(1)で表される構造を有する繰り返し単位からなり該繰り返し単位中の硫黄原子の酸化度xが1.2〜2.0である芳香族炭化水素系高分子の側鎖にプロトン伝導性置換基として、下記式(2)のR1で表される基を有するスルホン酸や下記式(3)のスルホンアミドとスルホンの間にR2で表される基を有するスルホンアミドスルホン酸を用いることで可能になることが明らかになった。
【0022】
【化5】

Figure 2004288497
【0023】
【化6】
Figure 2004288497
【0024】
【化7】
Figure 2004288497
【0025】
これは、芳香族炭化水素系高分子の主鎖に耐酸化性の高いスルホン基を含み、かつ劣化を受けやすいエーテル結合などの電子供与性基を含まないため、芳香族炭化水素系高分子が酸化劣化しにくく、かつ芳香族系炭化水素系高分子の主鎖に直接スルホン酸が導入されていないので、すなわちR1やR2がいわゆるスペーサーとしての機能を果たし、スルホン酸が脱離しにくいことを要旨とするもので、実用上十分な耐久性を有し、しかも経済的な固体高分子電解質を得ることが可能となる。
【0026】
さらに、該固体高分子電解質からなる固体高分子電解質膜又は、該固体高分子電解質と触媒電極とからなる触媒電極層、さらにはその触媒電極層と該固体高分子電解質を用いた膜/電極接合体であり、該膜/電極接合体を用いた燃料電池を提供することである。
【0027】
【発明の実施の形態】
本発明の固体高分子電解質は主鎖に主成分としてスルホン基と芳香族環からなる炭化水素系高分子にR1で表されるスペーサー構造を介してスルホン酸基を導入するか、あるいはスルホンアミドとスルホンの間にR2で表されるスペーサー構造を介したスルホンアミドスルホン酸基を導入した固体高分子電解質であれば特に制限は無く、少量の共重合成分やプロトン伝導性置換基として少量のスルホン酸やホスホン酸基を含んでいても構わない。
【0028】
ここで言うスルホン基とは主鎖に含まれる硫黄原子の酸化度xが1.2〜2.0であることを示す。更には、酸化度xが1.5〜2.0であることが好ましい。硫黄原子の酸化度xが1.2以下だと固体高分子電解質が十分な耐酸化性を発揮することができず、酸化劣化してしまう。なお、硫黄原子の酸化度xはNMR、元素分析等で求めることができる。
【0029】
これらを満たす芳香族炭化水素系高分子の具体例としては、下記式(5)で代表される構造単位を有する硫黄原子の酸化度が2.0であるポリフェニレンスルホン(PPSO)がある(以降、スルホン基と芳香族環を主成分とする芳香族炭化水素系高分子をPPSO系高分子と呼ぶ)。
【0030】
【化8】
Figure 2004288497
【0031】
プロトン伝導性置換基には式(2)のR1で表される基を有するスルホン酸基やスルホンアミドとスルホン酸の間に式(3)のR2で表される基を有するスルホンアミドスルホン酸基を用いる。芳香族環に直接スルホン酸基を導入した場合には、強酸、高温下においてスルホン酸基が脱離してイオン交換能が低下するからである。また、これらスルホン酸基やスルホンアミドスルホン酸基のカウンターイオンは必ずしもプロトンに限らず、少量のアンモニウムイオンや金属イオンを含んでいても構わない。
【0032】
ここで言うR1またはR2で表される基は芳香族炭化水素系高分子とスルホン酸基やスルホンアミドスルホン酸基を結合できれば特に構わない。例として、メチレン基、エチレン基、プロピレン基などのアルキル基や、フェニル基、ナフタレン基などの芳香族置換基が挙げられる。
【0033】
PPSO系高分子に式(2)のスルホン酸や式(3)のスルホンアミドスルホン酸のプロトン伝導性置換基を結合させる際に用いる方法には、特に制限はないが、具体的な手段として、ポリアリーレンスルフィドに、アルキルハロゲンやアリールハロゲンを導入し、ハロゲンをスルホン酸に変換する方法や、フリーデルクラフツ反応でスルトン化合物を反応させる方法でスルホン酸化する方法や、PPSをクロロ硫酸などによって、スルホニルクロリド化した後、アミノスルホン酸と反応させてスルホンアミド結合を作る方法が好適である。なお、アルキル基やフッ素系アルキル基の炭素数は1〜12であることが望ましい。
【0034】
式(2)のスルホン酸を作るのに使用するスルトンには、1,3−プロパンスルトン、1,4−ブタンスルトン、1,5−ペンタンスルトン、1,6−ヘキサンスルトン及び2−メチル−1,3−プロパンスルトンなどの誘導体やスルトンの水素を一部もしくは全部フッ素に置き換えたフルオロスルトン及びその誘導体がある。
【0035】
式(3)のスルホンアミドスルホン酸を作るのに使用するアミノスルホン酸には、アミノメタンスルホン酸、アミノエタンスルホン酸(タウリン)、アミノプロパンスルホン酸、アミノブタンスルホン酸、アミノペンタンスルホン酸、アミノヘキサンスルホン酸などのアミノアルキルスルホン酸及び2−メチルアミノエタンスルホン酸などの誘導体、アミノアルキルスルホン酸の脂肪鎖の水素原子を一部もしくは全部フッ素に置き換えたアミノフルオロアルキルスルホン酸及びその誘導体、アミノベンゼンスルホン酸、アミノナフタレンスルホン酸、ジフェニルアミンスルホン酸などの芳香族アミノスルホン酸及び2−メチル−4−スルホン酸アミノベンゼンなどの誘導体がある。
【0036】
酸化剤に特に制限はなく、オキソン(Du Pont社製)、過酢酸、過酸化水素、次亜塩素酸塩、硫酸、塩素、塩化チオニル、二酸化窒素、三酸化クロム、過マンガン酸アルカリ、硝酸、有機化酸化物などが使用される。
【0037】
また、PPSO系高分子に式(2)のスルホン酸や式(3)のスルホンアミドスルホン酸を導入する方法は、上述のようにポリアリーレンスルフィドから高分子反応を用いる方法に限らず、ジハロゲン化アリーレンスルホンに式(2)のスルホン酸や式(3)のスルホンアミドスルホン酸を導入したものを重合する方法もある。
【0038】
式(2)のスルホン酸や式(3)のスルホンアミドスルホン酸を導入する芳香族炭化水素系高分子化合物は分子量が100〜1000であることが望ましい。分子量が高すぎると溶解への溶解度が低く、溶液重合に適さないからである。なお、ジハロゲン化アリーレンスルホンに式(2)のようなスペーサー構造を挟んだスルホン酸を導入する方法には、特に制限はないが、具体的にはジクロロアリーレンスルホンにアルキルハロゲンやアリールハロゲンを導入し、ハロゲンをスルホン酸に変換する方法や、フリーデルクラフツ反応でスルトン化合物を反応させる方法がある。また、ジハロゲン化アリーレンスルホンをスルホンアミドスルホン酸化する方法には、特に制限はないが、ジハロゲン化アリーレンスルホンをクロロ硫酸などによって、スルホニルクロリド化した後、スペーサーを含むアミノスルホン酸と反応させてスルホンアミド結合を作る方法が好適である。なお、アルキル基やフッ素系アルキル基の炭素数は1〜12であることが望ましい。
【0039】
式(2)のスペーサー構造を挟んだスルホン酸を作るのに使用するスルトンには、1,3−プロパンスルトン、1,4−ブタンスルトン、1,5−ペンタンスルトン、1,6−ヘキサンスルトン及び2−メチル−1,3−プロパンスルトンなどの誘導体やスルトンの水素を一部もしくは全部フッ素に置き換えたフルオロスルトン及びその誘導体がある。
【0040】
式(3)のようなスペーサー構造を挟んだスルホンアミドスルホン酸を作るのに使用するアミノスルホン酸には、アミノメタンスルホン酸、アミノエタンスルホン酸(タウリン)、アミノプロパンスルホン酸、アミノブタンスルホン酸、アミノペンタンスルホン酸、アミノヘキサンスルホン酸などのアミノアルキルスルホン酸及び2−メチルアミノエタンスルホン酸などの誘導体、アミノアルキルスルホン酸の脂肪鎖の水素原子を一部もしくは全部フッ素に置き換えたアミノフルオロアルキルスルホン酸及びその誘導体、アミノベンゼンスルホン酸、アミノナフタレンスルホン酸、ジフェニルアミンスルホン酸などの芳香族アミノスルホン酸及び2−メチル−4−スルホン酸アミノベンゼンなどの誘導体がある。
【0041】
ジハロゲン化アリーレンスルホンには、4、4‘−ジクロロジフェニルスルホン、4、4’−ジブロモジフェニルスルホン、4、4‘−ジヨードジフェニルスルホン、ジクロロジビフェニルスルホン、ジクロロジナフチルスルホン、ジクロロアントラニルニルスルホンなどがある。また、芳香族環にニトロ基や、シアノ基、フッ素化アルキル基などの電子吸引基を導入しても構わない。ジハロゲン化アリーレンスルホンを重合し、PPS系高分子を合成する方法に、特に制限はないが、ニッケル錯体などの金属錯体触媒を用いて重合することができる。
【0042】
芳香族環は2価の芳香族環であれば問題なく、下記式(4)で表されされるような構造をしているのが好ましい。更には、炭素数が6〜18であることが望ましい。また、芳香族環にニトロ基や、シアノ基、フッ素化アルキル基などの電子吸引基を導入しても構わない。
【0043】
【化9】
Figure 2004288497
【0044】
該高分子電解質はこれらのスルホン酸やスルホンアミドスルホン酸をプロトン伝導性置換基として有するPPSO系高分子を主成分とする。すなわち、通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を本発明の目的に反しない範囲内で使用できる。また、該高分子電解質の機械的強度の向上のために、スルホン酸化PPSO系高分子やスルホンアミド化スルホン酸PPSO系高分子とPPSO系高分子を混合しても良い。
【0045】
本発明で用いられる高分子電解質のイオン交換基当量重量は150〜2500g/molが好適である。更にはイオン交換基当量重量は200〜1500g/molであることが好適であり、更に300〜1000g/molが好適である。イオン交換基当量重量が2500g/molを越えると該高分子電解質のイオン伝導度が低くなり出力性能が低下し、150g/molより低いと該高分子電解質の耐水性が低下し、それぞれ好ましくない。
【0046】
なお、本発明でイオン交換基当量重量とは、導入されたスルホン酸基やスルホンアミドスルホン酸基単位モルあたりのPPSO系高分子の分子量を表し、値が小さいほどスルホン酸化が多く導入されていることを示す。イオン交換基当量重量は、H−NMRスペクトロスコピー、元素分析、特表平1−52866号公報明細書に記載の酸塩基滴定、非水酸塩基滴定(規定液はカリウムメトキシドのベンゼン・メタノール溶液)等により測定が可能である。
【0047】
スルホン酸やスルホンアミドスルホン酸を導入した該高分子電解質のイオン交換基当量重量を150〜2500g/molに制御する方法としては、芳香族炭化水素系高分子のスルホン酸化率やスルホニルクロリド化率を制御することによって可能となる。これはスルホン酸化剤、もしくはスルホニルクロリド剤の添加比、反応温度、反応時間などを制御すればよい。なお、スルホニルクロリド化する際に、溶媒は使用してもしなくても構わない。
【0048】
本発明で用いられる高分子電解質を燃料電池用として使用する際には、通常膜の状態で使用される。スルホン酸もしくはスルホンアミド化スルホン酸を導入したPPSO系高分子を膜へ転化する方法に特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)、溶融状態より製膜する方法(溶融プレス法もしくは溶融押し出し法)、PPS系高分子膜に酸化剤を用いて酸化する方法(後酸化法)等が可能である。具体的に溶液キャスト法については、例えばポリマー溶液をガラス板上に流延塗布し、溶媒を除去することにより製膜する。製膜に用いる溶媒は、高分子を溶解し、その後に除去し得るものであるならば特に制限はなく、N,N’−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒、あるいはエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、ジクロロメタン、トリクロロエタン等のハロゲン系溶媒、i−プロピルアルコール、t−ブチルアルコール等のアルコールが好適に用いられる。また、後酸化法に付いては、溶液キャスト法で製膜したPPS系高分子を酸化剤を溶かした溶液に含浸することで酸化する。ここで用いられる酸化剤には特に制限はなく、オキソン(Du Pont社製)、過酢酸、過酸化水素、次亜塩素酸塩、硫酸、塩素、塩化チオニル、二酸化窒素、三酸化クロム、過マンガン酸アルカリ、硝酸、有機化酸化物などが使用される。
【0049】
該高分子電解質膜の厚みは特に制限はないが10〜200μmが好ましい。特に30〜100μmが好ましい。実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減つまり発電性能向上のためには200μmより薄い方が好ましい。溶液キャスト法の場合、膜厚は溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製膜する場合、膜厚は溶融プレス法あるいは溶融押し出し法等で得た所定厚さのフィルムを所定の倍率に延伸することで膜厚を制御できる。
【0050】
触媒電極層は、スルホン酸もしくはスルホンアミド化スルホン酸を導入したPPSO系高分子を電解質膜作成に使用した溶媒に溶解させ、これを用いて触媒電極同士を接合することで作成する。
【0051】
ここでの触媒電極は、触媒金属の微粒子を導電材に担持することで作成できる。触媒電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいはそれらの合金が挙げられる。特に白金が多くの場合用いられる。触媒となる金属の粒径は、通常は10〜300オングストロームである。これらの触媒はカーボン等の担体に付着させた方が触媒の使用量が少なくコスト的に有利である。触媒の担持量は電極が成形された状態で0.01〜10mg/cm が好ましい。
【0052】
導電材としては、電子伝導性物質であればいずれのものでも良く、例えば各種金属や炭素材料などが挙げられる。炭素材料としては、例えば、ファーネスブラック、チャンネルブラック、およびアセチレンブラック等のカーボンブラック、活性炭、黒鉛等が挙げられ、これらが単独あるいは混合して使用される。
【0053】
これら導電材に触媒金属を担持させる方法としては、触媒金属を還元法により導電材(主に炭素材料の場合に使用)の表面に析出させる方法や、溶剤に触媒金属を懸濁させ、これを導電材表面に塗布する方法などがある。
【0054】
膜/電極接合体は、スルホン酸もしくはスルホンアミド化スルホン酸を導入したPPSO系高分子を電解質膜作成に使用した溶媒に溶解させた溶液を触媒電極層に塗布し、電解質膜と接合させることで作成する。
【0055】
燃料電池は、以上のように形成された膜/電極接合体の外側にセパレータと呼ばれる燃料流路もしくは酸化剤流路を形成する溝付きの集電体を配したものを単セルとし、この様な単セルを複数個、冷却板等を介して積層することにより構成される。燃料電池は高い温度で作動させる方が電極の触媒活性が上がり電極過電圧が減少するため望ましいが、電解質膜は水分がないと機能しないため、水分管理が可能な温度で作動させる必要がある。燃料電池の作動温度の好ましい範囲は室温〜100℃である。
【0056】
以下実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
[イオン交換基当量重量測定]
イオン交換基当量重量測定しようとする本発明のスルホン酸もしくはスルホンアミド化スルホン酸を導入したPPSO系高分子を密閉できるガラス容器中に精秤(a(グラム))し、そこに過剰量の塩化カルシウム水溶液を添加して一晩撹拌した。系内に発生した塩化水素を0.1Nの水酸化ナトリウム標準水溶液(力価f)にて、指示薬にフェノールフタレインを用いて滴定(b(ml))した。イオン交換基当量重量(g/mol)は下式より求めた。
イオン交換基当量重量=(1000×a)/(0.1×b×f)
[イオン伝導度測定]
本発明の電解質膜を、電気化学インピーダンス測定装置(ソーラトロン製、SI1287)を用いて周波数0.1Hz〜65kHzの領域で4端子インピーダンス測定をし、イオン伝導度を測定した。なお、上記測定で電解質膜は水蒸気雰囲気下、75℃にて保存された。
[耐酸化性試験]
本発明の電解質膜を、30%過酸化水素水20mlに硫酸鉄7水和物1.9mgを加えることからなる60℃に加熱したフェントン試薬(鉄40ppmを含む)に浸漬させ、電解質膜がフェントン試薬に溶解するに至る時間を求めた。
[耐湿熱試験]
本発明の電解質膜を、1mol/lの硫酸に浸漬させ、100℃で30日間還流保存し、試験前と試験後でイオン交換基当量が変化したかを測定した。
[燃料電池単セル性能評価]
膜/電極接合体を評価セルに組み込み、燃料電池出力性能を評価した。反応ガスには、水素/酸素を用い、共に1気圧の圧力にて、70℃の水バブラーを通して加湿した後、評価セルに供給した。ガス流量は水素60ml/min、酸素40ml/min、セル温度は75℃とした。電池出力性能は、H201B充放電装置(北斗電工製)により評価した。
【0057】
【実施例】
[実施例1]
(1)プロピルスルホン酸化ポリフェニレンスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、乾燥した10.8gのポリフェニレンスルフィド(PPS)(ポリプラスチック社製フォートロン)、乾燥した100mlのクロロホルム、の3.6gの1,3−プロパンスルトンを入れた。容器を60℃に保ち撹拌しながら約30分かけて4.0gの無水塩化アルミニウムを加えた。添加終了後、60℃で5時間還流攪拌した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥してプロピルスルホン酸化ポリフェニレンスルフィドを得た。
【0058】
得られたプロピルスルホン酸化ポリフェニレンスルフィドを160gのオキソン(Du Pont社製)、500gの水、37gの酢酸からなる酸化液に入れ、80℃で8時間攪拌した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。
【0059】
得られたプロピルスルホン酸化ポリフェニレンスルホンのイオン交換基当量重量は590g/molであった。硫黄原子の酸化度xは1.9であった。
(2)電解質膜の作製
前記(1)で得られた生成物を10重量%の濃度になるようにN−メチルピロリドンに溶解した。この溶液をドクターナイフによりガラス上に展開し、乾燥することで、膜厚40μmの電解質膜を作成した。
(3)触媒電極層、膜/電極接合体、燃料電池の作製
40重量%の白金担持カーボンに、前記(2)の10重量%濃度のN−メチ、ルピロリドン溶液を、白金担持カーボンと高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた電解質膜の両側に塗布した後、乾燥して白金担持量0.25mg/cmの膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mWの出力を示した。
【0060】
[比較例1]
(1)プロピルスルホン酸化ポリフェニレンスルフィドの合成
実施例1に示した方法でプロピルスルホン酸化ポリフェニレンスルフィドを合成した。得られたプロピルスルホン酸化ポリフェニレンスルフィドのイオン交換基当量重量は490g/molであった。硫黄原子の酸化度xは0であった。
(2)電解質膜の作製
実施例1と同様にして、膜厚40μmの電解質膜を作成した。
【0061】
[比較例2]
(1)スルホン酸化ポリフェニレンスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、200mlのクロロ硫酸をいれた。5℃に維持して撹拌しながら10.8gのPPSを溶解させた。30分の攪拌後、反応溶液を10lの脱イオン水にゆっくりと滴下することでスルホニルクロリド化ポリフェニレンスルフィドを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。
【0062】
実施例1に示す酸化法でスルホニルクロリド化ポリフェニレンスルフィドを酸化し、同時にスルホニルクロリド基をスルホン酸基に加水分解することでスルホン酸化ポリフェニレンスルホンを得た。得られたスルホン酸化ポリフェニレンスルホンのイオン交換基当量重量は540g/molであった。硫黄原子の酸化度xは1.9であった。
(2)電解質膜の作製
実施例1と同様にして、膜厚40μmの電解質膜を作成した。
【0063】
[実施例2]
(1)ブチルスルホン酸化ポリフェニレンスルホンの合成
実施例1の1,3−プロパンスルトンの代わりに1,4−ブタンスルトンを使用した以外は実施例1と同様に合成した。得られたブチルスルホン酸化ポリフェニレンスルホンのイオン交換基当量重量は600g/molであった。硫黄原子の酸化度xは1.9であった。
(2)電解質膜の作製
実施例1と同様にして、膜厚40μmの電解質膜を作成した。
(3)触媒電極層、膜/電極接合体、燃料電池の作製
実施例1と同様にして、白金担持量0.25mg/cmの膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mWの出力を示した。
【0064】
[実施例3]
(1)エチルスルホン酸スルホンアミド化ポリフェニレンスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、200mlのクロロ硫酸をいれた。5℃に維持して撹拌しながら10.8gのPPSを溶解させた。30分の攪拌後、反応溶液を10lの脱イオン水にゆっくりと滴下することでスルホニルクロリド化ポリフェニレンスルフィドを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。
【0065】
得られたスルホニルクロリド化ポリフェニレンスルフィドを100mlの水、20gの炭酸カリウム、3.75gのタウリンからなる反応液に入れ、70℃で48時間攪拌した。ここに1N塩酸を中和されるまで加えた。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥し、エチルスルホン酸スルホンアミド化ポリフェニレンスルフィドを得た。
【0066】
実施例1に示す酸化法でエチルスルホン酸スルホンアミド化ポリフェニレンスルフィドを酸化し、エチルスルホン酸スルホンアミド化ポリフェニレンスルホンを得た。得られたエチルスルホン酸スルホンアミド化ポリフェニレンスルホンのイオン交換基当量重量は610g/molであった。また、硫黄原子の酸化度xは1.9であった。
(2)電解質膜の作製
実施例1と同様にして、膜厚40μmの電解質膜を作成した。
(3)触媒電極層、膜/電極接合体、燃料電池の作製
実施例1と同様にして、白金担持量0.25mg/cmの膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mWの出力を示した。
【0067】
[実施例4]
(1)プロピルスルホン酸化ポリビフェニレンスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、28.7gの4,4‘−ジクロロジフェニルスルホン、乾燥した100mlのクロロホルム、9.6gの1,3−プロパンスルトンを入れた。容器を60℃に保ち撹拌しながら約30分かけて13.2gの無水塩化アルミニウムを加えた。添加終了後、60℃で5時間還流攪拌した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥してプロピルスルホン酸化4,4‘−ジクロロジフェニルスルホンを得た。
【0068】
4.1gのプロピルスルホン酸化4,4‘−ジクロロジフェニルスルホンを70mlの乾燥したジメチルホルムアミドに溶解させ、2.8gのニッケル(シクロオクタジエン)錯体と1.6gのビピリジンと1.5gのシクロオクタジエンを加え、60℃で8時間攪拌した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を繰り返した後、120℃にて一晩減圧乾燥した。
得られたプロピルスルホン酸化ポリビフェニレンスルホンのイオン交換基当量重量は340g/molであった。硫黄原子の酸化度xは2.0であった。
【0069】
(2)電解質膜の作製
前記(1)で得られた生成物を10重量%の濃度になるようにN−メチルピロリドンに溶解した。この溶液をドクターナイフによりガラス上に展開し、乾燥することで、膜厚40μmの電解質膜を作成した。
【0070】
(3)触媒電極層、膜/電極接合体、燃料電池の作製
40重量%の白金担持カーボンに、前記(2)の10重量%濃度のN−メチ、ルピロリドン溶液を、白金担持カーボンと高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた電解質膜の両側に塗布した後、乾燥して白金担持量0.25mg/cmの膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mWの出力を示した。
【0071】
[実施例5]
(1)エチルスルホン酸スルホンアミド化ポリフェニレンスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、28.7gの4,4‘−ジクロロジフェニルスルホンと200mlのクロロ硫酸を加えた。容器を60℃に保ちながら10時間還流攪拌した。反応溶液を10lの脱イオン水にゆっくりと滴下することでスルホニルクロリド化4,4’−ジクロロジフェニルスルホンを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。
【0072】
4.0gのスルホニルクロリド化4,4’−ジクロロジフェニルスルホンを100mlの水、40gの炭酸カリウム、1.25gのタウリンからなる反応液に入れ、70℃で48時間攪拌した。ここに1N塩酸を中和されるまで加えた。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥し、エチルスルホン酸スルホンアミド化4,4’−ジクロロジフェニルスルホンを得た。
【0073】
実施例4に示したの重合法と同じ方法でエチルスルホン酸スルホンアミド化4,4’−ジクロロジフェニルスルホンを重合し、エチルスルホン酸スルホンアミド化ポリビフェニレンスルホンを得た。得られたエチルスルホン酸スルホンアミド化ポリビフェニレンスルホンのイオン交換基当量重量は410g/molであった。硫黄原子の酸化度xは2.0であった。
【0074】
(2)電解質膜の作製
実施例1と同様にして、膜厚40μmの電解質膜を作成した。
【0075】
(3)触媒電極層、膜/電極接合体、燃料電池の作製
実施例1と同様にして、白金担持量0.25mg/cmの膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mWの出力を示した。
【0076】
以上の実施例1〜5、比較例1〜2に関して、耐酸化性試験、耐湿熱試験、イオン伝導度測定を行なった。この評価結果を表1に示す。
【0077】
【表1】
Figure 2004288497
【0078】
【発明の効果】
本発明に係るスルホン酸もしくはスルホンアミド化スルホン酸が導入されたPPSO系高分子電解質はパーフロロスルホン酸膜に代表されるフッ素系電解質膜に比べ、コストは非常に安価で、主鎖にスルホン基と芳香環を主成分に含み、主鎖に直接スルホン酸が導入されていないことによって、耐久性特に耐酸化性と耐湿熱性に優れた高分子電解質が得られる。また本発明に係るPPSO系電解質を用いた膜、触媒電極層、膜/電極接合体、燃料電池は実用上十分な性能を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides low cost and high durability with excellent oxidation resistance and the like suitable for electrolyte membranes used for fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, and the like. The present invention relates to a solid polymer electrolyte, a catalyst electrode layer using the same, a solid polymer electrolyte membrane, and a fuel cell using the solid polymer membrane.
[0002]
[Prior art]
Solid polymer electrolytes are solid polymer materials that have an electrolyte group, such as a sulfonamide group or a sulfonic acid group, in the polymer chain, and are firmly bound to specific ions to selectively transmit cations or anions. Therefore, it is formed into particles, fibers, or membranes, and is used in various applications such as electrodialysis, diffusion dialysis, and battery membranes.
[0003]
A fuel cell is provided with a pair of electrodes on both sides of a proton conductive solid polymer electrolyte membrane, supplies hydrogen gas, methanol, or the like as fuel to one electrode (fuel electrode), and uses oxygen gas or air as an oxidant to the other. It is supplied to an electrode (air electrode) to obtain an electromotive force. Water electrolysis is to produce hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.
[0004]
High proton conductive perfluorosulfonic acid membranes known under the trade names Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Corporation) and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) Representative fluorine-based electrolyte membranes are widely used as solid polymer electrolyte membranes for fuel cells, water electrolysis and the like because of their excellent chemical stability.
[0005]
In the salt electrolysis, sodium hydroxide, chlorine and hydrogen are produced by electrolyzing an aqueous solution of sodium chloride using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine and a high-temperature, high-concentration aqueous sodium hydroxide solution, it is not possible to use a hydrocarbon-based electrolyte membrane having poor resistance to these. Therefore, the solid polymer electrolyte membrane for salt electrolysis is generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and furthermore, has a partial surface to prevent back diffusion of generated ions. A perfluorosulfonic acid membrane into which a carboxylic acid group has been introduced is used.
[0006]
By the way, a fluorine-based electrolyte represented by a perfluorosulfonic acid membrane has a very high chemical stability due to having a C—F bond, and is used for the above-mentioned fuel cell, water electrolysis, or salt electrolysis. In addition to the solid polymer electrolyte membrane, it is also used as a solid polymer electrolyte membrane for hydrohalic acid electrolysis, and is also widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity. Have been.
[0007]
However, fluorine-based electrolytes have drawbacks in that they are difficult to produce and are very expensive. For this reason, fluorine-based electrolyte membranes are used for limited applications such as solid polymer fuel cells for space or military use, and are intended for consumer use such as solid polymer fuel cells as low-emission power sources for automobiles. It made application difficult.
[0008]
Then, as an inexpensive solid polymer electrolyte membrane, an electrolyte membrane obtained by sulfonating an aromatic hydrocarbon polymer represented by engineering plastics has been proposed. (For example, see Patent Documents 1, 2, 3, 4, and 5). Compared with an aromatic hydrocarbon-based electrolyte membrane obtained by sulfonating these engineering plastics with a fluorine-based electrolyte membrane typified by Nafion, there is an advantage of easy production and low cost. However, it has a disadvantage that it is very weak in terms of oxidation resistance.
[0009]
According to Non-Patent Document 1, for example, sulfonated polyetheretherketone or polyethersulfone is reported to deteriorate from an ether site adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, oxidative degradation starts therefrom. For the purpose of improving oxidation resistance, Patent Document 6 discloses a sulfonated polyphenylene sulfone having a main chain consisting of only an electron-withdrawing group and an aromatic ring, and Non-Patent Document 2 introduces sulfonic acid into a site adjacent to a sulfone group. Sulfonated polysulfones have been proposed.
[0010]
However, according to Patent Document 7, the deterioration of the aromatic hydrocarbon-based electrolyte membrane is caused not only by oxidative deterioration but also by the sulfonic acid group, which is a proton conductive substituent directly bonded to the aromatic ring, under strong acid and high temperature. It is also considered that the ionic conductivity is reduced due to desorption, and degradation due to desorption of sulfonic acid is inevitable in sulfonated polyphenylene sulfone and sulfonated polysulfone as described in Patent Document 6 and Non-Patent Document 2. Therefore, it is not desirable that the proton conductive substituent is sulfonic acid, and Patent Document 7 proposes to use alkyl sulfonic acid instead of sulfonic acid. This is effective in reducing the decrease in ionic conductivity due to elimination of sulfonic acid, but the aromatic polymer used has an electron-donating group in the main chain and is inferior in oxidation resistance.
[0011]
[Patent Document 1]
JP-A-6-93114
[0012]
[Patent Document 2]
JP-A-9-245818
[0013]
[Patent Document 3]
JP-A-11-116679
[0014]
[Patent Document 4]
Japanese Patent Publication No. 11-510198
[0015]
[Patent Document 5]
Japanese Patent Publication No. 11-515040
[0016]
[Patent Document 6]
JP 2000-80166 A
[0017]
[Patent Document 7]
JP-A-2002-110174
[0018]
[Non-patent document 1]
Collection of Polymers, Vol. 59, no. 8, pp. 460-473
[0019]
[Non-patent document 2]
Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 34, 2421-2438 (1996)
[0020]
[Problems to be solved by the invention]
An object of the present invention is that a fluorine-based electrolyte membrane useful as a solid polymer electrolyte is expensive, and therefore has a disadvantage that the sulfone-oxidized aromatic polymer compound used as a substitute has poor oxidation resistance. A solid polymer electrolyte that has practically sufficient high durability characteristics using a sulfonated aromatic polymer compound that is inexpensive compared to a fluorine-based electrolyte membrane, and that is easy to manufacture. To provide a solid polymer electrolyte membrane comprising the same, a catalyst electrode layer comprising the solid polymer electrolyte, a membrane / electrode assembly using the electrode layer, and a fuel cell using the membrane / electrode assembly. .
[0021]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an aromatic compound comprising a repeating unit having a structure represented by the following formula (1) in the main chain and having an oxidation degree x of a sulfur atom in the repeating unit of 1.2 to 2.0. A sulfonic acid having a group represented by R1 of the following formula (2) as a proton conductive substituent on a side chain of the hydrocarbon polymer, or R2 between a sulfonamide and a sulfone of the following formula (3): It has been clarified that the use of a sulfonamidosulfonic acid having a group such as the above becomes possible.
[0022]
Embedded image
Figure 2004288497
[0023]
Embedded image
Figure 2004288497
[0024]
Embedded image
Figure 2004288497
[0025]
This is because aromatic hydrocarbon-based polymers contain a sulfone group with high oxidation resistance in the main chain and do not contain electron-donating groups such as ether bonds that are susceptible to deterioration. Since the sulfonic acid is hardly oxidized and deteriorated and sulfonic acid is not directly introduced into the main chain of the aromatic hydrocarbon polymer, that is, R1 and R2 function as a so-called spacer, and the sulfonic acid is hardly desorbed. Thus, it is possible to obtain a solid polymer electrolyte having sufficient durability for practical use and economical.
[0026]
Further, a solid polymer electrolyte membrane composed of the solid polymer electrolyte, or a catalyst electrode layer composed of the solid polymer electrolyte and a catalyst electrode, and a membrane / electrode junction using the catalyst electrode layer and the solid polymer electrolyte To provide a fuel cell using the membrane / electrode assembly.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The solid polymer electrolyte of the present invention comprises a hydrocarbon polymer comprising a sulfone group and an aromatic ring as a main component in the main chain, or a sulfonic acid group introduced through a spacer structure represented by R1 or a sulfonamide. There is no particular limitation as long as it is a solid polymer electrolyte in which a sulfonamidosulfonic acid group is introduced between the sulfones through a spacer structure represented by R2, and a small amount of sulfonic acid is used as a small amount of a copolymer component or a proton conductive substituent. Or a phosphonic acid group.
[0028]
Here, the sulfone group indicates that the degree of oxidation x of the sulfur atom contained in the main chain is 1.2 to 2.0. Further, the degree of oxidation x is preferably 1.5 to 2.0. When the oxidation degree x of the sulfur atom is 1.2 or less, the solid polymer electrolyte cannot exhibit sufficient oxidation resistance, and is oxidized and deteriorated. The oxidation degree x of the sulfur atom can be determined by NMR, elemental analysis, or the like.
[0029]
As a specific example of the aromatic hydrocarbon polymer satisfying these, there is polyphenylene sulfone (PPSO) having a structural unit represented by the following formula (5) and having a degree of oxidation of a sulfur atom of 2.0 (hereinafter, referred to as PPSO). An aromatic hydrocarbon polymer having a sulfone group and an aromatic ring as main components is called a PPSO polymer.)
[0030]
Embedded image
Figure 2004288497
[0031]
The proton conductive substituent may be a sulfonic acid group having a group represented by R1 of the formula (2) or a sulfonamidosulfonic acid group having a group represented by R2 of a formula (3) between the sulfonamide and the sulfonic acid. Is used. This is because when a sulfonic acid group is directly introduced into an aromatic ring, the sulfonic acid group is eliminated under a strong acid and at a high temperature, and the ion exchange ability is reduced. Further, the counter ions of these sulfonic acid groups and sulfonamidosulfonic acid groups are not necessarily limited to protons, and may contain small amounts of ammonium ions and metal ions.
[0032]
The group represented by R1 or R2 is not particularly limited as long as it can bond an aromatic hydrocarbon polymer to a sulfonic acid group or a sulfonamidosulfonic acid group. Examples include alkyl groups such as methylene, ethylene and propylene, and aromatic substituents such as phenyl and naphthalene.
[0033]
The method used for bonding the proton conductive substituent of the sulfonic acid of the formula (2) or the sulfonamidosulfonic acid of the formula (3) to the PPSO-based polymer is not particularly limited. A method in which an alkyl halogen or an aryl halogen is introduced into a polyarylene sulfide to convert the halogen into a sulfonic acid, a method in which a sultone compound is reacted by a Friedel-Crafts reaction, a method in which sulfonation is performed, or a method in which PPS is converted into sulfonic acid with chlorosulfuric acid or the like. A method of forming a sulfonamide bond by reacting with aminosulfonic acid after chloride formation is preferred. The alkyl group or the fluorine-based alkyl group preferably has 1 to 12 carbon atoms.
[0034]
The sultones used to make the sulfonic acid of formula (2) include 1,3-propane sultone, 1,4-butane sultone, 1,5-pentane sultone, 1,6-hexane sultone and 2-methyl-1, There are derivatives such as 3-propane sultone and fluorosultone in which hydrogen of sultone is partially or entirely replaced with fluorine, and derivatives thereof.
[0035]
The aminosulfonic acids used to make the sulfonamidosulfonic acids of formula (3) include aminomethanesulfonic acid, aminoethanesulfonic acid (taurine), aminopropanesulfonic acid, aminobutanesulfonic acid, aminopentanesulfonic acid, aminopentanesulfonic acid, Derivatives such as aminoalkylsulfonic acid such as hexanesulfonic acid and 2-methylaminoethanesulfonic acid, aminofluoroalkylsulfonic acid in which hydrogen atoms of the fatty chain of aminoalkylsulfonic acid are partially or wholly replaced with fluorine, and derivatives thereof, amino There are aromatic aminosulfonic acids such as benzenesulfonic acid, aminonaphthalenesulfonic acid and diphenylaminesulfonic acid, and derivatives such as aminobenzene 2-methyl-4-sulfonic acid.
[0036]
The oxidizing agent is not particularly limited, and oxone (manufactured by Du Pont), peracetic acid, hydrogen peroxide, hypochlorite, sulfuric acid, chlorine, thionyl chloride, nitrogen dioxide, chromium trioxide, alkali permanganate, nitric acid, Organized oxides and the like are used.
[0037]
The method of introducing the sulfonic acid of the formula (2) or the sulfonamide sulfonic acid of the formula (3) into the PPSO-based polymer is not limited to the method using a polymer reaction from polyarylene sulfide as described above. There is also a method of polymerizing an arylene sulfone into which a sulfonic acid of the formula (2) or a sulfonamide sulfonic acid of the formula (3) is introduced.
[0038]
The aromatic hydrocarbon polymer compound into which the sulfonic acid of the formula (2) or the sulfonamidosulfonic acid of the formula (3) is introduced preferably has a molecular weight of 100 to 1,000. If the molecular weight is too high, the solubility in dissolution is low, and the compound is not suitable for solution polymerization. The method of introducing a sulfonic acid having a spacer structure such as the formula (2) into dihalogenated arylene sulfone is not particularly limited, but specifically, alkyl halogen or aryl halogen is introduced into dichloroarylene sulfone. , A method of converting a halogen to a sulfonic acid, and a method of reacting a sultone compound by a Friedel-Crafts reaction. The method of oxidizing dihalogenated arylene sulfone with sulfonamide sulfone is not particularly limited. The method of making the bond is preferred. The alkyl group or the fluorine-based alkyl group preferably has 1 to 12 carbon atoms.
[0039]
The sultone used to make the sulfonic acid sandwiching the spacer structure of the formula (2) includes 1,3-propane sultone, 1,4-butane sultone, 1,5-pentane sultone, 1,6-hexane sultone, and 2 There are derivatives such as -methyl-1,3-propane sultone, fluorosultone in which hydrogen of sultone is partially or entirely replaced with fluorine, and derivatives thereof.
[0040]
The aminosulfonic acids used to make the sulfonamidosulfonic acids sandwiching the spacer structure as shown in formula (3) include aminomethanesulfonic acid, aminoethanesulfonic acid (taurine), aminopropanesulfonic acid, and aminobutanesulfonic acid. Aminoalkyl sulfonic acids such as aminopentanesulfonic acid and aminohexanesulfonic acid, and derivatives such as 2-methylaminoethanesulfonic acid, and aminofluoroalkyls in which the hydrogen atoms of the fatty chain of aminoalkylsulfonic acid are partially or entirely replaced with fluorine There are sulfonic acids and derivatives thereof, aromatic aminosulfonic acids such as aminobenzenesulfonic acid, aminonaphthalenesulfonic acid and diphenylaminesulfonic acid, and derivatives such as aminobenzene 2-methyl-4-sulfonic acid.
[0041]
Examples of the dihalogenated arylene sulfone include 4,4'-dichlorodiphenyl sulfone, 4,4'-dibromodiphenyl sulfone, 4,4'-diiododiphenyl sulfone, dichlorodibiphenyl sulfone, dichlorodinaphthyl sulfone, and dichloroanthranilyl sulfone. There is. Further, an electron withdrawing group such as a nitro group, a cyano group, or a fluorinated alkyl group may be introduced into the aromatic ring. The method for synthesizing the PPS polymer by polymerizing the dihalogenated arylene sulfone is not particularly limited, but the polymerization can be performed using a metal complex catalyst such as a nickel complex.
[0042]
The aromatic ring has no problem as long as it is a divalent aromatic ring, and preferably has a structure represented by the following formula (4). Further, it is desirable that the number of carbon atoms is 6 to 18. Further, an electron withdrawing group such as a nitro group, a cyano group, or a fluorinated alkyl group may be introduced into the aromatic ring.
[0043]
Embedded image
Figure 2004288497
[0044]
The polymer electrolyte is mainly composed of a PPSO-based polymer having these sulfonic acids and sulfonamidosulfonic acids as proton conductive substituents. That is, additives such as a plasticizer, a stabilizer, and a release agent that are used in ordinary polymers can be used within a range that does not contradict the object of the present invention. Further, in order to improve the mechanical strength of the polymer electrolyte, a sulfonated PPSO polymer or a sulfonated sulfonic acid PPSO polymer and a PPSO polymer may be mixed.
[0045]
The ion exchange group equivalent weight of the polymer electrolyte used in the present invention is preferably 150 to 2500 g / mol. Further, the equivalent weight of the ion exchange group is preferably from 200 to 1500 g / mol, more preferably from 300 to 1000 g / mol. When the equivalent weight of the ion exchange group exceeds 2500 g / mol, the ionic conductivity of the polymer electrolyte decreases, and the output performance decreases. When the equivalent weight is less than 150 g / mol, the water resistance of the polymer electrolyte decreases, which is not preferable.
[0046]
In the present invention, the ion exchange group equivalent weight refers to the molecular weight of the PPSO-based polymer per unit mole of the introduced sulfonic acid group or sulfonamidosulfonic acid group, and the smaller the value, the more sulfonation is introduced. It indicates that. The ion exchange group equivalent weight is 1 It can be measured by H-NMR spectroscopy, elemental analysis, acid-base titration, non-hydroxyl-base titration described in Japanese Patent Application Laid-Open No. 1-52866 (the specified solution is a solution of potassium methoxide in benzene / methanol), and the like. is there.
[0047]
As a method of controlling the ion exchange group equivalent weight of the polymer electrolyte into which sulfonic acid or sulfonamidosulfonic acid is introduced to 150 to 2500 g / mol, a sulfonation rate or a sulfonyl chloride conversion rate of an aromatic hydrocarbon polymer is determined. This is made possible by control. This can be achieved by controlling the addition ratio of the sulfonating agent or the sulfonyl chloride agent, the reaction temperature, the reaction time, and the like. In the sulfonyl chloride conversion, a solvent may or may not be used.
[0048]
When the polymer electrolyte used in the present invention is used for a fuel cell, it is usually used in the form of a membrane. There is no particular limitation on the method of converting a PPSO-based polymer into which sulfonic acid or sulfonamidosulfonic acid is introduced into a film, but a method of forming a film from a solution state (solution casting method) and a method of forming a film from a molten state (melting method) Press method or melt extrusion method), a method of oxidizing the PPS-based polymer film using an oxidizing agent (post-oxidation method), and the like. Specifically, in the solution casting method, for example, a polymer solution is applied by casting onto a glass plate, and the solvent is removed to form a film. The solvent used for film formation is not particularly limited as long as it is capable of dissolving the polymer and then removing it, and N, N′-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone Aprotic polar solvents such as dimethyl sulfoxide, or ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, alkylene glycol monoalkyl ether such as propylene glycol monoethyl ether, dichloromethane, halogen solvents such as trichloroethane, Alcohols such as i-propyl alcohol and t-butyl alcohol are preferably used. In the post-oxidation method, the PPS-based polymer formed by the solution casting method is oxidized by impregnating the same with a solution in which an oxidizing agent is dissolved. There is no particular limitation on the oxidizing agent used here, oxone (manufactured by Du Pont), peracetic acid, hydrogen peroxide, hypochlorite, sulfuric acid, chlorine, thionyl chloride, nitrogen dioxide, chromium trioxide, permanganese Acid alkali, nitric acid, organic oxides and the like are used.
[0049]
The thickness of the polymer electrolyte membrane is not particularly limited, but is preferably from 10 to 200 μm. In particular, 30 to 100 μm is preferable. It is preferable that the thickness be greater than 10 μm to obtain a film strength that can withstand practical use, and it is preferable that the thickness be smaller than 200 μm to reduce the film resistance, that is, improve the power generation performance. In the case of the solution casting method, the film thickness can be controlled by the solution concentration or the coating thickness on the substrate. When the film is formed from a molten state, the film thickness can be controlled by stretching a film having a predetermined thickness obtained by a melt press method or a melt extrusion method to a predetermined magnification.
[0050]
The catalyst electrode layer is formed by dissolving a PPSO-based polymer into which sulfonic acid or sulfonamidosulfonic acid has been introduced in the solvent used for forming the electrolyte membrane, and joining the catalyst electrodes with each other.
[0051]
The catalyst electrode here can be prepared by supporting catalyst metal fine particles on a conductive material. The catalyst metal used for the catalyst electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen, for example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron , Cobalt, nickel, chromium, tungsten, manganese, vanadium, or alloys thereof. In particular, platinum is often used. The particle size of the metal serving as the catalyst is usually from 10 to 300 Å. When these catalysts are attached to a carrier such as carbon, the amount of the catalyst used is small and the cost is advantageous. The loading amount of the catalyst is 0.01 to 10 mg / cm in a state where the electrode is formed. 2 Is preferred.
[0052]
As the conductive material, any material may be used as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, and graphite. These may be used alone or in combination.
[0053]
As a method of supporting the catalyst metal on these conductive materials, a method of depositing the catalyst metal on the surface of the conductive material (used mainly in the case of a carbon material) by a reduction method, or a method of suspending the catalyst metal in a solvent, There is a method of applying to the surface of the conductive material.
[0054]
The membrane / electrode assembly is obtained by applying a solution in which a sulfonic acid or a sulfonamidated sulfonic acid-introduced PPSO-based polymer is dissolved in a solvent used for forming an electrolyte membrane to a catalyst electrode layer and bonding the same to the electrolyte membrane. create.
[0055]
A fuel cell is a single cell in which a current collector having a groove for forming a fuel flow path or an oxidant flow path called a separator is disposed outside the membrane / electrode assembly formed as described above. It is configured by stacking a plurality of single cells via a cooling plate or the like. It is preferable to operate the fuel cell at a high temperature because the catalytic activity of the electrode increases and the electrode overvoltage decreases. However, since the electrolyte membrane does not function without moisture, it must be operated at a temperature at which moisture can be controlled. A preferable range of the operating temperature of the fuel cell is from room temperature to 100 ° C.
[0056]
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In addition, the measurement conditions of each physical property are as follows.
[Ion exchange group equivalent weight measurement]
The sulfonic acid or sulfonamidated sulfonic acid of the present invention into which the ion exchange group equivalent weight is to be measured is precisely weighed (a (gram)) in a sealable glass container, and an excess amount of chloride is added thereto. An aqueous calcium solution was added and stirred overnight. Hydrogen chloride generated in the system was titrated (b (ml)) with a 0.1 N sodium hydroxide standard aqueous solution (titer f) using phenolphthalein as an indicator. The ion exchange group equivalent weight (g / mol) was determined by the following equation.
Ion exchange group equivalent weight = (1000 × a) / (0.1 × b × f)
[Ion conductivity measurement]
The electrolyte membrane of the present invention was subjected to four-terminal impedance measurement using an electrochemical impedance measuring device (manufactured by Solartron, SI1287) in a frequency range of 0.1 Hz to 65 kHz to measure ionic conductivity. In the above measurement, the electrolyte membrane was stored at 75 ° C. in a water vapor atmosphere.
[Oxidation resistance test]
The electrolyte membrane of the present invention was immersed in Fenton's reagent (containing 40 ppm of iron) heated to 60 ° C., which was obtained by adding 1.9 mg of iron sulfate heptahydrate to 20 ml of 30% hydrogen peroxide solution. The time to dissolution in the reagent was determined.
[Moisture and heat resistance test]
The electrolyte membrane of the present invention was immersed in 1 mol / l sulfuric acid, refluxed and stored at 100 ° C. for 30 days, and it was measured whether the ion exchange group equivalent before and after the test changed.
[Evaluation of single cell performance of fuel cell]
The membrane / electrode assembly was incorporated into an evaluation cell, and the output performance of the fuel cell was evaluated. Hydrogen / oxygen was used as a reaction gas, and both were humidified at a pressure of 1 atm through a water bubbler at 70 ° C., and then supplied to an evaluation cell. The gas flow rate was 60 ml / min of hydrogen, 40 ml / min of oxygen, and the cell temperature was 75 ° C. Battery output performance was evaluated using a H201B charge / discharge device (manufactured by Hokuto Denko).
[0057]
【Example】
[Example 1]
(1) Synthesis of propyl sulfone oxidized polyphenylene sulfone
After the inside of a 500 ml four-necked round bottom flask equipped with a stirrer, a thermometer, and a reflux condenser connected to a calcium chloride tube was purged with nitrogen, dried 10.8 g of polyphenylene sulfide (PPS) (manufactured by Polyplastics Co., Ltd.) Fortron), 3.6 g of 1,3-propane sultone in 100 ml of dry chloroform. While maintaining the vessel at 60 ° C., 4.0 g of anhydrous aluminum chloride was added over about 30 minutes while stirring. After the addition was completed, the mixture was refluxed and stirred at 60 ° C. for 5 hours. The resulting precipitate was repeatedly washed with deionized water using a mixer and recovered by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight to obtain propylsulfonated polyphenylene sulfide.
[0058]
The obtained propylsulfonated polyphenylene sulfide was put into an oxidizing solution consisting of 160 g of oxone (manufactured by Du Pont), 500 g of water and 37 g of acetic acid, and stirred at 80 ° C. for 8 hours. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight.
[0059]
The ion-exchange group equivalent weight of the obtained propylsulfonated polyphenylene sulfone was 590 g / mol. The oxidation degree x of the sulfur atom was 1.9.
(2) Preparation of electrolyte membrane
The product obtained in the above (1) was dissolved in N-methylpyrrolidone to a concentration of 10% by weight. This solution was spread on glass with a doctor knife and dried to form an electrolyte membrane having a thickness of 40 μm.
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell
To 40% by weight of platinum-supported carbon, the 10% by weight N-methy and rupyrrolidone solution of the above (2) was added so that the weight ratio of platinum-supported carbon to polymer electrolyte was 2: 1; The paste (electrode catalyst coating solution) was uniformly dispersed to prepare a paste. This solution for coating an electrode catalyst was applied to both sides of the electrolyte membrane obtained in the above (2), and then dried to carry a platinum loading of 0.25 mg / cm. 2 Was prepared. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW was shown.
[0060]
[Comparative Example 1]
(1) Synthesis of propylsulfonated polyphenylene sulfide
Propyl sulfonated polyphenylene sulfide was synthesized by the method shown in Example 1. The obtained propylsulfonated polyphenylene sulfide had an ion exchange group equivalent weight of 490 g / mol. The oxidation degree x of the sulfur atom was 0.
(2) Preparation of electrolyte membrane
In the same manner as in Example 1, an electrolyte membrane having a thickness of 40 μm was formed.
[0061]
[Comparative Example 2]
(1) Synthesis of sulfonated polyphenylene sulfone
After the inside of a 500 ml four-necked round bottom flask equipped with a stirrer, a thermometer and a reflux condenser connected to a calcium chloride tube was purged with nitrogen, 200 ml of chlorosulfuric acid was added. 10.8 g of PPS was dissolved with stirring at 5 ° C. After stirring for 30 minutes, the reaction solution was slowly dropped into 10 l of deionized water to precipitate a sulfonylchlorinated polyphenylene sulfide, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight.
[0062]
The sulfonyl chloride-modified polyphenylene sulfide was oxidized by the oxidation method shown in Example 1, and at the same time, the sulfonyl chloride group was hydrolyzed to a sulfonic acid group to obtain a sulfonated polyphenylene sulfone. The ion-exchange group equivalent weight of the obtained sulfonated polyphenylene sulfone was 540 g / mol. The oxidation degree x of the sulfur atom was 1.9.
(2) Preparation of electrolyte membrane
In the same manner as in Example 1, an electrolyte membrane having a thickness of 40 μm was formed.
[0063]
[Example 2]
(1) Synthesis of butylsulfonated polyphenylene sulfone
Synthesis was performed in the same manner as in Example 1 except that 1,4-butanesultone was used instead of 1,3-propanesultone of Example 1. The ion exchange group equivalent weight of the obtained butylsulfonated polyphenylene sulfone was 600 g / mol. The oxidation degree x of the sulfur atom was 1.9.
(2) Preparation of electrolyte membrane
In the same manner as in Example 1, an electrolyte membrane having a thickness of 40 μm was formed.
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell
In the same manner as in Example 1, the supported amount of platinum was 0.25 mg / cm. 2 Was prepared. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW was shown.
[0064]
[Example 3]
(1) Synthesis of ethyl sulfonic acid sulfonamidated polyphenylene sulfone
After the inside of a 500 ml four-necked round bottom flask equipped with a stirrer, a thermometer and a reflux condenser connected to a calcium chloride tube was purged with nitrogen, 200 ml of chlorosulfuric acid was added. 10.8 g of PPS was dissolved with stirring at 5 ° C. After stirring for 30 minutes, the reaction solution was slowly dropped into 10 l of deionized water to precipitate a sulfonylchlorinated polyphenylene sulfide, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight.
[0065]
The obtained sulfonyl chloride polyphenylene sulfide was put into a reaction solution consisting of 100 ml of water, 20 g of potassium carbonate, and 3.75 g of taurine, and stirred at 70 ° C. for 48 hours. To this was added 1N hydrochloric acid until neutralized. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight to obtain ethylsulfonic acid sulfonamidated polyphenylene sulfide. Was.
[0066]
Ethyl sulfonic acid sulfonamido polyphenylene sulfide was oxidized by the oxidation method shown in Example 1 to obtain ethyl sulfonic acid sulfonamido polyphenylene sulfone. The ion exchange group equivalent weight of the obtained ethylsulfonic acid sulfonamidated polyphenylene sulfone was 610 g / mol. The oxidation degree x of the sulfur atom was 1.9.
(2) Preparation of electrolyte membrane
In the same manner as in Example 1, an electrolyte membrane having a thickness of 40 μm was formed.
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell
In the same manner as in Example 1, the supported amount of platinum was 0.25 mg / cm. 2 Was prepared. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW was shown.
[0067]
[Example 4]
(1) Synthesis of propylsulfonated polybiphenylene sulfone
After the inside of a 500 ml four-necked round bottom flask equipped with a stirrer, a thermometer, and a reflux condenser connected to a calcium chloride tube was purged with nitrogen, 28.7 g of 4,4′-dichlorodiphenyl sulfone was dried, and 100 ml of dried was taken. Of chloroform and 9.6 g of 1,3-propane sultone. While maintaining the vessel at 60 ° C., 13.2 g of anhydrous aluminum chloride was added over about 30 minutes while stirring. After the addition was completed, the mixture was refluxed and stirred at 60 ° C. for 5 hours. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight to obtain propylsulfonated 4,4′-dichlorodiphenyl. The sulfone was obtained.
[0068]
4.1 g of propylsulfonated 4,4'-dichlorodiphenylsulfone are dissolved in 70 ml of dry dimethylformamide, and 2.8 g of nickel (cyclooctadiene) complex, 1.6 g of bipyridine and 1.5 g of cyclooctane are dissolved. Diene was added and the mixture was stirred at 60 ° C. for 8 hours. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration, and then dried under reduced pressure at 120 ° C. overnight.
The equivalent weight of the ion-exchange group of the obtained propylsulfonated polybiphenylene sulfone was 340 g / mol. The degree of oxidation x of the sulfur atom was 2.0.
[0069]
(2) Preparation of electrolyte membrane
The product obtained in the above (1) was dissolved in N-methylpyrrolidone to a concentration of 10% by weight. This solution was spread on glass with a doctor knife and dried to form an electrolyte membrane having a thickness of 40 μm.
[0070]
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell
To 40% by weight of platinum-supported carbon, the 10% by weight N-methy and rupyrrolidone solution of the above (2) was added so that the weight ratio of platinum-supported carbon to polymer electrolyte was 2: 1; The paste (electrode catalyst coating solution) was uniformly dispersed to prepare a paste. This solution for coating an electrode catalyst was applied to both sides of the electrolyte membrane obtained in the above (2), and then dried to carry a platinum loading of 0.25 mg / cm. 2 Was prepared. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW was shown.
[0071]
[Example 5]
(1) Synthesis of ethyl sulfonic acid sulfonamidated polyphenylene sulfone
After the inside of a 500 ml four-necked round bottom flask equipped with a stirrer, a thermometer and a reflux condenser connected to a calcium chloride tube was purged with nitrogen, 28.7 g of 4,4′-dichlorodiphenyl sulfone and 200 ml of chloroform were added. Sulfuric acid was added. The mixture was refluxed and stirred for 10 hours while maintaining the vessel at 60 ° C. The reaction solution was slowly dropped into 10 l of deionized water to precipitate sulfonylchloridated 4,4′-dichlorodiphenyl sulfone, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 120 ° C. overnight.
[0072]
4.0 g of sulfonylchloridated 4,4′-dichlorodiphenylsulfone was added to a reaction solution consisting of 100 ml of water, 40 g of potassium carbonate, and 1.25 g of taurine, and the mixture was stirred at 70 ° C. for 48 hours. To this was added 1N hydrochloric acid until neutralized. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral. The filtrate was dried under reduced pressure at 120 ° C. overnight, and ethylsulfonic acid sulfonamide 4,4 ′ was obtained. -Dichlorodiphenyl sulfone was obtained.
[0073]
Ethylsulfonic acid sulfonamido-modified 4,4'-dichlorodiphenyl sulfone was polymerized in the same manner as the polymerization method shown in Example 4 to obtain ethylsulfonic acid sulfonamido-modified polybiphenylene sulfone. The ion exchange group equivalent weight of the obtained ethylsulfonic acid sulfonamidated polybiphenylene sulfone was 410 g / mol. The degree of oxidation x of the sulfur atom was 2.0.
[0074]
(2) Preparation of electrolyte membrane
In the same manner as in Example 1, an electrolyte membrane having a thickness of 40 μm was formed.
[0075]
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell
In the same manner as in Example 1, the supported amount of platinum was 0.25 mg / cm. 2 Was prepared. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW was shown.
[0076]
With respect to Examples 1 to 5 and Comparative Examples 1 and 2, an oxidation resistance test, a moist heat test, and an ionic conductivity measurement were performed. Table 1 shows the evaluation results.
[0077]
[Table 1]
Figure 2004288497
[0078]
【The invention's effect】
The PPSO-based polymer electrolyte into which the sulfonic acid or sulfonamidated sulfonic acid according to the present invention is introduced is very inexpensive as compared with a fluorine-based electrolyte membrane represented by a perfluorosulfonic acid membrane, and the main chain has a sulfone group. And an aromatic ring as a main component, and a sulfonic acid is not directly introduced into the main chain, whereby a polymer electrolyte having excellent durability, particularly oxidation resistance and wet heat resistance, can be obtained. Further, the membrane, catalyst electrode layer, membrane / electrode assembly, and fuel cell using the PPSO-based electrolyte according to the present invention exhibit practically sufficient performance.

Claims (9)

下記式(1)で表される構造を有する繰り返し単位からなり、該繰り返し単位中の硫黄原子の酸化度xが1.2〜2.0である芳香族炭化水素系高分子化合物であって、下記式(2)で表されるスルホン酸を置換基として有する固体高分子電解質。
Figure 2004288497
(Arは2価の芳香族及びその誘導体 xは硫黄原子の酸化度を示す)
Figure 2004288497
(Rはアルキル基及びそれらの誘導体、少なくとも1つのフッ素原子を置換基として有するアルキル基及びそれらの誘導体、芳香族基及びそれらの誘導体)
An aromatic hydrocarbon polymer compound comprising a repeating unit having a structure represented by the following formula (1), wherein the degree of oxidation x of a sulfur atom in the repeating unit is 1.2 to 2.0, A solid polymer electrolyte having a sulfonic acid represented by the following formula (2) as a substituent.
Figure 2004288497
(Ar is a divalent aromatic and its derivative x indicates the degree of oxidation of a sulfur atom)
Figure 2004288497
(R 1 is an alkyl group and a derivative thereof, an alkyl group having at least one fluorine atom as a substituent, a derivative thereof, an aromatic group and a derivative thereof)
式(1)で表される構造を有する繰り返し単位からなり該繰り返し単位中の硫黄原子の酸化度xが1.2〜2.0である芳香族炭化水素系高分子化合物であって、下記式(3)で表されるスルホンアミドスルホン酸を置換基として有する固体高分子電解質。
Figure 2004288497
(Rはアルキル基及びそれらの誘導体、少なくとも1つのフッ素原子を置換基として有するアルキル基及びそれらの誘導体、芳香族基及びそれらの誘導体)
An aromatic hydrocarbon polymer compound comprising a repeating unit having a structure represented by the formula (1) and having a degree of oxidation x of a sulfur atom in the repeating unit of 1.2 to 2.0, wherein A solid polymer electrolyte having the sulfonamidosulfonic acid represented by (3) as a substituent.
Figure 2004288497
(R 2 is an alkyl group and a derivative thereof, an alkyl group having at least one fluorine atom as a substituent, a derivative thereof, an aromatic group and a derivative thereof)
Arが下記式(4)で表される芳香族化合物のいずれか1種類以上を含むことを特徴とする請求項1または2に記載の固体高分子電解質。
Figure 2004288497
3. The solid polymer electrolyte according to claim 1, wherein Ar contains at least one kind of an aromatic compound represented by the following formula (4). 4.
Figure 2004288497
ポリアリーレンスルフィド系高分子に式(2)もしくは式(3)に記載の置換基を導入した後、スルフィドをスルホンに酸化する事を特徴とする請求項1〜3のいずれか1項に記載の固体高分子電解質の製造方法。The sulfide is oxidized to a sulfone after introducing a substituent represented by the formula (2) or (3) into the polyarylene sulfide-based polymer, and the sulfide is oxidized to a sulfone. A method for producing a solid polymer electrolyte. 式(2)もしくは式(3)に記載の置換基を分子量が100〜1000の芳香族炭化水素系化合物に導入した後、該化合物を重合することを特徴とする請求項1〜3のいずれか1項に記載の固体高分子電解質の製造方法。4. The compound according to claim 1, wherein the substituent is introduced into an aromatic hydrocarbon compound having a molecular weight of 100 to 1000 after the substituent represented by the formula (2) or (3) is introduced, and then the compound is polymerized. 2. The method for producing a solid polymer electrolyte according to claim 1. 請求項1〜3のいずれか1項に記載の固体高分子電解質からなる膜であることを特徴とする固体高分子電解質膜。A solid polymer electrolyte membrane, comprising the solid polymer electrolyte membrane according to claim 1. 炭素材からなる導電材の表面に触媒金属の微粒子を担持させた触媒電極と、請求項1〜3のいずれか1項に記載の固体高分子電解質からなる触媒電極層。A catalyst electrode in which fine particles of a catalyst metal are supported on the surface of a conductive material made of a carbon material, and a catalyst electrode layer made of the solid polymer electrolyte according to any one of claims 1 to 3. 請求項6に記載の固体高分子電解質膜と請求項7に記載の触媒電極層からなる膜/電極接合体。A membrane / electrode assembly comprising the solid polymer electrolyte membrane according to claim 6 and the catalyst electrode layer according to claim 7. 請求項8に記載の膜/電極接合体を使用した燃料電池。A fuel cell using the membrane / electrode assembly according to claim 8.
JP2003079888A 2003-03-24 2003-03-24 Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same Pending JP2004288497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079888A JP2004288497A (en) 2003-03-24 2003-03-24 Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079888A JP2004288497A (en) 2003-03-24 2003-03-24 Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2004288497A true JP2004288497A (en) 2004-10-14

Family

ID=33293892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079888A Pending JP2004288497A (en) 2003-03-24 2003-03-24 Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2004288497A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048555A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
JP2007048556A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
DE102008008097A1 (en) 2007-02-08 2008-08-14 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte diaphragm for use in polymer electrolyte gas cell, has aromatic polymer film substrate, which has aromatic rings where groups of sulphonic acid are introduced
JP2008533225A (en) * 2005-03-07 2008-08-21 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Sulfonated poly (arylene) as a hydrolytically and thermally oxidatively stable polymer
DE112007002012T5 (en) 2006-08-24 2009-07-02 Japan Atomic Energy Agency Polymer electrolyte membrane based on an aromatic polymer membrane and process for its preparation
JP2011501857A (en) * 2007-09-26 2011-01-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Production method of proton conducting membrane for fuel cell by radiographing
US8372558B2 (en) 2007-09-11 2013-02-12 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membranes that excel in mechanical strength and a process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533225A (en) * 2005-03-07 2008-08-21 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Sulfonated poly (arylene) as a hydrolytically and thermally oxidatively stable polymer
JP2007048555A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
JP2007048556A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
DE112007002012T5 (en) 2006-08-24 2009-07-02 Japan Atomic Energy Agency Polymer electrolyte membrane based on an aromatic polymer membrane and process for its preparation
DE102008008097A1 (en) 2007-02-08 2008-08-14 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte diaphragm for use in polymer electrolyte gas cell, has aromatic polymer film substrate, which has aromatic rings where groups of sulphonic acid are introduced
US7714027B2 (en) 2007-02-08 2010-05-11 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte membrane and method for producing same
US8372558B2 (en) 2007-09-11 2013-02-12 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membranes that excel in mechanical strength and a process for producing the same
JP2011501857A (en) * 2007-09-26 2011-01-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Production method of proton conducting membrane for fuel cell by radiographing

Similar Documents

Publication Publication Date Title
JP4051736B2 (en) Polymer electrolyte, polymer electrolyte membrane, and fuel cell
JP3561250B2 (en) Fuel cell
JP3607862B2 (en) Fuel cell
JP3737751B2 (en) Fuel cell, polymer electrolyte and ion-exchange resin used therefor
EP2088167B1 (en) Block copolymers and use thereof
JPH1021943A (en) Polymer electrolytic substance for fuel cell, and fuel cell
JP5905857B2 (en) Polymer electrolyte, polymer electrolyte membrane, fuel cell catalyst layer binder, and use thereof
WO2005063854A1 (en) Polymer electrolyte and use thereof
JP4774718B2 (en) Polymer electrolyte membrane
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
JP4929569B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP2009129703A (en) Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell
JP4245991B2 (en) Solid polymer electrolyte, membrane using the same, catalyst electrode layer, membrane / electrode assembly, and fuel cell
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
JP4836539B2 (en) Fuel cell electrolyte
JP4063596B2 (en) Proton conducting polymer compound and proton conducting polymer membrane
JP4077011B2 (en) Solid polymer electrolyte, membrane electrode assembly and fuel cell
JP2004087288A (en) Solid polyelectrolyte, film using it, catalytic electrode layer, and fuel cell
JP6819047B2 (en) Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells.
JP2005251409A (en) Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell
WO2013161405A1 (en) Composition for electrolyte membranes, solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, membrane-electrode assembly, solid polymer fuel cell, water electrolysis cell, and water electrolysis system
KR102567197B1 (en) Poly(phenylenebenzopheneone) based polymer for proton exchange membrane of fuel cell, polymer proton exchange membrane for fuel cell, and fuel cell comprising the same
JP2005290318A (en) Solid polyelectrolyte
JP5590568B2 (en) Block copolymer and use thereof
JP2009026638A (en) Solid polymer electrolyte