JP2009129703A - Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell - Google Patents

Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell Download PDF

Info

Publication number
JP2009129703A
JP2009129703A JP2007303545A JP2007303545A JP2009129703A JP 2009129703 A JP2009129703 A JP 2009129703A JP 2007303545 A JP2007303545 A JP 2007303545A JP 2007303545 A JP2007303545 A JP 2007303545A JP 2009129703 A JP2009129703 A JP 2009129703A
Authority
JP
Japan
Prior art keywords
group
aromatic
polymer electrolyte
dendronized
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007303545A
Other languages
Japanese (ja)
Inventor
Yukihisa Katayama
幸久 片山
Mitsuru Ueda
充 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007303545A priority Critical patent/JP2009129703A/en
Publication of JP2009129703A publication Critical patent/JP2009129703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrocarbon-based polymer electrolyte excelling in heat resistance and mechanical strength, and also excelling in high ionic conductivity regardless of a humidification condition; and a solid polymer electrolyte membrane. <P>SOLUTION: This dendronized polymer electrolyte comprises a main chain having an aromatic group-containing structure represented by general formula (1), and a side chain having an ion conductive group in its terminal group. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なデンドロナイズドポリマ(分岐型高分子)電解質、その製造方法、固体高分子電解膜、及びこれらを用いた燃料電池に関する。更に詳しくは、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等に用いられる電解質膜等に好適な、イオン伝導性と耐久性に優れた高分子電解質、固体高分子電解膜に関するものである。   The present invention relates to a novel dendronized polymer (branched polymer) electrolyte, a production method thereof, a solid polymer electrolyte membrane, and a fuel cell using the same. More specifically, a polymer electrolyte excellent in ion conductivity and durability suitable for an electrolyte membrane used in a fuel cell, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor, etc. The present invention relates to a solid polymer electrolyte membrane.

固体高分子電解質は、高分子鎖中にスルホン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されているものである。   A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group in a polymer chain, and has a property of binding firmly to a specific ion or selectively transmitting a cation or an anion. Therefore, it is formed into particles, fibers, or membranes and used for various applications such as electrodialysis, diffusion dialysis, and battery diaphragm.

例えば、燃料電池は、電池内で水素やメタノール等の燃料を電気化学的に酸化することにより、燃料の化学エネルギーを直接電気エネルギーに変換して取り出すものであり、近年、クリーンな電気エネルギー供給源として注目されている。特にプロトン交換膜を電解質として用いる固体高分子型燃料電池は、高出力密度が得られ、低温作動が可能なことから電気自動車用電源として期待されている。   For example, a fuel cell is one that converts the chemical energy of fuel directly into electric energy by electrochemically oxidizing fuel such as hydrogen or methanol in the cell, and has recently been a clean electric energy supply source. It is attracting attention as. In particular, a polymer electrolyte fuel cell using a proton exchange membrane as an electrolyte is expected as a power source for an electric vehicle because it has a high output density and can be operated at a low temperature.

このような固体高分子型燃料電池の基本構造は、電解質膜と、その両面に接合された一対の、触媒層を有するガス拡散電極とで構成され、更にその両側に集電体を配する構造からなっている。そして、一方のガス拡散電極(アノード)に燃料である水素やメタノールを、もう一方のガス拡散電極(カソード)に酸化剤である酸素や空気をそれぞれ供給し、両方のガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作動する。このとき、アノードで生成したプロトンは電解質膜を通ってカソード側に移動し、カソードで酸素と反応して水を生成する。ここで電解質膜はプロトンの移動媒体、及び水素ガスや酸素ガスの隔膜として機能している。従ってこの電解質膜としては高いプロトン伝導性、強度、化学的安定性が要求される。   The basic structure of such a polymer electrolyte fuel cell is composed of an electrolyte membrane and a pair of gas diffusion electrodes having a catalyst layer bonded to both surfaces thereof, and a structure in which a current collector is disposed on both sides thereof. It is made up of. Then, hydrogen or methanol as fuel is supplied to one gas diffusion electrode (anode), oxygen or air as oxidant is supplied to the other gas diffusion electrode (cathode), and an external load is applied between both gas diffusion electrodes. By connecting the circuit, it operates as a fuel cell. At this time, protons generated at the anode move to the cathode side through the electrolyte membrane, and react with oxygen at the cathode to generate water. Here, the electrolyte membrane functions as a proton transfer medium and a hydrogen gas or oxygen gas diaphragm. Accordingly, the electrolyte membrane is required to have high proton conductivity, strength, and chemical stability.

一方、ガス拡散電極の触媒としては、一般に白金等の貴金属をカーボン等の電子伝導性を有する担体に担持したものが用いられている。このガス拡散電極に担持されている触媒上へのプロトン移動を媒介し、該触媒の利用効率を高める目的で、電極触媒結合剤としてやはりプロトン伝導性高分子電解質が用いられているが、この材料としてもイオン交換膜と同じパーフルオロスルホン酸ポリマ等のスルホン酸基を有する含フッ素ポリマを使用することができる。ここでは電極触媒結合剤であるスルホン酸基を有する含フッ素ポリマはガス拡散電極の触媒のバインダーとして、あるいはイオン交換膜とガス拡散電極との密着性を向上させるための接合剤としての役割も担わせることもできる。   On the other hand, as a catalyst for a gas diffusion electrode, a catalyst in which a noble metal such as platinum is supported on a carrier having electron conductivity such as carbon is generally used. For the purpose of mediating proton transfer onto the catalyst supported on the gas diffusion electrode and increasing the utilization efficiency of the catalyst, a proton conductive polymer electrolyte is also used as an electrode catalyst binder. Alternatively, a fluorine-containing polymer having a sulfonic acid group such as perfluorosulfonic acid polymer, which is the same as the ion exchange membrane, can be used. Here, the fluorine-containing polymer having a sulfonic acid group, which is an electrocatalyst binder, also serves as a binder for the catalyst of the gas diffusion electrode or as a bonding agent for improving the adhesion between the ion exchange membrane and the gas diffusion electrode. It can also be made.

ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に高く、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、更にはプロトン伝導性を利用して、湿度センサ、ガスセンサ、酸素濃縮器等にも広く応用されているものである。   By the way, the fluorine-based electrolyte typified by the perfluorosulfonic acid membrane has a very high chemical stability because it has a C—F bond. For the above-described fuel cell, water electrolysis, or salt electrolysis In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and further widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity. It is what.

燃料電池の電解質膜としては、パーフルオロアルキレンを主骨格とし、一部にパーフルオロビニルエーテル側鎖の末端にスルホン酸基、カルボン酸基等のイオン交換基を有するフッ素系膜が主として用いられている。パーフルオロスルホン酸膜に代表されるフッ素系電解質膜は、化学的安定性が非常に高いことから、過酷な条件下で使用される電解質膜として賞用されている。この様なフッ素系電解質膜としては、Nafion膜(登録商標、Du Pont社)、Dow膜(Dow Chemical社)、Aciplex膜(登録商標、旭化成工業(株)社)、Flemion膜(登録商標、旭硝子(株)社)等が知られている。   As an electrolyte membrane of a fuel cell, a fluorine-based membrane having perfluoroalkylene as a main skeleton and partially having an ion exchange group such as a sulfonic acid group or a carboxylic acid group at the end of a perfluorovinyl ether side chain is mainly used. . Fluorine electrolyte membranes typified by perfluorosulfonic acid membranes have been used as electrolyte membranes used under severe conditions because of their very high chemical stability. As such a fluorine-based electrolyte membrane, Nafion membrane (registered trademark, Du Pont), Dow membrane (Dow Chemical), Aciplex membrane (registered trademark, Asahi Kasei Kogyo Co., Ltd.), Flemion membrane (registered trademark, Asahi Glass) Etc.) are known.

しかし、従来提案されているパーフルオロスルホン酸系の固体電解質膜は製造が困難で、非常に高価であるという欠点があるとともに、パーフルオロスルホン酸系電解質は耐熱性、耐薬品性、イオン伝導性が十分ではなく、燃料電池等の高温動作に十分対応出来ない等の問題があった。   However, the conventionally proposed perfluorosulfonic acid-based solid electrolyte membrane has the disadvantages that it is difficult to manufacture and is very expensive, and the perfluorosulfonic acid-based electrolyte has heat resistance, chemical resistance, and ion conductivity. However, there is a problem that the high-temperature operation of a fuel cell or the like cannot be sufficiently handled.

そのため、パーフルオロスルホン酸系電解質に代わるイオン伝導性・イオン交換性材料の開発が望まれていた。例えば、下記特許文献1〜3には、燃料電池に適用可能な、末端スルホン酸基を含む高分子電解質として、ポリスチレンや特定のポリイミドを主鎖とし、側鎖に分岐した構造とスルホン酸基を導入した高分子電解質が開示されている。   Therefore, it has been desired to develop an ion conductive / ion exchange material in place of the perfluorosulfonic acid electrolyte. For example, in Patent Documents 1 to 3 below, as a polymer electrolyte containing terminal sulfonic acid groups, which can be applied to a fuel cell, polystyrene or a specific polyimide as a main chain, and a structure branched into side chains and a sulfonic acid group are included. An introduced polyelectrolyte is disclosed.

特開2004−35891号公報JP 2004-35891 A 特開2005−126721号公報JP 2005-126721 A 特開2005−232456号公報JP-A-2005-232456

上記特許文献1〜3に開示された高分子電解質は、一定の耐熱性を有するものではあるが、パーフルオロスルホン酸系電解質の代替物となるには、高加湿及び低加湿の加湿条件に関わらずイオン伝導率が悪いという問題があった。   The polymer electrolytes disclosed in the above Patent Documents 1 to 3 have a certain heat resistance. However, in order to replace the perfluorosulfonic acid-based electrolyte, the ion is used regardless of humidification conditions of high and low humidification. There was a problem of poor conductivity.

本発明は上記従来の高分子電解質が有する課題を解決することを目的とするもので、耐熱性や機械的強度に優れるだけでなく、高加湿及び低加湿の加湿条件に関わらず高いイオン伝導率に優れた炭化水素系高分子電解質、及び固体高分子電解質膜を提供することを目的とする。又、該炭化水素系高分子電解質を用いて優れた固体高分子電解質型燃料電池を実現することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the conventional polymer electrolyte, and not only has excellent heat resistance and mechanical strength but also high ionic conductivity regardless of humidification conditions of high and low humidification. It is an object of the present invention to provide a hydrocarbon-based polymer electrolyte and a solid polymer electrolyte membrane excellent in the above. Another object of the present invention is to realize an excellent solid polymer electrolyte fuel cell using the hydrocarbon-based polymer electrolyte.

本発明者は鋭意研究した結果、上記特許文献1〜3に開示された高分子電解質の問題点・課題が発生する理由は、
(1)イオン伝導基間の距離が離れている
(2)電解質膜内でイオン伝導パス(経路)が断絶している
(3)伝導基が付属している側鎖の運動性が低い
(4)合成反応上、酸密度の向上に限界がある
(5)分子構造上での正確な相分離がなされていない
ことにあることを見出し、これらの問題点・課題を解決する新規な高分子電解質に到達した。
As a result of earnest research, the present inventors have found that the problems and problems of the polymer electrolytes disclosed in the above Patent Documents 1 to 3 occur.
(1) The distance between the ion conducting groups is separated (2) The ion conducting path (path) is broken in the electrolyte membrane (3) The mobility of the side chain attached to the conducting group is low (4 ) There is a limit to the improvement of acid density in the synthesis reaction. (5) It has been found that accurate phase separation on the molecular structure has not been made, and a novel polymer electrolyte that solves these problems and problems. Reached.

即ち、第1に、本発明は、デンドロナイズドポリマ(分岐型高分子)電解質の発明であり、下記一般式(1)で表される、芳香族基含有構造を有する主鎖と、末端基にイオン伝導基を有する側鎖とからなることを特徴とする。   That is, first, the present invention is an invention of a dendronized polymer (branched polymer) electrolyte, and has a main chain having an aromatic group-containing structure represented by the following general formula (1) and a terminal group. It consists of a side chain having an ion conductive group.

Figure 2009129703
(式中、A、A’はそれぞれ独立して芳香族系繰り返し単位であり、m=5〜10000、n=0〜10000、Bは連結基でありb=0〜5、Cは2個以上の分岐点を有する分岐構造単位であり、c=0〜5、Dは末端にイオン伝導基を有するイオン伝導単位であり、d=1〜3であり、Eは疎水性基であり、e=0〜3、Fは親水性基であり、f=0〜3である。連結基BはA’とCの間だけでなく、CとDの間、Cの構造中、又はDの構造中に含有されていてもよい。)
ここで、前記高分子電解質の分子の、主鎖と側鎖の間及び/又は側鎖間の空隙にイオン伝導性物質及び/又は保水性物質が存在していることが好ましい。
Figure 2009129703
(In the formula, A and A ′ are each independently an aromatic repeating unit, m = 5 to 10,000, n = 0 to 10,000, B is a linking group, b = 0 to 5, and C is 2 or more. Branch units having the following branch points: c = 0 to 5, D is an ion conductive unit having an ion conductive group at the terminal, d = 1 to 3, E is a hydrophobic group, e = 0 to 3, F is a hydrophilic group, and f = 0 to 3. The linking group B is not only between A ′ and C, but also between C and D, in the structure of C, or in the structure of D. It may be contained in
Here, it is preferable that an ion-conducting substance and / or a water-retaining substance is present in the space between the main chain and the side chain and / or between the side chains of the polymer electrolyte molecule.

本発明のデンドロナイズドポリマ電解質は、
(1)芳香族基含有構造を有する主鎖によって耐熱性と強度が発揮され、
(2)分岐された側鎖末端にイオン伝導基を集中的に付与することで酸密度を高め、
(3)イオン伝導基間の距離を縮めることで、低加湿でも高いイオン伝導率が期待され、
(4)イオン伝導基を側鎖周辺に集中することで、実質的に相分離構造を形成でき、イオン伝導パス(経路)を連結させることが可能になる、
(5)側鎖構造を付与することでスルホン酸基が付加できる場所を増やし、実質的な酸密度を向上させることができる、
(6)主鎖とイオン伝導基の間の連結基と分岐構造単位によってイオン伝導基の運動性と側鎖の嵩高さを発現して分子の自由体積を高め、
(7)更に、主鎖と側鎖の間及び/又は側鎖間の空隙にイオン伝導性物質及び/又は保水性物質を存在させることによって、イオン伝導パスを確保する、
という優れた性質を有する。これにより、本発明のデンドロナイズドポリマ電解質は低加湿状態でも高加湿状態でも優れたイオン伝導性を有する。
The dendronized polymer electrolyte of the present invention is
(1) Heat resistance and strength are exhibited by the main chain having an aromatic group-containing structure,
(2) The acid density is increased by intensively imparting ion conductive groups to the branched side chain ends,
(3) By reducing the distance between ion conductive groups, high ionic conductivity is expected even with low humidification,
(4) By concentrating the ion conductive group around the side chain, it is possible to substantially form a phase separation structure and to connect ion conductive paths (routes).
(5) By adding a side chain structure, the number of places where sulfonic acid groups can be added can be increased, and the substantial acid density can be improved.
(6) The mobility of the ion conductive group and the bulk of the side chain are expressed by the linking group and the branched structural unit between the main chain and the ion conductive group to increase the free volume of the molecule,
(7) Further, an ion conductive path is ensured by allowing an ion conductive substance and / or a water retention substance to exist between the main chain and the side chain and / or between the side chains.
It has excellent properties. As a result, the dendronized polymer electrolyte of the present invention has excellent ionic conductivity both in a low humidified state and in a highly humidified state.

本発明のデンドロナイズドポリマ電解質の分子量は重量平均分子量で100以上である。ここで、重量平均分子量が100未満になると固体電解質としての機能が充分に発揮できない。   The molecular weight of the dendronized polymer electrolyte of the present invention is 100 or more in terms of weight average molecular weight. Here, when the weight average molecular weight is less than 100, the function as a solid electrolyte cannot be sufficiently exhibited.

芳香族基含有構造を有する主鎖としては、公知の耐熱性高分子を広く用いることが出来る。繰り返し単位A、A’によって構成される主鎖によって、耐熱性、機械的強度、柔軟性などのデンドロナイズドポリマ電解質の基本的物性が発揮される。具体的には、繰り返し単位A、A’によって構成される主鎖として、ポリフェニレン、ナフタレン、芳香族ポリエーテル、芳香族ポリチオエーテル、芳香族ポリスルホン、芳香族ポリエーテルスルホン、アルキレン基で連結された芳香族、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリエーテルイミド、芳香族ポリアミドイミド、芳香族ポリケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリヒドラジド、芳香族ポリイミン、ポリオキサジアゾール、ポリベンツオキサゾール、ポリベンツイミダゾール、これらのアルキル置換化合物、これらの水酸基置換化合物の群から選択される1種以上が好ましく例示される。   As the main chain having an aromatic group-containing structure, known heat-resistant polymers can be widely used. By the main chain composed of the repeating units A and A ′, basic physical properties of the dendronized polymer electrolyte such as heat resistance, mechanical strength and flexibility are exhibited. Specifically, as a main chain composed of the repeating units A and A ′, aromatics connected by polyphenylene, naphthalene, aromatic polyether, aromatic polythioether, aromatic polysulfone, aromatic polyethersulfone, and alkylene groups. Group, aromatic polyamide, aromatic polyester, aromatic polyimide, aromatic polyetherimide, aromatic polyamideimide, aromatic polyketone, aromatic polyetheretherketone, aromatic polyhydrazide, aromatic polyimine, polyoxadiazole, Preferable examples include one or more selected from the group consisting of polybenzoxazole, polybenzimidazole, alkyl-substituted compounds thereof, and hydroxyl-substituted compounds.

より具体的には、具体的には、繰り返し単位A、A’として下記化学式から選択される1種か2種以上の組み合わせが例示される。   More specifically, the repeating units A and A ′ are exemplified by one or a combination of two or more selected from the following chemical formulas.

Figure 2009129703
Figure 2009129703

Figure 2009129703
Figure 2009129703

Figure 2009129703
Figure 2009129703

連結基Bは、存在しなくても良いが、存在した方が、主鎖の耐熱性を確保しつつ、後述する分岐構造単位と協働して、側鎖の運動性を高める。なお、連結基BはA’とCの間だけでなく、CとDの間、Cの構造中、又はDの構造中に含有されていてもよい。 The linking group B may not be present, but the presence of the linking group B enhances the mobility of the side chain in cooperation with a branching structural unit described later while ensuring the heat resistance of the main chain. The linking group B may be contained not only between A ′ and C, but also between C and D, in the structure of C, or in the structure of D.

具体的には、連結基Bとして、エーテル基、カルボニル基、チオエーテル基、スルホン基、アミド基、ビススルホンイミド基(−SONHSO−)、スルホンカルボンイミド基(−SONHCO−)、ビスカルボンイミド基(−CONHCO−)、アルキレン基の群から選択される1種以上が好ましく例示される。 Specifically, as the linking group B, an ether group, a carbonyl group, a thioether group, a sulfone group, an amide group, a bissulfonimide group (—SO 2 NHSO 2 —), a sulfone carbonimide group (—SO 2 NHCO—), One or more types selected from the group of a biscarbonimide group (—CONHCO—) and an alkylene group are preferably exemplified.

2個以上の分岐点を有する分岐構造単位Cは、分子中の全ての側鎖に存在しなくても良いが、少なくとも一部には存在する。分岐構造単位Cによってデンドロナイズドポリマ構造となり、分岐された側鎖末端にイオン伝導基を付与することで酸密度を高めてイオン伝導性を向上させ、連結基と共にイオン伝導基の運動性と側鎖の嵩高さを発現して分子の自由体積を高める。具体的には、分岐構造単位Cとして、下記一般式で表される群から選択される1種以上、又はこれらの繰り返し構造から選択される1種以上が好ましく選択される。   The branched structural unit C having two or more branch points may not be present in all side chains in the molecule, but is present in at least a part. The branched structural unit C results in a dendronized polymer structure. By adding an ion conductive group to the end of the branched side chain, the acid density is increased to improve the ion conductivity, and the mobility and side chain of the ion conductive group together with the linking group. To increase the free volume of the molecule. Specifically, as the branched structural unit C, one or more selected from the group represented by the following general formula or one or more selected from these repeating structures are preferably selected.

Figure 2009129703
Figure 2009129703

末端にイオン伝導基を有するイオン伝導単位Dは、分子中の全ての側鎖に存在しなくても良いが、少なくとも一部には存在する。イオン伝導単位Dによって、電解質としてのイオン伝導性が発揮される。場合によっては、イオン伝導単位Dは、加水分解等によりプロトン化される。具体的には、イオン伝導単位Dとして、下記一般式で表される群から選択される1種又は2種以上(Rfは少なくとも一部にフッ素原子を有する構造であり、Arは少なくとも一部に芳香族環を有する構造である)が好ましく選択される。 The ion conductive unit D having an ion conductive group at the terminal may not be present in all side chains in the molecule, but is present in at least a part. The ion conductivity as an electrolyte is exhibited by the ion conduction unit D. In some cases, the ion conducting unit D is protonated by hydrolysis or the like. Specifically, as the ion conduction unit D, one or more selected from the group represented by the following general formula (Rf is a structure having a fluorine atom at least in part, Ar is at least partly Which is a structure having an aromatic ring) is preferably selected.

Figure 2009129703
Figure 2009129703

主鎖を構成する繰り返し単位Aに置換する疎水性基Eは、任意置換基であり、分子中の繰り返し単位Aに全く存在しなくても良く、一部に置換していても良い。疎水性基Eによって、電解質膜内で親水相と疎水相の分離が促進され、親水相ではイオンチャンネルの連続性の向上、疎水相では凝集力による機械的特性の向上が発揮される。具体的には、疎水性基Eとして、ヒドロキシ基、カルボキシ基、アミノ基、カルボニル基、チオール基等を含まない低極性の構造である必要がある。具体的には、下記の疎水性基等が例示される。 The hydrophobic group E substituted with the repeating unit A constituting the main chain is an optional substituent, and may not be present at all in the repeating unit A in the molecule, or may be partially substituted. The hydrophobic group E promotes separation of the hydrophilic phase and the hydrophobic phase within the electrolyte membrane, and the hydrophilic phase exhibits improved continuity of ion channels, and the hydrophobic phase exhibits improved mechanical properties due to cohesive force. Specifically, the hydrophobic group E needs to have a low polarity structure that does not include a hydroxy group, a carboxy group, an amino group, a carbonyl group, a thiol group, or the like. Specific examples include the following hydrophobic groups.

Figure 2009129703
1個の繰り返し単位Aに置換する疎水性基Eの個数eは0、1、2、3程度である。
Figure 2009129703
The number e of hydrophobic groups E substituted with one repeating unit A is about 0, 1, 2, or 3.

主鎖を構成する繰り返し単位A’に置換する親水性基Fは、任意置換基であり、分子中の繰り返し単位A’に全く存在しなくても良く、一部に置換していても良い。具体的には、親水性基Fとして、ヒドロキシ基、カルボキシ基、アミノ基、カルボニル基、ニトロ基、チオール基から選択される1種以上が好ましく例示される。1個の繰り返し単位A’に置換する親水性基Fの個数fは0、1、2、3程度である。   The hydrophilic group F substituted with the repeating unit A ′ constituting the main chain is an optional substituent and may not be present at all in the repeating unit A ′ in the molecule or may be partially substituted. Specifically, the hydrophilic group F is preferably exemplified by one or more selected from a hydroxy group, a carboxy group, an amino group, a carbonyl group, a nitro group, and a thiol group. The number f of hydrophilic groups F substituted for one repeating unit A ′ is about 0, 1, 2, or 3.

任意成分としてデンドロナイズドポリマ電解質に添加されるイオン伝導性物質及び/又は保水性物質としては、各種無機塩、有機塩、シリカ、チタニア、アルミナ、ジルコニア等の多孔性微粒子が好ましく例示される。   Preferable examples of the ion conductive material and / or water retention material added to the dendronized polymer electrolyte as an optional component include various inorganic salts, organic salts, silica, titania, alumina, zirconia and the like.

第2に、本発明は、上記のデンドロナイズドポリマ電解質の製造方法の発明であり、
(1)芳香族基含有構造を有する高分子化合物の側鎖を反応点として、連結基を介し又は介さずに2個以上の分岐点を有する分岐構造単位を反応させ、
(2)次いで該分岐点に末端基にイオン伝導基を有するイオン伝導基を反応させる、
又は、(1)前以って分岐構造を有する側鎖を合成し、
(2)次いで、芳香族基含有構造を有する主鎖中の反応点に該側鎖を結合させる、
ことを特徴とする。
Second, the present invention is an invention of a method for producing the above dendronized polymer electrolyte,
(1) Using a side chain of a polymer compound having an aromatic group-containing structure as a reaction point, reacting a branched structural unit having two or more branch points with or without a linking group,
(2) Next, an ion conductive group having an ion conductive group as a terminal group is reacted with the branch point.
Or (1) synthesizing a side chain having a branched structure in advance,
(2) Next, the side chain is bonded to a reaction point in the main chain having an aromatic group-containing structure.
It is characterized by that.

更に、任意工程として、
(3)イオン伝導性物質及び/又は保水性物質を添加して、前記高分子電解質の分子の、主鎖と側鎖の間及び/又は側鎖間の空隙にイオン伝導性物質及び/又は保水性物質を存在させる、
又(4)イオン伝導基の密度が高い場合には、後架橋により固体化させる、
ことが好ましい。
Furthermore, as an optional step,
(3) An ion conductive material and / or a water retention material is added, and the ion conductive material and / or water retention in the space between the main chain and the side chain and / or between the side chains of the molecule of the polyelectrolyte. The presence of sex substances,
(4) When the density of the ion conductive group is high, it is solidified by post-crosslinking.
It is preferable.

本発明のデンドロナイズドポリマ電解質の製造方法において、芳香族基含有構造を有する高分子化合物の具体例と作用、連結基Bの具体例と作用、分岐構造単位Cの具体例と作用、末端にイオン伝導基を有するイオン伝導単位Dの具体例と作用、疎水性基Eの具体例と作用、親水性基Fの具体例と作用、及び任意成分としてデンドロナイズドポリマ電解質に添加されるイオン伝導性物質及び/又は保水性物質の具体例と作用等は上述の通りである。   In the method for producing a dendronized polymer electrolyte of the present invention, specific examples and actions of a polymer compound having an aromatic group-containing structure, specific examples and actions of a linking group B, specific examples and actions of a branched structural unit C, and ions at the terminal Specific Examples and Actions of Ion Conducting Unit D Having Conductive Groups, Specific Examples and Actions of Hydrophobic Group E, Specific Examples and Actions of Hydrophilic Group F, and Ion Conductive Substances Added to Dendronized Polymer Electrolytes as Optional Components Specific examples and actions of the water-retaining substance are as described above.

第3に、本発明は、上記のデンドロナイズドポリマ電解質の1種以上を含む固体高分子電解質膜である。本発明の固体高分子電解質膜は、耐久性と高いイオン交換能が要求される各種用途に使用できる。具体的には、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等に好適に用いられる。   3rdly, this invention is a solid polymer electrolyte membrane containing 1 or more types of said dendronized polymer electrolyte. The solid polymer electrolyte membrane of the present invention can be used for various applications that require durability and high ion exchange capacity. Specifically, it is suitably used for fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors and the like.

本発明の高分子電解質膜は、低加湿状態でも高加湿状態でも優れたイオン伝導性を示す。成膜法については、限定されない。本発明のデンドロナイズドポリマ電解質粉末を適当なバインダーと混合し、製膜することができる。又、本発明のデンドロナイズドポリマ電解質は、フッ素系樹脂ではなく炭化水素系樹脂であり、且つ3次元的構造ではないので、適当な溶媒に溶解することができる。製膜方法として、溶液を平板上にキャストするキャスト法、ダイコータ、コンマコ一夕等により平板上に溶液を塗布する方法、溶融した高分子材料を延伸等する方法等の一般的な方法も採用できる。   The polymer electrolyte membrane of the present invention exhibits excellent ion conductivity both in a low humidified state and a high humidified state. The film forming method is not limited. The dendronized polymer electrolyte powder of the present invention can be mixed with an appropriate binder to form a film. The dendronized polymer electrolyte of the present invention is not a fluororesin but a hydrocarbon resin and does not have a three-dimensional structure, and can therefore be dissolved in an appropriate solvent. As a film forming method, a general method such as a casting method in which a solution is cast on a flat plate, a method in which a solution is applied on a flat plate by a die coater, a comma, etc., or a method in which a molten polymer material is stretched can be adopted. .

第4に、本発明は、上記のデンドロナイズドポリマ電解質の1種以上を用いた固体高分子型燃料電池用電極である。   Fourth, the present invention is a polymer electrolyte fuel cell electrode using one or more of the above dendronized polymer electrolytes.

第5に、本発明は、固体高分子型燃料電池の発明であり、固体高分子電解質膜(a)と、この電解質膜に接合される、触媒金属を担持した導電性担体とプロトン交換材料からなる電極触媒を主要構成材料とするガス拡散電極(b)とで構成される膜/電極接合体(MEA)を有する固体高分子型燃料電池において、該高分子固体電解質膜及び/又は該プロトン交換材料が上記のデンドロナイズドポリマ電解質又は上記の固体高分子電解質膜であることを特徴とする。   Fifth, the present invention is an invention of a solid polymer fuel cell, comprising a solid polymer electrolyte membrane (a), a conductive carrier carrying a catalyst metal, and a proton exchange material joined to the electrolyte membrane. The polymer solid electrolyte membrane and / or the proton exchange in a polymer electrolyte fuel cell having a membrane / electrode assembly (MEA) composed of a gas diffusion electrode (b) having an electrode catalyst as a main constituent material The material is the above dendronized polymer electrolyte or the above solid polymer electrolyte membrane.

本発明の高分子固体電解質及び/又は高分子固体電解質膜を燃料電池に用いることで、耐久性とイオン伝導性に優れた燃料電池を得ることが出来る。   By using the polymer solid electrolyte and / or polymer solid electrolyte membrane of the present invention for a fuel cell, a fuel cell excellent in durability and ion conductivity can be obtained.

従来のパーフルオロスルホン酸系の高分子電解質膜に対して、本発明のデンドロナイズドポリマ電解質は炭化水素系である。また、耐熱性と強度に優れ、イオン伝導基数が多くて酸密度が高く、イオン伝導性が向上し、イオン伝導基の運動性と側鎖の嵩高さを発現して分子の自由体積を高め、更に、分子内の空隙にイオン伝導性物質及び/又は保水性物質を存在させることによって、イオン伝導パスを確保する、という優れた性質を有する。これにより、本発明のデンドロナイズドポリマ電解質は低加湿状態でも高加湿状態でも優れたイオン伝導性を有し、燃料電池システムの制御性能の向上とシステムの簡素化が可能となる。   In contrast to the conventional perfluorosulfonic acid polymer electrolyte membrane, the dendronized polymer electrolyte of the present invention is hydrocarbon-based. In addition, it has excellent heat resistance and strength, has a high number of ion conductive groups, has a high acid density, improves ion conductivity, expresses the mobility of ion conductive groups and the bulkiness of side chains, and increases the free volume of molecules, Furthermore, it has the outstanding property of ensuring an ion conduction path by making an ion conductive substance and / or a water retention substance exist in the space | gap in a molecule | numerator. As a result, the dendronized polymer electrolyte of the present invention has excellent ion conductivity both in a low humidified state and in a highly humidified state, and it becomes possible to improve the control performance of the fuel cell system and simplify the system.

図1に、本発明のデンドロナイズドポリマ電解質の模式図を示す。図1の模式図では、平面的であるが、実際のデンドロナイズドポリマ電解質は3次元的であることは言うまでもない。   FIG. 1 shows a schematic diagram of the dendronized polymer electrolyte of the present invention. In the schematic diagram of FIG. 1, although it is planar, it goes without saying that the actual dendronized polymer electrolyte is three-dimensional.

繰り返し単位A、A’によって構成される主鎖によって、耐熱性、機械的強度、柔軟性などのデンドロナイズドポリマ電解質の基本的物性が発揮される。連結基Bは、存在しなくても良いが、存在した方が、主鎖の耐熱性を確保しつつ、分岐構造単位Cと協働して、側鎖の運動性を高める。連結基BはA’とCの間だけでなく、CとDの間、Cの構造中、又はDの構造中に含有されていてもよい。   By the main chain composed of the repeating units A and A ′, basic physical properties of the dendronized polymer electrolyte such as heat resistance, mechanical strength and flexibility are exhibited. The linking group B may not be present, but the presence of the linking group B increases the mobility of the side chain in cooperation with the branched structural unit C while ensuring the heat resistance of the main chain. The linking group B may be contained not only between A ′ and C, but also between C and D, in the structure of C, or in the structure of D.

2個以上の分岐点を有する分岐構造単位Cは、分子中の全ての側鎖に存在しなくても良いが、少なくとも一部には存在する。分岐構造単位Cによってデンドロナイズドポリマ構造となり、分岐された側鎖末端にイオン伝導基を付与することで酸密度を高めてイオン伝導性を向上させ、連結基Bと共にイオン伝導基の運動性と側鎖の嵩高さを発現して分子の自由体積を高める。   The branched structural unit C having two or more branch points may not be present in all side chains in the molecule, but is present in at least a part. The branched structural unit C results in a dendronized polymer structure. By adding an ion conductive group to the branched side chain end, the acid density is increased to improve the ionic conductivity. Increase the free volume of the molecule by expressing the bulkiness of the chain.

末端にイオン伝導基を有するイオン伝導単位Dは、分子中の全ての側鎖に存在しなくても良いが、少なくとも一部には存在する。イオン伝導単位Dによって、電解質としてのイオン伝導性が発揮される。   The ion conductive unit D having an ion conductive group at the terminal may not be present in all side chains in the molecule, but is present in at least a part. The ion conductivity as an electrolyte is exhibited by the ion conduction unit D.

また、主鎖を構成する繰り返し単位Aに置換する疎水性基Eは、任意置換基であり、分子中の繰り返し単位Aに全く存在しなくても良く、一部に置換していても良い。同様に、主鎖を構成する繰り返し単位A’に置換する親水性基Fは、任意置換基であり、分子中の繰り返し単位A’に全く存在しなくても良く、一部に置換していても良い。   Further, the hydrophobic group E substituted with the repeating unit A constituting the main chain is an optional substituent, and may not be present at all in the repeating unit A in the molecule, or may be partially substituted. Similarly, the hydrophilic group F substituted with the repeating unit A ′ constituting the main chain is an optional substituent and may not be present at all in the repeating unit A ′ in the molecule, and is partially substituted. Also good.

更に、デンドロナイズドポリマ電解質の分子の、主鎖と側鎖の間の空隙Gや側鎖間の空隙G’にイオン伝導性物質及び/又は保水性物質を存在させる、任意成分としてデンドロナイズドポリマ電解質に添加されるイオン伝導性物質及び/又は保水性物質によって、イオン導電性パスがより強く形成される。   Furthermore, dendronized polymer electrolyte as an optional component in which an ion-conducting substance and / or a water-retaining substance are present in the gap G between the main chain and the side chain and the gap G ′ between the side chains of the molecule of the dendronized polymer electrolyte. The ion conductive path is more strongly formed by the ion conductive material and / or the water retention material added to.

(実施例:デンドロナイズドポリマ電解質の合成)
以下に実施例を掲げて本発明を更に詳しく説明する。
2,6−ポリジビドロキシナフタレン(以下、PDHN)を主鎖構造とし、3,5−ジベンジルオキシベンジルアルコール(以下、G1−OH)を側鎖構造としたスルホン化PDHN−G1を、図2に示すスキームに従って合成した。
(Example: Synthesis of dendronized polymer electrolyte)
The present invention will be described in more detail with reference to the following examples.
A sulfonated PDHN-G1 having 2,6-polydividoxynaphthalene (hereinafter referred to as PDHN) as a main chain structure and 3,5-dibenzyloxybenzyl alcohol (hereinafter referred to as G1-OH) as a side chain structure is shown in FIG. It was synthesized according to the scheme shown below.

[PDHNの合成]
20mLナスフラスコ中で、東京化成工業製ジメトキシエタノール(蒸留済、以下DME)6mLに東京化成工業製テトラメチルジアミン塩化水酸銅(Cu(OH)Cl・TMEDA(以下、CuTMEDA)0.046gを加えて常温常圧で30min攪拌し、青色の溶液を調合した後、同じく東京化成工業2,6−ジヒドロキナフタレン(DHN)0.32gを同液に加え、4hr攪拌して緑色のゲル状ポリマを得た。これを塩酸1mol/L溶液:MeOH99%溶液=80:20(体積比)200mL溶液で12hr再沈殿させ、減圧濾過の後、80℃で24hr真空乾燥し、黒色粉末0.318gを得た(収率〜99%)。この粉末をDME10mLに再融解し、110℃で真空乾燥して、緑色の繊維状ポリマ(Mn=28,000)を得た。
[Synthesis of PDHN]
In a 20 mL eggplant flask, 0.046 g of Tokyo Chemical Industry's tetramethyldiamine copper chloride hydrochloride (Cu (OH) Cl.TMEDA (hereinafter, CuTMEDA)) was added to 6 mL of Tokyo Chemical Industry's dimethoxyethanol (distilled, hereinafter DME). After stirring for 30 minutes at room temperature and normal pressure to prepare a blue solution, add 0.32 g of Tokyo Chemical Industry Co., Ltd. 2,6-dihydroquinaphthalene (DHN) to the same solution and stir for 4 hours to obtain a green gel polymer. This was reprecipitated with hydrochloric acid 1 mol / L solution: MeOH 99% solution = 80: 20 (volume ratio) 200 mL solution, filtered under reduced pressure, and vacuum dried at 80 ° C. for 24 hr to obtain 0.318 g of black powder. (Yield ˜99%) This powder was redissolved in 10 mL of DME and vacuum dried at 110 ° C. to give a green fibrous polymer (Mn = 28,000). ) Was obtained.

[PDHN−G1の合成]
続いて、関東化学製3,5−ジベンジルオキシベンジルアルコールからG1−Cl((CCHO)CCHCl)を合成するため、窒素置換雰囲気中で東京化成工業製無水N−メチル−2−ピロリドン(以下NMP)10mL中にG1−OH4.023gを溶解させ、水浴中で和光純薬工業製塩化チオニル1.01mLを投入し1hr攪拌してから、100mL純水中へ1hrで再沈澱させ60℃で24hr乾燥を行い、淡黄白色の粉末G1−Cl4.014gを得た。
[Synthesis of PDHN-G1]
Then, for the synthesis of the Kanto Chemical 3,5-benzyloxybenzyl alcohol G1-Cl ((C 6 H 5 CH 2 O) C 6 H 3 CH 2 Cl), Tokyo Chemical Industry in a nitrogen-substituted atmosphere After dissolving 4.023 g of G1-OH in 10 mL of anhydrous N-methyl-2-pyrrolidone (hereinafter referred to as NMP), 1.01 mL of thionyl chloride manufactured by Wako Pure Chemical Industries, Ltd. was added and stirred for 1 hr, and then 100 mL of pure water. The mixture was reprecipitated in 1 hr and dried at 60 ° C. for 24 hr to obtain 4.014 g of pale yellowish white powder G1-Cl.

次に、PDHN黒色粉末0.318gを和光純薬工業製炭酸カリウム2.484gと共に二口フラスコ(A)中に入れ、窒素置換後東京化成工業製無水NMP6mL中に100℃で1hrかけて溶解させた。この後上記で得たG1−Cl1.494gを同じく二口フラスコ(B)中で60℃、窒素雰囲気下無水NMP3mL中で溶解させ、乾燥済シリンジにて(A)に移し変えた後12hr攪拌し、100mLアセトン中で再沈澱を行った後に、80℃、24hrで真空乾燥させ、茶色の粉末PDHN−G1を得た。図3に示すように、1H−NMRによるピーク比から求めた側鎖保護率は約85%であり、OH基スペクトル(8〜9ppm)が少ないことから、90%近くののPDHN中OH基にG1−Clが付加したと考えられる。   Next, 0.318 g of PDHN black powder is placed in a two-necked flask (A) together with 2.484 g of potassium carbonate manufactured by Wako Pure Chemical Industries, and after nitrogen substitution, dissolved in 6 mL of anhydrous NMP manufactured by Tokyo Chemical Industry at 100 ° C. over 1 hr. It was. Thereafter, 1.494 g of G1-Cl obtained above was dissolved in 3 mL of anhydrous NMP in a two-necked flask (B) at 60 ° C. in a nitrogen atmosphere, transferred to (A) with a dried syringe, and stirred for 12 hr. Then, reprecipitation was performed in 100 mL acetone, followed by vacuum drying at 80 ° C. for 24 hours to obtain brown powder PDHN-G1. As shown in FIG. 3, the side chain protection rate determined from the peak ratio by 1H-NMR is about 85%, and the OH group spectrum (8-9 ppm) is small. It is thought that G1-Cl was added.

[スルホン化PDHN−G1の合成]
次に、こうして得たPDHN−G1にトリメチルシリルトリフルオロメタンスルホン酸(以下TMSTFMS)にてスルホン酸基の付加を行った。具体的には十分に乾燥したPDHN−G1を0.158g(0.2mmoL)を十分に乾燥した二口フラスコ(C)に入れ、窒素雰囲気置換後に東京化成工業製無水ジクロロエタン(CHCl)2mLで溶解させた。次に十分に乾燥させた二口フラスコ(D)を窒素置換した後、ジクロロエタン1mLを投入し、アルドリッチ製TMSTFMS25mol/Lクロロ硫酸3mLを(D)に投入して、TMSTFMS溶液を作製した後、この溶液を(C)に常圧10℃下で滴下し、析出した黒色粉末をHexane中で二回再沈澱を行って、デシケータにより簡易乾燥を行い、乾燥黒色粉末0.132gを得た。これのNMR測定を行った結果、ピークが全てシフトを生じていたことから、スルホン酸がPDHN−G1に付加したと考えられる。このIEC測定を行ったところ、スルホン酸基当量EW=500を得た。
[Synthesis of Sulfonated PDHN-G1]
Next, a sulfonic acid group was added to the thus obtained PDHN-G1 with trimethylsilyl trifluoromethanesulfonic acid (hereinafter TMSTFMS). Specifically, 0.158 g (0.2 mmol) of fully dried PDHN-G1 was placed in a sufficiently dried two-necked flask (C), and after substitution with a nitrogen atmosphere, anhydrous dichloroethane (CH 2 Cl 2 ) manufactured by Tokyo Chemical Industry Co., Ltd. Dissolved in 2 mL. Next, after the sufficiently dried two-necked flask (D) was purged with nitrogen, 1 mL of dichloroethane was added, and 3 mL of TMSTFMS 25 mol / L chlorosulfuric acid manufactured by Aldrich was added to (D) to prepare a TMSTFMS solution. The solution was added dropwise to (C) under normal pressure of 10 ° C., and the precipitated black powder was reprecipitated twice in Hexane and simply dried with a desiccator to obtain 0.132 g of a dry black powder. As a result of performing NMR measurement of this, since all the peaks were shifted, it is considered that sulfonic acid was added to PDHN-G1. When this IEC measurement was performed, a sulfonic acid group equivalent EW = 500 was obtained.

本発明のデンドロナイズドポリマ電解質は、炭化水素系高分子電解質であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形することが出来る。又、本発明のデンドロナイズドポリマ電解質膜は、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等に広く用いることが出来る。   The dendronized polymer electrolyte of the present invention is a hydrocarbon-based polymer electrolyte and has a property of binding firmly to specific ions or selectively permeating cations or anions. It can be formed into a fiber or film. The dendronized polymer electrolyte membrane of the present invention can be widely used in fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors and the like.

本発明のデンドロナイズドポリマ電解質は、イオン伝導基の運動性を向上させかつ伝導基間距離を狭めることでより低加湿条件でも伝導性が維持できるため燃料電池のシステム簡素化及び制御性の向上が可能となる。   The dendronized polymer electrolyte of the present invention improves the mobility of the ion conductive group and reduces the distance between the conductive groups, so that the conductivity can be maintained even under low humidification conditions, thereby simplifying the fuel cell system and improving the controllability. It becomes possible.

本発明のデンドロナイズドポリマ電解質の模式図。The schematic diagram of the dendronized polymer electrolyte of this invention. 2,6−ポリジビドロキシナフタレン(PDHN)を主鎖構造とし、3,5−ジベンジルオキシベンジルアルコール(G1−OH)を側鎖構造としたスルホン化PDHN−G1の合成スキーム。A synthesis scheme of sulfonated PDHN-G1 having 2,6-polydividroxynaphthalene (PDHN) as a main chain structure and 3,5-dibenzyloxybenzyl alcohol (G1-OH) as a side chain structure. 2,6−ポリジビドロキシナフタレン(PDHN)を主鎖構造とし、3,5−ジベンジルオキシベンジルアルコール(G1−OH)を側鎖構造としたスルホン化PDHN−G1の1H−NMRチャート。1H-NMR chart of sulfonated PDHN-G1 having 2,6-polydividroxynaphthalene (PDHN) as the main chain structure and 3,5-dibenzyloxybenzyl alcohol (G1-OH) as the side chain structure.

Claims (19)

下記一般式(1)で表される、芳香族基含有構造を有する主鎖と、末端基にイオン伝導基を有する側鎖とからなることを特徴とするデンドロナイズドポリマ電解質。
Figure 2009129703
(式中、A、A’はそれぞれ独立して芳香族系繰り返し単位であり、m=5〜10000、n=0〜10000、Bは連結基でありb=0〜5、Cは2個以上の分岐点を有する分岐構造単位であり、c=0〜5、Dは末端にイオン伝導基を有するイオン伝導単位であり、d=1〜3であり、Eは疎水性基であり、e=0〜3、Fは親水性基であり、f=0〜3である。連結基BはA’とCの間だけでなく、CとDの間、Cの構造中、又はDの構造中に含有されていてもよい。)
A dendronized polymer electrolyte comprising a main chain having an aromatic group-containing structure represented by the following general formula (1) and a side chain having an ion conductive group as a terminal group.
Figure 2009129703
(In the formula, A and A ′ are each independently an aromatic repeating unit, m = 5 to 10,000, n = 0 to 10,000, B is a linking group, b = 0 to 5, and C is 2 or more. Branch units having the following branch points: c = 0 to 5, D is an ion conductive unit having an ion conductive group at the terminal, d = 1 to 3, E is a hydrophobic group, e = 0 to 3, F is a hydrophilic group, and f = 0 to 3. The linking group B is not only between A ′ and C, but also between C and D, in the structure of C, or in the structure of D. It may be contained in
前記デンドロナイズドポリマ電解質の分子の、主鎖と側鎖の間及び/又は側鎖間の空隙にイオン伝導性物質及び/又は保水性物質が存在していることを特徴とする請求項1に記載のデンドロナイズドポリマ電解質。   2. The ion-conductive substance and / or the water-retaining substance is present in a gap between the main chain and the side chain and / or between the side chains of the dendronized polymer electrolyte molecule. Of dendronized polymer electrolyte. A、A’が、ポリフェニレン、ナフタレン、芳香族ポリエーテル、芳香族ポリチオエーテル、芳香族ポリスルホン、芳香族ポリエーテルスルホン、アルキレン基で連結された芳香族、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリエーテルイミド、芳香族ポリアミドイミド、芳香族ポリケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリヒドラジド、芳香族ポリイミン、ポリオキサジアゾール、ポリベンツオキサゾール、ポリベンツイミダゾール、これらのアルキル置換化合物、これらの水酸基置換化合物の群から選択される1種以上であることを特徴とする請求項1又は2に記載のデンドロナイズドポリマ電解質。   A, A ′ is polyphenylene, naphthalene, aromatic polyether, aromatic polythioether, aromatic polysulfone, aromatic polyethersulfone, aromatic linked with an alkylene group, aromatic polyamide, aromatic polyester, aromatic polyimide , Aromatic polyetherimide, aromatic polyamideimide, aromatic polyketone, aromatic polyetheretherketone, aromatic polyhydrazide, aromatic polyimine, polyoxadiazole, polybenzoxazole, polybenzimidazole, alkyl substituted compounds thereof The dendronized polymer electrolyte according to claim 1 or 2, wherein the dendronized polymer electrolyte is one or more selected from the group of these hydroxyl group-substituted compounds. Bが、エーテル基、カルボニル基、チオエーテル基、スルホン基、アミド基、ビススルホンイミド基(−SONHSO−)、スルホンカルボンイミド基(−SONHCO−)、ビスカルボンイミド基(−CONHCO−)、アルキレン基の群から選択される1種以上であることを特徴とする請求項1乃至3のいずれかに記載のデンドロナイズドポリマ電解質。 B represents an ether group, a carbonyl group, a thioether group, a sulfone group, an amide group, a bissulfonimide group (—SO 2 NHSO 2 —), a sulfoncarbonimide group (—SO 2 NHCO—), a biscarbonimide group (—CONHCO). The dendronized polymer electrolyte according to any one of claims 1 to 3, which is at least one selected from the group of-) and alkylene groups. Cが下記一般式で表される群から選択される1種以上、又はこれらの繰り返し構造から選択される1種以上であることを特徴とする請求項1乃至4のいずれかに記載のデンドロナイズドポリマ電解質。
Figure 2009129703
The dendronized according to any one of claims 1 to 4, wherein C is at least one selected from the group represented by the following general formula, or at least one selected from these repeating structures. Polymer electrolyte.
Figure 2009129703
Dが、下記一般式で表される群から選択される1種以上のイオン伝導基を有する化合物(Rfは少なくとも一部にフッ素原子を有する構造であり、Arは少なくとも一部に芳香族環を有する構造である)であることを特徴とする請求項1乃至5のいずれかに記載のデンドロナイズドポリマ電解質。
Figure 2009129703
D is a compound having one or more ion-conducting groups selected from the group represented by the following general formula (Rf is a structure having at least part of a fluorine atom, Ar is at least part of an aromatic ring; The dendronized polymer electrolyte according to any one of claims 1 to 5, wherein the dendronized polymer electrolyte is a structure having a structure.
Figure 2009129703
Eが、アルキル基、フェニル基から選択される1種以上であることを特徴とする請求項1乃至6のいずれかに記載のデンドロナイズドポリマ電解質。   The dendronized polymer electrolyte according to any one of claims 1 to 6, wherein E is at least one selected from an alkyl group and a phenyl group. Fが、ヒドロキシ基、カルボキシ基、アミノ基、カルボニル基、チオール基から選択される1種以上であることを特徴とする請求項1乃至7のいずれかに記載のデンドロナイズドポリマ電解質。   8. The dendronized polymer electrolyte according to claim 1, wherein F is at least one selected from a hydroxy group, a carboxy group, an amino group, a carbonyl group, and a thiol group. 芳香族基含有構造を有する高分子化合物の側鎖を反応点として、連結基を介し又は介さずに2個以上の分岐点を有する分岐構造単位を反応させ、次いで該分岐点に末端基にイオン伝導基を有するイオン伝導基を反応させること、又は前以って分岐構造を有する側鎖を合成し、該側鎖を芳香族基含有構造を有する主鎖に反応させることを特徴とする、芳香族基含有構造を有する主鎖と、末端基にイオン伝導基を有する側鎖とからなる下記一般式(1)で表されるデンドロナイズドポリマ電解質の製造方法。
Figure 2009129703
(式中、A、A’はそれぞれ独立して芳香族系繰り返し単位であり、m=5〜10000、n=0〜10000、Bは連結基でありb=0〜5、Cは2個以上の分岐点を有する分岐構造単位であり、c=0〜5、Dは末端にイオン伝導基を有するイオン伝導単位であり、d=1〜3であり、Eは疎水性基であり、e=0〜3、Fは親水性基であり、f=0〜3である。連結基BはA’とCの間だけでなく、CとDの間、Cの構造中、又はDの構造中に含有されていてもよい。)
Using a side chain of a polymer compound having an aromatic group-containing structure as a reaction point, a branched structural unit having two or more branch points is reacted with or without a linking group, and then the branch group is ionized as a terminal group. A reaction comprising reacting an ion-conducting group having a conductive group, or synthesizing a side chain having a branched structure in advance and reacting the side chain with a main chain having an aromatic group-containing structure, A method for producing a dendronized polymer electrolyte represented by the following general formula (1), comprising a main chain having a group-containing structure and a side chain having an ion conductive group at the terminal group.
Figure 2009129703
(In the formula, A and A ′ are each independently an aromatic repeating unit, m = 5 to 10,000, n = 0 to 10,000, B is a linking group, b = 0 to 5, and C is 2 or more. Branch units having the following branch points: c = 0 to 5, D is an ion conductive unit having an ion conductive group at the terminal, d = 1 to 3, E is a hydrophobic group, e = 0 to 3, F is a hydrophilic group, and f = 0 to 3. The linking group B is not only between A ′ and C, but also between C and D, in the structure of C, or in the structure of D. It may be contained in
イオン伝導性物質及び/又は保水性物質を添加して、前記デンドロナイズドポリマ電解質の分子の、主鎖と側鎖の間及び/又は側鎖間の空隙にイオン伝導性物質及び/又は保水性物質を存在させることを特徴とする請求項9に記載のデンドロナイズドポリマ電解質の製造方法。   An ion conductive material and / or a water retention material is added to the dendronized polymer electrolyte molecule between the main chain and the side chain and / or between the side chains. The method for producing a dendronized polymer electrolyte according to claim 9, wherein: 前記芳香族基含有構造を有する高分子化合物が、ポリフェニレン、ナフタレン、芳香族ポリエーテル、芳香族ポリチオエーテル、芳香族ポリスルホン、芳香族ポリエーテルスルホン、アルキレン基で連結された芳香族、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリイミド、芳香族ポリエーテルイミド、芳香族ポリアミドイミド、芳香族ポリケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリヒドラジド、芳香族ポリイミン、ポリオキサジアゾール、ポリベンツオキサゾール、ポリベンツイミダゾール、ポリシルセスキオキセタン及び誘導体、これらのアルキル置換化合物、これらの水酸基置換化合物の群から選択される1種以上であることを特徴とする請求項9又は10に記載のデンドロナイズドポリマ電解質の製造方法。   The polymer compound having the aromatic group-containing structure is polyphenylene, naphthalene, aromatic polyether, aromatic polythioether, aromatic polysulfone, aromatic polyethersulfone, aromatic linked with an alkylene group, aromatic polyamide, Aromatic polyester, aromatic polyimide, aromatic polyetherimide, aromatic polyamideimide, aromatic polyketone, aromatic polyetheretherketone, aromatic polyhydrazide, aromatic polyimine, polyoxadiazole, polybenzoxazole, polybenz The production of a dendronized polymer electrolyte according to claim 9 or 10, which is at least one selected from the group consisting of imidazole, polysilsesquioxetane and derivatives, alkyl-substituted compounds thereof, and hydroxyl-substituted compounds thereof. Method. Bが、エーテル基、カルボニル基、チオエーテル基、スルホン基、アミド基、ビススルホンイミド基(−SONHSO−)、スルホンカルボンイミド基(−SONHCO−)、ビスカルボンイミド基(−CONHCO−)、アルキレン基の群から選択される1種以上であることを特徴とする請求項9乃至11のいずれかに記載のデンドロナイズドポリマ電解質の製造方法。 B represents an ether group, a carbonyl group, a thioether group, a sulfone group, an amide group, a bissulfonimide group (—SO 2 NHSO 2 —), a sulfoncarbonimide group (—SO 2 NHCO—), a biscarbonimide group (—CONHCO). The method for producing a dendronized polymer electrolyte according to any one of claims 9 to 11, which is at least one selected from the group of-) and an alkylene group. Cが下記一般式で表される群から選択される1種以上、又はこれらの繰り返し構造から選択される1種以上であることを特徴とする請求項9乃至12のいずれかに記載のデンドロナイズドポリマ電解質の製造方法。
Figure 2009129703
The dendronized according to any one of claims 9 to 12, wherein C is one or more selected from the group represented by the following general formula, or one or more selected from the repeating structure thereof. A method for producing a polymer electrolyte.
Figure 2009129703
Dが、下記一般式で表される群から選択される1種以上のイオン伝導基を有する化合物(Rfは少なくとも一部にフッ素原子を有する構造であり、Arは少なくとも一部に芳香族環を有する構造である)であることを特徴とする請求項9乃至13のいずれかに記載のデンドロナイズドポリマ電解質の製造方法。
Figure 2009129703
D is a compound having one or more ion-conducting groups selected from the group represented by the following general formula (Rf is a structure having at least part of a fluorine atom, Ar is at least part of an aromatic ring; The process for producing a dendronized polymer electrolyte according to any one of claims 9 to 13, wherein
Figure 2009129703
Eが、アルキル基、フェニル基から選択される1種以上であることを特徴とする請求項9乃至14のいずれかに記載のデンドロナイズドポリマ電解質の製造方法。   The method for producing a dendronized polymer electrolyte according to any one of claims 9 to 14, wherein E is at least one selected from an alkyl group and a phenyl group. Fが、ヒドロキシ基、カルボキシ基、アミノ基、カルボニル基、チオール基から選択される1種以上であることを特徴とする請求項9乃至15のいずれかに記載のデンドロナイズドポリマ電解質の製造方法。   The method for producing a dendronized polymer electrolyte according to any one of claims 9 to 15, wherein F is at least one selected from a hydroxy group, a carboxy group, an amino group, a carbonyl group, and a thiol group. 請求項1乃至8のいずれかに記載のデンドロナイズドポリマ電解質の1種以上を含む固体高分子電解質膜。   A solid polymer electrolyte membrane comprising at least one dendronized polymer electrolyte according to any one of claims 1 to 8. 請求項1乃至8のいずれかに記載のデンドロナイズドポリマ電解質の1種以上を用いた固体高分子型燃料電池用電極。   An electrode for a polymer electrolyte fuel cell using one or more of the dendronized polymer electrolytes according to any one of claims 1 to 8. 固体高分子電解質膜(a)と、この電解質膜に接合される、触媒金属を担持した導電性担体とプロトン交換材料からなる電極触媒を主要構成材料とするガス拡散電極(b)とで構成される膜/電極接合体(MEA)を有する固体高分子型燃料電池において、該高分子固体電解質膜及び/又は該プロトン交換材料が請求項1乃至8のいずれかに記載のデンドロナイズドポリマ電解質又は請求項17に記載の固体高分子電解質膜であることを特徴とする固体高分子型燃料電池。   A solid polymer electrolyte membrane (a), a gas diffusion electrode (b) mainly composed of an electrocatalyst carrying a catalytic metal and an electrocatalyst made of a proton exchange material, joined to the electrolyte membrane. A polymer electrolyte fuel cell having a membrane / electrode assembly (MEA), wherein the polymer solid electrolyte membrane and / or the proton exchange material is a dendronized polymer electrolyte according to any one of claims 1 to 8, or Item 18. A polymer electrolyte fuel cell, which is the polymer electrolyte membrane according to Item 17.
JP2007303545A 2007-11-22 2007-11-22 Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell Pending JP2009129703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007303545A JP2009129703A (en) 2007-11-22 2007-11-22 Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303545A JP2009129703A (en) 2007-11-22 2007-11-22 Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2009129703A true JP2009129703A (en) 2009-06-11

Family

ID=40820429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303545A Pending JP2009129703A (en) 2007-11-22 2007-11-22 Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP2009129703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831176A (en) * 2010-03-31 2010-09-15 吉林大学 Solidification compound of aryl mercaptan-olefinic unsaturated double-bond polyether sulfone
CN102816287A (en) * 2012-08-29 2012-12-12 中国科学院宁波材料技术与工程研究所 Organic polymer gelator and preparation method and application thereof
WO2016089123A1 (en) * 2014-12-02 2016-06-09 주식회사 엘지화학 Polymer, method for manufacturing same, and electrolyte membrane comprising same
CN107653504A (en) * 2016-07-26 2018-02-02 通用汽车环球科技运作有限责任公司 Perfluorinated sulfonic acid nanofiber
US10886119B2 (en) 2018-08-17 2021-01-05 Rohm And Haas Electronic Materials Llc Aromatic underlayer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831176A (en) * 2010-03-31 2010-09-15 吉林大学 Solidification compound of aryl mercaptan-olefinic unsaturated double-bond polyether sulfone
CN102816287A (en) * 2012-08-29 2012-12-12 中国科学院宁波材料技术与工程研究所 Organic polymer gelator and preparation method and application thereof
WO2016089123A1 (en) * 2014-12-02 2016-06-09 주식회사 엘지화학 Polymer, method for manufacturing same, and electrolyte membrane comprising same
CN107001633A (en) * 2014-12-02 2017-08-01 株式会社Lg化学 Polymer, the preparation method of the polymer and the dielectric film comprising the polymer
CN107001633B (en) * 2014-12-02 2019-07-02 株式会社Lg化学 Polymer, the preparation method of the polymer and the dielectric film comprising the polymer
US11034808B2 (en) 2014-12-02 2021-06-15 Lg Chem, Ltd. Polymer, method for manufacturing same, and electrolyte membrane comprising same
CN107653504A (en) * 2016-07-26 2018-02-02 通用汽车环球科技运作有限责任公司 Perfluorinated sulfonic acid nanofiber
CN107653504B (en) * 2016-07-26 2020-07-03 通用汽车环球科技运作有限责任公司 Perfluorosulfonic acid nanofibers
US10886119B2 (en) 2018-08-17 2021-01-05 Rohm And Haas Electronic Materials Llc Aromatic underlayer

Similar Documents

Publication Publication Date Title
Lee et al. Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell
JP2007528930A (en) Ion conductive copolymers containing one or more ion conductive oligomers
JP2007517923A (en) Ion conductive copolymers containing one or more hydrophobic oligomers
JP2009129703A (en) Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell
JP2008543001A (en) Ion conducting copolymers containing ion conducting oligomers
JP2018510843A (en) Compound containing aromatic ring and polymer electrolyte membrane using the same
US7781085B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
KR100907476B1 (en) Polymer membranes containing partially fluorinated copolymer, manufacturing method thereof and polymer electrolyte fuel cell using them
JP6577656B2 (en) Hydrocarbon nanocomposite membrane containing polyhedral oligomeric silsesquioxane having proton donor and proton acceptor and method for producing the same
KR101773245B1 (en) Sulfonated hydrocarbon nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP4245991B2 (en) Solid polymer electrolyte, membrane using the same, catalyst electrode layer, membrane / electrode assembly, and fuel cell
KR20160006819A (en) Sulfonated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with sulfonic acid group and Method of preparing the same
KR101042960B1 (en) Solid polymer electrolyte for fuel cell and fuel cell using the same
KR20170107634A (en) Fluorinated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
KR20170107633A (en) Sulfonated hydrocarbon nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
KR101773246B1 (en) Fluorinated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
KR102055965B1 (en) Compound, polymer electrolyte membrane comprising the same and method for preparing the same
JP2010129292A (en) Polymer electrolyte, polymer electrolyte membrane, and its utilization
JP2009026638A (en) Solid polymer electrolyte
JP2008545854A (en) Polymer blends containing ionically conductive copolymers and nonionic polymers
JP2005290318A (en) Solid polyelectrolyte
JP2010010007A (en) Membrane-electrode structure for solid polymer fuel cell
JP2005251409A (en) Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell