JP4833740B2 - Metal strip heating device with excellent temperature uniformity in the plate width direction - Google Patents
Metal strip heating device with excellent temperature uniformity in the plate width direction Download PDFInfo
- Publication number
- JP4833740B2 JP4833740B2 JP2006154157A JP2006154157A JP4833740B2 JP 4833740 B2 JP4833740 B2 JP 4833740B2 JP 2006154157 A JP2006154157 A JP 2006154157A JP 2006154157 A JP2006154157 A JP 2006154157A JP 4833740 B2 JP4833740 B2 JP 4833740B2
- Authority
- JP
- Japan
- Prior art keywords
- metal strip
- coil
- induction heating
- ferrite core
- heating coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- General Induction Heating (AREA)
Description
本発明は、金属帯をキュリー点以上に誘導加熱する際に、幅方向に対して均温に加熱する板幅方向の均温性に優れた金属帯板の加熱装置に関する。 The present invention relates to a heating device for a metal strip having excellent temperature uniformity in the plate width direction, which heats the metal strip at an equal temperature with respect to the width direction when induction heating is performed above the Curie point.
誘導加熱とは、交流電源に接続されたコイルを被加熱物の周囲に配置し、交番磁界により誘起される渦電流のジュール熱により物体を加熱する方法である。 Induction heating is a method in which a coil connected to an AC power source is arranged around an object to be heated, and an object is heated by Joule heat of eddy current induced by an alternating magnetic field.
誘導加熱には、交番磁界を被加熱物に垂直に交差させるトランスバース方式と、コイルで被加熱物を巻くように配置して、交番磁界を被加熱物に平行に印加するソレノイド方式の2通りがあり、目的によって選択される。 There are two types of induction heating: a transverse method in which an alternating magnetic field intersects the object to be heated vertically and a solenoid method in which the object to be heated is wound around a coil and an alternating magnetic field is applied in parallel to the object to be heated. Is selected according to purpose.
金属帯板の加熱の場合、板幅方向に均一な加熱が必要なことから、ソレノイド方式が適している。また、ソレノイド方式には、1つの電源に対して、複数回コイルを巻くマルチターン方式と、1回だけ巻くシングルターン方式がある。 In the case of heating a metal strip, a solenoid system is suitable because uniform heating is required in the plate width direction. The solenoid system includes a multi-turn system in which a coil is wound a plurality of times and a single-turn system in which the coil is wound only once.
従来のソレノイド方式のシングルターン誘導加熱コイルを用いる誘導加熱装置は、金属帯板が、例えば磁性体の鋼帯である場合、キュリー点(約750℃)以上の加熱が困難であり、750℃未満の低温領域での加熱にしか適用できないという問題点があった。さらに、金属帯板が、例えばアルミ, SUS等の非磁性体である場合、加熱すること自体が困難であった。 In a conventional induction heating apparatus using a solenoid type single-turn induction heating coil, when the metal strip is, for example, a magnetic steel strip, it is difficult to heat above the Curie point (about 750 ° C.), and is less than 750 ° C. There is a problem that it can be applied only to heating in a low temperature region. Furthermore, when the metal strip is a non-magnetic material such as aluminum or SUS, it is difficult to heat itself.
磁性体帯板のキュリー点以上の加熱が困難な理由は、キュリー点付近の温度になると渦電流の電流浸透深さが大きくなり、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れなくなるからである。 The reason why it is difficult to heat the magnetic strip above the Curie point is that when the temperature near the Curie point is reached, the current penetration depth of the eddy current increases, and the front and back of the eddy current that goes around the surface layer of the cross section in the plate width direction This is because cancellation occurs and eddy current does not flow.
また、非磁性体帯板を加熱すること自体が困難になる理由は、常温レベルから渦電流の電流浸透深さが大きく、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れないからである。 The reason why heating the non-magnetic strip itself is difficult is that the current penetration depth of the eddy current is large from the normal temperature level, and the front / back offset of the eddy current that goes around the surface layer part of the cross section in the plate width direction is cancelled. This is because eddy current does not flow.
発明者らは、金属帯をキュリー点以上に誘導加熱する装置において、シングルターン誘導加熱コイルの電流と逆方向に電流を流す磁場拡散防止コイルを設け、金属帯を挟む誘導加熱コイルの位置を長手方向にシフトさせることにより、加熱コイル間ギャップが40mm程度で金属帯の幅方向温度偏差が±30℃以内にすることができる加熱装置を開発し、特開2003-187951号公報(特許文献1)の特許出願を行った。 The inventors have provided a magnetic field diffusion prevention coil for flowing current in a direction opposite to the current of the single-turn induction heating coil in an apparatus for induction heating of the metal band above the Curie point, and the position of the induction heating coil sandwiching the metal band is elongated. By developing the heating device, a heating device is developed in which the gap between the heating coils is about 40 mm and the temperature deviation in the width direction of the metal strip can be within ± 30 ° C., Japanese Patent Laid-Open No. 2003-187951 (Patent Document 1) Filed a patent application.
しかし、特許文献1に記載された実施例では、シングルターン誘導加熱コイルの金属帯板への対向面を除く外周にフェライトコアを設置することによって磁場を集中させて加熱効率を向上させることにより、金属帯の幅が70mmでは問題なかったが、金属帯の幅を300mmまで拡大したところ、加熱時に金属帯エッジ20〜30mmの温度がセンター部より約50℃低下する現象が見られた。金属帯エッジ部がセンター部より温度が低いと、センター部の熱膨張を拘束してしまい、金属帯形状が幅方向にシワ状に変形しやすくなるという問題点があった。
However, in the example described in
また、フェライトコアは飽和磁束密度以上の磁場がフェライトコアに集中すると磁性体としての機能を失うが、コア自身が温度上昇すると飽和磁束密度自体が低下してくる。例えば90℃では飽和磁束密度が0.4Tであるが、140℃では0.3Tとなる。そのため、金属帯の速度をUPしていき、例えば、必要磁束密度0.4Tを確保するためには、フェライトコアの温度を90℃以下にする必要がある。 Also, the ferrite core loses its function as a magnetic material when a magnetic field equal to or higher than the saturation magnetic flux density is concentrated on the ferrite core, but the saturation magnetic flux density itself decreases when the core itself rises in temperature. For example, the saturation magnetic flux density is 0.4T at 90 ° C, but 0.3T at 140 ° C. Therefore, the speed of the metal strip is increased, and for example, in order to ensure the required magnetic flux density of 0.4 T, the temperature of the ferrite core needs to be 90 ° C. or lower.
しかし、加熱コイル間ギャップが40mm(加熱コイルと金属帯の距離は20mm)のため、金属帯のパスライン変動や形状を考慮すると、厚み10mm以下の素材で900℃程度の金属帯からの輻射熱を90℃以下まで断熱しなければならないが、市販の断熱材だけでは不十分であった。 However, since the gap between the heating coils is 40mm (distance between the heating coil and the metal strip is 20mm), considering the variation in the pass line and the shape of the metal strip, radiant heat from the metal strip of about 900 ° C is used for materials with a thickness of 10mm or less. Although heat insulation must be performed to 90 ° C or less, commercially available heat insulation alone was not sufficient.
したがって、上記従来技術のシングルターン誘導加熱コイルでは、金属帯の幅を300mmまで拡大すると加熱時に金属帯エッジ20〜30mmの温度低下により金属帯がシワ形状に悪化しやすく、また、フェライトコアの磁気飽和の点から、ライン速度の上限も高くすることができず、実用的でなかった。 Therefore, in the above-mentioned conventional single-turn induction heating coil, when the width of the metal band is increased to 300 mm, the metal band is likely to deteriorate into a wrinkle shape due to a temperature drop of the metal band edge of 20 to 30 mm during heating. From the point of saturation, the upper limit of the line speed could not be increased and was not practical.
また、シングルターン誘導加熱コイルのみで常温の金属帯を850℃まで加熱する場合は幅方向の均一加熱ができないため、図2に示すように、シングルターン誘導加熱コイル2の前段に、ソレノイド方式の誘導加熱コイル1、接触方式の通電加熱ロール、燃焼加熱炉のいずれかを設けることにより、これら従来の加熱方法を用いて650℃から750℃未満の特定温度、例えば700℃までの加熱を行った後に、本発明に用いるシングルターン誘導加熱コイルにより850℃まで加熱することが好ましく、経済的である。
In addition, when heating a metal strip at room temperature to 850 ° C. with only a single-turn induction heating coil, uniform heating in the width direction cannot be performed. Therefore, as shown in FIG. By providing any one of the
また、特開2004-296368号公報(下記特許文献2)には、0.15mm厚、70mm幅の鋼帯を、600℃からキューリー点以上に加熱する際に幅方向温度偏差±30℃(コイル幅W;40mm、コア厚h;20mm、ギャップG;40mm)の加熱を行うことができる加熱装置が記載されている。 In addition, JP 2004-296368 A (Patent Document 2 below) discloses that when a steel strip having a thickness of 0.15 mm and a width of 70 mm is heated from 600 ° C. to a Curie point or more, a temperature deviation in the width direction ± 30 ° C. (coil width) W: 40 mm, core thickness h: 20 mm, gap G: 40 mm) is described.
しかし、この特許文献2の装置では、エッジ部の過加熱を防止するために設けられたフェライトコアが加熱され、短期間でエッジ過加熱防止機能が喪失するという問題点があった。 However, the apparatus of Patent Document 2 has a problem that the ferrite core provided to prevent overheating of the edge portion is heated and the edge overheating preventing function is lost in a short period of time.
また、特開2006-068788号公報(下記特許文献3)には、0.30mm厚、300mm幅の鋼帯を、700℃からキューリー点以上に加熱したときの幅方向温度偏差±30℃(コイル幅W;40mm、コア厚h;20mm、ギャップG;40mm)の加熱を行うことが加熱方法が記載されている。 JP 2006-068788 (Patent Document 3 below) describes a temperature deviation in the width direction of ± 30 ° C. (coil width) when a steel strip having a thickness of 0.30 mm and a width of 300 mm is heated from 700 ° C. to a Curie point or higher. W: 40 mm, core thickness h: 20 mm, gap G: 40 mm) is described as a heating method.
しかし、この特許文献3の方法は、本願のように磁場拡散防止コイルにフェライトコア被覆がなされていなかったため、鋼帯エッジ部の温度低下が避けられなかった。 However, in the method of Patent Document 3, since the ferrite core coating is not formed on the magnetic field diffusion preventing coil as in the present application, a temperature drop at the edge of the steel strip cannot be avoided.
また、特開2003-187950号公報(下記特許文献4)には、0.23mm厚、70mm幅の鋼帯を、常温からキューリー点以上に加熱する最の幅方向温度偏差±14℃(コイル幅W;6mm、コア厚h;3.5mm、ギャップG;6mm)の加熱を行うことができるシングルターン型誘導加熱コイルが記載されている。 Japanese Patent Laid-Open No. 2003-187950 (Patent Document 4 below) discloses that the temperature deviation in the width direction ± 14 ° C. (coil width W) of the steel strip having a thickness of 0.23 mm and a width of 70 mm is heated from room temperature to the Curie point or higher. 6 mm, core thickness h; 3.5 mm, gap G; 6 mm) is described.
しかし、特許文献4の加熱コイルは、基本的にコイルを被覆しているフェライトコア同士が接触しており、コイルを被覆するフェライトコアに隣のコイルが直接接触しておらず、隣接するコイルを各々被覆したフェライトコア同士が接触しており、隣接コイルに磁場拡散防止するという技術思想はなかった。
本発明は、前記のような従来技術の問題点を解決し、金属帯の幅を広くしても、加熱時に金属帯エッジ20〜30mmの温度低下幅を低減して金属帯のシワ形状悪化が緩和できると共に、フェライトコアの磁気飽和によって制約を受けるライン速度上限値が緩和でき、実用性を広げることができる板幅方向の均温性に優れた金属帯板の加熱装置を提供することを課題とする。 The present invention solves the problems of the prior art as described above, and even if the width of the metal band is widened, the temperature drop width of the metal band edge 20-30 mm is reduced during heating, and the wrinkle shape of the metal band is deteriorated. An object of the present invention is to provide a heating device for a metal strip that can be relaxed and that can relax the upper limit of the line speed that is restricted by magnetic saturation of the ferrite core and has excellent temperature-uniformity in the width direction of the plate that can widen the practicality. And
本発明は、前述のような従来技術の問題点を解決するため鋭意検討の結果なされたものであり、その要旨とするところは、許請求の範囲に記載した通りの下記内容である。
(1)金属帯板を挟んで配置された誘導加熱コイル同士をコイル幅分だけ前記金属帯板の長手方向にシフトさせたシングルターン誘導加熱コイルと、該シングルターン誘導加熱コイルの近傍に並行して配置され、前記シングルターン誘導加熱コイルを流れる電流と逆方向の電流を流すことにより磁場の拡散を防止する磁場拡散防止コイルとを有する金属帯板の加熱装置であって、前記シングルターン誘導加熱コイルの金属帯板への対向面を除く外周には第1フェライトコアを設置し、かつ、前記金属帯板の片方の面に設置する磁場拡散防止コイルの金属帯板への対向面を除く外周に、第2フェライトコアを前記第1フェライ
トコアと接するように設置し、
前記シングルターン誘導加熱コイルの前段に、ソレノイド方式の誘導加熱コイル、接触方式の通電加熱ロール、燃焼加熱炉のいずれかを設けることを特徴とする板幅方向の均温性に優れた金属帯板の加熱装置。
(2)前記第1フェライトコアおよび第2フェライトコアの側面に、冷却用の水冷ジャケットを設置し、前記第1フェライトコアおよび第2フェライトコア、誘導加熱コイル、水冷ジャケットの金属帯板への対向面に断熱材を設けたことを特徴とする(1)に記載の板幅方向の均温性に優れた金属帯板の加熱装置。
The present invention has been made as a result of intensive studies in order to solve the problems of the prior art as described above, and the gist of the present invention is as follows.
(1) A single-turn induction heating coil in which induction heating coils arranged with a metal strip sandwiched between them are shifted in the longitudinal direction of the metal strip by the coil width, and in the vicinity of the single-turn induction heating coil. A heating device for a metal strip having a magnetic field diffusion prevention coil arranged to prevent diffusion of a magnetic field by flowing a current in a direction opposite to a current flowing through the single turn induction heating coil, the single turn induction heating A first ferrite core is installed on the outer periphery excluding the surface facing the metal strip of the coil, and the outer periphery excluding the surface facing the metal strip of the magnetic field diffusion prevention coil installed on one surface of the metal strip In addition, the second ferrite core is placed in contact with the first ferrite core,
One of the solenoid-type induction heating coil, the contact-type energization heating roll, and the combustion heating furnace is provided in front of the single-turn induction heating coil. Heating device.
(2) A water cooling jacket for cooling is installed on the side surfaces of the first ferrite core and the second ferrite core, and the first ferrite core, the second ferrite core, the induction heating coil, and the water cooling jacket are opposed to the metal strip. A heating device for a metal strip having excellent temperature uniformity in the plate width direction according to (1), wherein a heat insulating material is provided on the surface.
本発明によれば、金属帯の幅を広くしても、加熱時に金属帯エッジ20〜30mmの温度低下幅を低減して金属帯のシワ形状悪化が緩和できると共に、フェライトコアの磁気飽和によって制約を受けるライン速度上限値が緩和でき、実用性が広げることができる板幅方向の均温性に優れた金属帯板の加熱装置を提供することができ、産業上有用な著しい効果を奏する。 According to the present invention, even if the width of the metal band is widened, the temperature drop width of the metal band edge 20 to 30 mm can be reduced during heating, and the deterioration of the wrinkle shape of the metal band can be alleviated and restricted by the magnetic saturation of the ferrite core. Therefore, it is possible to provide an apparatus for heating a metal strip excellent in temperature uniformity in the plate width direction, which can relax the upper limit of the line speed to be received and can expand the practicality, and has a remarkable industrially useful effect.
本発明の実施の形態を、図1乃至図7を用いて詳細に説明する。 Embodiments of the present invention will be described in detail with reference to FIGS.
図1は、鋼板渦電流と温度分布を説明する図であり、実線の電流は金属帯板の表面側、点線の電流は金属帯板の裏面側の電流を示す。 FIG. 1 is a diagram for explaining steel plate eddy current and temperature distribution, where the solid line current indicates the surface side of the metal strip and the dotted line current indicates the current on the back side of the metal strip.
図1に示すように、例えば鋼板に流れる渦電流は本来エッジ20〜30mmで渦電流は分岐し、一旦電流密度が低下するため板温も低下する。また、最エッジは電流集中により過加熱となる。 As shown in FIG. 1, for example, the eddy current flowing in the steel plate originally has an edge of 20 to 30 mm, and the eddy current branches. The outermost edge is overheated due to current concentration.
また、板幅が70mmの場合、片側35mmしかなく、ほとんど温度低下することなく最エッジの電流集中による過加熱が支配的となるため、エッジ過加熱の抑制のみを考慮すれば良かったが、板幅を300mmに拡大すると、図1に示すようにエッジ20〜30mmの部分の電流密度低下によりセンター部より温度が低下することも考慮する必要があることがわかった。 In addition, when the plate width is 70mm, there is only 35mm on one side, and overheating due to current concentration at the edge is dominant with almost no temperature drop, so it was sufficient to consider only suppression of edge overheating. When the width is increased to 300 mm, it has been found that it is necessary to consider that the temperature is lower than the center portion due to the current density reduction of the edge portion of 20 to 30 mm as shown in FIG.
図2は、本発明における金属帯の加熱装置の実施形態を例示する側面図であり、図3は、その斜視図である。 FIG. 2 is a side view illustrating an embodiment of a metal band heating device according to the present invention, and FIG. 3 is a perspective view thereof.
図2および図3に示すように、本実施形態の加熱装置は、ソレノイド方式の誘導加熱コイルにて一定温度まで加熱した後に、シングルターン誘導加熱コイル2,2´によって閉ループを形成し、一つの電源から供給される電流を金属帯板の幅方向に流すことによって、金属帯板に渦電流を発生させて加熱する。 As shown in FIGS. 2 and 3, the heating device of the present embodiment forms a closed loop by single-turn induction heating coils 2 and 2 ′ after heating to a certain temperature with a solenoid type induction heating coil. By flowing a current supplied from a power source in the width direction of the metal strip, an eddy current is generated in the metal strip and heated.
本発明の板幅方向の均温性に優れた金属帯板の加熱装置は、金属帯板を挟んで配置された誘導加熱コイル同士をコイル幅分だけ前記金属帯板の長手方向にシフトさせたシングルターン誘導加熱コイル2、2´と、該シングルターン誘導加熱コイル2、2´の近傍に並行して配置され、前記シングルターン誘導加熱コイルを流れる電流と逆方向の電流を流すことにより磁場の拡散を防止する磁場拡散防止コイル3、3´とを有する金属帯板の加熱装置であって、前記シングルターン誘導加熱コイル2、2´の金属帯板への対向面を除く外周には第1フェライトコア4´を設置し、かつ、前記金属帯板の一方の面に設置する磁場拡散防止コイル3の金属帯板への対向面を除く外周に、第2フェライトコア4を前記第1フェライトコア4´と接するように設置したことを特徴とする。 The metal strip heating apparatus excellent in temperature uniformity in the width direction of the present invention shifts the induction heating coils arranged with the metal strip sandwiched in the longitudinal direction of the metal strip by the coil width. A single-turn induction heating coil 2, 2 ′ is arranged in parallel with the single-turn induction heating coil 2, 2 ′, and a magnetic field is generated by passing a current in a direction opposite to that flowing through the single-turn induction heating coil. A heating apparatus for a metal strip having magnetic field diffusion preventing coils 3 and 3 'for preventing diffusion, wherein the first turn induction heating coils 2 and 2' have a first outer periphery excluding a surface facing the metal strip. A ferrite core 4 ′ is installed, and a second ferrite core 4 is disposed on the outer periphery excluding a surface facing the metal strip of the magnetic field diffusion prevention coil 3 installed on one surface of the metal strip. To touch 4 ' Characterized in that the installation was.
図2に示すように、金属帯板を挟んで配置されたシングルターン誘導加熱コイル2、2´同士をコイル幅(W)分だけ前記金属帯板の長手方向にシフトさせることによって、板幅方向断面の表層部を一周している渦電流の表裏相殺を防止して加熱効率を高めることができる一方で、シフト量がコイル幅Wを超えると偏熱の原因となるので、シフト量はコイル幅分とする。 As shown in FIG. 2, the single-turn induction heating coils 2, 2 ′ arranged with the metal strip sandwiched therebetween are shifted in the longitudinal direction of the metal strip by the coil width (W), so that the plate width direction While the heating efficiency can be improved by preventing the eddy current that goes around the surface layer portion of the cross section from being reversed, the shift amount exceeds the coil width W. Minutes.
なお、本発明においては、シングルターン誘導加熱コイル2、2´を金属帯板の長手方向にシフトさせる方法は問わないが、例えば図3に示すように、金属帯板の幅方向の端部でコイルをL字型に曲げることにより、閉ループを維持したまま金属帯板の長手方向にシフトさせることができる。 In the present invention, there is no limitation on the method of shifting the single-turn induction heating coils 2, 2 'in the longitudinal direction of the metal strip. For example, as shown in FIG. By bending the coil into an L shape, it is possible to shift in the longitudinal direction of the metal strip while maintaining a closed loop.
また、シングルターン誘導加熱コイル2、2´の近傍に並行して配置される磁場拡散防止コイル3、3´は、シングルターン誘導加熱コイル2の電流と逆方向に電流を流すことにより、キュリー点(750℃)付近の加熱において磁場の拡散を防止することにより、板幅方向の中央部分における磁束密度の低下を防ぎ、板幅方向の中央部分の加熱温度を高めることができる。 Further, the magnetic field diffusion preventing coils 3 and 3 ′ arranged in parallel in the vicinity of the single-turn induction heating coils 2 and 2 ′ cause a curie point by flowing a current in a direction opposite to the current of the single-turn induction heating coil 2. By preventing diffusion of the magnetic field in heating near (750 ° C.), it is possible to prevent a decrease in magnetic flux density in the central portion in the plate width direction and increase the heating temperature in the central portion in the plate width direction.
さらに、金属帯板の一方の面に設置する磁場拡散防止コイル3の金属帯板への対向面を除く外周に、第2フェライトコア4を前記第1フェライトコア4´と接するように設置することにより、フェライトコアの磁場拡散防止効果を高めることができる。 Further, the second ferrite core 4 is installed on the outer periphery excluding the surface facing the metal strip of the magnetic field diffusion preventing coil 3 installed on one surface of the metal strip so as to be in contact with the first ferrite core 4 '. Thereby, the magnetic field diffusion preventing effect of the ferrite core can be enhanced.
図2および図4に示すように、シングルターン誘導加熱コイル2、2´の金属帯板への対向面を除く外周には第1フェライトコア4´が設置されており、かつ、前記金属帯板の一方の面に設置する磁場拡散防止コイル3の金属帯板への対向面を除く外周に、第2フェライトコア4を前記第1フェライトコア4´と接するように設置することにより、磁場を集中させて磁束密度を高めることができるので、図4及び図5に示すように、金属帯センター部の電流密度がUPする。そのため、センターの渦電流が分岐して電流密度が低下するエッジ20〜30mmでも電流密度UPが図れ、この部分の温度偏差をエッジ6mmを除いてセンター部±20℃以内に抑制することができる。 As shown in FIGS. 2 and 4, a first ferrite core 4 ′ is installed on the outer periphery of the single-turn induction heating coil 2, 2 ′ excluding the surface facing the metal strip, and the metal strip The magnetic field is concentrated by placing the second ferrite core 4 in contact with the first ferrite core 4 ′ on the outer periphery excluding the surface facing the metal strip of the magnetic field diffusion preventing coil 3 installed on one surface of Thus, the magnetic flux density can be increased, so that the current density of the metal band center portion is increased as shown in FIGS. Therefore, the current density can be increased even at an edge of 20 to 30 mm where the eddy current at the center is branched and the current density is lowered, and the temperature deviation of this portion can be suppressed within ± 20 ° C. except for the edge of 6 mm.
ただし、その結果、最エッジ部も従来より過加熱となり、センター部より100℃程度温度上昇するため、金属帯の品質上問題となる可能性があるが、最エッジ部は幅揃えや形状が悪化傾向のため、トリミングし製品として使用しない場合が多いので、実用上問題となる場合は少ない。 However, as a result, the outermost edge is also overheated more than before, and the temperature rises by about 100 ° C from the center, which may cause a problem in the quality of the metal band, but the width and shape of the outermost edge deteriorate. Because it tends to be trimmed and not used as a product, it is rarely a problem for practical use.
本発明に使用するフェライトコア4の材質は、比透磁率が2500程度と高く、高抵抗率の素材を用いることが好ましい。 The material of the ferrite core 4 used in the present invention is preferably a material having a high relative resistivity of about 2500 and a high resistivity.
また、フェライトコア4の設置位置は、図2及び図4に示すように金属帯の上面の磁場拡散防止コイル3の外周に設置することが好ましいが、金属帯下面の磁場拡散防止コイル3´の外周に設置しても効果はある。 The ferrite core 4 is preferably installed at the outer periphery of the magnetic field diffusion prevention coil 3 on the upper surface of the metal band as shown in FIGS. Even if installed on the outer periphery, there is an effect.
ここに、ソレノイド方式の誘導加熱コイルとは、コイルで被加熱物を巻くように配置して、交番磁界を被加熱物に平行に印加する加熱コイルをいい、通電加熱ロールとは、金属帯板に接触するロールであって、このロールから金属帯板に直接電流を流して、そのジュール熱により金属帯板を加熱するものであり、燃焼加熱炉とは、ガスなどの燃料を燃焼させて炉内雰囲気温度を上昇させて金属帯を加熱する加熱炉をいう。 Here, the solenoid-type induction heating coil is a heating coil that is arranged so that an object to be heated is wound around the coil and applies an alternating magnetic field in parallel to the object to be heated. The roll is in contact with the metal strip, and a current is passed directly from the roll to the metal strip and the metal strip is heated by the Joule heat. A combustion heating furnace is a furnace that burns fuel such as gas. A heating furnace that heats the metal strip by raising the internal atmosphere temperature.
図7は、本発明の好ましい実施形態を例示するシングルターン誘導加熱コイルの側面図である。 FIG. 7 is a side view of a single turn induction heating coil illustrating a preferred embodiment of the present invention.
図7に示すように、本発明に用いるフェライトコア4の側面に、冷却用の水冷ジャケット5を設置することが好ましい。 As shown in FIG. 7, it is preferable to install a water cooling jacket 5 for cooling on the side surface of the ferrite core 4 used in the present invention.
水冷ジャケットによってフェライトコア4の温度上昇を水温上昇に変換し、絶えず抜熱することでフェライトコア4の温度を例えば90℃以下に抑制でき、誘導加熱コイルの電流が3000A程度でもフェライトコア4が磁気飽和しないことが可能となり、金属帯の通板速度の上限値を低下させることなく例えば850℃まで連続的に加熱することができる。 The temperature rise of the ferrite core 4 is converted into a rise in water temperature by the water cooling jacket, and the temperature of the ferrite core 4 can be suppressed to, for example, 90 ° C. or less by continuously removing heat. Even if the current of the induction heating coil is about 3000A, the ferrite core 4 is magnetic It becomes possible not to saturate, and it is possible to continuously heat up to, for example, 850 ° C. without lowering the upper limit value of the sheet feeding speed of the metal strip.
また、同様の理由により、シングルターン誘導加熱コイル2の外周に設置されるフェライトコア4´にも水冷ジャケット5´を設けることが好ましい。 For the same reason, it is preferable to provide a water cooling jacket 5 ′ also on the ferrite core 4 ′ installed on the outer periphery of the single turn induction heating coil 2.
また、水冷ジャケットは、例えば通水した容器や水冷パイプを用いてもよく、その材質は、熱伝導率が高く、非磁性の材質が好ましく、例えば、銅やSUSが好ましい。 The water-cooling jacket may be, for example, a water-contained container or a water-cooled pipe, and the material is preferably a non-magnetic material having high thermal conductivity, such as copper or SUS.
また、水冷ジャケット5、5´への給水は、複数設置されたフェライトコア4、4´のそれぞれに独立して給水することによって、冷却水の温度上昇を抑制することができるうえ、ある給水ラインが停止場合でも他の給水ラインによって給水を継続することができる。 In addition, water supply to the water cooling jackets 5 and 5 'can be suppressed by independently supplying water to each of the plurality of installed ferrite cores 4 and 4'. Water supply can be continued through other water supply lines even when the water supply stops.
さらに、図7に示すように、誘導加熱コイルおよび磁場拡散防止コイルの内側を空洞にして通水することによって、コイル自体の過加熱を防止することができるうえ、前述の水冷ジャケットとコイルの内側の両方から冷却することによってフェライトコアの冷却効果を高めることができる。 Further, as shown in FIG. 7, by passing water with the inside of the induction heating coil and magnetic field diffusion prevention coil being hollow, it is possible to prevent overheating of the coil itself, and the above-described water-cooling jacket and the inside of the coil. By cooling from both, the cooling effect of the ferrite core can be enhanced.
なお、以上説明した本発明の実施形態は、水平に設置する加熱装置を例示したが、本発明は、金属帯板が垂直に搬送されるラインに設置する加熱装置にも適用できる。 In addition, although embodiment of this invention demonstrated above illustrated the heating apparatus installed horizontally, this invention is applicable also to the heating apparatus installed in the line in which a metal strip is conveyed vertically.
本発明の金属帯の加熱装置を下記条件で実施した結果を図6に示す。
<実施条件>
鋼板厚み:0.3mm、鋼板幅:300mm、鋼板速度:300mm/s
図2〜図4に示すコイルを使用
<加熱コイル構成>
ソレノイド誘導加熱コイル1:電源周波数:20kHz、電源出力:130kW
シングルターン誘導加熱コイル2、2´:電源周波数:30kHz、電源出力:30kW、加熱コイル幅W:40mm、コア厚h:20mm、ギャップG:40mm
ソレノイド誘導加熱コイル1で700℃まで幅方向均一に加熱し、シングルターン誘導加熱コイル2で850℃程度まで加熱した。
FIG. 6 shows the results of carrying out the metal band heating apparatus of the present invention under the following conditions.
<Conditions for implementation>
Steel plate thickness: 0.3mm, Steel plate width: 300mm, Steel plate speed: 300mm / s
Use coils shown in Fig. 2 to Fig. 4 <Heating coil configuration>
Solenoid induction heating coil 1: Power frequency: 20kHz, Power output: 130kW
Single-turn induction heating coil 2, 2 ': Power frequency: 30kHz, Power output: 30kW, Heating coil width W: 40mm, Core thickness h: 20mm, Gap G: 40mm
The solenoid
図6は、本発明における金属帯板の加熱装置における図2〜図4の実施形態を用いて、鋼帯を加熱したときの、板幅方向の温度分布の変化を示す図である。 FIG. 6 is a diagram showing a change in temperature distribution in the plate width direction when the steel strip is heated using the embodiment of FIGS. 2 to 4 in the metal strip heating apparatus of the present invention.
図6に示すように、本発明に用いる磁場拡散防止コイルにフェライトコアを設けた場合には、鋼帯最エッジ部は、センター部より100℃程度過加熱となるものの、従来センター部より約50℃温度低下していたエッジ20〜30mmでは、センター部より約20℃の温度低下に抑制でき、金属帯の形状がシワ状に悪化するリスクが軽減できた。 As shown in FIG. 6, when the ferrite core is provided in the magnetic field diffusion preventing coil used in the present invention, the steel strip outermost portion is overheated by about 100 ° C. from the center portion, but it is about 50% higher than the conventional center portion. The edge 20-30 mm, which had decreased in temperature, could be suppressed to a temperature decrease of about 20 ° C. from the center, and the risk that the shape of the metal strip deteriorated into wrinkles could be reduced.
なお、最エッジ部は、最終的にトリミングし製品として使用しないことが多く実用上の問題は少ない。 In addition, the most edge part is trimmed finally and is not used as a product, and there are few practical problems.
図6は、上側の磁場拡散防止コイルにフェライトコアを設けた本発明例を示しているが、上下の磁場拡散防止コイルにフェライトコアを設けた場合には、最エッジの過加熱が非常に大きいため実用的でない。 FIG. 6 shows an example of the present invention in which the upper magnetic field diffusion prevention coil is provided with a ferrite core, but when the upper and lower magnetic field diffusion prevention coils are provided with a ferrite core, the overheating at the outermost edge is very large. Therefore, it is not practical.
本発明の金属帯の加熱装置においてフェライトコアの側面に水冷ジャケットを設置した好ましい実施形態を下記条件で実施した結果を表1に示す。
<実施条件>
鋼板厚み:0.3mm、鋼板幅:300mm、鋼板温度:900℃
図4のコイル、コア対向面に図7のように断熱材を設置
断熱材厚み:8mm、熱伝導率0.2W/m・K
シングルターン誘導加熱コイルに磁場拡散防止コイルを設け、上面の磁場拡散防止コイルにフェライトコアを設け、水冷ジャケット有/無の場合でフェライトコア面の温度を測定した。
Table 1 shows the results of carrying out a preferred embodiment in which the water cooling jacket is installed on the side surface of the ferrite core in the metal band heating device of the present invention under the following conditions.
<Conditions for implementation>
Steel plate thickness: 0.3 mm, steel plate width: 300 mm, steel plate temperature: 900 ° C
Heat insulation material is installed on the coil and core facing surface of Fig. 4 as shown in Fig. 7 Heat insulation material thickness: 8mm, thermal conductivity 0.2W / m · K
The single-turn induction heating coil was provided with a magnetic field diffusion prevention coil, the upper surface magnetic field diffusion prevention coil was provided with a ferrite core, and the temperature of the ferrite core surface was measured with and without a water cooling jacket.
その結果、表1のように水冷ジャケットが無い場合、フェライトコア面の温度は141℃でフェライトコアの飽和磁束密度は0.3Tであるが、水冷ジャケットが有る場合、フェライトコア面の温度は89℃で飽和磁束密度は0.4TまでUPでき、通板速度の上限値が833mm/sであったが、1333mm/sまで連続的に加熱することができることが確認された。 As a result, when there is no water cooling jacket as shown in Table 1, the temperature of the ferrite core surface is 141 ° C and the saturation magnetic flux density of the ferrite core is 0.3T, but when there is a water cooling jacket, the temperature of the ferrite core surface is 89 ° C. The saturation magnetic flux density can be increased up to 0.4T, and the upper limit of the plate feed speed was 833mm / s, but it was confirmed that it could be continuously heated to 1333mm / s.
1 ソレノイド方式誘導加熱コイル
2、2´ シングルターン誘導加熱コイル
3、3´ 磁場拡散防止コイル
4´第1フェライトコア
4 第2フェライトコア
5、5´ 水冷ジャケット
6 断熱材
W 加熱コイル幅
h コア厚
G ギャップ
DESCRIPTION OF
Claims (2)
アと接するように設置し、
前記シングルターン誘導加熱コイルの前段に、ソレノイド方式の誘導加熱コイル、接触方式の通電加熱ロール、燃焼加熱炉のいずれかを設けることを特徴とする板幅方向の均温性に優れた金属帯板の加熱装置。 A single-turn induction heating coil in which the induction heating coils arranged with the metal strip sandwiched between them are shifted in the longitudinal direction of the metal strip by the coil width, and arranged in parallel in the vicinity of the single-turn induction heating coil. A metal strip heating device having a magnetic field diffusion prevention coil for preventing magnetic field diffusion by flowing a current in a direction opposite to the current flowing through the single turn induction heating coil, wherein the metal of the single turn induction heating coil A first ferrite core is installed on the outer periphery excluding the surface facing the band plate, and the outer periphery excluding the surface facing the metal band plate of the magnetic field diffusion prevention coil installed on one surface of the metal band plate, 2 Install the ferrite core in contact with the first ferrite core,
One of the solenoid-type induction heating coil, the contact-type energization heating roll, and the combustion heating furnace is provided in front of the single-turn induction heating coil. Heating device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006154157A JP4833740B2 (en) | 2006-06-02 | 2006-06-02 | Metal strip heating device with excellent temperature uniformity in the plate width direction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006154157A JP4833740B2 (en) | 2006-06-02 | 2006-06-02 | Metal strip heating device with excellent temperature uniformity in the plate width direction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007324009A JP2007324009A (en) | 2007-12-13 |
JP4833740B2 true JP4833740B2 (en) | 2011-12-07 |
Family
ID=38856625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006154157A Expired - Fee Related JP4833740B2 (en) | 2006-06-02 | 2006-06-02 | Metal strip heating device with excellent temperature uniformity in the plate width direction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4833740B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5342921B2 (en) * | 2009-04-28 | 2013-11-13 | 新日鉄住金エンジニアリング株式会社 | Metal plate induction heating device |
EP3439430B1 (en) | 2016-03-30 | 2023-08-23 | Nippon Steel Corporation | Induction heating device and induction heating method |
JP7480695B2 (en) * | 2020-12-23 | 2024-05-10 | トヨタ自動車株式会社 | Induction heating coil, its manufacturing method and manufacturing method for hardened products |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531614A (en) * | 1976-06-26 | 1978-01-09 | Toyo Alum Kk | Induction heating equipment |
JPS5721088A (en) * | 1980-07-15 | 1982-02-03 | Nippon Steel Corp | Dielectric heating inductor |
JPS57151894A (en) * | 1981-03-16 | 1982-09-20 | Tokyo Shibaura Electric Co | Neutron flux detector drive controlling device |
JPS6316595A (en) * | 1986-07-09 | 1988-01-23 | 新日本製鐵株式会社 | Induction heating coil |
JPS63317630A (en) * | 1987-03-06 | 1988-12-26 | Nippon Steel Corp | Induction heater |
JP3950286B2 (en) * | 2000-07-31 | 2007-07-25 | 新日本製鐵株式会社 | Single-turn induction heating coil |
JP2002210510A (en) * | 2001-01-15 | 2002-07-30 | Mitsubishi Heavy Ind Ltd | Apparatus and method for induction heating rolling roll |
JP3869711B2 (en) * | 2001-12-14 | 2007-01-17 | 新日本製鐵株式会社 | Metal strip heating device with excellent temperature uniformity in the plate width direction |
JP4069002B2 (en) * | 2003-03-28 | 2008-03-26 | 新日本製鐵株式会社 | Metal strip heating device with excellent temperature uniformity in the plate width direction |
-
2006
- 2006-06-02 JP JP2006154157A patent/JP4833740B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007324009A (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5114671B2 (en) | Induction heating apparatus and induction heating method for metal plate | |
AU2006215074B2 (en) | Induction heating device for a metal plate | |
KR101102609B1 (en) | Induction heating device | |
US9888529B2 (en) | Induction heating device for a metal plate | |
JP4786365B2 (en) | Induction heating apparatus and induction heating method for metal plate | |
JP5042909B2 (en) | Induction heating apparatus and induction heating method for metal plate | |
JP4069002B2 (en) | Metal strip heating device with excellent temperature uniformity in the plate width direction | |
JP4833740B2 (en) | Metal strip heating device with excellent temperature uniformity in the plate width direction | |
JP2005209608A (en) | Induction heating device of metal strip and induction heating method | |
JP6331900B2 (en) | Induction heating device for metal strip | |
JP5053169B2 (en) | Induction heating apparatus and induction heating method | |
JP3869711B2 (en) | Metal strip heating device with excellent temperature uniformity in the plate width direction | |
JP3914760B2 (en) | Single-turn induction heating coil | |
JP4035122B2 (en) | Steel strip heating method with excellent temperature uniformity in the width direction | |
JP2010027470A (en) | Transverse induction heating device | |
JP2844616B2 (en) | Induction heating device | |
JP6528712B2 (en) | Iron core for induction heating coil, induction heating coil, and heating apparatus | |
JP2007324010A (en) | Induction heating apparatus excellent in uniformity in temperature in widthwise direction of metal strip | |
JP2002100467A (en) | Single-turn coil for induction heating | |
JP4890278B2 (en) | Metal plate induction heating device | |
JP2005122984A (en) | Induction heating device | |
JP4097859B2 (en) | Induction heating device | |
JP2008257927A (en) | Transverse-type induction heating coil | |
JP3707724B2 (en) | Induction heating device | |
JP2005206906A (en) | Method for induction-heating steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110913 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110922 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4833740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |