JP3869711B2 - Metal strip heating device with excellent temperature uniformity in the plate width direction - Google Patents

Metal strip heating device with excellent temperature uniformity in the plate width direction Download PDF

Info

Publication number
JP3869711B2
JP3869711B2 JP2001381660A JP2001381660A JP3869711B2 JP 3869711 B2 JP3869711 B2 JP 3869711B2 JP 2001381660 A JP2001381660 A JP 2001381660A JP 2001381660 A JP2001381660 A JP 2001381660A JP 3869711 B2 JP3869711 B2 JP 3869711B2
Authority
JP
Japan
Prior art keywords
coil
metal strip
induction heating
width direction
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381660A
Other languages
Japanese (ja)
Other versions
JP2003187951A (en
Inventor
康弘 真弓
英司 坪田
亮 朝日山
育世 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001381660A priority Critical patent/JP3869711B2/en
Publication of JP2003187951A publication Critical patent/JP2003187951A/en
Application granted granted Critical
Publication of JP3869711B2 publication Critical patent/JP3869711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、板幅方向の均温性に優れた金属帯板の加熱装置に関する。
【0002】
【従来の技術】
誘導加熱とは、交流電源に接続されたコイルを被加熱物の周囲に配置し、交番磁界により誘起される渦電流のジュール熱により物体を加熱する方法である。誘導加熱には、交番磁界を被加熱物に垂直に交差させるトランスバース方式と、コイルで被加熱物を巻くように配置して、交番磁界を被加熱物に平行に印加するソレノイド方式の2通りがあり、目的によって選択される。
金属帯板の加熱の場合、板幅方向に均一な加熱が必要なことから、ソレノイド方式が適している。また、ソレノイド方式には、1つの電源に対して、複数回コイルを巻くマルチターン方式と、1回だけ巻くシングルターン方式がある。
従来のソレノイド方式のシングルターンコイルを用いる誘導加熱装置は、金属帯板が、例えば磁性体の鋼帯である場合、キュリー点(約750℃)以上の加熱が困難であり、650℃以下の低温領域での加熱にしか適用できないという問題点があった。さらに、金属帯板が、例えばアルミ, SUS等の非磁性体である場合、加熱すること自体が困難であった。
【0003】
磁性体帯板のキュリー点以上の加熱が困難な理由は、キュリー点付近の温度になると渦電流の電流浸透深さが大きくなり、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れなくなるからである。
また、非磁性体帯板を加熱すること自体が困難になる理由は、常温レベルから渦電流の電流浸透深さが大きく、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れないからである。
発明者らは、この問題点を解決する方法として先に図1のように金属帯板1の上面のシングルターン誘導加熱コイル2と下面のシングルターン誘導加熱コイル3とを、金属帯板1の長手方向に互いにシフトさせることにより、板幅方向断面の表層部を一周している渦電流の表裏相殺をなくす方法を見出して、特願2000-289145号の特許出願を行った。
【0004】
この方法によって、鋼板をキュリー点(750℃)以上に加熱することができ、非磁性体も加熱することができるようになったが、誘導加熱のコイルサイズを大きくし、鋼板を挟む上下のコイル間のギャップを6mmから30mmに拡大して、加熱中における鋼帯の幅方向の温度分布を測定したところ図2に示すように、以下の問題点が明らかになった。
なお、図2の横軸は加熱時間(秒)であり、縦軸は加熱温度(℃)である。
(問題1)600℃以下の低温加熱領域においても、鋼帯の幅方向の温度偏差が生じた。
(問題2)キュリー点(750℃)付近では鋼帯中央部▲4▼の加熱がしにくく、加熱温度がキュリー点に達しなかった。
(問題3)鋼帯エッジ部▲1▼の温度が800℃を超えており、エッジ部の過加熱が大きくなった。
【0005】
【発明が解決しようとする課題】
本発明は、前記のような従来技術の問題点を解決し、鋼帯をキュリー点(750℃)以上に加熱でき、非磁性体も加熱でき、しかも、板幅方向の均温性に優れた金属帯板の加熱装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
発明者らは、金属帯板の幅方向の温度偏差が生じる原因を鋭意検討した結果、以下のことが判明した。
コイルサイズが大きくなると、コア厚hが大きくなるため、エッジ部で渦電流の縮流長が長くなって発熱量が多くなる。
一方、中央部では、磁場が拡散するために、同一投入電力では、磁束密度が小さくなるために、渦電流密度が低下して発熱量が小さくので、コイルサイズを大きくするに従って、エッジ部と中央部の温度偏差が大きくなる。
その結果、低温度付近からエッジ部の温度が過加熱気味となり、温度が上がるとその部分の抵抗は更に上がるため、高温度付近では、その相乗効果で、極端にエッジ部の過加熱が発生することがわかった。
【0007】
そこで、発明者らは、低温度付近では、加熱の均温性のよい加熱方式を採用することで、低温度付近からエッジ部の過加熱を防止するとともに、シングルターンコイルの電流の向きと反対方向の電流が流れる磁場拡散防止コイルを設置して、中央部の磁束密度を大きくし中央部の発熱量を増加させ、さらに、エッジ部過加熱防止装置を設置することで、金属帯板の表裏を迂回して流れるエッジ部の渦電流の分流を行うことにより、エッジ部の発熱量を低下させる方法を見出した。本発明の要旨とするところは、許請求の範囲に記載した通りの下記内容である。
【0008】
(1)ソレノイド方式の誘導加熱コイルまたは接触方式の通電加熱ロールと、シングルターン誘導加熱コイルと、該シングルターン誘導加熱コイルの近傍に並行して配置され、該シングルターン誘導加熱コイルの電流と共通の電源を用いて逆方向に電流を流すことにより磁場の拡散を防止する磁場拡散防止コイルとを設けた金属帯板の加熱装置であって、該金属帯板の表面のシングルターン誘導加熱コイルおよび磁場拡散防止コイルと、該金属帯板の裏面のシングルターン誘導加熱コイルおよび磁場拡散防止コイルとを該金属帯板の長手方向に互いにコイル幅Wだけシフトした位置に配置し、かつ
前記表裏面のシングルターン誘導加熱コイルの前記金属帯板の表面および裏面との対向面を除く外周をフェライトコアで被覆し、該フェライトコアにフェライトコアで被覆されていない前記磁場拡散防止コイルを接触させることを特徴とする板幅方向の均温性に優れた金属帯板の加熱装置。
【0009】
(2)さらに、前記シングルターン誘導加熱コイルの近傍に並行して配置され、該シングルターン誘導加熱コイルの電流と共通の電源を用いて同方向に電流を流すことにより前記金属帯板のエッジ部の過加熱を防止するエッジ部過加熱防止コイルを設けることを特徴とする(1)に記載の板幅方向の均温性に優れた金属帯板の加熱装置。
(3)前記金属帯板の表面のエッジ部過加熱防止コイルと、該金属帯板の裏面のエッジ部過加熱防止コイルとを該金属帯板の長手方向に互いにコイル幅Wだけシフトした位置に配置することを特徴とする(2)に記載の板幅方向の均温性に優れた金属帯板の加熱装置。
【0010】
【発明の実施の形態】
本発明の実施の形態を、図3乃至図10を用いて詳細に説明する。
(第1の実施形態)
本発明の第1の実施形態として、磁場拡散防止コイル4,5を設けた例を図3乃至図5に示す。
図3は、本発明における金属帯板の加熱装置の実施形態を例示する図である。金属鋼帯1は、渦電流が板幅方向の断面内を流れることから板幅方向の均一加熱性に優れるソレノイド方式誘導加熱コイル6にて、600℃程度まで加熱される。これと同じく、板幅方向の均一加熱性に優れる接触方式の通電加熱ロールを用いてもよい。ここに、通電加熱ロールとは、金属帯板に接触するロールであって、このロールから金属帯板に直接電流を流して、そのジュール熱により金属帯板を加熱するものである。
【0011】
ソレノイド方式誘導加熱コイル6の後段には、シングルターン誘導加熱コイル2,3が設置されており、その横に、シングルターン誘導加熱コイル2,3とはそれぞれ逆向きの電流を流すことにより磁場の拡散を防止する磁場拡散防止コイル4,5が設けられている。この磁場拡散防止コイル4,5により、キュリー点(750℃)付近の加熱において磁場の拡散を防止することにより、
板幅方向の中央部分における磁束密度の低下を防ぎ、板幅方向の中央部分の加熱温度を高めることができる。
図4は、本発明における金属帯板の加熱装置における第1の実施形態の鋼帯の長手方向の断面図である。
【0012】
鋼帯1の上面のシングルターン誘導加熱コイル2および磁場拡散防止コイル4と、鋼帯1の下面のシングルターン誘導加熱コイル3および磁場拡散防止コイル5とをそれぞれ鋼帯1の長手方向に互いにシフトした位置に配置しているので、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生しないことから、キュリー点(750℃)以上に加熱することができる。また、アルミやSUS等の非磁性体を加熱することもできる。
また、磁場を集中させ(磁束密度を高め)、加熱効率を向上させるために、シングルターン誘導加熱コイル2,3の鋼帯への対向面を除く外周3面を比透磁率が2500と高く、高抵抗率のフェライトコア9で直接被覆することが好ましい。
【0013】
図5は、本発明における金属帯板の加熱装置における第1の実施形態を用いて、鋼帯を加熱したときの、板幅方向の温度分布の変化を示す図である。
板幅70mm, 厚さ0.35mmの鋼板を用い、板速70mm/秒, 周波数20KHz, 電源出力50KW, コイル幅W:40mm, コア厚h:20mm, ギャップG:30mmにて加熱を行った。
先願の板幅方向温度分布を示す図2と比較して、600℃以下の低温部における板幅方向の温度偏差がなくなり、キュリー点(750℃)付近における板幅方向の中央部における加熱温度が著しく高くなっている。
なお、図5における、エッジ部の加熱温度が高くなっており、エッジ部の過加熱現象が一部残っているが、これは、鋼帯のエッジ部の上下面に銅板を設置して磁場を遮蔽することにより、防止することができる。
【0014】
(第2の実施形態)
本発明の第2の実施形態として、磁場拡散防止コイル4,5およびエッジ部過加熱防止コイル7,8を設けた例を図6乃至図10に示す。
図6は、本発明における金属帯板の加熱装置の第2の実施形態を例示する図である。
金属鋼帯1は、渦電流が板幅方向の断面内を流れることから板幅方向の均一加熱性に優れるソレノイド方式誘導加熱コイル6にて、600℃程度まで加熱される。これと同じく、板幅方向の均一加熱性に優れる接触式通電加熱ロールを用いてもよい。
【0015】
ソレノイド方式誘導加熱コイル6の後段には、シングルターン誘導加熱コイル2,3が設置されており、その横に、シングルターン誘導加熱コイル2,3とはそれぞれ逆向きの電流を流すことにより磁場の拡散を防止する磁場拡散防止コイル4、5が設けられている。この磁場拡散防止コイル4,5により、キュリー点(750℃)付近の加熱において磁場の拡散を防止することにより、
板幅方向の中央部分の磁束密度の低下を防ぎ、板幅方向の中央部分の加熱温度を高めることができる。
ソレノイド方式誘導加熱コイル6とシングルターン誘導加熱コイル2,3の間には、シングルターン誘導加熱コイル2,3の電流とそれぞれ同方向に電流を流すことにより金属帯板のエッジ部の渦電流を分流して該エッジ部の過加熱を防止するエッジ部過加熱防止コイル7,8が設けられている。このエッジ部過加熱防止コイル7,8により、エッジ部の渦電流を分流することにより、エッジ部の渦電流の縮流現象を緩和して、エッジ部の過加熱を著しく抑制することができる。
【0016】
図7は、本発明における金属帯板の加熱装置の第2の実施形態を例示する図であり、シングルターン誘導加熱コイル2,3と、エッジ部過加熱防止コイル7,8の電源を共通にした例である。これにより、電源装置の設置台数を低減することにより設備費を下げることができる。
図8は、本発明における金属帯板の加熱装置の第2の実施形態を例示する図であり、シングルターン誘導加熱コイル2,3, エッジ部過加熱防止コイル7,8, ソレノイド方式の誘導加熱コイル6の電源を全て共通化した例である。これにより、さらに、電源装置の設置台数を低減することにより設備費を下げることができる。
【0017】
図9は、本発明における金属帯板の加熱装置における第2の実施形態の鋼帯の長手方向の断面図である。
鋼帯1の上面のシングルターン誘導加熱コイル2,磁場拡散防止コイル4,およびエッジ部過加熱防止コイル7と、鋼帯1の下面のシングルターン誘導加熱コイル3,磁場拡散防止コイル5およびエッジ部過加熱防止コイル7とをそれぞれ鋼帯1の長手方向に互いにシフトした位置に配置しているので、板幅方向断面の表層部を一周している渦電流の表裏相殺が発生しないことから、キュリー点(750℃)以上に加熱することができる。また、アルミやSUS等の非磁性体を加熱することもできる。
【0018】
ソレノイド方式誘導加熱コイル6とシングルターン誘導加熱コイル2,3の間には、シングルターン誘導加熱コイル2,3の電流とそれぞれ同方向に電流を流すエッジ部過加熱防止コイル7,8が設けられている。
例えば、シングルターン誘導加熱コイル2,3に全体の70%の電流を流し、残り30%の電流を金属帯板の長手方向にずれた位置に設置されているエッジ部過加熱防止コイル7,8に分流することにより、帯板のエッジ部に発生する渦電流の縮流によるエッジ過熱は電流の二乗で効いてくるのでエッジ過熱を約50%(0.7*0.7=0.49)に低減することができる。
また、磁場を集中させ(磁束密度を高め)、加熱効率を向上させるために、シングルターン誘導加熱コイル2,3の鋼帯への対向面を除く外周3面を、比透磁率が2500と高く、高抵抗率のフェライトコア9で直接被覆することが好ましい。
【0019】
さらに、エッジ部を通過する渦電流の分流量を調整するために、エッジ部過加熱防止コイル8の鋼帯への対向面を除く外周3面を、比透磁率が2500と高く、高抵抗率のフェライトコア9で直接被覆することが好ましい。
図10は、本発明における金属帯板の加熱装置を用いて、鋼帯を加熱したときの、板幅方向の温度分布の変化を示す図である。
板幅70mm,厚さ0.35mmの鋼板を用い、板速70mm/秒,周波数20KHz,電源出力50KW,コイル幅W:40mm,コア厚h:20mm,ギャップG:30mmにて加熱を行った。
【0020】
その結果、中央部はキュリー点以上に加熱でき、板幅方向の温度偏差も実用上の目標である+−30℃程度となっており、板幅方向に均一な温度分布が実現できた。
第1の実施形態における板幅方向温度分布を示す図5と比較して、エッジ部における過加熱現象がなくなっていることがわかる。
【0021】
【発明の効果】
本発明によれば、鋼帯をキュリー点以上に加熱でき、非磁性体でも加熱でき、しかも、板幅方向の均温性に優れた金属帯板の加熱装置を提供することができ、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】 先願の金属帯板の加熱装置を示す断面図である。
【図2】 先願の金属帯板の加熱装置を用いて加熱した場合の板幅方向の温度分布を示す図である。
【図3】 本発明の金属帯板の加熱装置における第1の実施形態を示す図である。
【図4】 本発明の金属帯板の加熱装置における第1の実施形態の鋼帯の長手方向の断面図である。
【図5】 本発明の金属帯板の加熱装置における第1の実施形態を用いて加熱した場合の板幅方向の温度分布を示す図である。
【図6】 本発明の金属帯板の加熱装置における第2の実施形態を示す図である。
【図7】 本発明の金属帯板の加熱装置における第2の実施形態を示す図である。
【図8】 本発明の金属帯板の加熱装置における第2の実施形態を示す図である。
【図9】 本発明の金属帯板の加熱装置における第2の実施形態の鋼帯の長手方向の断面図である。
【図10】 本発明の金属帯板の加熱装置における第2の実施形態を用いて加熱した場合の板幅方向の温度分布を示す図である。
【符号の説明】
1:金属帯板
2:シングルターン誘導加熱コイル(帯板の上面)
3:シングルターン誘導加熱コイル(帯板の下面)
4:磁場拡散防止コイル(帯板の上面)
5:磁場拡散防止コイル(帯板の下面)
6:ソレノイド方式誘導加熱コイル
7:エッジ部過加熱防止コイル(帯板の上面)
8:エッジ部過加熱防止コイル(帯板の下面)
9:フェライトコア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal strip heating apparatus having excellent temperature uniformity in the plate width direction.
[0002]
[Prior art]
Induction heating is a method in which a coil connected to an AC power source is arranged around an object to be heated, and an object is heated by Joule heat of eddy current induced by an alternating magnetic field. There are two types of induction heating: a transverse method in which an alternating magnetic field intersects the object to be heated vertically and a solenoid method in which the object to be heated is wound around a coil and an alternating magnetic field is applied in parallel to the object to be heated. Is selected according to purpose.
In the case of heating a metal strip, a solenoid system is suitable because uniform heating is required in the plate width direction. The solenoid system includes a multi-turn system in which a coil is wound a plurality of times and a single-turn system in which the coil is wound only once.
In a conventional induction heating device using a solenoid type single-turn coil, when the metal strip is a magnetic steel strip, for example, it is difficult to heat above the Curie point (about 750 ° C.), and the low temperature is 650 ° C. or below. There is a problem that it can be applied only to heating in the region. Furthermore, when the metal strip is a non-magnetic material such as aluminum or SUS, it is difficult to heat itself.
[0003]
The reason why it is difficult to heat the magnetic strip above the Curie point is that when the temperature near the Curie point is reached, the current penetration depth of the eddy current increases, and the front and back of the eddy current that goes around the surface layer of the cross section in the plate width direction This is because cancellation occurs and eddy current does not flow.
The reason why heating the non-magnetic strip itself is difficult is that the current penetration depth of the eddy current is large from the normal temperature level, and the front / back offset of the eddy current that goes around the surface layer part of the cross section in the plate width direction is cancelled. This is because eddy current does not flow.
As a method for solving this problem, the inventors previously used a single-turn induction heating coil 2 on the upper surface of the metal strip 1 and a single-turn induction heating coil 3 on the lower surface of the metal strip 1 as shown in FIG. A patent application of Japanese Patent Application No. 2000-289145 was filed by finding a method of eliminating front and back cancellation of eddy currents that make a round in the surface layer portion of the cross section in the plate width direction by shifting each other in the longitudinal direction.
[0004]
With this method, the steel sheet can be heated to the Curie point (750 ° C.) or higher, and non-magnetic materials can be heated. However, the coil size for induction heating is increased, and the upper and lower coils sandwiching the steel sheet are used. The gap between them was expanded from 6 mm to 30 mm, and the temperature distribution in the width direction of the steel strip during heating was measured. As shown in FIG. 2, the following problems were revealed.
In addition, the horizontal axis | shaft of FIG. 2 is heating time (second), and a vertical axis | shaft is heating temperature (degreeC).
(Problem 1) Even in a low temperature heating region of 600 ° C. or lower, a temperature deviation in the width direction of the steel strip occurred.
(Problem 2) In the vicinity of the Curie point (750 ° C.), it was difficult to heat the central portion (4) of the steel strip, and the heating temperature did not reach the Curie point.
(Problem 3) The temperature of the steel strip edge portion (1) exceeded 800 ° C., and overheating of the edge portion became large.
[0005]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, can heat a steel strip to a Curie point (750 ° C.) or higher, can also heat a non-magnetic material, and is excellent in temperature uniformity in the plate width direction. It is an object to provide a heating device for a metal strip.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the cause of the temperature deviation in the width direction of the metal strip, the inventors have found the following.
When the coil size is increased, the core thickness h is increased, so that the contraction length of the eddy current is increased at the edge portion and the amount of heat generation is increased.
On the other hand, since the magnetic field diffuses in the central portion, the magnetic flux density becomes small at the same input power, so the eddy current density decreases and the amount of heat generation decreases. The temperature deviation of the part increases.
As a result, the temperature of the edge part tends to overheat from around the low temperature, and when the temperature rises, the resistance of that part further rises. Therefore, the overheating of the edge part occurs extremely near the high temperature due to its synergistic effect. I understood it.
[0007]
Therefore, the inventors have adopted a heating method with good temperature uniformity near the low temperature to prevent overheating of the edge portion from near the low temperature and opposite to the current direction of the single-turn coil. By installing a magnetic field diffusion prevention coil through which current flows in the direction, increasing the magnetic flux density in the center to increase the heat generation at the center, and installing an edge overheating prevention device, the front and back of the metal strip The present inventors have found a method for reducing the amount of heat generated at the edge by diverting the eddy current at the edge flowing around the edge. The gist of the present invention is the following contents as described in the scope of claims.
[0008]
(1) energizing the heating roll of the induction heating coil or contact type solenoid type, are arranged in parallel and a single-turn induction heating coil, in the vicinity of the single-turn induction heating coil, common to the current of the single-turn induction heating coil A heating device for a metal strip provided with a magnetic field diffusion prevention coil that prevents diffusion of the magnetic field by flowing a current in the reverse direction using a power source of a single-turn induction heating coil on the surface of the metal strip, and A magnetic field diffusion prevention coil, a single-turn induction heating coil and a magnetic field diffusion prevention coil on the back surface of the metal strip are arranged at positions shifted from each other by a coil width W in the longitudinal direction of the metal strip; and
The outer circumference of the single-turn induction heating coil on the front and back surfaces, except for the surface opposite to the front and back surfaces of the metal strip, is covered with a ferrite core, and the magnetic field diffusion prevention coil not covered with the ferrite core is in contact with the ferrite core excellent heating device of the metal strip evenly temperature of the plate width direction, characterized in that cause.
[0009]
(2) Further, the edge portion of the metal strip is arranged in parallel in the vicinity of the single turn induction heating coil, and a current is supplied in the same direction using a power source common to the current of the single turn induction heating coil. An apparatus for heating a metal strip having excellent temperature uniformity in the plate width direction according to (1), wherein an edge portion overheating preventing coil is provided to prevent overheating.
(3) The edge portion overheating prevention coil on the front surface of the metal strip and the edge portion overheating prevention coil on the back surface of the metal strip are shifted to each other by the coil width W in the longitudinal direction of the metal strip. The apparatus for heating a metal strip having excellent temperature uniformity in the plate width direction according to (2), wherein the heating device is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to FIGS.
(First embodiment)
As a first embodiment of the present invention, an example in which magnetic field diffusion preventing coils 4 and 5 are provided is shown in FIGS.
FIG. 3 is a diagram illustrating an embodiment of a heating device for a metal strip in the present invention. The metal steel strip 1 is heated to about 600 ° C. by the solenoid induction heating coil 6 that is excellent in uniform heating in the plate width direction because eddy current flows in the cross section in the plate width direction. Similarly to this, a contact-type energization heating roll excellent in uniform heating property in the plate width direction may be used. Here, the energization heating roll is a roll that comes into contact with the metal strip, and a current is passed directly from the roll to the metal strip and the metal strip is heated by the Joule heat.
[0011]
Single-turn induction heating coils 2 and 3 are installed at the subsequent stage of the solenoid type induction heating coil 6, and a magnetic field is generated by flowing a current in the opposite direction to the single-turn induction heating coils 2 and 3, respectively. Magnetic field diffusion preventing coils 4 and 5 for preventing diffusion are provided. By preventing the diffusion of the magnetic field in the heating near the Curie point (750 ° C.) by the magnetic field diffusion preventing coils 4 and 5,
It is possible to prevent a decrease in magnetic flux density in the central portion in the plate width direction and increase the heating temperature in the central portion in the plate width direction.
FIG. 4 is a cross-sectional view in the longitudinal direction of the steel strip of the first embodiment in the metal strip heating apparatus of the present invention.
[0012]
The single-turn induction heating coil 2 and magnetic field diffusion prevention coil 4 on the upper surface of the steel strip 1 and the single-turn induction heating coil 3 and magnetic field diffusion prevention coil 5 on the lower surface of the steel strip 1 are mutually shifted in the longitudinal direction of the steel strip 1. Since the eddy currents that circulate around the surface layer portion of the cross section in the plate width direction do not cancel each other, heating to the Curie point (750 ° C.) or higher is possible. Further, a non-magnetic material such as aluminum or SUS can be heated.
Moreover, in order to concentrate the magnetic field (increase the magnetic flux density) and improve the heating efficiency, the relative magnetic permeability of the outer peripheral three surfaces excluding the surface facing the steel strip of the single-turn induction heating coils 2 and 3 is as high as 2500, It is preferable to directly coat with a high resistivity ferrite core 9.
[0013]
FIG. 5 is a diagram showing a change in temperature distribution in the plate width direction when the steel strip is heated using the first embodiment of the metal strip heating apparatus of the present invention.
A steel plate having a plate width of 70 mm and a thickness of 0.35 mm was used, and heating was performed at a plate speed of 70 mm / second, a frequency of 20 KHz, a power output of 50 KW, a coil width of W: 40 mm, a core thickness of h: 20 mm, and a gap G of 30 mm.
Compared with FIG. 2 showing the temperature distribution in the plate width direction of the prior application, there is no temperature deviation in the plate width direction in the low temperature portion of 600 ° C. or less, and the heating temperature in the center portion in the plate width direction near the Curie point (750 ° C.). Is significantly higher.
In addition, although the heating temperature of the edge part in FIG. 5 is high and the overheating phenomenon of the edge part remains, this is because a copper plate is installed on the upper and lower surfaces of the edge part of the steel strip. This can be prevented by shielding.
[0014]
(Second Embodiment)
As a second embodiment of the present invention, an example in which magnetic field diffusion preventing coils 4 and 5 and edge portion overheating preventing coils 7 and 8 are provided is shown in FIGS.
FIG. 6 is a diagram illustrating a second embodiment of the metal strip heating apparatus according to the present invention.
The metal steel strip 1 is heated to about 600 ° C. by the solenoid induction heating coil 6 that is excellent in uniform heating in the plate width direction because eddy current flows in the cross section in the plate width direction. Similarly to this, a contact-type energization heating roll excellent in uniform heating property in the plate width direction may be used.
[0015]
Single-turn induction heating coils 2 and 3 are installed at the subsequent stage of the solenoid type induction heating coil 6, and a magnetic field is generated by flowing a current in the opposite direction to the single-turn induction heating coils 2 and 3, respectively. Magnetic field diffusion preventing coils 4 and 5 for preventing diffusion are provided. By preventing the diffusion of the magnetic field in the heating near the Curie point (750 ° C.) by the magnetic field diffusion preventing coils 4 and 5,
It is possible to prevent a decrease in magnetic flux density at the central portion in the plate width direction and increase the heating temperature at the central portion in the plate width direction.
Between the solenoid-type induction heating coil 6 and the single-turn induction heating coils 2 and 3, eddy currents at the edges of the metal strip are caused to flow in the same direction as the current of the single-turn induction heating coils 2 and 3. Edge part overheating prevention coils 7 and 8 are provided to shunt and prevent overheating of the edge part. By diverting the eddy current at the edge portion by the edge portion overheating preventing coils 7 and 8, the phenomenon of contraction of the eddy current at the edge portion can be alleviated and the overheating of the edge portion can be remarkably suppressed.
[0016]
FIG. 7 is a diagram illustrating a second embodiment of the metal strip heating apparatus according to the present invention, where the single-turn induction heating coils 2 and 3 and the edge portion overheating preventing coils 7 and 8 are commonly used. This is an example. Thereby, the installation cost can be reduced by reducing the number of installed power supply devices.
FIG. 8 is a diagram illustrating a second embodiment of the metal strip heating apparatus according to the present invention, which is a single-turn induction heating coil 2, 3, edge portion overheating prevention coils 7, 8, solenoid type induction heating. This is an example in which all the power sources of the coil 6 are shared. Thereby, the installation cost can be further reduced by reducing the number of installed power supply devices.
[0017]
FIG. 9 is a longitudinal sectional view of the steel strip of the second embodiment in the metal strip heating apparatus of the present invention.
Single turn induction heating coil 2, magnetic field diffusion prevention coil 4, and edge portion overheating prevention coil 7 on the upper surface of steel strip 1, and single turn induction heating coil 3, magnetic field diffusion prevention coil 5 and edge portion on the lower surface of steel strip 1 Since the overheating prevention coils 7 are arranged at positions shifted from each other in the longitudinal direction of the steel strip 1, there is no cancellation of the front and back of the eddy current that goes around the surface layer portion of the cross section in the plate width direction. It can be heated to a point (750 ° C.) or higher. Further, a non-magnetic material such as aluminum or SUS can be heated.
[0018]
Between the solenoid type induction heating coil 6 and the single turn induction heating coils 2 and 3, edge overheating prevention coils 7 and 8 for supplying current in the same direction as the current of the single turn induction heating coils 2 and 3 are provided. ing.
For example, 70% of the current flows through the single-turn induction heating coils 2 and 3 and the remaining 30% of the current is installed at positions shifted in the longitudinal direction of the metal strips 7 and 8. Since the edge overheating due to the contraction of the eddy current generated at the edge portion of the strip plate works by the square of the current, the edge overheating can be reduced to about 50% (0.7 * 0.7 = 0.49). .
Further, in order to concentrate the magnetic field (increase the magnetic flux density) and improve the heating efficiency, the three outer peripheral surfaces excluding the surface facing the steel strip of the single-turn induction heating coils 2 and 3 have a high relative permeability of 2500. It is preferable to directly coat with a high resistivity ferrite core 9.
[0019]
Furthermore, in order to adjust the partial flow rate of the eddy current passing through the edge portion, the outer peripheral three surfaces excluding the surface facing the steel strip of the edge portion overheating preventing coil 8 have a high relative permeability of 2500 and high resistivity. It is preferable to directly coat with the ferrite core 9.
FIG. 10 is a diagram showing changes in the temperature distribution in the plate width direction when the steel strip is heated using the metal strip heating apparatus of the present invention.
A steel plate having a plate width of 70 mm and a thickness of 0.35 mm was used, and heating was performed at a plate speed of 70 mm / second, a frequency of 20 KHz, a power output of 50 KW, a coil width W of 40 mm, a core thickness h of 20 mm, and a gap G of 30 mm.
[0020]
As a result, the central portion could be heated to the Curie point or higher, and the temperature deviation in the plate width direction was about + -30 ° C., which is a practical target, and a uniform temperature distribution in the plate width direction could be realized.
Compared to FIG. 5 showing the temperature distribution in the plate width direction in the first embodiment, it can be seen that the overheating phenomenon at the edge portion is eliminated.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the steel strip can be heated more than a Curie point, a non-magnetic material can be heated, and a metal strip heating device excellent in temperature uniformity in the plate width direction can be provided. Useful and significant effect.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a heating device for a metal strip of a prior application.
FIG. 2 is a diagram showing a temperature distribution in the plate width direction when heated using a metal band plate heating device of a prior application.
FIG. 3 is a view showing a first embodiment of the metal strip heating apparatus of the present invention.
FIG. 4 is a cross-sectional view in the longitudinal direction of the steel strip of the first embodiment in the metal strip heating apparatus of the present invention.
FIG. 5 is a view showing a temperature distribution in the plate width direction when heated by using the first embodiment of the metal strip heating apparatus of the present invention.
FIG. 6 is a view showing a second embodiment of the heating apparatus for the metal strip of the present invention.
FIG. 7 is a view showing a second embodiment of the heating device for the metal strip of the present invention.
FIG. 8 is a view showing a second embodiment of the metal strip heating apparatus of the present invention.
FIG. 9 is a longitudinal sectional view of a steel strip according to a second embodiment of the metal strip heating apparatus of the present invention.
FIG. 10 is a diagram showing a temperature distribution in the plate width direction when heated by using the second embodiment of the metal strip heating apparatus of the present invention.
[Explanation of symbols]
1: Metal strip 2: Single-turn induction heating coil (upper surface of strip)
3: Single-turn induction heating coil (underside of strip)
4: Magnetic field diffusion prevention coil (upper surface of strip)
5: Magnetic field diffusion prevention coil (bottom surface of strip)
6: Solenoid induction heating coil 7: Edge overheating prevention coil (upper surface of strip)
8: Edge part overheating prevention coil (lower surface of strip)
9: Ferrite core

Claims (3)

ソレノイド方式の誘導加熱コイルまたは接触方式の通電加熱ロールと、シングルターン誘導加熱コイルと、該シングルターン誘導加熱コイルの近傍に並行して配置され、該シングルターン誘導加熱コイルの電流と共通の電源を用いて逆方向に電流を流すことにより磁場の拡散を防止する磁場拡散防止コイルとを設けた金属帯板の加熱装置であって、該金属帯板の表面のシングルターン誘導加熱コイルおよび磁場拡散防止コイルと、該金属帯板の裏面のシングルターン誘導加熱コイルおよび磁場拡散防止コイルとを該金属帯板の長手方向に互いにコイル幅Wだけシフトした位置に配置し、かつ
前記表裏面のシングルターン誘導加熱コイルの前記金属帯板の表面および裏面との対向面を除く外周をフェライトコアで被覆し、該フェライトコアにフェライトコアで被覆されていない前記磁場拡散防止コイルを接触させることを特徴とする板幅方向の均温性に優れた金属帯板の加熱装置。
A solenoid-type induction heating coil or contact-type energization heating roll, a single-turn induction heating coil, and a single-turn induction heating coil are arranged in parallel in the vicinity of the single-turn induction heating coil, and a common power source is shared with the current of the single-turn induction heating coil. A metal strip heating device provided with a magnetic field diffusion prevention coil that prevents diffusion of a magnetic field by flowing a current in the reverse direction using the single turn induction heating coil and magnetic field diffusion prevention on the surface of the metal strip A coil, a single-turn induction heating coil and a magnetic field diffusion prevention coil on the back side of the metal strip are arranged at positions shifted from each other by a coil width W in the longitudinal direction of the metal strip, and
The outer circumference of the single-turn induction heating coil on the front and back surfaces, except for the surface opposite to the front and back surfaces of the metal strip, is covered with a ferrite core, and the magnetic field diffusion prevention coil not covered with the ferrite core is in contact with the ferrite core excellent heating device of the metal strip evenly temperature of the plate width direction, characterized in that cause.
さらに、前記シングルターン誘導加熱コイルの近傍に並行して配置され、該シングルターン誘導加熱コイルの電流と共通の電源を用いて同方向に電流を流すことにより前記金属帯板のエッジ部の過加熱を防止するエッジ部過加熱防止コイルを設けることを特徴とする請求項1に記載の板幅方向の均温性に優れた金属帯板の加熱装置。Furthermore, it is arranged in parallel in the vicinity of the single-turn induction heating coil and overheats the edge portion of the metal strip by flowing a current in the same direction using a power source common to the current of the single-turn induction heating coil. 2. An apparatus for heating a metal strip having excellent temperature uniformity in the plate width direction according to claim 1, wherein an edge overheating preventing coil is provided. 前記金属帯板の表面のエッジ部過加熱防止コイルと、該金属帯板の裏面のエッジ部過加熱防止コイルとを該金属帯板の長手方向に互いにコイル幅Wだけシフトした位置に配置することを特徴とする請求項2に記載の板幅方向の均温性に優れた金属帯板の加熱装置。The edge overheating prevention coil on the front surface of the metal strip and the edge overheating prevention coil on the back surface of the metal strip are arranged at positions shifted from each other by the coil width W in the longitudinal direction of the metal strip. The apparatus for heating a metal strip having excellent temperature uniformity in the plate width direction according to claim 2.
JP2001381660A 2001-12-14 2001-12-14 Metal strip heating device with excellent temperature uniformity in the plate width direction Expired - Fee Related JP3869711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381660A JP3869711B2 (en) 2001-12-14 2001-12-14 Metal strip heating device with excellent temperature uniformity in the plate width direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381660A JP3869711B2 (en) 2001-12-14 2001-12-14 Metal strip heating device with excellent temperature uniformity in the plate width direction

Publications (2)

Publication Number Publication Date
JP2003187951A JP2003187951A (en) 2003-07-04
JP3869711B2 true JP3869711B2 (en) 2007-01-17

Family

ID=27592267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381660A Expired - Fee Related JP3869711B2 (en) 2001-12-14 2001-12-14 Metal strip heating device with excellent temperature uniformity in the plate width direction

Country Status (1)

Country Link
JP (1) JP3869711B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356884B2 (en) * 2004-03-30 2009-11-04 高周波熱錬株式会社 Induction heating apparatus and induction heating method
JP4035122B2 (en) * 2004-09-03 2008-01-16 新日本製鐵株式会社 Steel strip heating method with excellent temperature uniformity in the width direction
JP4833740B2 (en) * 2006-06-02 2011-12-07 新日本製鐵株式会社 Metal strip heating device with excellent temperature uniformity in the plate width direction
JP2010170951A (en) * 2009-01-26 2010-08-05 Oet:Kk Method and device for heating strip-shaped metal plate
JP5861831B2 (en) 2011-07-28 2016-02-16 Jfeスチール株式会社 Steel plate heating device
JP7116478B2 (en) 2018-08-10 2022-08-10 学校法人金沢工業大学 heating device

Also Published As

Publication number Publication date
JP2003187951A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
AU2006215074B2 (en) Induction heating device for a metal plate
US9888529B2 (en) Induction heating device for a metal plate
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
KR20090100459A (en) Induction heating device
US9462641B2 (en) Transverse flux strip heating with DC edge saturation
JP4069002B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JP3869711B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JP2009259588A (en) Induction heating device and induction heating method of metal plate
JP4442019B2 (en) Method and apparatus for heating metal substrate
JP2935087B2 (en) Induction heating device
JP5053169B2 (en) Induction heating apparatus and induction heating method
JP4833740B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JP3045007B2 (en) Method and apparatus for induction heating of metal plate
JP3914760B2 (en) Single-turn induction heating coil
JP4572039B2 (en) High frequency induction heating device
JP4035122B2 (en) Steel strip heating method with excellent temperature uniformity in the width direction
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JP2002100467A (en) Single-turn coil for induction heating
JP4160649B2 (en) Electric heating device for sheet metal material
JP2005206906A (en) Method for induction-heating steel sheet
JP2001006860A (en) Induction heating device
JP2005122986A (en) Induction heating device
JP2007324010A (en) Induction heating apparatus excellent in uniformity in temperature in widthwise direction of metal strip
JP2008186589A (en) Induction heating device for metal plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R151 Written notification of patent or utility model registration

Ref document number: 3869711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees