JP2005209608A - Induction heating device of metal strip and induction heating method - Google Patents

Induction heating device of metal strip and induction heating method Download PDF

Info

Publication number
JP2005209608A
JP2005209608A JP2004120713A JP2004120713A JP2005209608A JP 2005209608 A JP2005209608 A JP 2005209608A JP 2004120713 A JP2004120713 A JP 2004120713A JP 2004120713 A JP2004120713 A JP 2004120713A JP 2005209608 A JP2005209608 A JP 2005209608A
Authority
JP
Japan
Prior art keywords
metal strip
induction heating
solenoid coil
heating
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004120713A
Other languages
Japanese (ja)
Other versions
JP4153895B2 (en
Inventor
Yoshiaki Hirota
芳明 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004120713A priority Critical patent/JP4153895B2/en
Publication of JP2005209608A publication Critical patent/JP2005209608A/en
Application granted granted Critical
Publication of JP4153895B2 publication Critical patent/JP4153895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solenoid coil type induction heating device capable of heating even a thin metal strip regardless of magnetic or non-magnetic one. <P>SOLUTION: In the induction heating device, magnetic flux is penetrated aslant through a metal strip and eddy current generated on both sides of the metal strip is made not to be overlapped, and a solenoid coil is arranged so as not to be overlapped on both sides of the metal strip so that the circulating current may flow in the longitudinal direction of the metal strip and heating is carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄やアルミなどの金属帯板の誘導加熱装置および誘導加熱方法に関する。特に、金属帯板が薄板であっても、磁性、非磁性を問わず、均一に効率よく加熱する誘導加熱装置および誘導加熱方法に関する。   The present invention relates to an induction heating apparatus and induction heating method for a metal strip such as iron or aluminum. In particular, the present invention relates to an induction heating apparatus and an induction heating method for heating uniformly and efficiently regardless of whether the metal strip is thin or magnetic.

金属の高周波電流による誘導加熱は、焼き入れをはじめとして、熱処理をするために広く使われている。鋼板やアルミ板などの鉄、非鉄の薄板も製造過程で材質を制御する目的で、加熱速度をあげて、さらに、生産性の向上や、生産量を自在に調整する目的などで、誘導加熱が、従来のガス加熱や電気加熱による間接加熱に代わる加熱方式として、使用されてきている。   Induction heating by high frequency current of metals is widely used for heat treatment including quenching. Iron and non-ferrous thin plates such as steel plates and aluminum plates are also used for the purpose of controlling the material during the manufacturing process, increasing the heating rate, and improving the productivity and freely adjusting the production volume. It has been used as a heating method that replaces indirect heating by conventional gas heating or electric heating.

金属帯板を誘導加熱する場合には、大きく2つの方式がある。1つは、金属帯板の周囲を囲んだソレノイドコイルに高周波電流を流し、発生した磁束が金属帯板の長手方向を貫通し、金属帯板の断面内に誘導電流を発生させ加熱する、いわゆるLF(縦断磁束加熱)方式と呼ばれる加熱方式である。   There are two main methods for induction heating a metal strip. One is a so-called heating, in which a high-frequency current is passed through a solenoid coil that surrounds the periphery of the metal strip, and the generated magnetic flux penetrates the longitudinal direction of the metal strip to generate an induction current in the cross section of the metal strip. This is a heating method called LF (longitudinal magnetic flux heating) method.

他は、金属帯板の金属表裏面に配置した1次コイルで発生させた磁束を、金属帯板の表裏に一定距離を置いて配置したインダクターと呼ばれる良磁性体の間に通し、このインダクター間を流れる磁束を横切る様に金属帯板を通過させ、金属帯板の平面に渦電流を発生させて加熱するTF(横断加熱)方式である。   The other is that the magnetic flux generated by the primary coil placed on the front and back of the metal strip is passed between the good magnetic bodies called inductors placed at a certain distance on the front and back of the metal strip. This is a TF (transverse heating) method in which a metal strip is passed so as to cross the magnetic flux flowing through the plate, and an eddy current is generated on the plane of the metal strip and heated.

LF方式は、温度分布の均一性が良いものの、板厚が薄くなると周波数を高くしなければならず、更に、非磁性材、または、磁性材でもキュリー点温度を超えたものは、電流の浸透深さが深くなり、板断面で発生する誘導電流のうち表裏面を流れる誘導電流が、表裏で逆向きに流れて互いにうち消しあうため、薄い板厚のものは加熱ができないという課題がある。   The LF method has good uniformity of temperature distribution, but the frequency must be increased when the plate thickness is reduced. Furthermore, non-magnetic materials or magnetic materials that exceed the Curie point temperature are infiltrated with current. As the depth increases, the induced currents flowing on the front and back surfaces of the induced current generated in the cross section of the plate flow in opposite directions on the front and back sides and erase each other.

一方、TF加熱方式は、磁束が金属帯板の平面を貫通するため、板厚や磁性、非磁性の区別無く加熱できるという特徴や、磁束を集中させることができるため加熱効率が高いという特徴がある。しかし、反面、磁束が偏って集中しやすく、温度分布の不均一性が生じやすいという問題がある。   On the other hand, the TF heating method has the feature that the magnetic flux penetrates the plane of the metal strip and can be heated without distinction between plate thickness, magnetic and non-magnetic, and the magnetic flux can be concentrated so that the heating efficiency is high. is there. However, there is a problem that the magnetic flux tends to be concentrated and concentrated, and the temperature distribution is likely to be non-uniform.

これらの課題を解決するため、特許文献1では、帯板の進行方向の表面、裏面のシングルターンのコイルをシフトして配置することが開示されている。   In order to solve these problems, Patent Document 1 discloses that the single-turn coils on the front and back surfaces in the traveling direction of the strip are shifted and arranged.

特開2002−43042号公報JP 2002-43042 A

図1は、従来のLF式誘導加熱を示す模式図である。被加熱材である金属帯板1の周囲を高周波電源3に接続されたソレノイドコイル2で囲み、1次電流5を通じることにより、金属帯板1の内部を磁束4が貫通し、磁束4の周りに渦電流が発生し、発生した渦電流により金属帯板1が加熱される。図2は、渦電流が金属帯板1の断面内に発生する様子を示す模式図である。   FIG. 1 is a schematic view showing conventional LF induction heating. Surrounding the metal strip 1 to be heated with the solenoid coil 2 connected to the high frequency power source 3 and passing the primary current 5, the magnetic flux 4 penetrates the inside of the metal strip 1, and the magnetic flux 4 An eddy current is generated around, and the metal strip 1 is heated by the generated eddy current. FIG. 2 is a schematic diagram showing how eddy currents are generated in the cross section of the metal strip 1.

金属帯板1を貫通する磁束4により、金属帯板1の断面には、ソレノイドコイル2に流れる1次電流5と逆向きの方向に渦電流6が流れる。この渦電流6は、金属帯板1の表面から下記(1)式で示される電流浸透深さδの範囲に集中して流れる。
δ[mm]=5.03×10-5(ρ/μrf)0.5 ・・・(1)
ここで、ρ:比抵抗[Ωm]、μr:比透磁率[−]、f:加熱周波数[Hz]
Due to the magnetic flux 4 penetrating the metal strip 1, an eddy current 6 flows in the direction opposite to the primary current 5 flowing through the solenoid coil 2 in the cross section of the metal strip 1. The eddy current 6 flows from the surface of the metal strip 1 in a concentrated manner within the range of the current penetration depth δ expressed by the following equation (1).
δ [mm] = 5.03 × 10 −5 (ρ / μrf) 0.5 (1)
Here, ρ: specific resistance [Ωm], μr: relative permeability [−], f: heating frequency [Hz]

発生した渦電流6は、図2に示すように、板断面の表裏で逆向きに流れるため、電流浸透深さδが深くなると、板表裏の渦電流が互いに打ち消し合い、その結果、板断面内を電流が流れなくなってしまう。   As shown in FIG. 2, the generated eddy currents 6 flow in opposite directions on the front and back sides of the plate cross section. Therefore, when the current penetration depth δ increases, the eddy currents on the front and back sides of the plate cancel each other. The current will stop flowing.

金属は、温度の上昇に伴いρが上昇するため、δは温度上昇とともに深くなる。また、強磁性や常磁性の磁性材は、温度が上昇しキュリー点に近づくにつれμrが減少し、キュリー点を超えると、μrは1になる。また、非磁性材もμrは1である。   Since ρ increases with increasing temperature, δ becomes deeper with increasing temperature. Further, in the case of a ferromagnetic or paramagnetic magnetic material, μr decreases as the temperature rises and approaches the Curie point, and μr becomes 1 when the temperature exceeds the Curie point. Further, the nonmagnetic material also has a μr of 1.

μrが小さくなると、上記(1)式より、非磁性材または磁性材の場合は、キュリー点直前からキュリー点を超える温度域では、電流浸透深さδが深くなり、薄い板厚の被加熱材では、加熱ができなくなってしまう。   When μr is reduced, from the above formula (1), in the case of a non-magnetic material or a magnetic material, the current penetration depth δ becomes deep in the temperature range exceeding the Curie point immediately before the Curie point, and the material to be heated having a thin plate thickness Then, it becomes impossible to heat.

例えば、加熱周波数が10[KHz]の場合、常温で各種金属の電流浸透深さδは、非磁性のアルミで約1[mm]、SUS304で約4.4[mm]、磁性材の鋼では約0.2[mm]であるのに対し、磁性材である鋼がキュリー点を超えた750℃では、電流浸透深さδは約5[mm]となる。   For example, when the heating frequency is 10 [KHz], the current penetration depth δ of various metals at room temperature is about 1 [mm] for nonmagnetic aluminum, about 4.4 [mm] for SUS304, and for steel of magnetic material Whereas it is about 0.2 [mm], the current penetration depth δ is about 5 [mm] at 750 ° C. when the steel as the magnetic material exceeds the Curie point.

板内に発生する表裏電流が打ち消し合わないためには、板厚は、最低でも10[mm]以上必要であり、効率よくパワーを入れるためには、15[mm]程度の厚みが必要になる。熱処理が必要な金属帯板は、通常冷間圧延の済んだ3[mm]前後より薄い板厚が多く、特に、2[mm]以下の場合が多い。   In order that the front and back currents generated in the plate do not cancel each other, the plate thickness must be at least 10 [mm], and in order to efficiently turn on the power, a thickness of about 15 [mm] is required. . Metal strips that require heat treatment are usually thinner than about 3 [mm] after cold rolling, and are often 2 [mm] or less.

これらの材料をLF式で加熱するためには、加熱周波数を数100[KHz]以上に上げる必要があるが、大容量で高い周波数の電源製作などにハード上の限界があり、工業規模で実現することは困難な場合が多い。   In order to heat these materials with the LF method, it is necessary to increase the heating frequency to several hundreds [KHz] or more, but there are hardware limitations in the production of large-capacity and high-frequency power supplies, which are realized on an industrial scale. It is often difficult to do.

特許文献1の方法は、板の上下に誘導コイルを配置した1種のTF方式と考えられ、金属帯板の進行方向で発生する磁束は、交互に逆向きに発生するが、上下コイルがシフトしているため、上下コイルで発生する磁束が打ち消し合う領域と、磁束が帯板を斜めに横切る領域が交互にでき、磁束が集中するのを防ぐことが可能になっていると考えられる。   The method of Patent Document 1 is considered to be a kind of TF system in which induction coils are arranged above and below the plate, and the magnetic flux generated in the traveling direction of the metal strip is alternately generated in the opposite direction, but the upper and lower coils are shifted. Therefore, it can be considered that the regions where the magnetic fluxes generated by the upper and lower coils cancel each other and the regions where the magnetic flux crosses the strips obliquely can be alternated to prevent the magnetic flux from concentrating.

そのため、従来のTF方式ではエッジ部に磁束が集中し、エッジが過加熱するという問題を緩和する効果が発現すると考えられるが、磁束が打ち消し合う領域ができること、シングルターンであるため、帯板にパワーを入れ電界強度を上げるためには、コイルへ流す電流値を大きくしなければならず、コイルの銅損が増えることなどのため、効率が低下しやすいという問題がある。   Therefore, in the conventional TF method, it is considered that the magnetic flux concentrates on the edge part and the effect of alleviating the problem of overheating of the edge appears. However, since the magnetic flux cancels out an area, it is a single turn. In order to increase power and increase the electric field strength, it is necessary to increase the value of the current that flows to the coil, which increases the copper loss of the coil, and thus has a problem that the efficiency tends to decrease.

効率を上げるためには、特許文献1の実施例で開示されているように、上下のシングルターンコイルを帯板に近接させる必要があるが、通板している帯板は形状が変形していたり振動したりするため、広幅で長い区間を通板しながら加熱するには困難がある。   In order to increase the efficiency, as disclosed in the embodiment of Patent Document 1, it is necessary to bring the upper and lower single turn coils close to the strip, but the shape of the strip that passes through is deformed. Or vibrate, it is difficult to heat while passing through a wide and long section.

本発明は、これら従来のLF方式やTF方式が抱える金属帯板の誘導加熱の課題を解決するもので、温度均一性の良いソレノイドコイル方式を用いて、磁性材に限らず、非磁性材や非磁性域においても、また、板厚が10mm以下の金属帯板においても、金属帯板とソレノイドコイルとのギャップを十分に保ちながら、温度均一性、温度制御性に優れ、効率よく加熱できる誘導加熱装置および誘導加熱方法を提供する。   The present invention solves the problem of induction heating of the metal strips of these conventional LF methods and TF methods, and uses a solenoid coil method with good temperature uniformity, not limited to magnetic materials, Induction that can be efficiently heated even in a non-magnetic region or in a metal strip having a thickness of 10 mm or less, with excellent temperature uniformity and temperature controllability, while maintaining a sufficient gap between the metal strip and the solenoid coil. A heating device and an induction heating method are provided.

本発明の要旨は下記の通りである。   The gist of the present invention is as follows.

(1)ソレノイドコイルの内側を通過する金属帯板を誘導加熱する装置において、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが0〜80%となるように、上記表面側と裏面側のソレノイドコイルを金属帯板の長手方向にずらして配置したことを特徴とする金属帯板の誘導加熱装置。   (1) In an apparatus for inductively heating a metal strip passing through the inside of a solenoid coil, the overlap of areas obtained by vertically projecting the solenoid coils on the front and back sides of the metal strip on the metal strip is 0 to 80%. The induction heating device for a metal strip, wherein the solenoid coils on the front side and the back side are arranged so as to be shifted in the longitudinal direction of the metal strip.

(2)前記表面側と裏面側のソレノイドコイルを金属帯板へ垂直投影したときの長手方向の長さがそれぞれ20mm以上であることを特徴とする前記(1)に記載の金属帯板の誘導加熱装置。   (2) The induction of the metal strip according to (1), wherein the lengths in the longitudinal direction when the solenoid coils on the front side and the back side are vertically projected onto the metal strip are each 20 mm or more. Heating device.

(3)ソレノイドコイルの内側を通過する金属帯板を誘導加熱する装置において、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが80%超100%以下である誘導加熱装置の後段に、前記(1)または(2)に記載の金属帯板の誘導加熱装置を配置したことを特徴とする金属帯板の誘導加熱装置。   (3) In an apparatus for inductively heating a metal strip passing through the inside of a solenoid coil, the overlap of the areas obtained by vertically projecting the solenoid coils on the front and back sides of the metal strip on the metal strip is more than 80% 100 % Or less of the induction heating device of the metal strip according to the above (1) or (2) is disposed downstream of the induction heating device.

(4)前記ソレノイドコイルの前後に、少なくとも上下方向に稼動可能な金属帯板の通板ライン角度変更用ロールを設置したことを特徴とする前記(1)〜(3)のいずれかに記載の金属帯板の誘導加熱装置。   (4) A roll for changing a sheet plate line angle of a metal strip that can be operated at least in the vertical direction is installed before and after the solenoid coil, according to any one of (1) to (3), Induction heating device for metal strip.

(5)前記(1)〜(4)のいずれかに記載の金属帯板の誘導加熱装置の前段と後段の少なくともいずれかに、ガス燃焼または電気ヒーターによる輻射炉、または、ガス直火炎加熱炉を設置したことを特徴とする金属帯板の誘導加熱装置。   (5) A radiation furnace using a gas combustion or an electric heater or a gas direct flame heating furnace in at least one of the former stage and the latter stage of the induction heating apparatus for a metal strip according to any one of (1) to (4) An induction heating device for metal strips, characterized in that is installed.

(6)前記(1)〜(5)のいずれかに記載の金属帯板の誘導加熱装置を用いて、ソレノイドコイルに高周波電流を流し、該ソレノイドコイルの内側に金属帯板を通過させて加熱することを特徴とする金属帯板の誘導加熱方法。   (6) Using the induction heating apparatus for a metal strip according to any one of (1) to (5), a high-frequency current is passed through the solenoid coil, and the metal strip is passed through the solenoid coil to heat it. An induction heating method for a metal strip.

(7)前記金属帯板の厚みが10μm以上10mm以下であることを特徴とする前記(6)に記載の金属帯板の誘導加熱方法。   (7) The induction heating method for a metal strip according to (6), wherein the thickness of the metal strip is 10 μm or more and 10 mm or less.

(8)キュリー点を越えて前記金属帯板を加熱することを特徴とする前記(5)または(6)に記載の金属帯板の誘導加熱方法。   (8) The induction heating method for a metal strip according to (5) or (6), wherein the metal strip is heated beyond a Curie point.

(9)前記高周波電流の加熱周波数を調整して、加熱終点温度を制御することを特徴とする前記(6)〜(8)のいずれかに記載の金属帯板の誘導加熱方法。   (9) The induction heating method for a metal strip according to any one of (6) to (8), wherein a heating end point temperature is controlled by adjusting a heating frequency of the high-frequency current.

(10)前記金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なり量を調整して、加熱終点温度を制御することを特徴とする前記(6)〜(9)のいずれかに記載の誘導加熱方法。   (10) The heating end point temperature is controlled by adjusting the overlapping amount of the areas obtained by vertically projecting the solenoid coils on the front side and the back side of the metal strip to the metal strip, respectively (6) The induction heating method according to any one of to (9).

(11)前記(4)に記載の金属帯板の誘導加熱装置を用いて、ソレノイドコイルに高周波電流を流し、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが0〜80%となるように、ロールにより上記金属帯板の通板ラインの角度を調整して、加熱することを特徴とする金属帯板の誘導加熱方法。   (11) Using the induction heating device for a metal strip described in (4) above, a high-frequency current is passed through the solenoid coil, and the solenoid coils on the front side and the back side of the metal strip are each vertically projected onto the metal strip. An induction heating method for a metal strip, characterized in that heating is performed by adjusting an angle of a sheet passing line of the metal strip with a roll so that the overlap of the areas is 0 to 80%.

(12)前記通板ライン角度を調整して、加熱終点温度を制御することを特徴とする前記(11)に記載の金属帯板の誘導加熱方法。   (12) The induction heating method for a metal strip according to (11), wherein the heating end point temperature is controlled by adjusting the sheet passing line angle.

ここで、前記(2)に記載の長手方向とは、金属帯板の長手方向を指す。また、輻射炉とは、輻射による加熱炉、および、輻射による均熱炉を指す。   Here, the longitudinal direction described in (2) above refers to the longitudinal direction of the metal strip. The radiation furnace refers to a heating furnace using radiation and a soaking furnace using radiation.

本発明による加熱方式は、磁性域の薄板の加熱を可能とすることに加え、従来のソレノイドコイルの誘導加熱方式では不可能であった比抵抗が小さく非磁性のアルミや銅などの非鉄金属帯板の加熱、更には、鉄などの磁性材のキュリー点温度以上の非磁性域における加熱を可能とする。   The heating method according to the present invention makes it possible to heat a thin plate in the magnetic region and has a small specific resistance, which is impossible with the conventional induction heating method of a solenoid coil, and a non-ferrous metal band such as non-magnetic aluminum or copper. Heating of a plate and further heating in a nonmagnetic region above the Curie point temperature of a magnetic material such as iron are possible.

使用する高周波加熱電源の周波数も、扱いやすい数KHz〜数10KHz、高くても、100KHz前後でよいことから、高い周波数の加熱で問題となるコイル電圧の高電圧化に伴う絶縁の問題や、装置周囲の漏れ磁束による加熱などへの対応も容易であり、ハード上の制約が大幅に緩和される。   The frequency of the high-frequency heating power source to be used is also several kilohertz to several tens of kilohertz, which is easy to handle, and may be as high as about 100 kilohertz. Therefore, there is an insulation problem associated with the increase in coil voltage, which is a problem with high-frequency heating, It is easy to cope with heating by surrounding leakage magnetic flux, and hardware restrictions are greatly eased.

また、加熱終点温度を精度よく制御できるため、過加熱を防止することも可能であり、板幅方向の温度分布も均一にできることから、温度制御性の極めて高い精密な加熱が可能となり、金属の冶金制御が自在にできるようになるという優れた効果を奏する。   In addition, since the heating end point temperature can be accurately controlled, it is possible to prevent overheating and the temperature distribution in the plate width direction can be made uniform, enabling precise heating with extremely high temperature controllability. There is an excellent effect that metallurgical control can be freely performed.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は、本発明の誘導加熱装置を示す模式図であり、図4は、本発明の誘導加熱装置の側面および誘導加熱方法を説明する模式図である。   FIG. 3 is a schematic diagram illustrating the induction heating device of the present invention, and FIG. 4 is a schematic diagram illustrating a side surface of the induction heating device of the present invention and an induction heating method.

以下の本発明の説明で用いるソレノイドコイルとは、銅等の良導体のパイプや線材、板などで被加熱材を1周以上巻いた誘導コイルの総称であり、被加熱材の囲む形状は、矩形でも円形でも、特に規定するものではない。   The solenoid coil used in the following description of the present invention is a general term for an induction coil in which a material to be heated is wound by one or more turns with a pipe, wire, plate, or the like of a good conductor such as copper. Neither circular nor circular is particularly specified.

本発明では、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ金属帯板へ垂直投影した面積の重なりが0〜80%となるように、表面側と裏面側のソレノイドコイルを金属帯板の長手方向にずらして配置する。すなわち、図3および図4に示すように、金属帯板1と面する板幅方向に向かうソレノイドコイル2を、金属帯板1を挟んで金属帯板の長手方向でずらして配置する。   In the present invention, the solenoid coil on the front side and the back side is connected to the metal strip so that the overlap of the areas obtained by vertically projecting the solenoid coils on the front and back sides of the metal strip to the metal strip is 0 to 80%. Are shifted in the longitudinal direction. That is, as shown in FIG. 3 and FIG. 4, the solenoid coil 2 facing the metal strip 1 in the width direction is shifted in the longitudinal direction of the metal strip with the metal strip 1 interposed therebetween.

この表裏面側のソレノイドコイル2のずらし量が、表裏面側のソレノイドコイル2各々を金属帯板に垂直に投影した時の面積で80%を越えて重ならないような位置以上に離すことを特徴とする。   The amount of displacement of the front and back side solenoid coils 2 is more than 80% in the area when each of the front and back side solenoid coils 2 is vertically projected onto the metal strip, and is separated from the position. And

本発明でいう金属帯板に垂直に投影した時の面積とは、図4(a)および図4(b)に示すように、ソレノイドコイル2が金属帯板の端と端にあるコイルを金属帯板に垂直に投影したときの線で囲まれる領域を示し、ソレノイドコイルのみの面積だけではなく、ソレノイドコイル間に挟まれる空間部分も含む。   As shown in FIGS. 4 (a) and 4 (b), the area when perpendicularly projected onto the metal strip in the present invention means that the coil with the solenoid coil 2 at the end of the metal strip is made of metal. An area surrounded by a line when vertically projected on the band plate is shown, and includes not only the area of the solenoid coil alone but also a space portion sandwiched between the solenoid coils.

図4(a)は、金属帯板の表面側ソレノイドコイルと裏面側のソレノイドコイルの金属帯板に垂直に投影した時の面積が全く重ならない場合(重なり0%)を示し、図4(b)は、部分的に重なる場合を示し、重なり部分の面積の割合とは、Sx/Sy×100%で定義する。   FIG. 4 (a) shows a case where the areas of the front surface side solenoid coil and the back side solenoid coil of the metal band plate that are projected perpendicularly to the metal band plate do not overlap at all (overlap 0%). ) Indicates a case of partial overlap, and the area ratio of the overlapping portion is defined as Sx / Sy × 100%.

金属帯板の表裏面側のソレノイドコイル2各々を金属帯板に垂直に投影した時の面積で80%以上が重ならないようにするために、表裏面側のソレノイドコイルをずらし、金属帯板側面側のソレノイドコイルを金属帯板の長手方向に対して斜めに配置する。   To prevent 80% or more of the area when the solenoid coils 2 on the front and back sides of the metal strip are projected vertically on the metal strip, the solenoid coils on the front and back sides are shifted so that the sides of the metal strip The solenoid coil on the side is arranged obliquely with respect to the longitudinal direction of the metal strip.

その理由は2つある。第1の理由は、金属帯板に面するソレノイドコイル2の表面側と裏面側のコイルを長手方向にずらすことにより、表裏のソレノイドコイルで発生する磁束が干渉する割合が減り、右ねじの法則により、図5の金属帯板の側面図に示すように(ソレノイドコイルは図示を省略)、金属帯板表裏面に面する各々のソレノイドコイル2で発生し、強め合ってできた磁束4が金属帯板1を斜めに貫通するようになり、その磁束4によって渦電流のパス7が発生し、磁束4と直角に板厚斜め方向に広がるためである。   There are two reasons for this. The first reason is that by shifting the coils on the front and back sides of the solenoid coil 2 facing the metal strip in the longitudinal direction, the rate of interference of the magnetic flux generated by the front and back solenoid coils is reduced, and the right-handed screw law Thus, as shown in the side view of the metal strip in FIG. 5 (the solenoid coil is not shown), the magnetic flux 4 generated by each solenoid coil 2 facing the front and back surfaces of the metal strip is strengthened. This is because the strip 1 penetrates diagonally, and a path 7 of eddy current is generated by the magnetic flux 4 and spreads in an oblique direction of the plate thickness at right angles to the magnetic flux 4.

従来のLF式誘導加熱では、金属帯板の表裏面でソレノイドコイルにより発生する磁束が金属帯板を挟んでほぼ対称に発生するため、金属帯板と垂直方向に発生した磁束は干渉しあって打ち消され、磁束は、金属帯板長手方向すなわち進行方向成分のみが強め合って残り、金属帯板の断面を貫通する。   In the conventional LF induction heating, the magnetic flux generated by the solenoid coil on the front and back surfaces of the metal strip is generated almost symmetrically across the metal strip, so the magnetic flux generated in the direction perpendicular to the metal strip interferes. The magnetic flux is canceled and only the longitudinal component of the metal strip, that is, the traveling direction component is strengthened and remains, and penetrates the cross section of the metal strip.

従って、金属帯板の断面に渦電流が発生するため、電流浸透深さが深くなると金属帯板表裏面の電流が干渉しあい、電流が流れなくなる。   Therefore, since an eddy current is generated in the cross section of the metal strip, when the current penetration depth is increased, the currents on the front and back surfaces of the metal strip interfere with each other and no current flows.

それに対し、本発明では、磁束を傾けて発生させるように、表裏面のソレノイドコイル2を、金属帯板の長手方向に対してずらすことにより、電流浸透深さδが深い場合でも電流が流れる領域を金属帯板長手方向に表裏独立して確保することが可能となる。   On the other hand, in the present invention, the solenoid coil 2 on the front and back surfaces is shifted with respect to the longitudinal direction of the metal strip so that the magnetic flux is inclined, so that the current flows even when the current penetration depth δ is deep. Can be secured independently in the longitudinal direction of the metal strip.

ただし、金属帯板に面するソレノイドコイル2の表面側と裏面側のコイルを長手方向にずらす量が小さい場合には、金属帯板の表面側と裏面側のソレノイドコイルで発生する磁束の密度が同じで方向が逆向きであるため、金属帯板の長手方向の磁束以外は打ち消しあい、従来のLF式誘導加熱に近くなってしまう。   However, if the amount of displacement of the coil on the front side and the back side of the solenoid coil 2 facing the metal strip is small, the density of magnetic flux generated by the solenoid coil on the front side and back side of the metal strip is small. Since the direction is the same and the direction is opposite, the other than the magnetic flux in the longitudinal direction of the metal strip cancel each other, and it becomes close to the conventional LF induction heating.

そのため、金属帯板を斜めに貫通する磁束が有効に働くずらし量について、電磁場解析により種々の検討を行った結果、金属帯板とソレノイドコイルが近い場合には、表側のソレノイドコイルと裏側のソレノイドコイルのずれ量が比較的小さくても、非磁性域でも、有効な誘導電流が金属帯板に発生するが、金属帯板とソレノイドコイルが離れる場合には、表側のソレノイドコイルと裏側のソレノイドコイルのずれ量を大きくしなければ、有効な誘導電流が金属帯板に発生させることができないことが判明した。   Therefore, as a result of various investigations by electromagnetic field analysis regarding the amount of shift in which magnetic flux that obliquely penetrates the metal strip works effectively, if the metal strip and the solenoid coil are close, the front side solenoid coil and the back side solenoid coil Effective induction current is generated in the metal strip even if the coil displacement is relatively small or non-magnetic, but if the metal strip is separated from the solenoid coil, the front side solenoid coil and the back side solenoid coil It has been found that effective induced current cannot be generated in the metal strip unless the amount of deviation is increased.

本発明では、生産現場で実現できる金属帯板とソレノイドコイルの間隔を考慮し、金属帯板の表面側と裏面側のソレノイドコイルを、それぞれ金属帯板の通板ラインへ垂直投影した時の面積で80%を越えて金属帯板の進行方向で互いに重ならないような位置に配置する、すなわち、重なりを0〜80%とすることで、斜めの磁束4を有効に発現できる。   In the present invention, in consideration of the distance between the metal strip and the solenoid coil that can be realized at the production site, the area when the front and back solenoid coils of the metal strip are vertically projected onto the through-line of the metal strip. In this case, the oblique magnetic flux 4 can be effectively expressed by disposing the metal strips at positions that do not overlap each other in the traveling direction of the metal strips, that is, by setting the overlap to 0 to 80%.

好ましくは、重なりが0〜60%であると、より効果的で、非磁性域でも、より有効に加熱を行うことができる。   Preferably, when the overlap is 0 to 60%, it is more effective, and heating can be performed more effectively even in the non-magnetic region.

第2の理由は、上述した渦電流のパス7が板の表裏で打ち消し合わないようにするためで、金属帯板の表裏面のソレノイドコイル2各々を金属帯板に垂直に投影した時に、金属帯板の長手方向に対してずらすことにより、図6(a)の金属帯板の側面図に示すように(ソレノイドコイルは省略)、金属帯板1の進行方向に独立した渦電流のパス7aと7bをつくることができる。   The second reason is to prevent the above-described eddy current path 7 from canceling out on the front and back of the plate. When the solenoid coils 2 on the front and back surfaces of the metal strip are projected vertically onto the metal strip, the metal By shifting with respect to the longitudinal direction of the strip, as shown in the side view of the metal strip in FIG. 6A (solenoid coil is omitted), an eddy current path 7a independent in the traveling direction of the metal strip 1 is shown. And 7b can be made.

この電流パス7aと7bは、側面のパス7cで結ばれ、図6(b)に示すような循環電流パスができ、誘導加熱をすることができる。図6(c)、図6(d)は、表裏面のソレノイドコイルの重なりが大きくなった場合を示すが、電流のパスが完全に重ならなければ、ある程度の電流は流れることが可能である。   The current paths 7a and 7b are connected by a path 7c on the side surface to form a circulating current path as shown in FIG. 6B, and induction heating can be performed. 6 (c) and 6 (d) show the case where the overlap of the solenoid coils on the front and back surfaces becomes large, but a certain amount of current can flow if the current paths do not completely overlap. .

このように独立して渦電流のパスを金属帯板の長手方向に設けることができれば、金属帯板1に板厚以上の電流浸透深さの渦電流でも発生させることができるので、非磁性域、または、非磁性材でも、ソレノイドコイル方式で金属薄板を誘導加熱することができる。   If the path of the eddy current can be provided independently in the longitudinal direction of the metal strip as described above, an eddy current having a current penetration depth equal to or greater than the plate thickness can be generated in the metal strip 1. Alternatively, the metal thin plate can be induction-heated by a solenoid coil method even with a non-magnetic material.

金属帯板の表裏面側のソレノイドコイルの巻き方は、金属帯板の通板ラインに対して必ずしも水平である必要はなく、図9に示すように、通板ラインに対して斜めに巻いても同様の効果を得ることができる。   The method of winding the solenoid coil on the front and back sides of the metal strip does not necessarily have to be horizontal with respect to the metal strip line, as shown in FIG. The same effect can be obtained.

従って、一般に、帯板材を加熱するのに用いられる断面が矩形形状のソレノイドコイルがある場合には、通板ラインを改造して、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積との重なりが0〜80%となるように、ソレノイドコイルに対して通板ラインを傾けることで、本発明を適用することも可能である。   Therefore, in general, when there is a solenoid coil having a rectangular cross section used for heating the strip material, the through plate line is modified so that the solenoid coils on the front side and the back side of the metal strip are respectively connected to the metal coil. It is also possible to apply the present invention by inclining the through-plate line with respect to the solenoid coil so that the overlap with the area vertically projected onto the band plate is 0 to 80%.

すなわち、図10に示すように、既存のソレノイドコイル2の前後に、金属帯板の通板ラインを自在に制御できるように、通板ライン変更用ロール11、12を設けておき、ソレノイドコイル2への進入角度を自在に変更すれば、金属帯板の板厚や、前述の終点温度に応じ自由に誘導加熱することができる。   That is, as shown in FIG. 10, before and after the existing solenoid coil 2, roll plate line changing rolls 11 and 12 are provided so as to freely control the feed plate line of the metal strip, and the solenoid coil 2. If the approach angle is freely changed, induction heating can be freely performed in accordance with the thickness of the metal strip and the end point temperature described above.

このソレノイドコイル2の前後に置くロール11、12は、誘導加熱されにくいように非磁性材が望ましく、絶縁性のセラミックスや非磁性のステンレス鋼などのものを用いればよく、ソレノイドコイルの影響を受けないように、十分離れた位置に設置するとともに、金属帯板との間でスパークが生じないように、表面は絶縁性の材料とすることが望ましい。   The rolls 11 and 12 placed before and after the solenoid coil 2 are preferably made of a non-magnetic material so that they are not easily heated by induction, and may be made of insulating ceramics or non-magnetic stainless steel, and are affected by the solenoid coil. It is desirable that the surface is made of an insulating material so that it is installed at a sufficiently distant position and no spark is generated between the metal strip and the metal strip.

通板ライン角度変更用ロール11、12は、油圧シリンダーやエアシリンダー、モーターなどを用いてロール軸受けごと移動させれば、容易に11→11’、12→12’のように上下の移動が可能となり、ソレノイドコイルに対する相対的な角度を変えることができる。   Rolling line angle changing rolls 11 and 12 can be easily moved up and down like 11 → 11 ′ and 12 → 12 ′ if they are moved together with the roll bearing using a hydraulic cylinder, air cylinder, motor, etc. Thus, the relative angle with respect to the solenoid coil can be changed.

更に、水平にも移動可能とすれば、11’→11’’のような移動が可能となり、誘導コイル2に対する金属帯板1の相対的な位置が自由に制御できて好ましい。これにより、磁性、非磁性を問わない自由な加熱が可能となる。   Further, it is preferable to move the metal strip 1 horizontally as well, since it is possible to move 11 ′ → 11 ″, and the relative position of the metal strip 1 with respect to the induction coil 2 can be freely controlled. Thereby, free heating regardless of magnetism or non-magnetism becomes possible.

また、ソレノイドコイルは既存のものに限らず、本発明である金属帯板の表面側と裏面側のソレノイドコイルを通板ライン(ライン変更を行う前の通板ライン)へ垂直投影した時の投影面積の重なりが0〜80%であるソレノイドコイルを用いても構わない。   In addition, the solenoid coil is not limited to the existing one, and the projection when the solenoid coil on the front side and the back side of the metal strip according to the present invention is vertically projected onto the plate line (the plate line before the line change). A solenoid coil having an area overlap of 0 to 80% may be used.

本発明で用いるソレノイドコイルの形態は、特に規定するものではないが、正面から見たときに矩形の形状が作りやすいが、エッジの温度分布が問題になる場合には、側面側のコイルを半円形または半楕円状にふくらませた形状でも構わない。   The form of the solenoid coil used in the present invention is not particularly specified, but it is easy to make a rectangular shape when viewed from the front. A circular or semi-elliptical shape may be used.

ソレノイドコイルの幅は、磁束密度を高めるため、ある程度の幅がないと効果的に作用しない。   Since the width of the solenoid coil increases the magnetic flux density, it does not work effectively without a certain width.

様々な実験により検討した結果、図7の側断面模式図(側面コイルは省略)に示すように、ソレノイドコイルの幅は、もっとも単純な銅パイプを用いた1ターンの場合(a)でも、20mm以上が好ましく、細い銅パイプを複数用いる場合(複数ターンあるいは並列接続などによる)(b)でも、20mm以上が効果的であることがわかった。(c)はブスバーによる場合を示すが、同様に20mm以上の幅が効果的である。   As a result of various experiments, as shown in the schematic side sectional view of FIG. 7 (the side coil is omitted), the width of the solenoid coil is 20 mm even in the case of one turn (a) using the simplest copper pipe. The above is preferable, and even when a plurality of thin copper pipes are used (by a plurality of turns or parallel connection) (b), it has been found that 20 mm or more is effective. (C) shows a case using a bus bar, but a width of 20 mm or more is also effective.

本加熱方式では、磁束密度を上げるためには、誘導コイルを複数ターン巻いた方が効率がよく、複数ターン巻くことにより、低い電流で大きなアンペアターンが得られ、銅損が小さく電界強度の大きな(磁束密度の高い)効率的な加熱ができ、結果として、加熱長を狭くすることや電源容量を小さくすることができる。   In this heating method, in order to increase the magnetic flux density, it is more efficient to wind the induction coil multiple turns. By winding multiple turns, a large ampere turn is obtained at a low current, and the copper loss is small and the electric field strength is large. Efficient heating (high magnetic flux density) can be performed, and as a result, the heating length can be reduced and the power source capacity can be reduced.

本発明は、上述したように、電流の浸透深さの問題から、特に、従来のソレノイドコイルによる誘導加熱では不可能である非磁性域および非磁性材での効果が著しいことから、従来のソレノイドコイルによる誘導加熱では有効に加熱ができない10μm以上10mm以下の板厚の金属帯板への効果が著しい。   As described above, the present invention has a problem in the current penetration depth, and in particular, since the effect in the nonmagnetic region and the nonmagnetic material, which is impossible by the induction heating by the conventional solenoid coil, is remarkable, The effect on a metal strip having a thickness of 10 μm or more and 10 mm or less, which cannot be effectively heated by induction heating with a coil, is remarkable.

次に、誘導加熱で問題となる温度制御に関して、加熱終点温度は、全体の電力量を調整すればよいが、板厚によっては、エッジ部の温度が少し高くなる場合などがあり、精密な温度制御が必要な場合には、本加熱方式は、上述したように、表裏誘導コイルで発生する互いの磁束の干渉を制御することで金属帯板1に発生させる電流のパスを自在に制御できるので、終点温度を正確に制御することができる。   Next, with regard to temperature control, which is a problem with induction heating, the heating end point temperature may be adjusted by adjusting the total amount of power. When control is required, this heating method can freely control the path of the current generated in the metal strip 1 by controlling the interference between the magnetic fluxes generated by the front and back induction coils as described above. The end point temperature can be accurately controlled.

すなわち、前記(1)式で示される電流浸透深さδと発生させる渦電流パスの範囲を加熱周波数fと磁束4が金属帯板1を貫通する角度、すなわち、表裏面のソレノイドコイル2の金属帯板進行方向へのずらし量を制御することにより、前述の図6(a)から図6(c)への変化で示すように、金属帯板1中に流れることができる渦電流のパスを制御することができる。   That is, the current penetration depth δ represented by the above equation (1) and the range of the eddy current path to be generated are the angle at which the heating frequency f and the magnetic flux 4 penetrate the metal strip 1, that is, the metal of the solenoid coil 2 on the front and back surfaces. By controlling the amount of shift in the strip travel direction, the path of eddy current that can flow in the metal strip 1 is changed as shown in the change from FIG. 6A to FIG. Can be controlled.

電源の周波数制御は、ソレノイドコイルと電源の間に設置する整合装置で整合条件を変更することで実現できる。また、磁束の重なりの制御は、前述の図10に示すような装置でも実現できるし、または、図8(a)および図8(b)に示すような装置でもよい。   The frequency control of the power source can be realized by changing the matching condition with a matching device installed between the solenoid coil and the power source. Further, the control of the overlapping of magnetic fluxes can be realized by the device as shown in FIG. 10 described above, or by the devices as shown in FIGS. 8A and 8B.

図8(a)および図8(b)は、ソレノイドコイルを側面からみた模式図であるが、はじめ、図8(a)に示す接続状態、例えば、8C→9A→8D→9B→8E→9C→8F→9D→8G→9Eのように電流が流れているものを、図8(b)に示すように、8D→9A→8E→9B→8F→9C→8G→9D→8H→9Eのように接続すれば、磁束の干渉量を変更することができる。   FIGS. 8A and 8B are schematic views of the solenoid coil as viewed from the side. First, the connection state shown in FIG. 8A, for example, 8C → 9A → 8D → 9B → 8E → 9C. → 8F 9D 8G → 9E, as shown in Fig. 8 (b), 8D → 9A → 8E → 9B → 8F → 9C → 8G → 9D → 8H → 9E If it connects to, the interference amount of magnetic flux can be changed.

接続の変更は、例えば、水冷銅ケーブルで金属帯板1の上下にあるコイルの接続位置を変更することなどで実現できる。このように、電流パスの重なり量を変更できれば、仮に、電源の出力をあげても、一定の温度以上には電力が入らず、加熱終点温度を正確に制御することが可能になる。   For example, the connection can be changed by changing the connection positions of the coils above and below the metal strip 1 with a water-cooled copper cable. In this way, if the amount of overlap of the current paths can be changed, even if the output of the power supply is increased, power does not enter above a certain temperature, and the heating end point temperature can be accurately controlled.

また、本加熱方式は、ソレノイドコイルにより磁束を発生させるため多少効率は低下するものの、TF加熱方式の様に磁束がエッジに集中せず、平均的に分布しようとすることから、板幅方向の温度均一性が極めてよい。   In addition, although this heating method generates a magnetic flux by a solenoid coil, the efficiency is somewhat lowered. However, unlike the TF heating method, the magnetic flux does not concentrate on the edge and tends to be distributed on the average. Very good temperature uniformity.

本加熱方式は、上述したように、従来のソレノイド式誘導加熱では不可能であった非磁性域の誘導加熱を可能とする優れた金属帯板の誘導加熱方法であるが、上述したように、ソレノイドコイル2で発生した磁束4が金属帯板1を斜めに貫通するように、金属帯板表裏面に面するソレノイドコイル2を金属帯板進行方向で重ならないように配置しなければならないため、金属帯板の進行方向にスペースを広くとらなければならない。   As described above, this heating method is an excellent induction heating method for a metal strip that enables induction heating in a non-magnetic region, which was impossible with conventional solenoid induction heating, but as described above, Since the magnetic flux 4 generated in the solenoid coil 2 penetrates the metal strip 1 diagonally, the solenoid coil 2 facing the front and back surfaces of the metal strip must be arranged so as not to overlap in the metal strip travel direction. A large space must be taken in the direction of travel of the metal strip.

従って、スペース制約がある場合には、図11に示すように、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ金属帯板へ垂直投影した面積の重なりが80超100%以下である従来のLF式誘導加熱装置14の後段に、本加熱方式のソレノイドコイル15を配置すれば、最低限の拡張で済むので効果的である。   Therefore, when there is a space restriction, as shown in FIG. 11, the overlap of the area where the front and back solenoid coils of the metal strip are vertically projected onto the metal strip is more than 80% and less than 100%. If the solenoid coil 15 of this heating system is arranged at the subsequent stage of the LF induction heating device 14, it is effective because minimal expansion is sufficient.

また、ガス燃焼または電気ヒーターによる輻射炉、または、ガス直火炎加熱炉の前段と後段の少なくともいずれかに、本発明の誘導加熱装置を設置することもできる。例えば、一般の焼鈍炉の途中または出側に誘導加熱装置を設けるケースを以下に示す。   Further, the induction heating device of the present invention can be installed in at least one of a front stage and a rear stage of a gas combustion or electric heater-based radiation furnace or a gas direct flame heating furnace. For example, a case in which an induction heating device is provided in the middle or on the exit side of a general annealing furnace is shown below.

ここで、輻射炉とは、被加熱材を輻射により温度を上昇させる、いわゆる、予熱炉、加熱炉や、被加熱材の温度を均一化する均熱炉を指す。また、ガス直火炎加熱炉は直接火炎を被加熱材に当て加熱する炉や、還元炎を当て被加熱材の表面にあるスケールを還元しながら加熱する炉などを指す。   Here, the radiation furnace refers to a so-called preheating furnace, a heating furnace, or a soaking furnace that equalizes the temperature of the material to be heated, which raises the temperature of the material to be heated by radiation. In addition, the gas direct flame heating furnace refers to a furnace that directly heats the material to be heated and heats it, a furnace that heats the material on the surface of the material to be heated by applying a reducing flame, and the like.

鋼板の連続熱処理炉(連続熱処理装置または連続焼鈍炉とも言う)などでは、加熱、均熱、冷却終了後、冷却帯と過時効帯(過時効炉とも言う)との間に再加熱をするための誘導加熱装置を設ける場合があるが、磁性域の加熱しかできない。   In continuous heat treatment furnaces for steel sheets (also called continuous heat treatment equipment or continuous annealing furnaces), after heating, soaking, and cooling, reheating between the cooling zone and the overaging zone (also called overaging oven) However, only the magnetic region can be heated.

それに対し、本発明の誘導加熱装置では、薄い金属帯板の磁性、非磁性を問わずに加熱ができることから、加熱効率が急激に低下するキュリー点近傍の温度域から、全くパワーが入らなくなるキュリー点を超えた温度域でも加熱可能である。   In contrast, the induction heating apparatus of the present invention can heat a thin metal strip regardless of whether it is magnetic or non-magnetic, so that no curie is generated from the temperature range near the Curie point where the heating efficiency drops sharply. Heating is possible even in a temperature range exceeding the point.

それ故、本発明の誘導加熱装置においては、従来の間接加熱方式となる輻射炉や、直接加熱となる火炎燃焼炉などのガス加熱を用いた予熱炉や加熱炉では、金属帯板の板厚が厚くなりライン速度を遅くしなければ所定の温度に加熱できない場合でも、ライン速度を落とすことなく所定の温度に加熱することが可能であるだけでなく、ライン速度を上げ生産量を上げたい場合でも、電源に余裕があれば対応が可能になるなど操業の自由度が飛躍的に高くなる。   Therefore, in the induction heating apparatus of the present invention, in the preheating furnace and the heating furnace using gas heating, such as a radiation furnace that is a conventional indirect heating method or a flame combustion furnace that is a direct heating, the thickness of the metal strip Even if it is not possible to heat to the specified temperature without slowing down the line speed because it becomes thicker, it is possible not only to heat to the specified temperature without reducing the line speed, but also to increase the line speed and increase the production volume However, if the power supply is sufficient, it will be possible to cope with it, and the freedom of operation will increase dramatically.

また、輻射加熱では、被加熱材の温度が上昇するにつれ炉内からの放射伝熱量が低下し、加熱効率が低下していくのに対し、本発明の誘導加熱装置では、強制的に電力を直接被加熱材に投入できるため、加熱効率が高くすることができるという利点もある。   In addition, in radiant heating, as the temperature of the material to be heated increases, the amount of radiant heat transfer from the furnace decreases, and the heating efficiency decreases, whereas the induction heating device of the present invention forcibly supplies power. Since it can be directly put into the material to be heated, there is also an advantage that the heating efficiency can be increased.

ただし、電気による加熱は、ガスによる加熱に比べ、発熱量あたりのエネルギー単価が高いため、全部を電気で加熱するとエネルギーコストが高くなり不利である。   However, heating by electricity has a higher energy unit price per calorific value than heating by gas, and heating all of them with electricity is disadvantageous because the energy cost increases.

そのため、加熱効率が高くエネルギー単価の安い低温側では、従来のガスによる間接加熱を使い、輻射では加熱効率の低下する高温側では、確実にキュリー点以上の非磁性域まで昇温ができる本発明による誘導加熱装置を使うことにより、従来の連続熱処理装置では実現できなかった、低コストの真のスケジュールフリー操業が実現する。   Therefore, the present invention is capable of reliably raising the temperature to the non-magnetic region above the Curie point on the high temperature side where the heating efficiency is high and the energy unit price is low and the indirect heating by the conventional gas is used and the heating efficiency is reduced by radiation. By using the induction heating apparatus, a low-cost true schedule-free operation that cannot be realized by a conventional continuous heat treatment apparatus is realized.

本発明の誘導加熱装置は、図12(a)に示すように、輻射炉または直火炎加熱炉16aと輻射炉または直火炎加熱炉16bとの間に設置してもよいし、もっとも効果的には、図12(b)に示すように、輻射炉または直火炎加熱炉16の後段に設置するのがよい。設置は、図では横パスであるが、縦パスでも斜めでも、特に、形態にこだわるものではない。   As shown in FIG. 12A, the induction heating device of the present invention may be installed between a radiation furnace or a direct flame heating furnace 16a and a radiation furnace or a direct flame heating furnace 16b, or most effectively. As shown in FIG. 12 (b), it is preferable to install it at the rear stage of the radiation furnace or the direct flame heating furnace 16. The installation is a horizontal path in the figure, but the vertical path or the diagonal is not particularly concerned with the form.

上記説明は、移動する金属帯板を想定しているが、静止状態での加熱に適用しても、同様の効果がある。   Although the above description assumes a moving metal strip, the same effect can be obtained when applied to heating in a stationary state.

以上、説明したように、本加熱方式は、磁性域の加熱はもちろん、従来のソレノイドコイルの誘導加熱方式では不可能であった非磁性域の加熱を、単純な構成のコイルで可能とする。   As described above, this heating method enables heating of the magnetic region as well as heating of the non-magnetic region, which is impossible with the conventional induction heating method of the solenoid coil.

使用する加熱電源周波数も、扱いやすく安価な比較的低い周波数を使うことができるとともに、高周波数加熱で問題となるコイル電圧の高電圧化なども調整することが容易であり、ハード上の制約が大幅に緩和される。   The heating power supply frequency to be used can be a relatively low frequency that is easy to handle and inexpensive, and it is easy to adjust the coil voltage, which is a problem with high frequency heating, and there are hardware limitations. It is greatly eased.

シングルターン加熱とは異なり、コイルを複数巻きにすることで、比較的低電流で大きなアンペアターンが得られることから、加熱効率を高くすることもできる。   Unlike single-turn heating, by making a plurality of coils, a large ampere turn can be obtained with a relatively low current, so that the heating efficiency can be increased.

また、終点温度制御が確実であるため、過加熱を防止することも可能であり、本発明は、従来にはない特徴を持つ優れた金属帯板の誘導加熱方法である。   In addition, since the end point temperature control is reliable, it is possible to prevent overheating, and the present invention is an excellent induction heating method for a metal strip having characteristics that have not existed in the past.

本発明の効果を、実験で確認した。実験には、0.23mm厚×80mm幅の冷延鋼板を用いた。電源は、25KHz、25KWを用い、外形10mm、内径8mmの水冷銅パイプで幅120mm高さ250mmのソレノイドコイル(3T(ターン))を製作し加熱を行った。   The effect of the present invention was confirmed by experiments. In the experiment, a cold rolled steel sheet having a thickness of 0.23 mm and a width of 80 mm was used. The power source was 25 KHz, 25 KW, and a solenoid coil (3T (turn)) having a width of 120 mm and a height of 250 mm was manufactured and heated with a water-cooled copper pipe having an outer diameter of 10 mm and an inner diameter of 8 mm.

実験は、図4(a)に示すように、鋼板に面する上下ソレノイドコイルの垂直投影面積の重なり面積割合を0%(以降重なり面積割合と略す)とした本発明による実験A、図9に示すように、コイルを矩形に巻き、ソレノイドコイルと30度をなす様に鋼板を配置し(重なり面積割合0%)誘導加熱を行った本発明による実験B、重なり面積割合を30%とした実験C、実験Cと同じ構成で加熱周波数を6KHzとした実験D、および、比較例として、重なり面積割合を90%とした従来の加熱方式による実験Eについて行い、比較を行った。   As shown in FIG. 4 (a), the experiment was conducted according to the experiment A and FIG. 9 according to the present invention, in which the overlapping area ratio of the vertical projection areas of the upper and lower solenoid coils facing the steel plate was 0% (hereinafter abbreviated as overlapping area ratio). As shown, Experiment B according to the present invention in which the coil is wound in a rectangular shape and the steel plate is arranged at 30 degrees with the solenoid coil (overlap area ratio 0%) and induction heating is performed according to the present invention, and the overlap area ratio is 30%. C, Experiment D with the same configuration as Experiment C and a heating frequency of 6 KHz, and Experiment E using a conventional heating method with an overlapping area ratio of 90% as a comparative example were compared.

鋼板は、50mmピッチで板幅中央に熱電対を溶着し、鋼板表裏を50mmのセラミックスファイバーで密着させて挟んで断熱した状態で加熱し、温度測定を行った。通常、被加熱材は、走行しながら加熱した方が、電流分布があっても全体でならされることが多いが、本実験は、電流分布の影響をみるため、電流分布の影響が出やすい静止状態で加熱を行った。   The steel plate was heated in a state where a thermocouple was welded at the center of the plate width at a pitch of 50 mm, the front and back surfaces of the steel plate were intimately bonded with 50 mm ceramic fibers and insulated, and the temperature was measured. Normally, the material to be heated is heated while traveling, even if there is a current distribution, it is often smoothed as a whole, but this experiment looks at the influence of the current distribution, so the influence of the current distribution is likely to appear. Heating was performed in a stationary state.

結果を表1に示す。評価は、非磁性域である750℃を超える加熱ができた場合◎、できない場合を×とした。   The results are shown in Table 1. The evaluation was evaluated as “◎” when heating exceeding 750 ° C., which is a nonmagnetic region, and “x” when heating was not possible.

Figure 2005209608
Figure 2005209608

今回の実験では、電流浸透深さは3.2[mm]であり、0.25[mm]の板厚では730℃前後を超えた非磁性域の加熱は、従来方式ではできないが、本発明による加熱方式A,Bは、ともに、730℃を超えた温度域でも加熱速度は落ちず、1000℃で加熱を止めた。   In this experiment, the current penetration depth is 3.2 [mm], and heating of the non-magnetic region exceeding about 730 ° C. with a plate thickness of 0.25 [mm] is not possible with the conventional method. In both heating methods A and B, the heating rate did not decrease even in the temperature range exceeding 730 ° C., and the heating was stopped at 1000 ° C.

また、実験Cは、750℃を超えても加熱速度の大きな変化がないまま温度上昇し、820℃でぴったり温度上昇が止まり、コイルの重なり割合を制御することにより、非磁性域で終点温度制御ができることを確認した。   In Experiment C, the temperature rises without any significant change in the heating rate even when the temperature exceeds 750 ° C., the temperature rise stops exactly at 820 ° C., and the end point temperature control is performed in the non-magnetic region by controlling the coil overlap ratio. I confirmed that I was able to.

同じ条件で周波数を下げた実験を行った実験Dは、非磁性域である765℃には加熱できたが、それ以上には昇温せず、周波数を変えることにより終点温度制御ができることを確認した。   Experiment D, in which the frequency was decreased under the same conditions, confirmed that the end point temperature could be controlled by changing the frequency without increasing the temperature beyond 765 ° C, which is a non-magnetic region. did.

これは、周波数を下げることにより電流浸透深さが深くなった結果、電流パスの干渉割合が多くなったためと考えられる。   This is presumably because the current penetration depth increases as a result of the increase in current penetration depth by lowering the frequency.

一方、従来法である実験Eは、650℃から加熱速度が急激におちこみ、最終的には、725℃までしか加熱ができなかった。   On the other hand, in Experiment E, which is a conventional method, the heating rate suddenly fell from 650 ° C., and finally, heating could be performed only up to 725 ° C.

前述したように、本発明によれば、磁性域の薄板の加熱、比抵抗が小さい非磁性非鉄金属帯板の加熱、更には、鉄などの磁性材のキュリー点温度以上の非磁性域における加熱を可能とする。   As described above, according to the present invention, heating of a thin plate in a magnetic region, heating of a nonmagnetic nonferrous metal strip having a small specific resistance, and heating in a nonmagnetic region above the Curie point temperature of a magnetic material such as iron. Is possible.

また、本発明においては、使用する高周波加熱電源の周波数も、数KHz〜数10KHz、高くても100KHz前後でよく、ハード上の制約が大幅に緩和される。   In the present invention, the frequency of the high-frequency heating power source to be used may be several kilohertz to several tens of kilohertz, and may be as high as around 100 kilohertz, which greatly reduces hardware restrictions.

さらに、本発明によれば、加熱終点温度を精度よく制御できるので、温度制御性の極めて高い精密な加熱が可能となり、金属の冶金制御が自在にできる。   Furthermore, according to the present invention, the end point temperature of heating can be controlled with high precision, so that precise heating with extremely high temperature controllability is possible, and metallurgical control of metal can be freely performed.

このように、本発明は、優れた効果を奏するものであるから、産業上の利用可能性が大きいものである。   Thus, since this invention has the outstanding effect, its industrial applicability is large.

従来のソレノイド式誘導加熱を示す模式図である。It is a schematic diagram which shows the conventional solenoid type induction heating. 従来のソレノイド式誘導加熱の金属薄板の断面に流れる誘導電流を説明する模式図である。It is a schematic diagram explaining the induction current which flows into the cross section of the metal plate of the conventional solenoid type induction heating. 本発明の誘導加熱装置を示す模式図である。It is a schematic diagram which shows the induction heating apparatus of this invention. (a)本発明の誘導加熱装置および誘導加熱方法を説明する模式図で、金属帯板の表裏面側におけるソレノイドコイルの垂直投影面積が0の場合を示す図である。 (b)本発明の誘導加熱装置および誘導加熱方法を説明する模式図で、金属帯板表裏面側のソレノイドコイルの垂直投影面積が一部重なる場合を示す図である。(A) It is a schematic diagram explaining the induction heating apparatus and induction heating method of this invention, and is a figure which shows the case where the vertical projection area of the solenoid coil in the front and back side of a metal strip is zero. (B) It is a schematic diagram explaining the induction heating apparatus and induction heating method of this invention, and is a figure which shows the case where the vertical projection area of the solenoid coil of a metal strip board front and back side overlaps partially. 本発明の誘導加熱方法により金属帯板に発生する渦電流を説明する側面断面模式図である。It is a side cross-sectional schematic diagram explaining the eddy current which generate | occur | produces in a metal strip with the induction heating method of this invention. (a)本発明の誘導加熱方法により金属帯板の表裏面に発生する渦電流の関係を説明する側面断面模式図である。 (b)本発明の誘導加熱方法により金属帯板の表面に発生する渦電流の関係を説明する平面模式図である。 (c)本発明の誘導加熱方法により金属帯板の表裏面に発生する渦電流が重なり合う状況を説明する側面断面模式図である。 (d)本発明の誘導加熱方法により金属帯板の表面に発生する渦電流が重なり合う状況を説明する平面模式図である。(A) It is a side cross-sectional schematic diagram explaining the relationship of the eddy current which generate | occur | produces on the front and back of a metal strip by the induction heating method of this invention. (B) It is a plane schematic diagram explaining the relationship of the eddy current which generate | occur | produces on the surface of a metal strip by the induction heating method of this invention. (C) It is a side cross-sectional schematic diagram explaining the condition where the eddy current generated on the front and back surfaces of the metal strip overlaps by the induction heating method of the present invention. (D) It is a plane schematic diagram explaining the condition where the eddy current which generate | occur | produces on the surface of a metal strip by the induction heating method of this invention overlaps. 本発明のソレノイドコイルの幅を説明する側断面模式図である。(a)は、1ターンコイルを、(b)は、複数コイルからなる場合を、(c)は、ブスバーなどの広幅板材を用いる場合を示す。It is a side cross-sectional schematic diagram explaining the width | variety of the solenoid coil of this invention. (A) shows a case where one turn coil is used, (b) shows a case where a plurality of coils are used, and (c) shows a case where a wide plate material such as a bus bar is used. (a)、(b)とも、本発明の表裏ソレノイドコイルの金属帯板への垂直投影面積の変更する方法を説明する側断面模式図である。(A), (b) is a side cross-sectional schematic diagram explaining the method to change the vertical projection area to the metal strip of the front and back solenoid coils of this invention. 本発明の誘導加熱方法によるソレノイドコイルの配設方向に対する金属帯板の通過方向を説明する模式図である。It is a schematic diagram explaining the passage direction of a metal strip with respect to the arrangement | positioning direction of the solenoid coil by the induction heating method of this invention. 本発明によるソレノイドコイル前後に設置した通板角度変更用ロールによりパスを変更し、表裏のソレノイドコイルの金属帯板への垂直投影面積を自在に変更する方法を説明する側断面模式図である。It is a side cross-sectional schematic diagram explaining the method of changing a path | pass with the roll for angle change of the sheet | seat installed before and behind the solenoid coil by this invention, and changing freely the vertical projection area to the metal strip of the solenoid coil of the front and back. 本発明の、従来のLF式誘導加熱装置の後段に、図3に示す誘導加熱装置を配置した誘導加熱装置を説明する模式図である。It is a schematic diagram explaining the induction heating apparatus which has arrange | positioned the induction heating apparatus shown in FIG. 3 in the back | latter stage of the conventional LF type induction heating apparatus of this invention. (a)本発明の、従来の加熱炉の途中に図3に示す誘導加熱装置を配置した誘導加熱装置を説明する模式図である。 (b)本発明の、従来の輻射炉または直火炎加熱炉の後段に図3に示す誘導加熱装置を配置した誘導加熱装置を説明する模式図である。(A) It is a schematic diagram explaining the induction heating apparatus which has arrange | positioned the induction heating apparatus shown in FIG. 3 in the middle of the conventional heating furnace of this invention. (B) It is a schematic diagram explaining the induction heating apparatus which has arrange | positioned the induction heating apparatus shown in FIG. 3 in the back | latter stage of the conventional radiation furnace or direct flame heating furnace of this invention.

符号の説明Explanation of symbols

1…金属帯板
2…ソレノイドコイル
3…高周波電源
4…磁束
5…一次電流
6a…渦電流
6b…渦電流の向き
7…渦電流のパス
7a…独立した渦電流のパス
7b…独立した渦電流のパス
7c…電流パス7aと7b間を流れる板両短部側の電流パス
8A、8B、8C、8D、8E、8F、8G、8H…表(上)側コイル側面端子部
9A、9B、9C、9D、9E、9F、9G、9H…裏(下)側コイル側面端子部
10…ロール
11、11’、11’’…通板ライン角度変更用ロール
12、12’…通板ライン角度変更用ロール
13…ロール
14…従来のLF式誘導加熱装置
15…本発明の誘導加熱装置
16,16a,16b…輻射炉または直火炎加熱炉
17…本発明の誘導加熱装置
18…次処理帯
DESCRIPTION OF SYMBOLS 1 ... Metal strip 2 ... Solenoid coil 3 ... High frequency power supply 4 ... Magnetic flux 5 ... Primary current 6a ... Eddy current 6b ... Eddy current direction 7 ... Eddy current path 7a ... Independent eddy current path 7b ... Independent eddy current Current path 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H ... Table (upper) side coil side surface terminal portions 9A, 9B, 9C flowing between the current paths 7a and 7b , 9D, 9E, 9F, 9G, 9H ... Back (lower) coil side surface terminal part 10 ... Roll 11, 11 ', 11''... Rolling plate line angle changing roll 12, 12' ... Passing plate line angle changing Roll 13 ... Roll 14 ... Conventional LF induction heating device 15 ... Induction heating device 16, 16a, 16b of the present invention ... Radiation furnace or direct flame heating furnace 17 ... Induction heating device 18 of the present invention ... Next treatment zone

Claims (12)

ソレノイドコイルの内側を通過する金属帯板を誘導加熱する装置において、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが0〜80%となるように、上記表面側と裏面側のソレノイドコイルを金属帯板の長手方向にずらして配置したことを特徴とする金属帯板の誘導加熱装置。   In the apparatus for induction heating of the metal strip passing through the inside of the solenoid coil, the overlap of the area where the solenoid coils on the front side and the back side of the metal strip are vertically projected onto the metal strip is 0 to 80%. Further, the induction heating device for a metal strip, wherein the solenoid coils on the front surface side and the back surface side are shifted in the longitudinal direction of the metal strip. 前記表面側と裏面側のソレノイドコイルを金属帯板へ垂直投影したときの長手方向の長さがそれぞれ20mm以上であることを特徴とする請求項1に記載の金属帯板の誘導加熱装置。   2. The induction heating apparatus for a metal strip according to claim 1, wherein the lengths in the longitudinal direction when the front and back solenoid coils are vertically projected onto the metal strip are each 20 mm or more. ソレノイドコイルの内側を通過する金属帯板を誘導加熱する装置において、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが80%超100%以下である誘導加熱装置の後段に、請求項1または2に記載の金属帯板の誘導加熱装置を配置したことを特徴とする金属帯板の誘導加熱装置。   In an apparatus for inductively heating a metal strip passing through the inside of a solenoid coil, the overlap of the area where the solenoid coils on the front and back sides of the metal strip are vertically projected on the metal strip is more than 80% and less than 100%. 3. An induction heating apparatus for a metal strip according to claim 1 or 2, wherein the induction heating apparatus for a metal strip according to claim 1 or 2 is disposed after an induction heating apparatus. 前記ソレノイドコイルの前後に、少なくとも上下方向に稼動可能な金属帯板の通板ライン角度変更用ロールを設置したことを特徴とする請求項1〜3のいずれか1項に記載の金属帯板の誘導加熱装置。   The metal strip according to any one of claims 1 to 3, wherein a roll for changing the sheet plate line angle of the metal strip that can be operated at least in the vertical direction is installed before and after the solenoid coil. Induction heating device. 請求項1〜4のいずれか1項に記載の金属帯板の誘導加熱装置の前段と後段の少なくともいずれかに、ガス燃焼または電気ヒーターによる輻射炉、または、ガス直火炎加熱炉を設置したことを特徴とする金属帯板の誘導加熱装置。   A radiation furnace using gas combustion or an electric heater or a gas direct flame heating furnace is installed in at least one of the former stage and the latter stage of the induction heating apparatus for a metal strip according to any one of claims 1 to 4. An induction heating device for a metal strip. 請求項1〜5のいずれか1項に記載の金属帯板の誘導加熱装置を用いて、ソレノイドコイルに高周波電流を流し、該ソレノイドコイルの内側に金属帯板を通過させて加熱することを特徴とする金属帯板の誘導加熱方法。   A high frequency current is passed through a solenoid coil using the induction heating device for a metal strip according to any one of claims 1 to 5, and the metal strip is passed through the solenoid coil to heat it. An induction heating method for a metal strip. 前記金属帯板の厚みが10μm以上10mm以下であることを特徴とする請求項6に記載の金属帯板の誘導加熱方法。   The thickness of the said metal strip is 10 micrometers or more and 10 mm or less, The induction heating method of the metal strip of Claim 6 characterized by the above-mentioned. キュリー点を越えて前記金属帯板を加熱することを特徴とする請求項5または6に記載の金属帯板の誘導加熱方法。   The induction heating method for a metal strip according to claim 5 or 6, wherein the metal strip is heated beyond a Curie point. 前記高周波電流の加熱周波数を調整して、加熱終点温度を制御することを特徴とする請求項6〜8のいずれか1項に記載の金属帯板の誘導加熱方法。   The induction heating method for a metal strip according to any one of claims 6 to 8, wherein a heating end point temperature is controlled by adjusting a heating frequency of the high-frequency current. 前記金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なり量を調整して、加熱終点温度を制御することを特徴とする請求項6〜9のいずれか1項に記載の金属帯板の誘導加熱方法。   10. The heating end point temperature is controlled by adjusting the overlapping amount of the areas obtained by vertically projecting the solenoid coils on the front side and the back side of the metal strip to the metal strip, respectively. An induction heating method for a metal strip according to claim 1. 請求項4に記載の金属帯板の誘導加熱装置を用いて、ソレノイドコイルに高周波電流を流し、金属帯板の表面側と裏面側のソレノイドコイルをそれぞれ該金属帯板へ垂直投影した面積の重なりが0〜80%となるように、ロールにより上記金属帯板の通板ラインの角度を調整して、加熱することを特徴とする金属帯板の誘導加熱方法。   A high frequency current is passed through the solenoid coil using the induction heating device for a metal strip according to claim 4, and the surface area and back surface solenoid coils of the metal strip are vertically projected onto the metal strip, respectively. An induction heating method for a metal strip, characterized in that heating is performed by adjusting an angle of a sheet passing line of the metal strip by means of a roll so that is 0 to 80%. 前記通板ライン角度を調整して、加熱終点温度を制御することを特徴とする請求項11に記載の金属帯板の誘導加熱方法。   The induction heating method for a metal strip according to claim 11, wherein the heating end point temperature is controlled by adjusting the sheet passing line angle.
JP2004120713A 2003-12-25 2004-04-15 Induction heating apparatus and induction heating method for metal strip Expired - Fee Related JP4153895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120713A JP4153895B2 (en) 2003-12-25 2004-04-15 Induction heating apparatus and induction heating method for metal strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003429943 2003-12-25
JP2004120713A JP4153895B2 (en) 2003-12-25 2004-04-15 Induction heating apparatus and induction heating method for metal strip

Publications (2)

Publication Number Publication Date
JP2005209608A true JP2005209608A (en) 2005-08-04
JP4153895B2 JP4153895B2 (en) 2008-09-24

Family

ID=34914126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120713A Expired - Fee Related JP4153895B2 (en) 2003-12-25 2004-04-15 Induction heating apparatus and induction heating method for metal strip

Country Status (1)

Country Link
JP (1) JP4153895B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186589A (en) * 2007-01-26 2008-08-14 Nippon Steel Corp Induction heating device for metal plate
WO2008099974A1 (en) 2007-02-16 2008-08-21 Nippon Steel Corporation Induction heating device
JP2008196576A (en) * 2007-02-13 2008-08-28 Hitachi Chem Co Ltd Device and method for separating brake component
WO2008130049A1 (en) 2007-04-16 2008-10-30 Nippon Steel Corporation Metal plate induction heating device and induction heating method
WO2009013827A1 (en) * 2007-07-26 2009-01-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Process, and apparatus utilizing the same, for manufacturing steel sheet
JP2009277496A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Induction heating device and induction heating method
EP2133436A1 (en) * 2007-04-05 2009-12-16 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
US8536498B2 (en) 2005-02-18 2013-09-17 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
CN106941739A (en) * 2017-05-18 2017-07-11 湖南中科电气股份有限公司 A kind of inductor of continuous heating
JP2017123273A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Three-dimensional hot bending quenching apparatus, manufacturing method of three-dimensional hot bending quench-processed member, and manufacturing method of structural member for automobile
US9888529B2 (en) 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
CN110295278A (en) * 2018-03-22 2019-10-01 中外炉工业株式会社 The remodeling method of laser heating processing unit and laser heating processing unit
CN111560512A (en) * 2020-06-08 2020-08-21 河北优利科电气有限公司 Non-magnetic metal plate strip material non-contact supporting device in heat treatment furnace
JP2020136080A (en) * 2019-02-20 2020-08-31 島田理化工業株式会社 Induction heating method using tunnel type heating coil
WO2022195868A1 (en) * 2021-03-19 2022-09-22 日本たばこ産業株式会社 Inhalation device and system
US11654472B2 (en) 2021-01-13 2023-05-23 Toyota Jidosha Kabushiki Kaisha Forming and processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607421A (en) * 2019-10-30 2019-12-24 江苏聚源电气有限公司 High-frequency quenching inductor and quenching method for sheet workpieces

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9888529B2 (en) 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
US8536498B2 (en) 2005-02-18 2013-09-17 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
JP2008186589A (en) * 2007-01-26 2008-08-14 Nippon Steel Corp Induction heating device for metal plate
JP2008196576A (en) * 2007-02-13 2008-08-28 Hitachi Chem Co Ltd Device and method for separating brake component
WO2008099974A1 (en) 2007-02-16 2008-08-21 Nippon Steel Corporation Induction heating device
US8592735B2 (en) 2007-02-16 2013-11-26 Nippon Steel & Sumitomo Metal Corporation Induction heating apparatus
EP2133436A4 (en) * 2007-04-05 2015-04-29 Nippon Steel & Sumitomo Metal Corp Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
EP2133436A1 (en) * 2007-04-05 2009-12-16 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
WO2008130049A1 (en) 2007-04-16 2008-10-30 Nippon Steel Corporation Metal plate induction heating device and induction heating method
US8502122B2 (en) 2007-04-16 2013-08-06 Nippon Steel & Sumitomo Metal Corporation Induction heating system and induction heating method of metal plate
WO2009013827A1 (en) * 2007-07-26 2009-01-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Process, and apparatus utilizing the same, for manufacturing steel sheet
JP2009277496A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Induction heating device and induction heating method
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
JP2017123273A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Three-dimensional hot bending quenching apparatus, manufacturing method of three-dimensional hot bending quench-processed member, and manufacturing method of structural member for automobile
CN106941739A (en) * 2017-05-18 2017-07-11 湖南中科电气股份有限公司 A kind of inductor of continuous heating
CN110295278A (en) * 2018-03-22 2019-10-01 中外炉工业株式会社 The remodeling method of laser heating processing unit and laser heating processing unit
JP2020136080A (en) * 2019-02-20 2020-08-31 島田理化工業株式会社 Induction heating method using tunnel type heating coil
CN111560512A (en) * 2020-06-08 2020-08-21 河北优利科电气有限公司 Non-magnetic metal plate strip material non-contact supporting device in heat treatment furnace
US11654472B2 (en) 2021-01-13 2023-05-23 Toyota Jidosha Kabushiki Kaisha Forming and processing method
WO2022195868A1 (en) * 2021-03-19 2022-09-22 日本たばこ産業株式会社 Inhalation device and system

Also Published As

Publication number Publication date
JP4153895B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
JP4912912B2 (en) Induction heating device
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
AU2006215074B2 (en) Induction heating device for a metal plate
US9888529B2 (en) Induction heating device for a metal plate
JP2008053010A (en) Induction heating device and method for metal plate
JP5262784B2 (en) Metal plate induction heating device
JP2009277496A (en) Induction heating device and induction heating method
JP4890278B2 (en) Metal plate induction heating device
JP2007324010A (en) Induction heating apparatus excellent in uniformity in temperature in widthwise direction of metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees