JP4890278B2 - Metal plate induction heating device - Google Patents

Metal plate induction heating device Download PDF

Info

Publication number
JP4890278B2
JP4890278B2 JP2007016272A JP2007016272A JP4890278B2 JP 4890278 B2 JP4890278 B2 JP 4890278B2 JP 2007016272 A JP2007016272 A JP 2007016272A JP 2007016272 A JP2007016272 A JP 2007016272A JP 4890278 B2 JP4890278 B2 JP 4890278B2
Authority
JP
Japan
Prior art keywords
metal plate
heating
plate
conductor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007016272A
Other languages
Japanese (ja)
Other versions
JP2008186589A (en
Inventor
芳明 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007016272A priority Critical patent/JP4890278B2/en
Publication of JP2008186589A publication Critical patent/JP2008186589A/en
Application granted granted Critical
Publication of JP4890278B2 publication Critical patent/JP4890278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、鉄やアルミなどの鉄及び非鉄金属板の誘導加熱装置に関する。特に、金属板が薄板、厚板にかかわらず、非磁性状態でも金属板を効率よく加熱する誘導加熱装置において、特に金属板の端部の過加熱を抑制、又は温度を精度良く制御する誘導加熱装置に関する。   The present invention relates to an induction heating apparatus for ferrous and non-ferrous metal plates such as iron and aluminum. Especially for induction heating devices that efficiently heat metal plates even in non-magnetic state, regardless of whether the metal plate is thin or thick, especially induction heating that suppresses overheating of the end of the metal plate or controls the temperature accurately. Relates to the device.

金属の高周波電流による誘導加熱は、焼き入れをはじめとして熱処理をするために広く使われている。鋼板やアルミ板などの鉄、非鉄の薄板も製造過程で材質を制御する目的で、加熱速度をあげて、生産性の向上や、生産量を自在に調整する目的などで、従来のガス加熱や電気加熱による間接加熱に代わる加熱方式として使用されてきている。   Induction heating by high frequency current of metals is widely used for heat treatment including quenching. Iron and non-ferrous thin plates such as steel plates and aluminum plates are also used for conventional gas heating for the purpose of controlling the material during the manufacturing process, increasing the heating rate, improving productivity, and adjusting production volume freely. It has been used as a heating method instead of indirect heating by electric heating.

金属板を誘導加熱する場合には、大きく2つの方式がある。1つは、金属板の周囲を囲んだ誘導コイルに高周波電流を流し、発生した磁束が金属板の長手方向を貫通し、金属板の断面内に誘導電流を発生させ加熱するいわゆるLF(縦断磁束加熱)方式と呼ばれる誘導加熱方式と、金属板を1次コイルの巻かれたインダクターと呼ばれる磁性体の間に配置し、1次コイルに電流を通じ発生させた磁束をインダクターに通すことにより、インダクター間を流れる磁束を金属板が横切る様に通過することにより、金属板の平面に誘導電流が発生し誘導加熱するTF(横断加熱方式)方式である。   There are two main methods for induction heating a metal plate. One is a so-called LF (longitudinal magnetic flux) in which a high frequency current is passed through an induction coil that surrounds a metal plate, and the generated magnetic flux penetrates the longitudinal direction of the metal plate to generate an induced current in the cross section of the metal plate and heat it. Between the inductors by placing an induction heating method called “heating” method and a magnetic material called an inductor wound with a primary coil, and passing the magnetic flux generated by passing a current through the primary coil through the inductor. This is a TF (transverse heating method) system in which an induction current is generated in the plane of the metal plate and induction heating is caused by passing the magnetic flux flowing through the metal plate so as to cross.

LF方式の誘導加熱は、温度分布の均一性が良いものの、発生する誘導電流は板断面内を循環するが、電流浸透深さの関係から、板厚が薄い場合には電源の周波数を高くしなければ誘導電流が発生せず、更に、非磁性材、あるいは磁性材でもキュリー点温度を超えたものは、電流の浸透深さが深くなるため板厚の薄いものは加熱ができないという課題がある。   Although LF induction heating has good temperature distribution uniformity, the induced current generated circulates in the cross section of the plate, but due to the current penetration depth, the frequency of the power supply is increased when the plate thickness is thin. Without induction current, non-magnetic materials, or even magnetic materials that exceed the Curie point temperature, have a problem that the penetration depth of the current becomes deep, so that thin plates cannot be heated. .

一方、TF方式の誘導加熱は、磁束が金属板の平面を貫通するため、板厚や磁性、非磁性の区別無く加熱できるという特徴や、磁気抵抗の小さいインダクターを用いることにより漏れ磁束を少なくでき、金属板の表裏に対向するインダクター間に磁束を集中させることができるため加熱効率が高いという特徴がある。   On the other hand, the induction heating of the TF method can reduce the leakage magnetic flux by using the inductor with a small magnetic resistance and the feature that the magnetic flux penetrates the plane of the metal plate and can be heated without distinction of plate thickness, magnetic and non-magnetic. Since the magnetic flux can be concentrated between the inductors facing the front and back of the metal plate, the heating efficiency is high.

その反面、温度分布の不均一が生じやすいという問題や、金属板が対向するインダクターの中心に無い場合、磁性材ではどちらかのインダクターに吸引され、より温度偏差がつきやすくなるという問題がある。   On the other hand, there is a problem that the temperature distribution is likely to be non-uniform, and there is a problem that when the metal plate is not at the center of the opposing inductor, the magnetic material is attracted to one of the inductors and a temperature deviation is more likely to occur.

さらにTF方式の誘導加熱の場合、金属板の板幅変更や連続通板ラインでは蛇行した場合の対応が難しいという欠点がある。   Further, in the case of TF type induction heating, there is a drawback that it is difficult to cope with meandering in a plate width change or a continuous plate line.

これらの課題を解決するため、特許文献1では、帯板の進行方向の表面、裏面のシングルターンのコイルをずらして配置することが開示されている。   In order to solve these problems, Patent Document 1 discloses that the single-turn coils on the front surface and the back surface in the traveling direction of the band plate are shifted.

また、特許文献2では、被加熱材に面する誘導加熱コイルの長軸が湾曲するような菱形形状の誘導コイルが提案されている。   Patent Document 2 proposes a diamond-shaped induction coil in which the long axis of the induction heating coil facing the material to be heated is curved.

特許文献3は、本発明者による金属板を周回する誘導コイルを進行方向でシフトさせる誘導コイルを提案している。   Patent Document 3 proposes an induction coil that shifts an induction coil that circulates around a metal plate in the traveling direction by the inventor.

特開2002−43042号公報JP 2002-43042 A 特開2002−151245号公報JP 2002-151245 A 特開2005−209608号公報JP 2005-209608 A

図1は、従来のLF方式の誘導加熱を示す模式図である。被加熱材である金属板1の周囲を高周波電源3に接続された誘導コイル2で囲み、1次電流5を通じることにより、金属板1の内部を磁束4が貫通し磁束4の周りに誘導電流が発生し、発生した誘導電流により金属板1を加熱する。図2は、誘導電流が金属板1の断面内に発生する様子を示す断面模式図を示す。   FIG. 1 is a schematic diagram showing conventional LF induction heating. Surrounding the metal plate 1 to be heated with the induction coil 2 connected to the high frequency power source 3 and passing the primary current 5, the magnetic flux 4 penetrates the metal plate 1 and is induced around the magnetic flux 4. An electric current is generated, and the metal plate 1 is heated by the generated induced current. FIG. 2 is a schematic cross-sectional view showing how an induced current is generated in the cross section of the metal plate 1.

金属板1を貫通する磁束4により、金属板1の断面には誘導コイル2に流れる1次電流5と逆向きの方向に誘導電流6が流れる。この誘導電流6は、金属板1の表面から1式で示される電流浸透深さδの範囲に集中して流れる。
δ[mm]=5.03×10+5(ρ/μrf)0.5 ・・・ 1式
ここで、ρ:比抵抗[Ωm]、μr:比透磁率[−]、f:加熱周波数[Hz]
Due to the magnetic flux 4 penetrating the metal plate 1, an induced current 6 flows in a direction opposite to the primary current 5 flowing in the induction coil 2 in the cross section of the metal plate 1. The induced current 6 flows from the surface of the metal plate 1 in a concentrated manner within the range of the current penetration depth δ represented by the equation (1).
δ [mm] = 5.03 × 10 +5 (ρ / μrf) 0.5 (1) where ρ: specific resistance [Ωm], μr: relative permeability [−], f: heating frequency [Hz]

発生した誘導電流6は、図2に示す様に板断面の表裏で逆向きに流れるため、電流浸透深さδが深くなると、板表裏の誘導電流が互いに打ち消し合う結果、板断面内を電流が流れなくなってしまう。   As shown in FIG. 2, the generated induced current 6 flows in opposite directions on the front and back sides of the plate cross section. Therefore, when the current penetration depth δ increases, the induced currents on the front and back sides of the plate cancel each other. It will stop flowing.

金属は、温度の上昇に伴いρが上昇するため、δは温度上昇とともに深くなる。また、強磁性や常磁性の磁性材は、温度が上昇しキュリー点に近づくにつれμrが減少し、キュリー点を超えるとμrは1になる。   Since ρ increases with increasing temperature, δ becomes deeper with increasing temperature. Further, in the case of a ferromagnetic or paramagnetic magnetic material, μr decreases as the temperature rises and approaches the Curie point, and μr becomes 1 when the Curie point is exceeded.

また、非磁性材もμrは1である。μrが小さくなると、1式より非磁性材、あるいは磁性材の場合はキュリー点直前からキュリー点を超える温度域では、電流浸透深さδが深くなり、薄い板厚の被加熱材では加熱ができなくなってしまう。   Further, the nonmagnetic material also has a μr of 1. When μr decreases, the current penetration depth δ increases in the temperature range from just before the Curie point to the Curie point in the case of non-magnetic material or magnetic material from Formula 1, and heating is possible with a thin plate to be heated. It will disappear.

例えば、加熱周波数が10[KHz]の場合、常温で各種金属の電流浸透深さδは、非磁性のアルミで約1[mm]、SUS304で約4.4[mm]、磁性材の鋼では約0.2[mm]であるのに対し、磁性材である鋼がキュリー点を超えた750℃では電流浸透深さδは約5[mm]となる。   For example, when the heating frequency is 10 [KHz], the current penetration depth δ of various metals at room temperature is about 1 [mm] for nonmagnetic aluminum, about 4.4 [mm] for SUS304, and for steel of magnetic material Whereas it is approximately 0.2 [mm], the current penetration depth δ is approximately 5 [mm] at 750 ° C. when the steel, which is a magnetic material, exceeds the Curie point.

板内に発生する表裏電流が打ち消し合わないためには、板厚は最低でも、10[mm]以上必要であり、効率よくパワーを入れるためには、15[mm]程度の厚みが必要になる。   In order that the front and back currents generated in the plate do not cancel each other, the plate thickness needs to be at least 10 [mm], and in order to efficiently turn on the power, a thickness of about 15 [mm] is required. .

一般に、熱処理は、10数μmの箔のような薄板から100mmを超えるような厚板まで様々な厚みのものを対象としている。   In general, the heat treatment is intended for various thicknesses from a thin plate such as a foil of several tens of μm to a thick plate exceeding 100 mm.

例えば、使用量の多い金属板の代表的な素材である自動車や家電品に使用される鋼板は、通常冷間圧延の済んだ3[mm]前後より薄い板厚が多く、特に2[mm]以下の場合が多い。これらの材料をLF式で加熱するためには、加熱周波数を、数100[KHz]以上に上げる必要があるが、大容量で高い周波数の電源製作などにハード上の限界があり、工業規模で実現することは困難な場合が多い。   For example, steel plates used for automobiles and home appliances, which are representative materials for metal plates that are used in large quantities, are usually thinner than about 3 [mm] after cold rolling, especially 2 [mm]. In many cases: In order to heat these materials by the LF method, it is necessary to increase the heating frequency to several hundreds [KHz] or more, but there is a hardware limit in the production of a large-capacity and high-frequency power supply on an industrial scale. It is often difficult to achieve.

特許文献1の方法は、板の上下に誘導コイルを配置した1種のTF方式と考えられ、金属板の進行方向で発生する磁束は交互に逆向きに発生するが、上下コイルがずれているため、上下コイルで発生する磁束が打ち消し合う領域と磁束が帯板を斜めに横切る領域が交互にでき、磁束が集中するのを防ぐことが可能になっていると考えられる。   The method of Patent Document 1 is considered to be a kind of TF system in which induction coils are arranged above and below the plate, and magnetic flux generated in the traveling direction of the metal plate is alternately generated in the opposite direction, but the upper and lower coils are displaced. Therefore, it is considered that the areas where the magnetic fluxes generated by the upper and lower coils cancel each other and the areas where the magnetic flux obliquely crosses the belt plate can be alternated to prevent the magnetic flux from concentrating.

そのため、従来のTF方式ではエッジ部に磁束が集中し、エッジが過加熱するという問題を緩和する効果が発現すると考えられるが、磁束が打ち消し合う領域ができること、シングルターンであるため、帯板にパワーを入れ電界強度を上げるためにはコイルへ流す電流値を大きくしなければならず、コイルの銅損が増えることなどのため効率が低下しやすいという問題がある。   Therefore, in the conventional TF method, it is thought that the magnetic flux concentrates on the edge part and the effect of alleviating the problem that the edge is overheated is manifested. In order to increase power and increase the electric field strength, it is necessary to increase the value of the current flowing through the coil, and there is a problem that the efficiency tends to decrease due to an increase in the copper loss of the coil.

効率を上げるためには、同公報の実施例で開示されているように上下のシングルターンコイルを帯板に近接させる必要があるが、通板している帯板は形状が変形していたり振動したりするため、広幅で長い区間を通板しながら加熱するには困難がある。   In order to increase the efficiency, it is necessary to bring the upper and lower single turn coils close to the strip as disclosed in the embodiment of the same publication, but the strip that is passed through is deformed or vibrated. Therefore, it is difficult to heat while passing through a wide and long section.

また、特許文献2の方法は、金属の面と対向するように金属の搬送方向において、幅方向中央で最も広がった誘導加熱コイルを備え、金属材料の搬送方向に沿ったコイル幅の合計を、実質的に均一とする方法であるが、この方法は、金属材に向かい合わせた誘導コイルからの漏れ磁束により加熱を行う方法となるため、誘導コイルとの距離が離れると磁束が金属を貫通する保証はなく、金属と近接させないと加熱が起きにくく、また、金属の形状が悪く誘導コイルとの距離が変化する場合には大きな温度偏差が生じる。また、誘導コイルの幅を進行方向で実質同じ幅になるように菱形形状のコイルとしているが、この形状では板幅が変化したときには対応がつかない。回転機構を設けるようにしているが、回転させた場合には進行方向で加熱時間が同じにはならないため、均一温度にはなりにくいし、工業規模で大電流を流す加熱装置の回転機構を実現するのは、極めて困難が伴う。   In addition, the method of Patent Document 2 includes an induction heating coil that is widest at the center in the width direction in the metal conveyance direction so as to face the metal surface, and the total coil width along the metal material conveyance direction is Although this method is substantially uniform, this method is a method of heating by leakage magnetic flux from the induction coil facing the metal material, so that the magnetic flux penetrates the metal when the distance from the induction coil is increased. There is no guarantee, and heating is difficult to occur unless close to the metal, and a large temperature deviation occurs when the metal shape is poor and the distance from the induction coil changes. In addition, the induction coil has a rhombus shape so that the width of the induction coil is substantially the same in the traveling direction. However, this shape cannot be used when the plate width changes. Although a rotation mechanism is provided, the heating time does not become the same in the direction of travel when rotated, so it is difficult to achieve a uniform temperature and a rotation mechanism for a heating device that flows a large current on an industrial scale is realized. It is extremely difficult to do.

両特許文献とも、誘導コイルが金属を囲んだ閉ループ内の加熱ではないため、磁束が確実に金属を貫通する保証は無く、誘導コイルとの距離の影響を受けやすいとともに、誘導コイルのターン数が変えられないため磁束密度を制御することが難しい。   In both patent documents, since the induction coil is not heating in a closed loop surrounding the metal, there is no guarantee that the magnetic flux will penetrate the metal reliably, and it is easily affected by the distance from the induction coil, and the number of turns of the induction coil It is difficult to control the magnetic flux density because it cannot be changed.

それに対し、特許文献3は、上記加熱装置の欠点を解消するため、金属板を囲む誘導コイルを金属板の進行方向でずらすことにより、金属板表裏に面した誘導コイルの直下の金属板内に表裏誘導コイルで発生する誘導電流がお互いに干渉しないように独立した電流を発生させることで、電流の浸透深さ以下の板厚の金属板でも非磁性の金属板でも加熱することができることを示している。また、誘導コイルが金属板を閉じて周回することから、磁束は必ず金属板と鎖交するため誘導コイルと金属板が比較的離れていても容易に加熱することができるという実用上の大きな利点もある。   On the other hand, in Patent Document 3, in order to eliminate the disadvantages of the heating device described above, the induction coil surrounding the metal plate is shifted in the traveling direction of the metal plate, so that the metal plate directly under the induction coil facing the front and back of the metal plate is placed inside the metal plate. It shows that by generating independent currents so that the induced currents generated by the front and back induction coils do not interfere with each other, it is possible to heat both metal plates with a thickness less than the current penetration depth and non-magnetic metal plates. ing. In addition, since the induction coil circulates with the metal plate closed, the magnetic flux always interlinks with the metal plate, so that it can be easily heated even if the induction coil and the metal plate are relatively separated from each other. There is also.

ところが、金属板中央で発生した誘導電流は金属板端部を流れる時に電流が集中し高電流密度になりやすいこと、表裏の誘導コイルを離したことにより、端部を流れる誘導電流の時間が長くなることから、板端部が過加熱になりやすく、温度偏差の小さな分布を得るための条件(表裏誘導コイルのズレ量、誘導コイルの幅等)が狭いという問題があった。   However, the induced current generated at the center of the metal plate is concentrated when flowing through the edge of the metal plate and tends to have a high current density, and the induction current flowing through the edge is lengthened by separating the front and back induction coils. Therefore, there is a problem that the plate end portion is likely to be overheated, and the conditions for obtaining a distribution with a small temperature deviation (the amount of deviation of the front and back induction coils, the width of the induction coils, etc.) are narrow.

上記3方式とも、非磁性加熱を行うことはできるものの、加熱温度分布を精密に制御することは難しく、また、上記方式の誘導加熱装置を、輻射/対流加熱方式の既存炉(焼鈍炉等)の途中に設置する場合には、金属板の変形等による炉壁の断熱材との接触を防止する必要性があることから、金属板と誘導コイルとの間隔を狭くすることは難しい。また、金属板の板幅の変更や蛇行などへの対応も難しい。   Although the above three methods can perform non-magnetic heating, it is difficult to precisely control the heating temperature distribution. In addition, the induction heating device of the above method is a conventional radiation / convection heating type furnace (such as an annealing furnace). When it is installed in the middle of this, it is necessary to prevent contact with the heat insulating material of the furnace wall due to deformation of the metal plate, etc., so it is difficult to narrow the interval between the metal plate and the induction coil. In addition, it is difficult to cope with changes in the plate width of the metal plate or meandering.

本発明は、これら従来のLF方式やTF方式が抱える金属板の誘導加熱の課題を解決するもので、誘導コイルを用いて、(A)磁性材に限らず非磁性材や非磁性域においても、また、(B)板厚が10mm以下の薄い金属板でも、(C)金属板と誘導コイルとのギャップを十分に保ちながら、温度を自在に制御できる温度制御性に優れ、効率よく加熱できる誘導加熱装置を提供する。   The present invention solves the problem of induction heating of the metal plate that the conventional LF system and TF system have, and uses an induction coil to (A) not only in a magnetic material but also in a non-magnetic material and a non-magnetic region. (B) Even a thin metal plate having a thickness of 10 mm or less can be efficiently heated with excellent temperature controllability that allows the temperature to be freely controlled while maintaining a sufficient gap between the metal plate and the induction coil. An induction heating device is provided.

本発明の要旨は下記の通りである。   The gist of the present invention is as follows.

(1)周回する誘導コイルの内側を通過する金属板を誘導加熱する装置であって、金属板の表面側と裏面側の誘導コイルを構成する導体を、それぞれ前記金属板へ垂直投影した際の垂直投影像において、前記表面側と裏面側の導体同士が、前記金属板の長手方向に対して互いに重ならないように、前記導体同士をずらして配置するとともに、前記金属板の両端部とその両外側に位置する前記導体との間に、それぞれ磁性体コアを設け、前記それぞれの磁性体コアが、前記金属板両端部の外側に位置する導体に沿って、当該導体と平行に配置され、且つ、前記それぞれの磁性体コアが、前記金属板両端部の外側に位置する導体の金属板側の面、及び当該導体の金属板側の面に対して垂直な面を囲っていることを特徴とする誘導加熱装置。
(2)前記磁性体コアがコの字状であることを特徴とする(1)に記載の誘導加熱装置。
(3)前記磁性体コアは、冷却銅板が密着して冷却されている、又は、外部ファンによる強制冷却がなされていることを特徴とする上記(1)又は(2)記載の誘導加熱装置。
である。
(1) An apparatus for inductively heating a metal plate that passes through the inside of a circulating induction coil, wherein the conductors constituting the induction coil on the front side and the back side of the metal plate are each vertically projected onto the metal plate. In the vertical projection image, the conductors on the front side and the back side are arranged so as to be shifted from each other so that the conductors on the front side and the back side do not overlap with each other in the longitudinal direction of the metal plate. A magnetic core is provided between each of the conductors located on the outside, and each of the magnetic cores is disposed in parallel with the conductor along the conductor located on the outside of both ends of the metal plate, and Each of the magnetic cores surrounds a metal plate side surface of a conductor located outside both ends of the metal plate and a surface perpendicular to the metal plate side surface of the conductor. Induction heating device.
(2) The induction heating apparatus according to (1), wherein the magnetic core is U-shaped.
(3) The induction heating apparatus according to (1) or (2) above , wherein the magnetic core is cooled by close contact with a cooling copper plate or forced cooling by an external fan .
It is.

本発明でいう「金属板の長手方向」とは、金属板の通過方向(搬送ラインと同一方向)のことである。   The “longitudinal direction of the metal plate” referred to in the present invention is the direction in which the metal plate passes (the same direction as the transport line).

本発明による誘導加熱は、板厚の厚い材料や磁性域の薄板の加熱を可能とするだけではなく、従来の誘導加熱方式では不可能であった比抵抗が小さく非磁性のアルミや銅などの非鉄金属板の加熱、鉄などの磁性材におけるキュリー点以上の温度での非磁性域における加熱を可能とする。   The induction heating according to the present invention not only enables heating of a thick plate or a thin plate in the magnetic region, but also has a small specific resistance, which is impossible with the conventional induction heating method, such as non-magnetic aluminum or copper. Heating of a nonferrous metal plate and heating in a nonmagnetic region at a temperature higher than the Curie point in a magnetic material such as iron are possible.

更に、誘導コイルとともに用いる磁性コアの位置や表裏の磁性コアにより、金属板端部の過加熱を抑制又は防止をすることができる。 また、磁性コアの位置や表裏の磁性コアの金属板端部の重なり、あるいは金属板との距離を調整することにより、加熱温度分布を容易に制御できる。
また、本誘導加熱装置の前工程から持ち込まれる温度偏差の解消や後工程での温度特性を考慮した所望の温度分布をつけて加熱することなど、要求される冶金特性に合わせた加熱速度、温度分布で加熱することにより、高品質の製品を安定性して作りこめるとともに、操業変動による品質への影響解消することが可能となる。
Furthermore, the overheating of the edge part of a metal plate can be suppressed or prevented by the position of the magnetic core used with an induction coil, and the magnetic core of the front and back. Also, the heating temperature distribution can be easily controlled by adjusting the position of the magnetic core, the overlapping of the metal plate end portions of the front and back magnetic cores, or the distance from the metal plate.
In addition, the heating rate and temperature according to the required metallurgical characteristics, such as heating with a desired temperature distribution taking into account the temperature deviation introduced from the previous process of this induction heating device and the temperature characteristics in the subsequent process, etc. By heating with distribution, it is possible to stably produce high-quality products and to eliminate the influence on quality due to operational fluctuations.

更に、ガス加熱の炉で問題となる熱慣性の影響が無いため、板厚変更があっても加熱速度を自在に制御できることから、通板速度を変更する必要も無くなる。そのため、ガス加熱の炉では、通常、板厚変更時に炉が安定するまでの間必要とされる繋ぎ材が不要になるばかりではなく、通板速度を落とすことなく生産を続けられるため、生産性の低下を回避できる。   Furthermore, since there is no influence of thermal inertia which is a problem in a gas heating furnace, the heating rate can be freely controlled even if the plate thickness is changed, so that it is not necessary to change the plate passing rate. Therefore, in a gas heating furnace, not only the connecting material required until the furnace stabilizes when changing the plate thickness is usually unnecessary, but also the production can be continued without reducing the plate passing speed. Can be avoided.

また、本発明の誘導加熱装置は、板厚・板幅の変更に対応できるだけではなく、蛇行などの変動要因にも柔軟に対応し、所望の温度分布が得られるばかりではなく、板幅に応じた誘導コイルのセットを複数持たずに済むことから、設備費も格安にすることが可能となる。   In addition, the induction heating device of the present invention can not only respond to changes in the plate thickness and plate width, but also flexibly cope with fluctuation factors such as meandering, and not only can obtain a desired temperature distribution, but also according to the plate width. Since it is not necessary to have multiple sets of induction coils, the equipment cost can be reduced.

以下、本発明の実施の形態について、説明を簡単にするため1T(ターン)の場合について図面を用いて説明するが、1Tに限定されるものでは無く、複数Tでも可能である。   Hereinafter, the embodiment of the present invention will be described with reference to the drawings for the case of 1T (turn) for the sake of simplicity. However, the present invention is not limited to 1T, and a plurality of T's are possible.

図6(a)は、本発明の誘導加熱装置の参考例の1例を示す平面模式図であり、図6(b)と図6(c)は、その側面模式図の例である。本発明の誘導加熱装置は、金属板1の長手方向に誘導コイルを構成する導体2aと2bを重ならないようにずらして配置し、ずらした導体2aと2bとを導体9で接続し、反対側を導体7で電源8と接続し、1Tの誘導コイルを形成し、金属板1の端部と接続用導体7および9との間に磁性体コア10を設ける。ここで、電源8は、図示していないが、コンデンサや整合用のトランスなどを含む。 以下の本発明の説明で用いる誘導コイルとは、電気良導体で構成されるパイプや線材、板などで被加熱材を1周以上巻いた、導体により形成されるコイルの総称として用い、被加熱材を囲む形状は矩形でも円形でも特に規定するものではない。導体の材質は、銅やアルミ等の電気伝導良好な材質が好ましい。 FIG. 6A is a schematic plan view showing an example of a reference example of the induction heating apparatus of the present invention, and FIG. 6B and FIG. 6C are examples of schematic side views thereof. In the induction heating apparatus of the present invention, the conductors 2a and 2b constituting the induction coil are shifted in the longitudinal direction of the metal plate 1 so as not to overlap, and the shifted conductors 2a and 2b are connected by the conductor 9, and the opposite side Is connected to the power source 8 by the conductor 7 to form a 1T induction coil, and the magnetic core 10 is provided between the end of the metal plate 1 and the connecting conductors 7 and 9. Here, the power supply 8 includes a capacitor, a matching transformer, and the like, although not shown. The induction coil used in the following description of the present invention is a generic term for a coil formed of a conductor in which a material to be heated is wound around one or more turns by a pipe, wire, plate, or the like made of a good electric conductor. There is no particular limitation on the shape surrounding the rectangle, whether it is rectangular or circular. The material of the conductor is preferably a material with good electrical conductivity such as copper or aluminum.

本発明では、先ず、図3に示すように誘導コイルの内側を通過する金属板1の表面側と裏面側の誘導コイルを構成する導体2aおよび2bを、それぞれ該金属板へ垂直投影した際に、表面側と裏面側の該導体の垂直投影像が、金属板の長手方向に対して互いにずれるように該導体を配置する。
すると、図4の側断面図(図3のA−A断面)に示すように(簡単にするため2a導体のみで説明をする)、金属板1には斜めに磁束4が貫通し、その磁束により誘導電流6aが発生する。したがって、斜めに電流パスが広がることで生じた誘導電流6aの浸透深さδが板厚tよりも大きくても、渦電流は流れるようになる。
In the present invention, first, when the conductors 2a and 2b constituting the induction coil on the front side and the back side of the metal plate 1 passing through the inside of the induction coil are vertically projected onto the metal plate, respectively, as shown in FIG. The conductors are arranged so that the vertically projected images of the conductors on the front side and the back side are shifted from each other with respect to the longitudinal direction of the metal plate.
Then, as shown in the side sectional view of FIG. 4 (AA cross section of FIG. 3) (only the 2a conductor will be described for the sake of simplicity), the magnetic flux 4 penetrates the metal plate 1 obliquely, and the magnetic flux As a result, an induced current 6a is generated. Therefore, even if the penetration depth δ of the induced current 6a generated by the current path extending obliquely is larger than the plate thickness t, the eddy current flows.

誘導コイル2aと2bとは金属板進行方向でずれて配置しているため、誘導コイル2aと2bとで発生した誘導電流6aと6bとは干渉することがないため、金属板1全体では、図5に示す様な環状電流が発生し、金属板1が非磁性材でも加熱することが可能になる。   Since the induction coils 2a and 2b are arranged so as to be shifted in the traveling direction of the metal plate, the induction currents 6a and 6b generated in the induction coils 2a and 2b do not interfere with each other. An annular current as shown in FIG. 5 is generated, and the metal plate 1 can be heated even with a non-magnetic material.

ところが、金属板端部を流れる電流は、表裏の誘導コイル2aと2bとを結ぶ導体9、あるいは表裏の誘導コイル2aと2bと電源とを結ぶ導体7を流れる一次電流との間のリアクタンスを小さくしようとするため、板の端部に寄せられてしまうため電流路が狭くなってしまうこと、導体7及び導体9を流れる一次電流により発生する磁束が、距離の最も短い金属板端部を集中的に貫通してしまうこと、金属板端部は、中央部に比べ加熱時間がd3の距離分だけ多く加熱されてしまうこと等により、金属板端部は過加熱になりやすい。   However, the current flowing through the end portion of the metal plate reduces the reactance between the conductor 9 connecting the front and back induction coils 2a and 2b or the primary current flowing through the conductor 7 connecting the front and back induction coils 2a and 2b and the power source. As a result, the current path becomes narrow because it is moved toward the end of the plate, and the magnetic flux generated by the primary current flowing through the conductor 7 and the conductor 9 concentrates on the end of the metal plate with the shortest distance. The end of the metal plate tends to be overheated because the end of the metal plate is heated by a distance corresponding to the distance d3 compared to the central portion.

そこで、本発明では図6(a)に示すように金属板1の端部(図の右端部)と導体7、金属板1の端部(図の左端部)と導体9との間に磁性体コア10を設置する。磁性体コアは、電磁鋼板やアモルファス金属、フェライトコアなどの透磁率の高い磁性材を用いればよく、磁束飽和が生じない様に十分な断面積を確保するともに、貫通する磁束により発熱が懸念される場合には、磁性コアに冷却銅板などの冷却装置を密着させる冷却構造あるいは外部ファンによる強制冷却装置等を設ければ良い。   Therefore, in the present invention, as shown in FIG. 6 (a), there is magnetism between the end of the metal plate 1 (right end in the figure) and the conductor 7, and between the end of the metal plate 1 (left end in the figure) and the conductor 9. The body core 10 is installed. The magnetic core may be made of a magnetic material having a high magnetic permeability such as an electromagnetic steel plate, amorphous metal, or ferrite core. In addition to ensuring a sufficient cross-sectional area so that magnetic flux saturation does not occur, there is a concern about heat generation due to the penetrating magnetic flux. In this case, a cooling structure in which a cooling device such as a cooling copper plate is closely attached to the magnetic core or a forced cooling device using an external fan may be provided.

図6(b)は、図6(a)の側面図で、電源と反対側の側面である。図6(b)では、磁性体コア10を導体9に沿って、導体9と平行に配置している。また、図6(b)では、導体2aと導体2bを接続する導体9は斜めに配置してあるが、導体2aあるいは2bと同一平面になるように金属板のパスラインと平行に配置し、その後接続先の導体2 bあるいは2 aに垂直になるように接続してもよく、接続形態を規定するものではない。磁性体コア10を金属板1の端部と導体7や導体9との間に設置することにより、導体9を流れる一次電流により発生した磁束は、金属板1の端部を貫通する前に磁気抵抗の小さな磁性体コア10を選択的に通って導体9の外側へ回るため、金属板1を貫通する磁束が減少し金属板端部に発生する誘導電流は小さくなる。また、導体との間に磁性体コアが入るため、環状電流が一次電流に引かれて板端部に寄ろうとする効果も小さくなる。その結果、金属板端部を流れる電流の電流密度は小さくなり、過加熱が抑制される。上記の内容は導体9と反対側の導体7も同様である。   FIG. 6 (b) is a side view of FIG. 6 (a), which is the side opposite to the power source. In FIG. 6B, the magnetic core 10 is arranged along the conductor 9 in parallel with the conductor 9. In FIG. 6 (b), the conductor 2a and the conductor 9 connecting the conductor 2b are arranged obliquely, but arranged parallel to the pass line of the metal plate so as to be flush with the conductor 2a or 2b, Thereafter, the connection may be made perpendicular to the connection conductor 2 b or 2 a, and the connection form is not specified. By installing the magnetic core 10 between the end of the metal plate 1 and the conductor 7 or 9, the magnetic flux generated by the primary current flowing through the conductor 9 is magnetic before passing through the end of the metal plate 1. Since the magnetic core 10 having a small resistance is selectively passed to the outside of the conductor 9, the magnetic flux penetrating the metal plate 1 is reduced and the induced current generated at the end of the metal plate is reduced. In addition, since the magnetic core is inserted between the conductors, the effect that the annular current is attracted by the primary current and tends to approach the end of the plate is reduced. As a result, the current density of the current flowing through the end portion of the metal plate is reduced, and overheating is suppressed. The same applies to the conductor 7 opposite to the conductor 9.

ここで、磁性体コア10の配置は、図6(b)のように導体9と平行に配置する方法以外に、図6(c)のように金属板と垂直な方向でもよく、金属板端部と導体9との間にあれば磁束は選択的に磁気抵抗の小さな磁性体コアを通るため、上記のような効果が得られるが、導体9で発生する磁束は、導体の一次電流に垂直に発生することから、図6(b)のように発生した磁束が通りやすい方向に合わせて設置する方がより効果的である。磁性体コアの幅は、導体2aと2bを全てカバーする必要は無く、磁性体コアの透磁率などにも左右されることから適宜実験で最適な範囲を求めればよい。   Here, the magnetic core 10 may be arranged in a direction perpendicular to the metal plate as shown in FIG. 6C, in addition to the method of arranging it in parallel with the conductor 9 as shown in FIG. Since the magnetic flux selectively passes through the magnetic core having a small magnetic resistance if it is between the conductor 9 and the conductor 9, the above effect can be obtained. However, the magnetic flux generated in the conductor 9 is perpendicular to the primary current of the conductor. Therefore, it is more effective to install according to the direction in which the generated magnetic flux easily passes as shown in FIG. 6 (b). The width of the magnetic core does not need to cover all of the conductors 2a and 2b, and depends on the magnetic permeability of the magnetic core and the like.

あるいは、図7(a)に示す様に、両方の磁性体コア10それぞれが、金属板両端部の外側に位置する導体7や導体9の金属板側の面及び上下面を囲むように配置すると良い。すなわち、図7(b)の側面図、図7(c)のA-A断面図に示す様に、導体9を磁性体コア10が囲む様にすることにより、導体9で発生した磁束を金属板1に貫通させずに、強制的に磁性体コア10内を通すことにより、金属板端部の電流密度を下げて過加熱を防止することができる。
磁性体コアは、接続導体全てを囲う必要は無く、適宜温度分布を測定しながら最適な範囲を定めればよい。
Alternatively, as shown in FIG. 7 (a), both magnetic cores 10 are arranged so as to surround the metal plate side surface and the upper and lower surfaces of the conductor 7 and the conductor 9 located outside the both ends of the metal plate. good. That is, as shown in the side view of FIG. 7B and the AA cross-sectional view of FIG. 7C, the magnetic core 10 surrounds the conductor 9 so that the magnetic flux generated in the conductor 9 is reduced to the metal plate 1. By forcibly passing through the magnetic core 10 without penetrating it, the current density at the end of the metal plate can be lowered to prevent overheating.
The magnetic core does not need to surround all the connecting conductors, and an optimal range may be determined while measuring the temperature distribution as appropriate.

以上説明したように、本加熱装置および加熱方法は、板厚によらず、また磁性・非磁性を問わず効果的に加熱することが可能となるため、例えば鉄鋼材料の様にキュリー点前後で冶金上の特性が大きく変化する材料であっても、パワーを落とすことなく磁性域から非磁性域まで自在にヒートパターンが実現できるため、さまざまな冶金特性を持つ材料を生産することが可能となる。また、鋼板やアルミ板などの薄板の熱処理において現在主流のラジアント式チューブ式の間接ガス加熱では、非加熱物の温度が高くなりラジアントチューブ表面温度との差が小さくなると加熱効率も下がり、昇温速度も遅くなるが、本加熱装置では、温度域によらず自在な加熱速度で高効率に実現することができる。更に、ガス間接加熱方式では被加熱材の板幅や板厚、種類により炉温変更する場合には、炉の熱慣性のため設定温度になるまでに時間がかかるため、設定炉温になるまでの間は温度が非定常状態になるため品質が確保できなくなるため、繋ぎ材を使うなど生産上の制約やスケジュール上のネックが発生するなどの問題があるが、本加熱装置ではそれらの制約がなくなり、自由に加熱ができるため操業上のメリットは多大である。   As described above, the present heating device and heating method can effectively heat regardless of the plate thickness, regardless of whether it is magnetic or non-magnetic. Even if the metallurgical properties change significantly, the heat pattern can be realized freely from the magnetic region to the non-magnetic region without reducing the power, making it possible to produce materials with various metallurgical properties. . In addition, the current mainstream radiant tube-type indirect gas heating in the heat treatment of thin plates such as steel plates and aluminum plates reduces the heating efficiency and increases the temperature when the temperature of the non-heated material increases and the difference from the surface temperature of the radiant tube decreases. Although the speed is also slow, this heating device can be realized with high efficiency at any heating speed regardless of the temperature range. Furthermore, in the gas indirect heating method, when the furnace temperature is changed depending on the width, thickness, and type of the material to be heated, it takes time to reach the set temperature due to the thermal inertia of the furnace. During this period, the temperature becomes unsteady and quality cannot be ensured.Therefore, there are problems such as production constraints such as the use of binders and schedule bottlenecks. Since it can be heated up freely, there are great operational merits.

本加熱装置では、使用する加熱電源周波数は、特に制約は受けることがないため、扱いやすく電源の安価な比較的低い周波数を使うことができることから、高周波加熱で問題となるコイル電圧の高電圧化なども避けることが容易であり、ハード上の制約が大幅に緩和される。   In this heating device, the heating power supply frequency to be used is not particularly restricted, and it is possible to use a relatively low frequency that is easy to handle and inexpensive, so the coil voltage that is a problem in high frequency heating is increased. Etc. are easy to avoid, and hardware restrictions are greatly eased.

本発明による誘導加熱装置は、サイズ、品種を選ばず1台の装置で広範囲に対応が可能で、かつ、加熱温度分布も、これまでの誘導加熱装置で問題となっていた板端部の過加熱を防止するだけではなく、金属板端部の温度をだけを低く加熱で切るなど、板幅全体にわたる自在な制御が可能で、温度分布を精密に狙った温度分布に制御できる従来には無い特徴を持つ優れた金属板の加熱装置である。   The induction heating apparatus according to the present invention can deal with a wide range with a single apparatus of any size and variety, and the heating temperature distribution is excessive at the edge of the plate, which has been a problem with conventional induction heating apparatuses. In addition to preventing heating, it is possible to freely control the entire width of the plate, such as cutting the temperature at the end of the metal plate with low heating, and there is no conventional one that can control the temperature distribution precisely to the temperature distribution. It is an excellent metal plate heating device with features.

本発明の効果を確認するため、0.6mm厚×600mm幅の非磁性鋼であるSUS304を用い通板しながら加熱する実験を行った。   In order to confirm the effect of the present invention, an experiment was conducted in which SUS304, which is a nonmagnetic steel having a thickness of 0.6 mm × 600 mm, was used while heating.

使用した電源は、10KHz、max100kWの高周波電源で、共振周波数を合わせるための整合用コンデンサ容量を増減し、整合をとるようにした。使用した誘導コイルは、幅200mm、板厚10mmの銅板に、外形10mm、内径8mmの水冷銅パイプを鋼板と反対側(外側)にロウ付けした水冷銅板製で、1Tの誘導コイルとして実験を行った。本実施例において導体は、銅板と銅パイプの両方を指す。磁性・非磁性加熱が可能なTF方式では、被加熱材と誘導コイルとのギャップは、通常100mm以下に近接させないと熱効率が著しく低下して加熱が困難になるが、本実施例では倍のギャップである200mmで実験を行った。   The power source used was a high frequency power source of 10 KHz, max 100 kW, and the matching capacitor capacity for matching the resonance frequency was increased or decreased to achieve matching. The induction coil used was made of a water-cooled copper plate with a water-cooled copper pipe with a width of 200 mm and a thickness of 10 mm brazed to the opposite side (outside) of a steel-cooled copper pipe with an outer diameter of 10 mm and an inner diameter of 8 mm. It was. In this embodiment, the conductor refers to both a copper plate and a copper pipe. In the TF method that can perform magnetic and nonmagnetic heating, the gap between the material to be heated and the induction coil is usually not close to 100 mm or less, so that the thermal efficiency is significantly reduced and heating becomes difficult. In this example, the gap is doubled. The experiment was conducted at 200 mm.

参考例)
実験は、図6(a)に示す誘導コイル間距離Lを300mmとし、試験材板端部から表裏誘導コイルをつなぐ導体9(水冷銅板と同じく幅200mm、板厚10mm)を300mm離して配置し、導体9と試験材板端部の中間に磁性体コアとして板状のフェライトコア(横150mm×縦150mm×厚20mm)を図6(b)の様に置いて、6mpmで走行しながら加熱した。
(実施例)
導体9の周りを図7(c)のようにコの字形状のフェライトコア(横150mm×縦150mm×厚20mm、高さ50mm)を用いた以外は、参考例と同様の条件にて加熱した。
(比較例)
フェライトコアを用いない以外は、参考例と同様の条件にて加熱した。
上記3ケースで板端部と板中央部との温度偏差を比較した。測温位置を板端部と中央部のみとしたのは、この加熱の場合、最大昇温温度が板端部で最小昇温温度が板中央部になることが実験であらかじめわかっていたからである。比較は、昇温量が異なるため、試験鋼板幅方向中央と板端部から10mm点に溶着した熱電対の昇温後の温度偏差の比(温度偏差比=板端部温度Te÷板中央温度Tc)で行った。
( Reference example)
In the experiment, the distance L between the induction coils shown in FIG. 6 (a) is set to 300 mm, and the conductor 9 (width 200 mm, thickness 10 mm as with the water-cooled copper plate) connecting the front and back induction coils from the end of the test material plate is arranged 300 mm apart. A plate-like ferrite core (width 150 mm × length 150 mm × thickness 20 mm) as a magnetic core is placed between the conductor 9 and the end of the test material plate as shown in FIG. 6B and heated while running at 6 mpm. .
( Example)
The periphery of the conductor 9 was heated under the same conditions as in the reference example except that a U-shaped ferrite core (width 150 mm × length 150 mm × thickness 20 mm, height 50 mm) was used as shown in FIG. .
(Comparative example)
Heating was performed under the same conditions as in the Reference Example except that no ferrite core was used.
The temperature deviation between the plate end and the plate center in the above three cases was compared. The reason for setting the temperature measurement position only to the plate end portion and the center portion is that, in this heating, it has been known in advance that the maximum temperature rise temperature is the plate end portion and the minimum temperature rise temperature is the plate center portion. In comparison, since the temperature rise is different, the ratio of the temperature deviation after temperature rise of the thermocouple welded at the 10mm point from the center of the test steel plate in the width direction (temperature deviation ratio = plate end temperature Te ÷ plate center temperature) Tc).

結果を表1に示す。

Figure 0004890278
The results are shown in Table 1.
Figure 0004890278

表1から明らかな様に、板端部と導体9の間に何も置かなかった比較例と比べ、板端部と導体との間にフェライトコアを置いた場合には、端部を流れる誘導電流密度が低下し21%に温度偏差比は減少し、導体をフェライトで囲った実施例の場合には、更に温度偏差は小さくなり15%まで減少することが確認できた。また、比較例の場合には、温度偏差が大きく熱応力により板端部が波形状に変形したのに対し、本発明の実施例ではまったく変形することもなかった。 As is clear from Table 1, when a ferrite core is placed between the plate end and the conductor, compared to the comparative example in which nothing is placed between the plate end and the conductor 9, the induction flowing through the end As the current density decreased, the temperature deviation ratio decreased to 21%, and in the case of the example in which the conductor was surrounded by ferrite, it was confirmed that the temperature deviation was further reduced to 15%. Further, in the case of the comparative example, the temperature deviation was large and the plate end portion was deformed into a wave shape by the thermal stress, whereas in the embodiment of the present invention, it was not deformed at all.

従来のLF式誘導加熱を示す模式図である。It is a schematic diagram which shows the conventional LF type induction heating. 従来のLF式誘導加熱の金属薄板の断面に流れる誘導電流を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the induction current which flows into the cross section of the conventional LF type induction heating metal thin plate. 誘導コイルを進行方向でずらした誘導加熱装置の平面模式図である。It is a plane schematic diagram of the induction heating apparatus which shifted the induction coil in the advancing direction. 図3のA-A断面での磁束と発生する誘導電流を説明する断面模式図である。FIG. 4 is a schematic cross-sectional view illustrating magnetic flux and generated induced current in the AA cross section of FIG. 図3のコイル配置で誘導電流が流れる様子を示す平面模式図である。FIG. 4 is a schematic plan view showing how an induced current flows in the coil arrangement of FIG. 3. 本発明による誘導加熱装置の平面模式図である。It is a plane schematic diagram of the induction heating apparatus by this invention. 板端部と導体との間に設置する磁性体の配置例を示す側面模式図である。It is a side surface schematic diagram which shows the example of arrangement | positioning of the magnetic body installed between a board edge part and a conductor. 板端部と導体との間に設置する磁性体の他の配置例を示す側面模式図である。It is a side surface schematic diagram which shows the other example of arrangement | positioning of the magnetic body installed between a board edge part and a conductor. 本発明による誘導加熱装置の平面模式図である。It is a plane schematic diagram of the induction heating apparatus by this invention. 図7(a)の側面模式図である。It is a side surface schematic diagram of Fig.7 (a). 図7(b)のA-A断面模式図である。It is an AA cross-sectional schematic diagram of FIG.7 (b).

符号の説明Explanation of symbols

1 金属板
2 誘導コイル
2a、2b 誘導コイル導体
3 高周波電源
4 磁束
5 一次電流の方向
6a 誘導電流の流れる範囲
6a、6b 誘導電流の向き
7 導体
8 電源
9 導体
10 磁性体コア
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Induction coil 2a, 2b Induction coil conductor 3 High frequency power supply 4 Magnetic flux 5 Direction of primary current 6a Range of induced current flow 6a, 6b Direction of induction current 7 Conductor 8 Power supply 9 Conductor 10 Magnetic core

Claims (3)

周回する誘導コイルの内側を通過する金属板を誘導加熱する装置であって、金属板の表面側と裏面側の誘導コイルを構成する導体を、それぞれ前記金属板へ垂直投影した際の垂直投影像において、前記表面側と裏面側の導体同士が、前記金属板の長手方向に対して互いに重ならないように、前記導体同士をずらして配置するとともに、前記金属板の両端部とその両外側に位置する前記導体との間に、それぞれ磁性体コアを設け、前記それぞれの磁性体コアが、前記金属板両端部の外側に位置する導体に沿って、当該導体と平行に配置され、且つ、前記それぞれの磁性体コアが、前記金属板両端部の外側に位置する導体の金属板側の面、及び当該導体の金属板側の面に対して垂直な面を囲っていることを特徴とする誘導加熱装置。 An apparatus for inductively heating a metal plate that passes through an inside of a circulating induction coil, wherein the conductors constituting the induction coil on the front side and the back side of the metal plate are vertically projected onto the metal plate, respectively. The conductors on the front surface side and the back surface side are arranged so as to be shifted from each other so that the conductors on the front surface side and the back surface side do not overlap with each other in the longitudinal direction of the metal plate. A magnetic core is provided between each of the conductors, and each of the magnetic cores is disposed in parallel with the conductor along a conductor located outside both ends of the metal plate; and Inductive heating , wherein the magnetic core surrounds a surface on the metal plate side of the conductor located outside both ends of the metal plate and a surface perpendicular to the surface on the metal plate side of the conductor apparatus. 前記磁性体コアがコの字状であることを特徴とする請求項1に記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein the magnetic core is U-shaped . 前記磁性体コアは、冷却銅板が密着して冷却されている、又は、外部ファンによる強制冷却がなされていることを特徴とする請求項1又は2に記載の誘導加熱装置。 The induction heating apparatus according to claim 1 , wherein the magnetic core is cooled by a close contact with a cooling copper plate or forced cooling by an external fan .
JP2007016272A 2007-01-26 2007-01-26 Metal plate induction heating device Active JP4890278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016272A JP4890278B2 (en) 2007-01-26 2007-01-26 Metal plate induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016272A JP4890278B2 (en) 2007-01-26 2007-01-26 Metal plate induction heating device

Publications (2)

Publication Number Publication Date
JP2008186589A JP2008186589A (en) 2008-08-14
JP4890278B2 true JP4890278B2 (en) 2012-03-07

Family

ID=39729492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016272A Active JP4890278B2 (en) 2007-01-26 2007-01-26 Metal plate induction heating device

Country Status (1)

Country Link
JP (1) JP4890278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190860B1 (en) 2014-09-05 2019-08-21 Nippon Steel Corporation Induction heating device for metal strip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227375B2 (en) * 1972-06-14 1977-07-20
JPS62281291A (en) * 1986-05-30 1987-12-07 新日本製鐵株式会社 Induction heater
JPS6393093A (en) * 1986-10-08 1988-04-23 芝浦メカトロニクス株式会社 Vending machine
JP3337309B2 (en) * 1994-04-01 2002-10-21 三菱重工業株式会社 Induction heater for paint baking
JP4153895B2 (en) * 2003-12-25 2008-09-24 新日本製鐵株式会社 Induction heating apparatus and induction heating method for metal strip

Also Published As

Publication number Publication date
JP2008186589A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4912912B2 (en) Induction heating device
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
US9888529B2 (en) Induction heating device for a metal plate
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
US20080264932A1 (en) Induction Heating Device for a Metal Plate
JP6323564B2 (en) Induction heating device for metal strip
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
JP4926608B2 (en) Induction heating apparatus and induction heating method for metal plate
JP4890278B2 (en) Metal plate induction heating device
JP4987678B2 (en) Induction heating apparatus and induction heating method
JP5015345B2 (en) Induction heating apparatus and induction heating method for metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R151 Written notification of patent or utility model registration

Ref document number: 4890278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350