JP3707724B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP3707724B2
JP3707724B2 JP2000141281A JP2000141281A JP3707724B2 JP 3707724 B2 JP3707724 B2 JP 3707724B2 JP 2000141281 A JP2000141281 A JP 2000141281A JP 2000141281 A JP2000141281 A JP 2000141281A JP 3707724 B2 JP3707724 B2 JP 3707724B2
Authority
JP
Japan
Prior art keywords
copper plate
induction heating
plate member
solenoid coil
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000141281A
Other languages
Japanese (ja)
Other versions
JP2001326062A (en
Inventor
俊信 江口
秀夫 坂本
重史 桂
敏明 天笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
JFE Steel Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical JFE Steel Corp
Priority to JP2000141281A priority Critical patent/JP3707724B2/en
Publication of JP2001326062A publication Critical patent/JP2001326062A/en
Application granted granted Critical
Publication of JP3707724B2 publication Critical patent/JP3707724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば鉄鋼用熱間圧延ライン等のような搬送ラインの途中に配設され、搬送される被加熱部材を連続的に加熱する誘導加熱装置に関するものである。
【0002】
【従来の技術】
図9は例えば特開平10−134949号公報等に示されたこの種従来の誘導加熱装置の構成を示す側断面図、図10は図9における誘導加熱装置を示す正面図、図11は図9における鉄心の端部の磁束の分布状態を示す側面図、図12は図9における鉄心の端部の磁束の分布状態を示す斜視図である。
【0003】
図において、1は例えば鉄鋼用熱間圧延ラインにおいて、前段の粗圧延機で粗圧延され、テーブルローラ2により搬送される被加熱部材としての鋼帯、3はこの鋼帯1の幅方向を周回するように長円形状に銅管を巻回して形成されるソレノイドコイルであり、コイル端子部4を介して電源供給装置(図示せず)から高周波電流が供給されるようになっている。5はソレノイドコイル3を支持するコイル支持架台、6はソレノイドコイル3の内側に配設され、鋼帯1の通路7を形成する耐熱部材、8はソレノイドコイル3の外側の磁路に沿って、鋼帯1の幅方向に複数個並設されたコ字形状の鉄心、9はソレノイドコイル3の磁束10が外部に漏れるのを防止するシールド銅板部材である。
【0004】
一般に、粗圧延された板状の被加熱部材としての鋼帯1は、テーブルローラ2によって搬送され次工程に送られる間に放熱して温度が低下する。そして、途中に上記のように構成される誘導加熱装置を配置し、ソレノイドコイル3の内側に形成される通路7内を通過させることにより、鋼帯1を誘導加熱して搬送中の温度低下を補償するように成されている。
【0005】
又、ソレノイドコイル3に高周波電流が流れると、鋼帯1の搬送方向に沿って交番磁束10が発生し鋼帯1が加熱されるが、この時、この磁束10が外部に漏れると、この漏れ磁束によりテーブルローラ2が加熱され、鋼帯1とテーブルローラ2の接触位置においてスパークが発生する恐れがあるため、鉄心8およびシールド銅板部材9により磁束10が外部に漏れるのを遮蔽し、スパークが発生するのを防止している。
さらに又、図から明らかなように鉄心8がコ字形状をしているのは、図11に示すように磁束10の流れを変えることにより、ソレノイドコイル3を形成している銅管への鎖交磁束を減らすためで、銅管自体の誘導加熱を低減して過加熱を防止するのが目的である。
【0006】
【発明が解決しようとする課題】
従来の誘導加熱装置は以上のように、鉄心8およびシールド銅板部材9を設けることにより、磁束10が外部へ漏れるのを遮蔽してスパークの発生を防止し、又、鉄心8をコ字形状とすることにより、鉄心8を形成する銅管への鎖交磁束を減らして銅管自体の過加熱を防止している。
しかしながら、鉄心8を鋼帯1の幅方向に複数個並設した構成としているので、図12に示すように磁束10が鉄心8の位置に集中されるため、ソレノイドコイル3の最端部の銅管に鎖交する磁束10は、鉄心8が無い部位より鉄心8と対応する部位の方が多くなり、この部位において局所発熱が大きくなる。このため、鉄心8をコ字形状としても銅管の過加熱を十分に低減できないという問題がある。
【0007】
そして、この問題はソレノイドコイル3の周長に対する鉄心8の配置割合が小さくなるほど顕著となるが、コイル端子部4やコイル支持架台5等の存在により、鉄心8をソレノイドコイル3の周囲全域に配置すること実質的に困難であるため、銅管の鉄心8と対応する部位の局所発熱を小さくすることができず、場合によっては銅管の劣化から水漏れが起きる。すると、ソレノイドコイル3への通電電流制限せざるを得なくなるため、通電電流を大きくして加熱電力密度を高めることができず、誘導加熱装置1台当りの加熱容量を大きくすることができないという問題もある。
【0008】
この発明は上記のような問題を解消するためになされたもので、ソレノイドコイルを形成する銅管の局所発熱を低減することにより加熱容量の大きい誘導加熱装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
この発明の請求項1に係る誘導加熱装置は、ラインを搬送される被加熱部材を内側に通過させて誘導加熱するソレノイドコイルの外側の磁路に沿って複数の鉄心が平行に配設された誘導加熱装置において、
各鉄心の両端近傍に、ソレノイドコイルの巻回領域に沿った額縁状に形成され最外側に配設される第1の銅板部材、ソレノイドコイルの巻回領域に沿った周上に少なくとも1箇所切断部を有した額縁状に形成され第1の銅板部材と所定の間隙を介して配設される第2の銅板部材、および磁性板状部材を積層して形成され両銅板部材間の間隙内に配設される積層鉄心部材を備えたものである。
【0010】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態を図に基づいて説明する。図1はこの発明の実施の形態1における誘導加熱装置の構成を示す側断面図、図2は図1における誘導加熱装置を示す正面図、図3は図1に示す第1の銅板部材の構成を示す斜視図、図4は図1に示す第2の銅板部材の構成を示す斜視図、図5は図4におけるとは異なる第2の銅板部材の構成を示す斜視図、図6は図1に示す積層鉄心部材の構成を示す斜視図、図7は図1に示す誘導加熱装置の鉄心の端部近傍における磁束の分布状態を示す断面図、図8は図1における誘導加熱装置の最端部銅管各部の表面局所最大昇温値を従来装置におけると比較して示す図である。
【0011】
図において、11は例えば鉄鋼用熱間圧延ラインにおいて、前段の粗圧延機で粗圧延され、テーブルローラ12により搬送される被加熱部材としての鋼帯、13はこの鋼帯11の幅方向を周回するように長円形状に銅管を巻回して形成されるソレノイドコイルであり、コイル端子部14を介して電源供給装置15から高周波電流が供給されるようになっている。16はソレノイドコイル13を支持するコイル支持架台、17はソレノイドコイル13の内側に配設され、鋼帯11の通路18を形成する耐熱部材である。そして、これまでの構成は従来の誘導加熱装置とほぼ同様である。
【0012】
19はソレノイドコイル3の外側の磁路に沿って、鋼帯11の幅方向に複数個並設された直方体状の鉄心、20は図3に示すように一側に切欠き21a、およびこの切欠き21aの両端部に90゜折曲された折曲縁部21bがそれぞれ形成された一対の銅板21を、両切欠き21aが一致するように組み合わせて窓部21cを形成し、折曲縁部21b同士を例えばボルト22で締結することにより額縁状に一体化された第1の銅板部材で、耐熱部材17の両端に窓部21cが通路18と一致するように配設されており、外縁部で各鉄心19の両端を支持している。
【0013】
23は図4に示すように銅板24の中央部に窓部24aを形成して額縁状に成し、その周上の少なくとも1個所に切断部24bを形成した第2の銅板部材で、窓部24aが耐熱部材17の外周に嵌合され、第1の銅板部材20の内側に所定の間隙を介して配設されている。25は例えば図6に示すように、珪素鋼板等のような磁性板状部材を積層して形成された複数の鉄心ブロック26を、組み合わせることによって窓部25aを形成して額縁状とした積層鉄心部材で、窓部25aが耐熱部材17の外周に嵌合され、第1および第2の銅板部材20、23間の間隙内に装着されている。
【0014】
上記のように構成された実施の形態1における誘導加熱装置においても、従来装置と同様にソレノイドコイル13に電源供給装置15から高周波電流が流れると、鋼帯11の搬送方向に沿って交番磁束27が発生し鋼帯11が加熱されるが、この時、交番磁束27の装置端部における流れは図7に示すような状態となっている。すなわち、第1の銅板部材20は額縁状に形成され、鋼帯11が搬送される通路18に対して電気的に1ループを形成しているため、磁束27が外部へ漏れるのを防止する遮蔽効果を有しているのに対し第2の銅板部材23は額縁状の周上に切断部24bが形成され、電気的に1ループを形成していないため、磁束27が外部へ漏れるのを防止する遮蔽効果はないが、磁束27が第2の銅板部材23自身を貫通するのは防止して遮蔽することができるので、磁束27の大部分が積層鉄心部材25内を流れて鉄心19に至る磁路を形成し、図からも明らかなように磁束27が最端部の銅管を鎖交するのは防止される。又、積層鉄心部材25はコイル端子部14やコイル支持架台16に遮られることなく、ソレノイドコイル13の巻回領域全周にわたって配置されているため、磁束27が鉄心19と対応する部位のみに集中することもなく均等となり、局所的に発熱が増減することもなくなる。
【0015】
図8は上記のように構成された実施の形態1における誘導加熱装置と、図9ないし図12で説明した従来の誘導加熱装置とにおけるソレノイドコイルの最端部に配置された銅管各部位の最大昇温値を比較した実験結果を示す図である。
まず、幅25mm×高さ25mm、厚み3mmの角銅管を、巻回寸法が幅2000mm×高さ210mmとなるように形成されたソレノイドコイル3、13に、本実施の形態1においては厚みが50mmの積層鉄心部材25、および幅が200mmの棒状の鉄心19を搬送される鋼帯11の幅方向に300mmの間隔で上、下に6個ずつ配置した構成とし、又、従来例においては幅が200mmのコ字形状の鉄心8を鋼帯の幅方向に300mmの間隔で上、下に6個ずつ配置した構成としたものに、それぞれ銅管内を流れる冷却水の流量は2.2m/sec、ソレノイドコイル3、13への投入電力は5000KWとして比較したもので、図中、横軸は最端部銅管表面の温度測定部位、縦軸は各部位における最大昇温値をそれぞれ示すものである。
【0016】
図から明らかなように、実線で示す本実施の形態1における最端部銅管表面の各部位の最大昇温値がほぼ均一であるのに対して、破線で示す従来例における最大昇温値は、鉄心8と対応する部位が他の部位より高く、特に幅方向最端部の部位の昇温値が一番高く、実施の形態1における昇温値と比較して約30%程度昇温値が高くなっている。
【0017】
このように上記実施の形態1によれば、ソレノイドコイル13の巻回領域に沿った額縁状に形成される第1の銅板部材20、ソレノイドコイル13の巻回領域に沿った円周上に、少なくとも1箇所切断部24bを有した額縁状に形成された第2の銅板部材23、および磁性板状部材を積層して形成され両銅板部材20、23間に配設される積層鉄心部材25を装置端部側に配置することにより、磁束27の大部分を積層鉄心部材25内に通し鉄心19へ流れるようにしたので、ソレノイドコイル13を形成する銅管の局所発熱を低減して銅管の劣化を抑制し、加熱容量の増大を図ることが可能になる。
【0018】
なお、上記構成では、一対の銅板21を組み合わせることにより第1の銅板部材20を形成するようにしているが、必ずしも分割構造とする必要はなく一枚の銅板で形成するようにしても良く、又、一枚の銅板24に窓部24aおよび切断部24bを加工して第2の銅板部材23を形成するようにしているが、図5に示すようにコ字形状に形成された2枚の銅板28を組み合わせることにより、窓部29aおよび切断部29bを形成して第2の銅板29とするようにしても良く、それぞれ上記実施の形態1におけると同様の効果を得ることができる。
【0019】
【発明の効果】
以上のように、この発明の請求項1によれば、ラインを搬送される被加熱部材を内側に通過させて誘導加熱するソレノイドコイルの外側の磁路に沿って複数の鉄心が平行に配設された誘導加熱装置において、
各鉄心の両端近傍に、ソレノイドコイルの巻回領域に沿った額縁状に形成され最外側に配設される第1の銅板部材、ソレノイドコイルの巻回領域に沿った周上に少なくとも1箇所切断部を有した額縁状に形成され第1の銅板部材と所定の間隙を介して配設される第2の銅板部材、および磁性板状部材を積層して形成され両銅板部材間の間隙内に配設される積層鉄心部材を備えたので、ソレノイドコイルを形成する銅管の局所発熱を低減して劣化を抑制し、加熱容量の大きい誘導加熱装置を提供することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における誘導加熱装置の構成を示す側断面図である。
【図2】 図1における誘導加熱装置を示す正面図である。
【図3】 図1に示す第1の銅板部材の構成を示す斜視図である。
【図4】 図1に示す第2の銅板部材の構成を示す斜視図である。
【図5】 図4におけるとは異なる第2の銅板部材の構成を示す斜視図である。
【図6】 図1に示す積層鉄心部材の構成を示す斜視図である。
【図7】 図1に示す誘導加熱装置の鉄心の端部近傍における磁束の分布状態を示す断面図である。
【図8】 図1における誘導加熱装置の最端部銅管各部の表面局所最大昇温値を従来装置におけると比較して示す図である。
【図9】 従来の誘導加熱装置の構成を示す側断面図である。
【図10】 図9における誘導加熱装置を示す正面図である。
【図11】 図9における鉄心の端部の磁束の分布状態を示す側面図である。
【図12】 図9における鉄心の端部の磁束の分布状態を示す斜視図である。
【符号の説明】
11 鋼帯、13 ソレノイドコイル、17 耐熱部材、18 通路、
19 鉄心、20 第1の銅板部材、21,24,28 銅板、
21c,24a,25a,29a 窓部、24b,29b 切断部、
23,29 第2の銅板部材、25 積層鉄心部材、27 磁束。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating apparatus that is disposed in the middle of a conveying line such as a hot rolling line for steel and continuously heats a member to be heated.
[0002]
[Prior art]
FIG. 9 is a side sectional view showing the structure of this kind of conventional induction heating apparatus disclosed in, for example, Japanese Patent Laid-Open No. 10-134949, FIG. 10 is a front view showing the induction heating apparatus in FIG. 9, and FIG. FIG. 12 is a perspective view showing a magnetic flux distribution state at the end portion of the iron core in FIG. 9.
[0003]
In the figure, reference numeral 1 denotes, for example, a steel strip as a member to be heated which is roughly rolled by a preceding roughing mill and conveyed by a table roller 2 in a hot rolling line for steel, and 3 circulates in the width direction of the steel strip 1. The solenoid coil is formed by winding a copper tube in an oval shape, and a high-frequency current is supplied from a power supply device (not shown) via the coil terminal portion 4. 5 is a coil support frame that supports the solenoid coil 3, 6 is a heat-resistant member that is disposed inside the solenoid coil 3 and forms the passage 7 of the steel strip 1, and 8 is along a magnetic path outside the solenoid coil 3, A plurality of U-shaped iron cores 9 arranged side by side in the width direction of the steel strip 1 are shield copper plate members 9 for preventing the magnetic flux 10 of the solenoid coil 3 from leaking to the outside.
[0004]
In general, the steel strip 1 as a plate-like member to be heated that has been roughly rolled is radiated while being transported by the table roller 2 and sent to the next process, and the temperature is lowered. And the induction heating apparatus comprised as mentioned above is arrange | positioned in the middle, and the steel strip 1 is induction-heated by passing the inside of the channel | path 7 formed inside the solenoid coil 3, and the temperature fall during conveyance is carried out. It is made to compensate.
[0005]
Further, when a high-frequency current flows through the solenoid coil 3, an alternating magnetic flux 10 is generated along the conveying direction of the steel strip 1 and the steel strip 1 is heated. At this time, if this magnetic flux 10 leaks to the outside, this leakage Since the table roller 2 is heated by the magnetic flux and sparks may occur at the contact position between the steel strip 1 and the table roller 2, the iron core 8 and the shield copper plate member 9 shield the magnetic flux 10 from leaking to the outside. It is prevented from occurring.
Furthermore, as apparent from the figure, the iron core 8 has a U-shape because the flow of the magnetic flux 10 is changed as shown in FIG. 11 to chain the copper tube forming the solenoid coil 3. The purpose is to reduce the induction flux of the copper tube itself and to prevent overheating in order to reduce the magnetic flux.
[0006]
[Problems to be solved by the invention]
As described above, the conventional induction heating apparatus is provided with the iron core 8 and the shield copper plate member 9, thereby preventing the magnetic flux 10 from leaking to the outside and preventing the occurrence of sparks. By doing so, the interlinkage magnetic flux to the copper pipe which forms the iron core 8 is reduced, and the overheating of the copper pipe itself is prevented.
However, since a plurality of iron cores 8 are arranged side by side in the width direction of the steel strip 1, the magnetic flux 10 is concentrated at the position of the iron core 8 as shown in FIG. The portion of the magnetic flux 10 interlinking with the tube that corresponds to the iron core 8 is greater than the portion that does not have the iron core 8, and local heat generation is greater at this portion. Therefore, it is impossible to sufficiently reduce the overheating of the copper tube even if the iron core 8 and U-shaped.
[0007]
This problem becomes more pronounced as the arrangement ratio of the iron core 8 with respect to the circumference of the solenoid coil 3 becomes smaller. Since it is also substantially difficult to do so, local heat generation at a portion corresponding to the iron core 8 of the copper tube cannot be reduced, and in some cases, water leakage occurs due to deterioration of the copper tube . Then, because such forced to limit the current supplied to the solenoid coil 3, can not be increased significantly to heating power density electric current, it is possible to increase the heating capacity of the induction heating device per vehicle There is also a problem that it cannot be done .
[0008]
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an induction heating apparatus having a large heating capacity by reducing local heat generation of a copper pipe forming a solenoid coil. is there.
[0009]
[Means for Solving the Problems]
In the induction heating apparatus according to the first aspect of the present invention, a plurality of iron cores are arranged in parallel along the magnetic path outside the solenoid coil for inductively heating the member to be heated conveyed through the line to the inside. In induction heating equipment,
A first copper plate member formed in a frame shape along the winding region of the solenoid coil and disposed on the outermost side in the vicinity of both ends of each iron core, at least one cut on the circumference along the winding region of the solenoid coil The first copper plate member formed in the shape of a frame having a portion, the second copper plate member disposed via a predetermined gap, and the magnetic plate member are laminated and formed in the gap between the copper plate members. The laminated core member is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. 1 is a side sectional view showing the configuration of the induction heating apparatus according to Embodiment 1 of the present invention, FIG. 2 is a front view showing the induction heating apparatus in FIG. 1, and FIG. 3 is the configuration of the first copper plate member shown in FIG. 4 is a perspective view showing the configuration of the second copper plate member shown in FIG. 1, FIG. 5 is a perspective view showing the configuration of the second copper plate member different from FIG. 4, and FIG. 7 is a perspective view showing the configuration of the laminated core member shown in FIG. 7, FIG. 7 is a cross-sectional view showing the distribution state of magnetic flux in the vicinity of the end of the iron core of the induction heating device shown in FIG. 1, and FIG. It is a figure which shows the surface local maximum temperature rise value of each part of a copper pipe compared with the conventional apparatus.
[0011]
In the figure, reference numeral 11 denotes a steel strip as a member to be heated which is roughly rolled by a preceding roughing mill in a hot rolling line for steel and is conveyed by a table roller 12, and 13 circulates in the width direction of the steel strip 11. The solenoid coil is formed by winding a copper tube in an oval shape so that a high-frequency current is supplied from the power supply device 15 via the coil terminal portion 14. Reference numeral 16 denotes a coil support frame that supports the solenoid coil 13, and 17 denotes a heat-resistant member that is disposed inside the solenoid coil 13 and forms the passage 18 of the steel strip 11. And the structure until now is substantially the same as the conventional induction heating apparatus.
[0012]
19 is a rectangular parallelepiped core arranged in parallel in the width direction of the steel strip 11 along the magnetic path outside the solenoid coil 3, and 20 is a notch 21a on one side as shown in FIG. A pair of copper plates 21 each formed with a bent edge portion 21b bent at 90 ° at both ends of the notch 21a are combined so that the notches 21a coincide with each other to form a window portion 21c. For example, the first copper plate member integrated into a frame shape by fastening the bolts 21b with bolts 22, for example, is disposed at both ends of the heat-resistant member 17 so that the window portions 21c coincide with the passages 18, and the outer edge portion. The both ends of each iron core 19 are supported.
[0013]
As shown in FIG. 4, a window portion 24a is formed in the center of the copper plate 24 to form a frame, and a second copper plate member having a cut portion 24b formed in at least one place on the periphery thereof. 24a is fitted to the outer periphery of the heat-resistant member 17, and is disposed inside the first copper plate member 20 with a predetermined gap. For example, as shown in FIG. 6, a laminated iron core 25 is formed in a frame shape by forming a window portion 25a by combining a plurality of iron core blocks 26 formed by laminating magnetic plate members such as silicon steel plates. As a member, the window portion 25 a is fitted to the outer periphery of the heat-resistant member 17 and is mounted in the gap between the first and second copper plate members 20 and 23.
[0014]
Also in the induction heating device according to the first embodiment configured as described above, when a high-frequency current flows from the power supply device 15 to the solenoid coil 13 as in the conventional device, the alternating magnetic flux 27 along the conveying direction of the steel strip 11. Is generated and the steel strip 11 is heated. At this time, the flow of the alternating magnetic flux 27 at the device end is in a state as shown in FIG. That is, since the first copper plate member 20 is formed in a frame shape and electrically forms one loop with respect to the passage 18 through which the steel strip 11 is conveyed, the shield that prevents the magnetic flux 27 from leaking to the outside. second copper plate member 23 while has the effect cutting portion 24b is formed in a frame-like peripheral on, because it does not form an electrically one loop, prevent the magnetic flux 27 from leaking to the outside However, since the magnetic flux 27 can be prevented from penetrating through the second copper plate member 23 itself, most of the magnetic flux 27 flows through the laminated iron core member 25 and reaches the iron core 19. A magnetic path is formed, and the magnetic flux 27 is prevented from interlinking with the copper tube at the end as is apparent from the figure. Further, since the laminated core member 25 is arranged over the entire circumference of the winding region of the solenoid coil 13 without being blocked by the coil terminal portion 14 or the coil support frame 16, the magnetic flux 27 is concentrated only on the portion corresponding to the core 19. It becomes equal without doing, and fever does not increase or decrease locally.
[0015]
FIG. 8 shows each part of the copper tube arranged at the end of the solenoid coil in the induction heating device according to the first embodiment configured as described above and the conventional induction heating device described in FIGS. It is a figure which shows the experimental result which compared the maximum temperature rising value.
First, a rectangular copper tube having a width of 25 mm × a height of 25 mm and a thickness of 3 mm is formed on the solenoid coils 3 and 13 formed so that the winding dimensions are a width of 2000 mm × a height of 210 mm. The laminated iron core member 25 of 50 mm and the rod-shaped iron core 19 having a width of 200 mm are arranged at a distance of 300 mm in the width direction of the steel strip 11, and six pieces are arranged at the bottom. Has a structure in which six U-shaped iron cores 8 of 200 mm are arranged at intervals of 300 mm in the width direction of the steel strip, respectively, and the flow rate of cooling water flowing through the copper pipe is 2.2 m / In comparison, the power input to the solenoid coils 3 and 13 is 5000 KW. In the figure, the horizontal axis indicates the temperature measurement part on the surface of the endmost copper tube, and the vertical axis indicates the maximum temperature rise value at each part. In The
[0016]
As is clear from the figure, the maximum temperature rise value in each portion of the surface of the endmost copper tube in the first embodiment indicated by the solid line is substantially uniform, whereas the maximum temperature rise value in the conventional example indicated by the broken line is The portion corresponding to the iron core 8 is higher than the other portions, particularly the highest temperature rise value at the end portion in the width direction, which is about 30% higher than the temperature rise value in the first embodiment. The value is high.
[0017]
Thus, according to the first embodiment, the first copper plate member 20 formed in a frame shape along the winding region of the solenoid coil 13 and the circumference along the winding region of the solenoid coil 13, A laminated copper core member 25 formed by laminating a second copper plate member 23 formed in a frame shape having at least one cut portion 24b and a magnetic plate member and disposed between the copper plate members 20 and 23. By arranging the magnetic flux 27 on the device end side, most of the magnetic flux 27 passes through the laminated iron core member 25 and flows to the iron core 19, so that local heat generation of the copper pipe forming the solenoid coil 13 is reduced and the copper pipe It is possible to suppress deterioration and increase the heating capacity.
[0018]
In the above configuration, the first copper plate member 20 is formed by combining a pair of copper plates 21, but it is not necessarily required to have a divided structure, and may be formed of a single copper plate, Further, the second copper plate member 23 is formed by processing the window portion 24a and the cutting portion 24b on one copper plate 24, but the two pieces formed in a U-shape as shown in FIG. By combining the copper plate 28, the window portion 29a and the cut portion 29b may be formed as the second copper plate 29, and the same effects as in the first embodiment can be obtained.
[0019]
【The invention's effect】
As described above, according to the first aspect of the present invention, the plurality of iron cores are arranged in parallel along the magnetic path outside the solenoid coil that performs induction heating by passing the heated member conveyed on the inside to the inside. Inductive heating apparatus
A first copper plate member formed in a frame shape along the winding region of the solenoid coil and disposed on the outermost side in the vicinity of both ends of each iron core, at least one cut on the circumference along the winding region of the solenoid coil The first copper plate member formed in the shape of a frame having a portion, the second copper plate member disposed via a predetermined gap, and the magnetic plate member are laminated and formed in the gap between the copper plate members. Since the laminated core member is provided, it is possible to provide an induction heating device having a large heating capacity by reducing local heat generation of the copper pipe forming the solenoid coil to suppress deterioration.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a configuration of an induction heating device according to Embodiment 1 of the present invention.
FIG. 2 is a front view showing the induction heating device in FIG.
FIG. 3 is a perspective view showing a configuration of a first copper plate member shown in FIG. 1;
4 is a perspective view showing a configuration of a second copper plate member shown in FIG. 1. FIG.
FIG. 5 is a perspective view showing a configuration of a second copper plate member different from that in FIG. 4;
6 is a perspective view showing the configuration of the laminated core member shown in FIG. 1. FIG.
7 is a cross-sectional view showing a magnetic flux distribution state in the vicinity of the end of the iron core of the induction heating apparatus shown in FIG.
FIG. 8 is a diagram showing the surface maximum local temperature rise value of each part of the endmost copper tube of the induction heating device in FIG. 1 in comparison with that in the conventional device.
FIG. 9 is a side sectional view showing a configuration of a conventional induction heating apparatus.
10 is a front view showing the induction heating device in FIG. 9. FIG.
11 is a side view showing a distribution state of magnetic flux at the end of the iron core in FIG. 9. FIG.
12 is a perspective view showing a distribution state of magnetic flux at the end of the iron core in FIG. 9. FIG.
[Explanation of symbols]
11 steel strip, 13 solenoid coil, 17 heat-resistant member, 18 passage,
19 iron core, 20 first copper plate member, 21, 24, 28 copper plate,
21c, 24a, 25a, 29a window part, 24b, 29b cutting part,
23, 29 Second copper plate member, 25 laminated core member, 27 magnetic flux.

Claims (1)

ラインを搬送される被加熱部材を内側に通過させて誘導加熱するソレノイドコイルの外側の磁路に沿って複数の鉄心が平行に配設された誘導加熱装置において、
上記各鉄心の両端近傍に、上記ソレノイドコイルの巻回領域に沿った額縁状に形成され最外側に配設される第1の銅板部材、上記ソレノイドコイルの巻回領域に沿った周上に少なくとも1箇所切断部を有した額縁状に形成され上記第1の銅板部材と所定の間隙を介して配設される第2の銅板部材、および磁性板状部材を積層して形成され上記両銅板部材間の間隙内に配設される積層鉄心部材を備えたことを特徴とする誘導加熱装置。
In an induction heating apparatus in which a plurality of iron cores are arranged in parallel along a magnetic path outside a solenoid coil that performs induction heating by passing a heated member conveyed through the line,
A first copper plate member formed in a frame shape along the winding region of the solenoid coil and disposed on the outermost side in the vicinity of both ends of each iron core, at least on the circumference along the winding region of the solenoid coil The two copper plate members formed by laminating the first copper plate member and the second copper plate member disposed via a predetermined gap, and a magnetic plate member formed in a frame shape having a cut portion at one place. An induction heating apparatus comprising a laminated core member disposed in a gap therebetween.
JP2000141281A 2000-05-15 2000-05-15 Induction heating device Expired - Lifetime JP3707724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141281A JP3707724B2 (en) 2000-05-15 2000-05-15 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141281A JP3707724B2 (en) 2000-05-15 2000-05-15 Induction heating device

Publications (2)

Publication Number Publication Date
JP2001326062A JP2001326062A (en) 2001-11-22
JP3707724B2 true JP3707724B2 (en) 2005-10-19

Family

ID=18648418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141281A Expired - Lifetime JP3707724B2 (en) 2000-05-15 2000-05-15 Induction heating device

Country Status (1)

Country Link
JP (1) JP3707724B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987622B2 (en) * 2007-08-20 2012-07-25 新日本製鐵株式会社 Horizontal continuous induction furnace for steel strip and horizontal continuous heat treatment method for steel strip using the same
JP7124515B2 (en) * 2018-07-25 2022-08-24 日本製鉄株式会社 Induction heating equipment for metal strips

Also Published As

Publication number Publication date
JP2001326062A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
EP0691163B1 (en) Method of and apparatus for joining metal pieces
US20180359817A1 (en) Transverse flux induction heating device
JP5909562B2 (en) Heating apparatus and heating method
EP0763962B1 (en) Induction heating coil assembly for prevention of circulating currents in induction heating lines for continuous-cast products
JPH0335790B2 (en)
EP1063305B1 (en) Induction heater
JP3707724B2 (en) Induction heating device
JP4169624B2 (en) Transverse induction heating device
JP3300759B2 (en) Induction heating device for roll crown heat crown shape control
US6770858B2 (en) Device for inductively heating metallic strips
JP5053169B2 (en) Induction heating apparatus and induction heating method
JP2935087B2 (en) Induction heating device
JP2003129130A (en) Heat treatment equipment for thick steel plate
JP2002043042A (en) Single-turn induction heating coil
JP4833740B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JP2844616B2 (en) Induction heating device
JP2009129695A (en) Induction heating device, and induction heating method
JP6528712B2 (en) Iron core for induction heating coil, induction heating coil, and heating apparatus
JP2004307962A (en) Apron and hot-rolling facility arranging the same
JP4260998B2 (en) Induction heating device
JPH07153560A (en) Longitudinal magnetic field induction heating device of flat metallic material
JP7124515B2 (en) Induction heating equipment for metal strips
JP4369332B2 (en) Transverse induction heating apparatus and transverse induction heating system
JP4890278B2 (en) Metal plate induction heating device
JP4457709B2 (en) Steel plate heat treatment equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

R150 Certificate of patent or registration of utility model

Ref document number: 3707724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term