JP4832136B2 - Shaft enlargement processing method - Google Patents

Shaft enlargement processing method Download PDF

Info

Publication number
JP4832136B2
JP4832136B2 JP2006089918A JP2006089918A JP4832136B2 JP 4832136 B2 JP4832136 B2 JP 4832136B2 JP 2006089918 A JP2006089918 A JP 2006089918A JP 2006089918 A JP2006089918 A JP 2006089918A JP 4832136 B2 JP4832136 B2 JP 4832136B2
Authority
JP
Japan
Prior art keywords
workpiece
shaft
enlargement
holding
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006089918A
Other languages
Japanese (ja)
Other versions
JP2007260730A (en
JP2007260730A5 (en
Inventor
忠 井浦
永年 岡部
一樹 森
Original Assignee
株式会社いうら
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いうら filed Critical 株式会社いうら
Priority to JP2006089918A priority Critical patent/JP4832136B2/en
Publication of JP2007260730A publication Critical patent/JP2007260730A/en
Publication of JP2007260730A5 publication Critical patent/JP2007260730A5/ja
Application granted granted Critical
Publication of JP4832136B2 publication Critical patent/JP4832136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空軸材への軸肥大加工方法に関するものである。   The present invention relates to a shaft enlargement processing method for a hollow shaft material.

従来、総加工費用の大幅削減を指向した願望的発想として、メカニカル・ラチェット現象を利用して、圧縮応力状態で回転曲げ応力を軸に付加する方法により、直径の一様な軸材の中間部に局部的に軸径を肥大させた肥大部位を成形させる塑性加工方法(以下、軸肥大加工方法とする。)があった。
その軸肥大加工方法を用い、中実軸材に対し加工実験を行い、加工過程における変形挙動を数式化している(特許文献1参照。)。
これによれば、各加工条件(曲げ角度θ,軸圧縮応力σ)の影響に対しては統一したサイクルパラメータNを導出し、種々の加工条件下での軸肥大変形挙動を推定可能にしている。さらに、被加工部の疲労特性・疲労損傷に対する健全性も明らかにされている。
Conventionally, as an aspirational idea aimed at drastically reducing the total machining cost, the intermediate part of a shaft with a uniform diameter is obtained by applying a rotational bending stress to the shaft in a compressive stress state using the mechanical ratchet phenomenon. There is a plastic working method (hereinafter referred to as a shaft enlargement processing method) in which an enlarged portion having a shaft diameter locally enlarged is formed.
Using the shaft enlargement processing method, a machining experiment is performed on a solid shaft material, and the deformation behavior in the machining process is expressed numerically (see Patent Document 1).
According to this, for the influence of each machining condition (bending angle θ, axial compressive stress σ c ), a unified cycle parameter N 0 is derived, and the axial enlargement deformation behavior under various machining conditions can be estimated. ing. Furthermore, the fatigue characteristics of the workpiece and the soundness against fatigue damage have been clarified.

しかしながら、軸材には軽量化や挿入孔要求のための中空軸材も少なくなく、中空軸材から肥大部を直接加工することも大いに期待されている。その中空軸材の部分肥大加工への軸肥大加工方法の適用・開発は工学的にも工業的にも有意義であり、有用な加工方法になることが期待できるものであるが、中空軸材での軸肥大変形挙動については十分な解明がなされていない。
特開2003−39133号公報
However, there are many hollow shaft materials for weight reduction and insertion hole requirements, and it is highly expected that the enlarged portion is directly processed from the hollow shaft material. The application and development of the shaft enlargement processing method to the partial enlargement processing of the hollow shaft material is meaningful from an engineering and industrial viewpoint, and it can be expected to be a useful processing method. There is not enough elucidation about the deformation behavior of the shaft.
JP 2003-39133 A

解決しようとする問題点は、軸肥大加工方法を用いて中空軸材から肥大部を一体的に成形する際の変形挙動を解明し、所望の肥大部を成形可能とすることを課題とする。   The problem to be solved is to elucidate the deformation behavior when integrally forming the enlarged portion from the hollow shaft material using the shaft enlargement processing method, and to make it possible to form the desired enlarged portion.

請求項1の発明は、外径D,肉厚tなる被加工材Wの中間部に所望の肥大部を一体的に成形するため、互いに対向する一対の保持部を所定間隔L離間した状態で被加工材Wを保持し、少なくとも一方の保持部を相対的に他方の保持部に接近させることによって軸加圧応力Pを作用させるとともに、被加工材周りの回転と、少なくとも一方の保持部を他方の保持部の軸心に対して傾斜する方向に偏倚させることによって被加工材Wに回転と曲げ角度θの曲げを作用させ、両保持部間の被加工材Wの曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ戻しにより被加工材Wの真直化を行った後、回転及び軸加圧状態を停止させる軸肥大加工方法において、被加工材Wの肉厚部に生じるスリット切欠き長さhと内径側への張出し長さW が、h=0かつW ≧0となる内径側の肥大部形状を得るために(L/D)≦0.8となる条件で行うことを特徴とする。
請求項2の発明は、外径D,肉厚tなる被加工材Wの中間部に所望の肥大部を一体的に成形するため、互いに対向する一対の保持部を所定間隔L離間した状態で被加工材Wを保持し、少なくとも一方の保持部を相対的に他方の保持部に接近させることによって軸加圧応力Pを作用させるとともに、被加工材周りの回転と、少なくとも一方の保持部を他方の保持部の軸心に対して傾斜する方向に偏倚させることによって被加工材Wに回転と曲げ角度θの曲げを作用させ、両保持部間の被加工材Wの曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ戻しにより被加工材Wの真直化を行った後、回転及び軸加圧状態を停止させる軸肥大加工方法において、N回転後に幅L,直径Dとなる肥大部を成形する数式モデルを
として表し、ここでεはD/D=2となるときの円周方向の平均歪み(ε=ln(D/D)=ln(2))であり、Nは回転数であり、Nは回転時定数であり、この回転時定数Nは、
とし、ここで、回転時定数Nの曲げ角度依存係数N 及び加圧応力依存指数αを
とし、ここでDは内径張出し部の内径であり、
は内径張出し幅とすることによって、所望の肥大部(直径D,幅L)を成形する際にこれらのモデル式から導出される軸肥大加工条件(曲げ角度θ,軸加圧応力σ)によって前記肥大部を一体的に成形することを特徴とする。
According to the first aspect of the present invention, in order to integrally form a desired enlarged portion in the intermediate portion of the workpiece W having an outer diameter D 0 and a wall thickness t, a pair of holding portions facing each other are separated by a predetermined interval L 0 . The workpiece W is held in a state, and the axial pressure stress P is applied by moving at least one holding portion relatively closer to the other holding portion, and rotation around the workpiece and at least one holding. The portion is biased in a direction inclined with respect to the axis of the other holding portion, thereby causing the workpiece W to be rotated and bent at a bending angle θ to be generated inside the workpiece W between the two holding portions. In the shaft enlargement processing method of stopping the rotation and the shaft pressurizing state after straightening the workpiece W by bending back after cumulatively enlarging the convex portion, the thick portion of the workpiece W projecting length W i to slit notch length h and the inner diameter side occurring , And carrying out under the conditions to obtain the enlargement portion shape of the inner diameter side to be h = 0 and W i ≧ 0 becomes (L 0 / D 0) ≦ 0.8.
According to the second aspect of the present invention, in order to integrally form a desired enlarged portion at the intermediate portion of the workpiece W having an outer diameter D 0 and a wall thickness t, a pair of holding portions facing each other are separated by a predetermined interval L 0 . The workpiece W is held in a state, and the axial pressure stress P is applied by moving at least one holding portion relatively closer to the other holding portion, and rotation around the workpiece and at least one holding. The portion is biased in a direction inclined with respect to the axis of the other holding portion, thereby causing the workpiece W to be rotated and bent at a bending angle θ to be generated inside the workpiece W between the two holding portions. In the shaft enlargement processing method in which the workpieces W are straightened by bending back after the convex portions are cumulatively enlarged and then rotated and the shaft pressurization state is stopped, the width L and the diameter D after N rotations. Formula model that forms the enlarged part that becomes
Where ε 0 is the average distortion in the circumferential direction when D / D 0 = 2 (ε 0 = ln (D / D 0 ) = ln (2)), and N is the number of revolutions , N 0 is a rotation time constant, and this rotation time constant N 0 is
Where the bending angle dependence coefficient N 0 * and the pressure stress dependence index α of the rotation time constant N 0 are
And then, where D i is the inner diameter of the inner diameter of the extending portion,
B i is the overhang width of the inner diameter, so that when the desired enlarged portion (diameter D, width L) is formed, the shaft enlargement processing conditions (bending angle θ, axial pressure stress σ c ) derived from these model equations ) To form the enlarged portion integrally .

請求項1の発明では、外径D,肉厚tなる被加工材Wの中間部に肥大部を成形する際に、軸肥大加工方法を用い、初期掴み間隔Lと外径Dの比が0.8以下となる条件で行うものとしている。この条件で軸肥大加工を行った場合には、内径張出し部がプラス方向になるとともに、スリット切欠きが内径面から入り込まないものとなる。したがって、肥大部を成形した後、内径処理例えば旋削加工などを施すことによって欠陥部の無い一体的鍔付きの中空軸材を得ることができる。
また、請求項2の発明では、所望の肥大部を成形する加工条件(曲げ角度θ,軸圧縮応力σ)を数式モデルによって導き出すことができる。そのため、実作業において、所望の肥大部(直径D,幅L)成形のために試作を繰り返すことなく、被加工材Wの中間部に肥大部を成形できる効果がある。
In the invention of claim 1, when forming the enlarged portion in the intermediate portion of the workpiece W having the outer diameter D 0 and the wall thickness t, an axial enlargement processing method is used, and the initial gripping interval L 0 and the outer diameter D 0 are set. It is assumed that the ratio is 0.8 or less. When the shaft enlargement process is performed under this condition, the inner diameter overhanging portion is in the plus direction, and the slit notch does not enter from the inner diameter surface. Therefore, after forming the enlarged portion, by performing an inner diameter process such as a turning process, a hollow shaft material with an integral flange having no defect portion can be obtained.
In the invention of claim 2, the processing conditions (bending angle θ, axial compressive stress σ c ) for forming a desired enlarged portion can be derived by a mathematical model. Therefore, in actual work, there is an effect that the enlarged portion can be formed in the intermediate portion of the workpiece W without repeating the trial production for forming the desired enlarged portion (diameter D, width L).

外径D,肉厚tなる被加工材Wの中間部に所望の肥大部を一体的に成形するため、互いに対向する一対の保持部を所定間隔L離間した状態で被加工材Wを保持し、少なくとも一方の保持部を相対的に他方の保持部に接近させることによって軸加圧応力Pを作用させるとともに、被加工材周りの回転と、少なくとも一方の保持部を他方の保持部の軸心に対して傾斜する方向に偏倚させることによって被加工材Wに回転と曲げ角度θの曲げを作用させ、両保持部間の被加工材Wの曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ戻しにより被加工材Wの真直化を行った後、回転及び軸加圧状態を停止させる軸肥大加工方法において、(L/D)≦0.8となる条件で行う。 In order to integrally form a desired enlarged portion in the intermediate portion of the workpiece W having an outer diameter D 0 and a wall thickness t, the workpiece W is placed in a state where a pair of holding portions facing each other are separated by a predetermined interval L 0. Axial pressure stress P is applied by holding at least one holding part relatively close to the other holding part, and rotation around the workpiece and at least one holding part is moved to the other holding part. By biasing the workpiece W in a direction inclined with respect to the axis, the workpiece W is rotated and bent at a bending angle θ, and the convex portions generated on the inner side of the workpiece W between the holding portions are accumulated all around the circumference. After the enlargement, the workpiece W is straightened by bending back, and then in the shaft enlargement processing method in which the rotation and the shaft pressurization state are stopped under the condition of (L 0 / D 0 ) ≦ 0.8. Do.

本発明における中空軸材から肥大部を一体的に成形する際の変形挙動を解明するために次のような実験を行った。
まず、供試材として、外径D=10mm,肉厚t=2mmの油圧配管用精密炭素鋼管(OST)を用い、内径を加工することによって肉厚の異なる5種類の中空軸材(肉厚t=1mm,1.25mm,1.5mm,1.75mm,2mm)を供試材とした。また、中実軸材の肥大変形挙動と比較するため、同材質のD=10mm丸棒も使用した。大径厚肉パイプ材での軸肥大加工実験には、外径D=31mmの冷間引抜棒鋼(SGD400)の受入材を用い、内径を加工することによって肉厚の異なる5種類の中空軸材(肉厚t=6mm,7.5mm,9mm,11mm,12.5mm)を供試材とした。
In order to elucidate the deformation behavior when integrally forming the enlarged portion from the hollow shaft material in the present invention, the following experiment was conducted.
First, as a test material, a precision carbon steel pipe (OST) for hydraulic piping having an outer diameter D 0 = 10 mm and a wall thickness t = 2 mm is used. Thickness t = 1 mm, 1.25 mm, 1.5 mm, 1.75 mm, 2 mm) was used as a test material. In addition, a D 0 = 10 mm round bar of the same material was also used for comparison with the enlargement deformation behavior of the solid shaft material. For shaft enlargement processing experiments with large-diameter and thick-walled pipe materials, five types of hollow shafts with different wall thicknesses were obtained by processing the inner diameter using a cold-drawn steel bar (SGD400) receiving material with an outer diameter D 0 = 31 mm. A material (wall thickness t = 6 mm, 7.5 mm, 9 mm, 11 mm, 12.5 mm) was used as a test material.

それぞれの供試材に対し、第1図に示すような軸肥大加工装置1を用い、軸肥大加工実験を行った。
この加工装置は主に軸回転駆動部2,軸加圧力付加部3,曲げ角度付加部4から構成されている。
なお、それぞれの供試材に対して引張試験を行い、得られた機械的特性を次表に示す。
A shaft enlargement processing experiment was performed on each specimen using a shaft enlargement processing apparatus 1 as shown in FIG.
This processing apparatus mainly comprises a shaft rotation driving unit 2, a shaft pressing force adding unit 3, and a bending angle adding unit 4.
In addition, the tensile test was done with respect to each test material, and the obtained mechanical characteristic is shown in the following table.

次に実験方法を、第2図に基づいて説明する。
まず、一対の保持部となる軸回転駆動側チャック5と軸加圧側チャック6が同一軸上に配置された状態で、掴み幅lで供試材を装着する(a図参照)。
しかる後、設定した軸加圧力Pを負荷した。このときの掴み幅の変化を測定し、被加工部の長さの初期値Lとした(b図参照)。
そして、軸回転駆動側チャック5を偏倚させ供試材に曲げ角度θを付加する。次に、軸の回転を開始し肥大成形加工を行う。このとき、各加工過程における被加工部の長さLおよび最大外径Dの変化を連続自動計測した(c図,d図参照)。
その後、目的とする軸径の肥大率(D/D)に達すると、曲げ角度θを0°に戻し、軸の回転を停止する(e図参照)。
Next, the experimental method will be described with reference to FIG.
First, in a state where the shaft rotation driving side chuck 5 and the shaft pressing side chuck 6 serving as a pair of holding parts are arranged on the same shaft, the specimen is mounted with a grip width l (see FIG. A).
Thereafter, the set axial pressure P was applied. A change in the gripping width of the time was measured and the initial value L 0 of the length of the portion to be processed (see Diagram b).
Then, the shaft rotation drive side chuck 5 is biased to add a bending angle θ to the test material. Next, the rotation of the shaft is started and enlargement molding is performed. At this time, changes in the length L and the maximum outer diameter D of the workpiece in each machining process were continuously and automatically measured (see c and d).
Thereafter, when the target shaft diameter enlargement ratio (D / D 0 ) is reached, the bending angle θ is returned to 0 ° and the rotation of the shaft is stopped (see FIG. E).

実験条件としては、外径D=10mmの供試材では、初期設定の掴み幅L=12mmとし、軸加圧応力σ=0.92σ,0.97σ,1.10σ,1.20σを付加し、降伏応力σで基準化した各軸加圧応力σ/σに対し、曲げ角度θ=3°,4°,5°,6°に設定した。そして、軸回転速度ω=10rpmにて、室温(25℃)・大気中でこの実験を行った。
また、外径D=31mmの供試材では、初期掴み幅L=10.5〜25.2mm,軸加圧力σ=1.20σ,曲げ角度θ=1°に設定した。そして、軸回転速度ω=15rpmにて、室温(25℃)・大気中でこの実験を行った。
なお、内部形状については、軸方向に切断し、切断面を研磨し、さらにエッチングして観測した。
As the experimental conditions, in the specimen having an outer diameter D 0 = 10 mm, the initial gripping width L 0 = 12 mm and the axial pressure stress σ c = 0.92σ y , 0.97σ y , 1.10σ y , 1.20σ y was added and the bending angle θ = 3 °, 4 °, 5 °, 6 ° was set for each axial pressure stress σ c / σ y normalized by the yield stress σ y . Then, this experiment was performed at room temperature (25 ° C.) and in the atmosphere at a shaft rotation speed ω = 10 rpm.
For the test material having an outer diameter D 0 = 31 mm, the initial grip width L 0 = 10.5 to 25.2 mm, the axial pressure σ c = 1.20σ y , and the bending angle θ = 1 ° were set. Then, this experiment was performed at room temperature (25 ° C.) and in the atmosphere at a shaft rotation speed ω = 15 rpm.
The internal shape was observed by cutting in the axial direction, polishing the cut surface, and further etching.

第3図は、肉厚t=2mmの中空軸材に対し、軸加圧応力σ=0.97σ,曲げ角度θ=3°,4°,5°,6°の加工条件で外径の肥大率D/D=1.49〜1.53までの加工実験を行い、その各供試材の最終形状を外観写真で示したものである。いずれの加工条件でも最終形状に差がほとんどないことがわかる。
第4図は、軸加圧応力σ=0.97σ,曲げ角度θ=5°の加工条件での加工過程において、軸回転数Nの増大に伴う被加工部の形状変化を軸方向断面写真で示したものである。回転数Nの増大につれて明瞭に肥大部が成形される過程がうかがわれる。変形挙動としては、両チャック5,6端で押し込まれるようにチャック5,6間の部材が提灯状から樽状に移行しながら肥大変形が進行していく。
第5図は、肉厚の異なる中空軸材の供試材に対し、軸加圧応力σ=0.97σ,曲げ角度θ=5°の加工条件で加工実験を行い、各供試材の形状変化を外観写真で示したものである。
いずれの肉厚においても、両チャックの側面で押し込まれるように変形挙動が提灯状から樽状に移行しながら肥大変形が進行し、最終形状にはほとんど差がないことが明らかになった。
FIG. 3 shows an outer diameter of a hollow shaft member having a wall thickness of t = 2 mm under processing conditions of axial pressure stress σ c = 0.97σ y , bending angle θ = 3 °, 4 °, 5 °, 6 °. The enlargement ratio D / D 0 = 1.49 to 1.53 is processed, and the final shape of each specimen is shown in the appearance photograph. It can be seen that there is almost no difference in the final shape under any of the processing conditions.
FIG. 4 is a sectional view in the axial direction showing the change in the shape of the workpiece as the shaft rotational speed N increases in the machining process under the machining conditions of axial pressure stress σ c = 0.97σ y and bending angle θ = 5 °. This is shown in the photo. It can be seen that the enlarged portion is clearly formed as the rotational speed N increases. As the deformation behavior, the enlargement deformation proceeds while the members between the chucks 5 and 6 are shifted from the lantern shape to the barrel shape so as to be pushed at the ends of both chucks 5 and 6.
FIG. 5 shows a case where hollow shaft materials having different wall thicknesses were subjected to a machining experiment under processing conditions of axial pressure stress σ c = 0.97σ y and bending angle θ = 5 °. The change in shape is shown in the appearance photograph.
At any wall thickness, it became clear that the deformation behavior progressed from the lantern shape to the barrel shape so as to be pushed by the side surfaces of both chucks, and there was almost no difference in the final shape.

第6図は、軸加圧応力σ=0.92σにおいて、曲げ角度θ=3°,4°,5°,6°をパラメータとし、肉厚t=2mmの供試材における軸肥大変形挙動、すなわち、被加工部の幅の収縮率L/L及び軸径の肥大率D/Dの変化を回転数Nとの関係で示したものである。
第7図は軸加圧応力σ=0.92σ,曲げ角度θ=5°の加工条件において、肉厚t=1mm,1.25mm,1.5mm,1.75mm,2mmの供試材における軸肥大変形挙動を示している。いずれの場合も、回転数Nの増大とともに被加工部の幅が縮み、軸径が増大していく。
これらの軸肥大変形挙動を整理してみると、回転数Nの増大に伴う軸径の肥大挙動も、被加工部の幅の収縮挙動も指数関数的に飽和する傾向を示し、第6図,第7図中の近似曲線で示すように、次式で近似できる。
FIG. 6 shows axial enlargement deformation in a specimen having a wall thickness t = 2 mm, with bending pressure θ = 3 °, 4 °, 5 °, 6 ° as parameters at axial pressure stress σ c = 0.92σ y . The behavior, that is, changes in the shrinkage ratio L / L 0 of the width of the workpiece and the enlargement ratio D / D 0 of the shaft diameter are shown in relation to the rotational speed N.
FIG. 7 shows specimens having wall thicknesses t = 1 mm, 1.25 mm, 1.5 mm, 1.75 mm, and 2 mm under the processing conditions of axial pressure stress σ c = 0.92σ y and bending angle θ = 5 °. The shaft enlargement deformation behavior is shown. In either case, as the number of revolutions N increases, the width of the processed part decreases and the shaft diameter increases.
These shaft enlargement deformation behaviors can be summarized as follows: the shaft diameter enlargement behavior as the rotational speed N increases and the shrinkage behavior of the width of the work piece tend to saturate exponentially. As shown by the approximate curve in FIG.

なお、本軸肥大加工条件では、肥大率D/D>1.6になってくると、肥大率の飽和傾向が現れて、肥大速度が減少するので、最終加工率に必要回転数が増大して疲労損傷が懸念されるようになる。そこで、このような観点から(1)式における歪みεはD/D=2となるときの円周方向の平均歪み:ε=ln(D/D)=ln(2)とした。Nはサイクルパラメータとしての回転時定数であり、実測値(D/D,N)に対する誤差が最小となるように決定するものとする。軸径の肥大変形挙動を表す(1)式を求めてから、体積不変則により被加工部の長さの収縮率L/Lを求める。第6図,第7図中の各近似曲線に観られるように、いずれも収縮率L/Lおよび肥大率D/Dの挙動の実測値に対してよく近似できている。 In this shaft enlargement processing condition, when the enlargement rate D / D 0 > 1.6, a saturation tendency of the enlargement rate appears, and the enlargement speed decreases, so the number of rotations required for the final processing rate increases. As a result, fatigue damage becomes a concern. Therefore, from such a viewpoint, the strain ε 0 in the equation (1) is the average strain in the circumferential direction when D / D 0 = 2: ε 0 = ln (D / D 0 ) = ln (2) . N 0 is a rotation time constant as a cycle parameter, and is determined so that an error with respect to the actually measured value (D / D 0 , N) is minimized. After obtaining the equation (1) representing the hypertrophic deformation behavior of the shaft diameter, the shrinkage ratio L / L 0 of the length of the workpiece is obtained by volume invariance. As can be seen from each of the approximate curves in FIGS. 6 and 7, both can be approximated well to the actual measured values of the contraction rate L / L 0 and the enlargement rate D / D 0 .

同一肉厚tの中空軸材の場合も、中実軸材の場合同様、回転時定数Nは曲げ角度θと軸加圧応力σ/σに依存し、第8図に示すように、いずれの加工条件(θ,σ/σ)においても次式でよく表される。なお、曲げ角度依存係数N と加圧応力依存指数αはいずれも(N,σ/σ)に対する誤差が最小になるように求められる。 Also in the case of hollow shafts having the same wall thickness t, as in the case of solid shafts, the rotation time constant N 0 depends on the bending angle θ and the axial pressure stress σ c / σ y , as shown in FIG. In any processing condition (θ, σ c / σ y ), it is well expressed by the following equation. Note that the bending angle dependence coefficient N 0 * and the pressure stress dependence index α are both determined so that the error with respect to (N 0 , σ c / σ y ) is minimized.

ところが、回転時定数Nと曲げ角度θとの間には、同一肉厚であれば、第9図に示すような関係がある。また、曲げ角度依存係数N ,加圧応力依存指数αと曲げ角度θとの関係を第10図に示し、それぞれ次式でよく表せる。 However, there is a relationship between the rotation time constant N 0 and the bending angle θ as shown in FIG. 9 if the thickness is the same. The relationship between the bending angle dependence coefficient N 0 * , the pressure stress dependence index α and the bending angle θ is shown in FIG.

ここで、
,α およびnは材料定数であり、いずれも(N ,θ)および(α,θ)に対する誤差が最小になるように決定される。
したがって、(4),(5)式を(3)式に代入することにより、回転時定数Nは加工条件(θ,σ/σ)の統一的パラメータとして次式で表せ、中空軸材の軸肥大変形挙動の推定に適用できる。
here,
, Α 0 * and n are material constants, both of which are determined so that the error with respect to (N 0 * , θ) and (α, θ) is minimized.
Therefore, by substituting the equations (4) and (5) into the equation (3), the rotation time constant N 0 can be expressed by the following equation as a uniform parameter of the machining conditions (θ, σ c / σ y ), and the hollow shaft It can be applied to the estimation of axial enlargement deformation behavior of wood.

そこで、軸肥大過程での変形挙動パラメータである回転時定数Nに及ぼす中空軸材の肉厚tの影響について、軸加圧応力σ/σと基準化した回転時定数
および曲げ角度θをパラメータにして整理してみると、第11図及び第12図のようになる。なお、縦軸は中空軸材の回転時定数Nを中実軸材の回転時定数Nで基準化した回転時定数であり、横軸は肉厚tを軸の外半径D/2で基準化した肉厚(2t/D)である。異なる加工条件においても同一の挙動を示し、次式で定式化できる。
Therefore, with respect to the influence of the wall thickness t of the hollow shaft material on the rotation time constant N 0 which is a deformation behavior parameter in the process of shaft enlargement, the rotation time constant normalized with the axial pressure stress σ c / σ y
11 and 12 are arranged using the bending angle θ as a parameter. Incidentally, the vertical axis indicates the rotation time constant that scales the rotation time constant N 0 of the hollow shaft member in rotation time constant N 0 of solid shaft member, the outer radius D of the abscissa axis the thickness t 0/2 The wall thickness (2t / D 0 ) normalized by. It shows the same behavior under different processing conditions and can be formulated by the following formula.

ここで、
は材料定数である。この傾向は、中空軸材の肉厚tの増大とともに中空軸材は中実軸材の軸肥大変形挙動に漸近していくことを示唆している。
here,
Is a material constant. This tendency suggests that as the wall thickness t of the hollow shaft increases, the hollow shaft gradually approaches the shaft enlargement deformation behavior of the solid shaft.

第13図は中実軸材及び中空軸材の軸肥大変形過程におけるD/Dと(L/L)(D/Dとの関係を示す。第13図中の黒丸のように、中実軸材の場合では(L/L)(D/D=1となることにより、体積不変則が成り立つことを示唆している。中空軸材の場合では、中実軸材の変形挙動と異なることがわかる。
すなわち、(L/L)(D/D<1の場合では、軸の圧縮変形の方が先行し早いことを示唆している。t=1.0mmの場合のようにD/D<1.34までは、(L/L)(D/D>1であるのは、曲げ剛性が小さいために外径の増大が先行することを示唆している。その後、軸の圧縮変形に移行し急速に進行することになる。
その原因は、第14図の軸肥大過程における曲げモーメントMの挙動から察することができる。すなわち、第4図での提灯状の変形過程では曲げモーメントMが線形的な増大を呈した後、樽状変形に移行し、肥大率D/Dが飽和してくると曲げモーメントMが急速な増大を示すようになる。この過程での圧縮率L/Lは、ベロー空隙を狭めるだけなので、第15図のように肥大率D/Dに先行し、急速な変形を示すことになるからである。なお、第15図中の太実線は理想的な体積不変則の変形の場合を示している。ここに中空軸材と中実軸材との間に変形機構の差が第13図に示すように現れるが、体積不変則も成り立っている。
FIG. 13 shows the relationship between D / D 0 and (L / L 0 ) (D / D 0 ) 2 in the shaft enlargement deformation process of the solid shaft material and the hollow shaft material. As indicated by the black circles in FIG. 13, in the case of a solid shaft material , (L / L 0 ) (D / D 0 ) 2 = 1 suggests that the volume invariant holds. In the case of a hollow shaft material, it turns out that it differs from the deformation behavior of a solid shaft material.
That is, in the case of (L / L 0 ) (D / D 0 ) 2 <1, it is suggested that the compression deformation of the shaft precedes and is faster. (L / L 0 ) (D / D 0 ) 2 > 1 until D / D 0 <1.34 as in the case of t = 1.0 mm because the bending rigidity is small and the outer diameter is This suggests that the increase is ahead. Thereafter, the shaft shifts to compressive deformation and proceeds rapidly.
The cause can be considered from the behavior of the bending moment M in the axial enlargement process of FIG. That is, in the lantern-shaped deformation process in FIG. 4, after the bending moment M exhibits a linear increase, it shifts to barrel-shaped deformation, and when the enlargement ratio D / D 0 is saturated, the bending moment M is rapidly increased. Increase. This is because the compression ratio L / L 0 in this process only narrows the bellows gap, and therefore, precedes the enlargement ratio D / D 0 as shown in FIG. 15 and shows rapid deformation. The thick solid line in FIG. 15 shows an ideal volume invariant deformation. Here, a difference in deformation mechanism appears between the hollow shaft member and the solid shaft member as shown in FIG. 13, but the volume invariance also holds.

第16図は肉厚t=2mmの中空軸材(OST)の軸肥大加工過程での変形挙動
(L/L,D/D)に対する推定の一例として示している。図中の曲線は、加工条件(θ,σ/σ)=(5°,0.97)に基づき(7)式での回転時定数Nの推定値を用いて、(1),(2)式で算出した推定値であり、実測値を比較的よく推定できている。
一方、第17図はt=1mm,1.25mm,1.5mm,1.75mm,2.00mmの中空軸材の場合についての推定を示している。肉厚の異なる供試材においても、よく推定できることが分かった。
FIG. 16 shows an example of estimation of deformation behavior (L / L 0 , D / D 0 ) in the process of shaft enlargement of a hollow shaft material (OST) having a wall thickness t = 2 mm. The curve in the figure is based on the processing conditions (θ, σ c / σ y ) = (5 °, 0.97), and uses the estimated value of the rotation time constant N 0 in equation (7), This is an estimated value calculated by equation (2), and the measured value can be estimated relatively well.
On the other hand, FIG. 17 shows estimations for the case of hollow shaft materials of t = 1 mm, 1.25 mm, 1.5 mm, 1.75 mm, and 2.00 mm. It was found that it can be estimated well even for test materials with different wall thicknesses.

中空軸材を用いて軸肥大加工実験を行うと、肥大部の内径側にスリット切欠きが発生するとともに、内径にも張り出すことがわかった。
第18図に軸肥大加工実験後の断面模式図を示す。ここで、Wは内径張出し長さを示し、Wは外径張出し長さを示す。hは肉厚部にあるスリット切欠き長さを表す。は肥大部の最終幅である。加工条件の変化によって、スリット切欠き長さhと内径張出し長さWと外径張出し長さWの値は変化する。中空回転軸材としての軸肥大加工した形状には、スリット切欠き長さhも内径張出し長さ も無いのが理想であるが、実用上では軸肥大加工した後、内径張出し部分を除去加工することができるので、スリット切欠き長さh=0かつ内径張出し長さW≧0であれば問題はない。
When a shaft enlargement processing experiment was performed using a hollow shaft material, it was found that a slit notch was generated on the inner diameter side of the enlarged portion and also protruded to the inner diameter.
FIG. 18 shows a schematic sectional view after the shaft enlargement processing experiment. Here, W i represents the inner diameter overhang length, and W o represents the outer diameter overhang length. h represents the slit notch length in the thick part. L is the final width of the enlarged portion. The values of the slit notch length h, the inner diameter overhang length W i, and the outer diameter overhang length W o change according to changes in the processing conditions. After the axial enlargement processed shape of the hollow rotary shaft member, but of no length-out slit notch h also internal diameter projecting length W i is ideal, that is axially enlarged working in practice, removed inside diameter overhang Since it can be processed, there is no problem if the slit notch length h = 0 and the inner diameter overhang length W i ≧ 0.

初期掴み幅L=15.5mm,22.6mmの中空軸材に対し、加圧応力σ=1.2σ,曲げ角度θ=1°,肉厚t=9mmの加工条件で軸肥大加工実験を行った。そして、各回転数Nごとに被加工部の形状変化を軸方向断面写真として第19図に示す。
この第19図より、初期掴み間隔L=15.5mmでは内径張出し部が形成されているが、初期掴み間隔L=22.6mmでは内径張出し部が形成されていない。どちらについても、5回転までの内部形状が成長し、最終内部形状になっている。また、回転数Nの増大につれて明瞭に肥大部と内径張出し部が成長していく過程がうかがわれる。外形の変形挙動としては、中実軸材における外形の変形挙動と大差ないことが明らかとなった。
Shaft enlargement processing with a pressing stress σ c = 1.2σ y , bending angle θ = 1 °, and wall thickness t = 9 mm for a hollow shaft material having an initial grip width L 0 = 15.5 mm and 22.6 mm The experiment was conducted. FIG. 19 shows the change in the shape of the workpiece at each rotation speed N as an axial cross-sectional photograph.
From FIG. 19, the inner diameter overhanging portion is formed at the initial gripping interval L 0 = 15.5 mm, but the inner diameter overhanging portion is not formed at the initial gripping interval L 0 = 22.6 mm. In both cases, the internal shape up to 5 revolutions has grown to the final internal shape. In addition, it is apparent that the enlarged portion and the inner diameter overhanging portion grow as the rotational speed N increases. It became clear that the deformation behavior of the outer shape is not much different from the deformation behavior of the outer shape of the solid shaft material.

また、外径 =31mmの受入材の内径をドリル加工で拡大し、肉厚t=6mm,7.5mm,9mm,11mmとした中空軸材に対して、加圧応力σ=1.2σ,曲げ角度θ=1°の加工条件で、肥大率D/D=1.19〜1.22までの範囲で加工実験を行った。加工後の最終形状に対して、肉厚tの初期直径Dでの基準化値と内径張出し長さW外径張出し長さWでの基準化値との関係を第20図に示す。
肉厚の影響として、肉厚の厚いほど最終的な肥大部幅が明らかに大きくなる。また、肥大率D/D=1.19〜1.22では、肉厚が2t/D=0.6のとき、内径張出し部長さWが最も長くなる。これらから内径張出し部長さWも肉厚tに依存することが明らかである。
In addition, with respect to the hollow shaft material in which the inner diameter of the receiving material having the outer diameter D 0 = 31 mm is expanded by drilling and the wall thickness t = 6 mm, 7.5 mm, 9 mm, and 11 mm, the pressing stress σ c = 1. Processing experiments were performed in the range of the enlargement ratio D / D 0 = 1.19 to 1.22 under the processing conditions of 2σ y and bending angle θ = 1 °. The final shape after machining, the relationship between the normalized value of an outer diameter projecting length W o of the scaled values and the inner diameter projecting length W i with an initial diameter D 0 of the wall thickness t in FIG. 20 Show.
As the influence of the wall thickness, the final enlarged portion width L is clearly increased as the wall thickness is increased. Further, when the wall thickness is 2t / D 0 = 0.6 at the enlargement rate D / D 0 = 1.19 to 1.22, the inner diameter overhanging portion length W i is the longest. From these, it is clear that the inner diameter overhang length W i also depends on the wall thickness t.

軸肥大形状に及ぼす肉厚の影響についての実験において、最も内径張出し長さWの外径張出し長さWでの基準化値が大きな肉厚t=9mmの供試材を用い、軸加圧応力σ=1.2σ,曲げ角度θ=1°の加工条件のもとで、初期掴み幅L=10.5mm〜25.2mmに変化させた軸肥大部形状に及ぼす掴み幅の影響についての実験を行った。各供試材の最終形状の軸方向断面写真を第21図に示す。
また、初期掴み幅Lの外径Dでの基準化値と、内径張出し部Wの肉厚tでの基準化値及び肥大部幅の肉厚tでの基準化値の関係を第22図に示す。内径張出し部の形状やスリット切欠きの有無は初期掴み幅Lに依存することが分かる。肥大部については、初期掴み幅Lが短いほど肥大部幅が短く、初期掴み幅Lが長いほどに肥大部幅が長くなることも明らかになった。
In the experiment on the influence of the wall thickness on the shaft enlargement shape, a test material having a wall thickness t = 9 mm having the largest standardized value at the outer diameter overhang length W o of the inner diameter overhang length W i was used. Under the processing conditions of pressure stress σ c = 1.2σ y and bending angle θ = 1 °, the initial grip width L 0 = 10.5 mm to 25.2 mm and the grip width effect on the shaft enlargement portion shape changed Experiments on effects were conducted. FIG. 21 shows axial sectional photographs of the final shapes of the test materials.
Further, the normalized value of an outer diameter D 0 of the initial gripping width L 0, the relationship between the normalized value of the wall thickness t of the scaled values and hypertrophic portion width L of the wall thickness t of the inner diameter overhang W i Shown in FIG. Shape or a slit notch existence of internal diameter overhang seen to be dependent on the initial gripping width L 0. The enlarged portion, the initial gripping enlarged section width shorter width L 0 is short, enlarged section width the longer the initial gripping width L 0 is also revealed that longer.

第23図は、軸加圧応力σ=1.2σにおいて、初期掴み幅L=14.7の加工条件,肉厚t=9mmの供試材における軸肥大変形挙動、すなわち、掴み幅の収縮率L/L及び軸径の肥大率D/Dの変化と回転数Nとの関係を示す。回転数Nの増大に伴う掴み幅Lの収縮挙動は中実軸材での収縮挙動式((1)式)と同様に次式で表される。 FIG. 23 shows the axial enlargement deformation behavior of the test material having the initial grip width L 0 = 14.7 and the thickness t = 9 mm under the axial pressure stress σ c = 1.2σ y , that is, the grip width. The relationship between the change in the shrinkage ratio L / L 0 and the shaft diameter enlargement ratio D / D 0 and the rotational speed N is shown. The shrinkage behavior of the grip width L accompanying the increase in the rotational speed N is expressed by the following equation in the same manner as the shrinkage behavior equation (equation (1)) for the solid shaft member.

ここで、歪みεはD/D=2のときの円周方向の平均歪み:ε=ln(D/D)=ln(2)とした。Nはサイクルパラメータとしての回転時定数であり、実測値(L/L,N)に対する誤差が最小になるように決定される。
軸径の肥大率D/Dの変化は、(8)式より内径は変化せず外径のみが肥大すると考え、体積不変則を用いると次式のようになる。
Here, the strain ε 0 was an average strain in the circumferential direction when D / D 0 = 2: ε 0 = ln (D / D 0 ) = ln (2). N 0 is a rotation time constant as a cycle parameter, and is determined so that an error with respect to the actually measured value (L / L 0 , N) is minimized.
The change of the shaft diameter enlargement ratio D / D 0 is expressed by the following equation using the volume invariant, assuming that the inner diameter does not change and only the outer diameter is enlarged from the equation (8).

第23図中の近似曲線で示すように、収縮挙動はよく近似できるが肥大率D/Dには誤差が生じる。これは、実際には内径張出し部があるためである。
最終形状の内径張出し部の形状より、内径張出し部の変形挙動も考慮して肥大率D/Dを予測すると、軸径の肥大率D/Dの変化は、次式で表され、軸径の肥大率D/Dの実験結果によく一致している。
As shown by the approximation curve in FIG. 23, shrinking behavior is well approximated error occurs in the enlargement ratio D / D 0. This is because there is actually an inner diameter overhanging portion.
When the enlargement rate D / D 0 is predicted from the shape of the final-shaped inner diameter overhanging portion in consideration of the deformation behavior of the inner diameter overhanging portion, the change in the shaft diameter enlargement rate D / D 0 is expressed by the following equation: in good agreement to the experimental results of the enlargement ratio D / D 0 of the diameter.

ここで、Bは最終形状時の内径張出し部の幅、加圧応力依存指数αも最終形状時のW/Wである。このように、内径張出し部の変形挙動を考慮することによって変形挙動は推測できる。
また、回転時定数Nと掴み幅との関係を第24図に示す。掴み幅が広くなるにしたがって、回転時定数Nは増大し、変形抵抗が大きくなることを示している。このことは、中実軸材と同じ傾向である。
Here, B i is the width of the inner diameter overhang portion at the final shape, and the pressure stress dependent index α is also W 0 / W i at the final shape. Thus, the deformation behavior can be estimated by considering the deformation behavior of the inner diameter overhanging portion.
The relation between the width gripping and rotation time constant N 0 in FIG. 24. According gripping width increases, the rotation time constant N 0 increases, indicates that the deformation resistance is increased. This is the same tendency as the solid shaft material.

上記のように、軸肥大加工方法に対して適用拡大を目的とし、肉厚tが異なる中空軸材に対して軸肥大加工実験を試行し、中実軸材に対し得られた塑性変形挙動のモデル式の適用、ならびに軸肥大加工条件(θ,σ/σ)や肉厚tの影響について検討した結果、次のような結果を得た。
まず、中空軸材の軸肥大変形は、中実軸材とは多少異なり、最初のうち、提灯状の変形が進行した後、樽状の変形に移行し、肥大部が成形される。
そして、この軸肥大加工過程における変形挙動は、中実軸材の場合と同一数式モデルで定式化できる。つまり、加工条件(曲げ角度θ,軸加圧応力σ/σ)も一つのパラメータである回転時定数Nのみで統一的に軸加圧応力σ及び曲げ角度θの影響を予測できる。言い換えれば、所望の肥大部を得るための加工条件を適切に選定できるようになるものである。
また、中空軸材の軸肥大変形は、同一加工条件下では肉厚tが増大するほど、加工回転数は増大し、中実軸材の変形挙動に近づき、生じる曲げモーメントも増大する傾向があることもわかる。
そして、肉厚tの中空軸材の軸肥大変形におけるパラメータNOp(t)は次式により中実軸材の軸肥大変形における等価なパラメータNOb(t)に換算できる。
As described above, with the aim of expanding the application to the shaft enlargement processing method, a shaft enlargement processing experiment was tried for hollow shaft materials having different wall thickness t, and the plastic deformation behavior obtained for the solid shaft material was examined. As a result of examining the application of the model formula and the effects of shaft enlargement processing conditions (θ, σ c / σ y ) and wall thickness t, the following results were obtained.
First, the shaft enlargement deformation of the hollow shaft material is slightly different from that of the solid shaft material, and after the lantern-like deformation progresses, it first shifts to the barrel-shaped deformation, and the enlarged portion is formed.
And the deformation behavior in this shaft enlargement process can be formulated with the same mathematical model as in the case of a solid shaft material. That is, the processing conditions (bending angle θ, axial pressure stress σ c / σ y ) can also predict the effects of the axial pressure stress σ c and the bending angle θ uniformly with only the rotation time constant N 0 as one parameter. . In other words, the processing conditions for obtaining a desired enlarged portion can be appropriately selected.
Further, the shaft enlargement deformation of the hollow shaft material tends to increase the machining rotational speed, approach the deformation behavior of the solid shaft material, and increase the bending moment as the wall thickness t increases under the same processing conditions. I understand that.
The parameter N Op (t) in the shaft enlargement deformation of the hollow shaft member having the wall thickness t can be converted into an equivalent parameter N Ob (t) in the shaft enlargement deformation of the solid shaft member by the following equation.

さらに、大径肉厚パイプ材において内径張出し部の形状は肉厚tと初期掴み幅Lに依存する。よって、肉厚tに対する適切な掴み幅Lを見つけることで、スリット切欠きをなくすことができる。
最後に、最終内径張出し部形状から内径張出し部の変形挙動を予測することで、外径の変形挙動を同一数式モデルで、定式化できる。
Furthermore, the shape of the inner diameter overhang at atmospheric径肉thickness pipe is dependent on the thickness t and the initial grasp width L 0. Therefore, to find a width L 0 suitable gripping for the thickness t, it is possible to eliminate-out slit notch.
Finally, by predicting the deformation behavior of the inner diameter overhanging portion from the final inner diameter overhanging portion shape, the outer diameter deformation behavior can be formulated with the same mathematical model.

軸肥大加工装置を示す全体斜視図Overall perspective view showing shaft enlargement processing device 実験方法を示す加工工程説明図Machining process explanatory diagram showing the experimental method 異なる曲げ角度による肥大部形状を示す写真Photograph showing enlarged part shape with different bending angles 回転回数の増加に伴う肥大部形状の変化を示す断面写真Cross-sectional photo showing changes in enlarged portion shape with increasing number of rotations 異なる肉厚による肥大部形状を示す写真Photograph showing enlarged part shape due to different wall thickness 異なる曲げ角度における軸肥大変形挙動を示すグラフGraph showing shaft enlargement deformation behavior at different bending angles 異なる肉厚における軸肥大変形挙動を示すグラフGraph showing shaft enlargement deformation behavior at different wall thickness 異なる曲げ角度における回転時定数と軸加圧応力との関係を示すグラフGraph showing the relationship between rotational time constant and axial pressure stress at different bending angles 異なる軸加圧応力における回転時定数と曲げ角度との関係を示すグラフA graph showing the relationship between rotational time constant and bending angle at different axial pressure stresses 曲げ角度依存係数及び加圧応力依存指数と曲げ角度との関係を示すグラフA graph showing the relationship between the bending angle dependence coefficient and the pressure stress dependence index and the bending angle 異なる軸加圧応力における基準化した回転時定数と基準化した肉厚との関係を示すグラフGraph showing the relationship between normalized rotational time constant and normalized wall thickness at different axial pressure stresses 異なる曲げ角度における基準化した回転時定数と基準化した肉厚との関係を示すグラフGraph showing the relationship between normalized rotation time constant and normalized wall thickness at different bending angles 異なる肉厚における体積変化率と肥大率との関係を示すグラフGraph showing the relationship between volume change rate and enlargement rate at different wall thicknesses 異なる肉厚における曲げモーメントと肥大率との関係を示すグラフGraph showing the relationship between bending moment and enlargement rate at different wall thicknesses 異なる肉厚における圧縮率と肥大率との関係を示すグラフGraph showing the relationship between compression rate and enlargement rate at different wall thicknesses 中空軸材での異なる曲げ角度における軸肥大加工過程での変形挙動を示すグラフGraph showing deformation behavior during shaft enlargement processing at different bending angles in hollow shaft material 中空軸材での異なる肉厚における軸肥大加工過程での変形挙動を示すグラフGraph showing deformation behavior during shaft enlargement processing at different wall thickness in hollow shaft material 中空軸材における軸肥大加工後の断面模式図Cross-sectional schematic diagram after shaft enlargement processing in hollow shaft material 異なる肉厚における回転回数の増加に伴う肥大部形状の変化を示す断面写真Cross-sectional photograph showing changes in enlarged portion shape with increasing number of rotations at different wall thicknesses 張出し部の基準値基準化した肉厚との関係を示すグラフGraph showing the relationship between the standard value of the overhang and the standardized wall thickness 最終形状の軸方向断面写真Axial cross-sectional photograph of the final shape 初期掴み幅が及ぼす影響を示す説明図Explanatory drawing showing the effect of initial grip width 中空軸材での軸肥大変形挙動を示すグラフGraph showing shaft enlargement deformation behavior of hollow shaft material 回転時定数と初期掴み間隔との関係を示すグラフGraph showing the relationship between rotation time constant and initial gripping interval

符号の説明Explanation of symbols

1 軸肥大加工装置
2 軸回転駆動部
3 軸加圧力付加部
4 曲げ角度付加部
5 軸回転駆動側チャック
6 軸加圧側チャック
DESCRIPTION OF SYMBOLS 1 Axis enlargement processing apparatus 2 Axis rotation drive part 3 Axis pressurizing force addition part 4 Bending angle addition part 5 Axis rotation drive side chuck 6 Axis pressure side chuck

Claims (2)

外径D,肉厚tなる被加工材Wの中間部に所望の肥大部を一体的に成形するため、互いに対向する一対の保持部を所定間隔L離間した状態で被加工材Wを保持し、少なくとも一方の保持部を相対的に他方の保持部に接近させることによって軸加圧応力Pを作用させるとともに、被加工材周りの回転と、少なくとも一方の保持部を他方の保持部の軸心に対して傾斜する方向に偏倚させることによって被加工材Wに回転と曲げ角度θの曲げを作用させ、両保持部間の被加工材Wの曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ戻しにより被加工材Wの真直化を行った後、回転及び軸加圧状態を停止させる軸肥大加工方法において、被加工材Wの肉厚部に生じるスリット切欠き長さhと内径側への張出し長さW が、h=0かつW ≧0となる内径側の肥大部形状を得るために(L/D)≦0.8となる条件で行うことを特徴とする軸肥大加工方法。 In order to integrally form a desired enlarged portion in the intermediate portion of the workpiece W having an outer diameter D 0 and a wall thickness t, the workpiece W is placed in a state where a pair of holding portions facing each other are separated by a predetermined interval L 0. Axial pressure stress P is applied by holding at least one holding part relatively close to the other holding part, and rotation around the workpiece and at least one holding part is moved to the other holding part. By biasing the workpiece W in a direction inclined with respect to the axis, the workpiece W is rotated and bent at a bending angle θ, and the convex portions generated on the inner side of the workpiece W between the holding portions are accumulated all around the circumference. After the enlargement, the workpiece W is straightened by bending back, and then the slit notch length generated in the thick part of the workpiece W in the shaft enlargement processing method in which the rotation and shaft pressurization are stopped. h and the overhanging length W i to the inner diameter side are h = 0 and W i A shaft enlargement processing method, which is performed under the condition of (L 0 / D 0 ) ≦ 0.8 in order to obtain a shape of the enlarged portion on the inner diameter side that satisfies ≧ 0 . 外径D,肉厚tなる被加工材Wの中間部に所望の肥大部を一体的に成形するため、互いに対向する一対の保持部を所定間隔L離間した状態で被加工材Wを保持し、少なくとも一方の保持部を相対的に他方の保持部に接近させることによって軸加圧応力Pを作用させるとともに、被加工材周りの回転と、少なくとも一方の保持部を他方の保持部の軸心に対して傾斜する方向に偏倚させることによって被加工材Wに回転と曲げ角度θの曲げを作用させ、両保持部間の被加工材Wの曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ戻しにより被加工材Wの真直化を行った後、回転及び軸加圧状態を停止させる軸肥大加工方法において、N回転後に幅L,直径Dとなる肥大部を成形する数式モデルを
として表し、ここでεはD/D=2となるときの円周方向の平均歪み(ε=ln(D/D)=ln(2))であり、Nは回転数であり、Nは回転時定数であり、この回転時定数Nは、
とし、ここで、回転時定数Nの曲げ角度依存係数N 及び加圧応力依存指数αを
とし、ここでDは内径張出し部の内径であり、
は内径張出し幅とすることによって、所望の肥大部(直径D,幅L)を成形する際にこれらのモデル式から導出される軸肥大加工条件(曲げ角度θ,軸加圧応力σ)によって前記肥大部を一体的に成形することを特徴とする金属管における軸肥大加工方法。
In order to integrally form a desired enlarged portion in the intermediate portion of the workpiece W having an outer diameter D 0 and a wall thickness t, the workpiece W is placed in a state where a pair of holding portions facing each other are separated by a predetermined interval L 0. Axial pressure stress P is applied by holding at least one holding part relatively close to the other holding part, and rotation around the workpiece and at least one holding part is moved to the other holding part. By biasing the workpiece W in a direction inclined with respect to the axis, the workpiece W is rotated and bent at a bending angle θ, and the convex portions generated on the inner side of the workpiece W between the holding portions are accumulated all around the circumference. After the enlargement, the workpiece W is straightened by bending back, and then the enlarged portion having the width L and the diameter D is formed after N rotations in the shaft enlargement processing method in which the rotation and the shaft pressurization state are stopped. Formula model
Where ε 0 is the average distortion in the circumferential direction when D / D 0 = 2 (ε 0 = ln (D / D 0 ) = ln (2)), and N is the number of revolutions , N 0 is a rotation time constant, and this rotation time constant N 0 is
Where the bending angle dependence coefficient N 0 * and the pressure stress dependence index α of the rotation time constant N 0 are
And then, where D i is the inner diameter of the inner diameter of the extending portion,
B i is the overhang width of the inner diameter, so that when the desired enlarged portion (diameter D, width L) is formed, the shaft enlargement processing conditions (bending angle θ, axial pressure stress σ c ) derived from these model equations The shaft enlargement processing method for a metal pipe, wherein the enlarged portion is integrally formed by the following method.
JP2006089918A 2006-03-29 2006-03-29 Shaft enlargement processing method Active JP4832136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089918A JP4832136B2 (en) 2006-03-29 2006-03-29 Shaft enlargement processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089918A JP4832136B2 (en) 2006-03-29 2006-03-29 Shaft enlargement processing method

Publications (3)

Publication Number Publication Date
JP2007260730A JP2007260730A (en) 2007-10-11
JP2007260730A5 JP2007260730A5 (en) 2009-05-14
JP4832136B2 true JP4832136B2 (en) 2011-12-07

Family

ID=38634234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089918A Active JP4832136B2 (en) 2006-03-29 2006-03-29 Shaft enlargement processing method

Country Status (1)

Country Link
JP (1) JP4832136B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289018A (en) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd Method for predicting upset shape of circular forging
JP5993581B2 (en) * 2012-02-21 2016-09-14 高周波熱錬株式会社 Monitoring system for shaft enlargement processing machine
CN104174798B (en) * 2014-07-24 2016-01-20 二重集团(德阳)重型装备股份有限公司 Main nuclear power pipeline pipe short route forging method
WO2016181660A1 (en) * 2015-05-14 2016-11-17 Neturen Co., Ltd. Method and apparatus for manufacturing stepped member
CN107660165A (en) * 2015-05-14 2018-02-02 高周波热錬株式会社 Method and apparatus for manufacturing scalariform part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669583B2 (en) * 1985-02-05 1994-09-07 第一高周波工業株式会社 Method and apparatus for processing metal circular tube upset
JP2000237832A (en) * 1999-02-17 2000-09-05 Iura:Kk Method and device for expanding metal tube
JP3788751B2 (en) * 2001-07-30 2006-06-21 株式会社いうら Shaft enlargement processing method
JP3809129B2 (en) * 2002-04-25 2006-08-16 株式会社いうら Method and apparatus for shaft enlargement processing of metal shaft

Also Published As

Publication number Publication date
JP2007260730A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4832136B2 (en) Shaft enlargement processing method
Jeswiet et al. Forming parameters for incremental forming of aluminium alloy sheet metal
CN1623763A (en) Stir forming apparatus and method
Li et al. Technology and equipment for high-precision polymer restoration of fitment holes in automotive housing parts
JP2004314083A (en) High dimensional precision pipe and its manufacturing method
FR2524002A1 (en) METHOD FOR MANUFACTURING STABILIZER LAMPS AND OIL DRILLING STABILIZERS
Oliveira et al. Effect of lubricant in mandrel-rotary draw tube bending of steel and aluminum
Rajesh et al. Low temperature machining of nitrile rubber
JP2008309543A (en) Friction coefficient measuring device for inner surface of tube
Udayani et al. Optimization of Process Parameters of Metal Spinning using Response Surface Methodology
Sariyarlioglu et al. Backward tube spinning mechanics
JP3788751B2 (en) Shaft enlargement processing method
SE509747C2 (en) When manufacturing a thick-walled, small-diameter pipe
Xue et al. Twist springback of asymmetric thin-walled tube in mandrel rotary draw bending process
GB2262060A (en) Machining pipe
Lebedev et al. Improving the efficiency of the process of burnishing splined holes under the influence of an ultrasonic field
JP2009183983A (en) Method of bending electric resistance welded steel tube
Dyl et al. Impact of processing parameters on surface roughness and strain hardening of two-phase stainless steel
JP2007169684A5 (en)
Srivastwa et al. Diametral growth and hardness variation in Al6101 T6 during flow forming
JP4920510B2 (en) Apparatus and method for bending a rectangular tube
JP2004230433A (en) Method for hydroforming tubular body
Kesavalu et al. Experimental studies and finite element modeling on incrementally formed AZ61A magnesium alloy
WO2002074462A1 (en) Thick-walled small diameter pipe producing method
Khodadadi et al. Experimental and Numerical Study of Internal Gear Manufacturing by Flowforming Processand Investigation of Effective Parameters on Teeth Height

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4832136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250