JP2009289018A - Method for predicting upset shape of circular forging - Google Patents

Method for predicting upset shape of circular forging Download PDF

Info

Publication number
JP2009289018A
JP2009289018A JP2008140717A JP2008140717A JP2009289018A JP 2009289018 A JP2009289018 A JP 2009289018A JP 2008140717 A JP2008140717 A JP 2008140717A JP 2008140717 A JP2008140717 A JP 2008140717A JP 2009289018 A JP2009289018 A JP 2009289018A
Authority
JP
Japan
Prior art keywords
upsetting
diameter
circular
workpiece
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008140717A
Other languages
Japanese (ja)
Inventor
Toshinao Nakamizo
利尚 中溝
Tomohiro Nishiyama
智宏 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008140717A priority Critical patent/JP2009289018A/en
Publication of JP2009289018A publication Critical patent/JP2009289018A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a trial time and reduce defectives in upsetting circular forgings. <P>SOLUTION: A method for predicting an upset shape of a circular forging has a first step of computing a predetermined number of relationships between a diameter and height in upset forging by a finite element method about each of a plurality of models of circular material, a second step of computing a predetermined number of relationships between a diameter expansion rate and an upsetting rate of corresponding preforms from the diameter-height relationships, a third step of performing polynomial approximation using the predetermined number of diameter expansion rates and upsetting rates to compute a prediction formula about each of the plurality of models of circular material, and a fourth step of selecting the most reliable approximation formula from the plurality of prediction formulae. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、円形鍛造品の据え込み形状予測方法に関し、特に、据え込み径を予測することにより、効率的な据え込み高さの設定を可能とした円形鍛造品の据え込み形状予測方法に関するものである。   The present invention relates to a method for predicting the upset shape of a circular forged product, and more particularly to a method for predicting the upset shape of a circular forged product that enables efficient setting of the upset height by predicting the upset diameter. It is.

車輪、ギヤ、リングなどの円盤状または環状の鋼鍛造製品あるいはその中間製品としての荒地など、外径が円形である鍛造品(以下、単に「円形鍛造品」と記す)の鍛造加工では、素材に数工程の鍛造加工を施して所望の形状に成形を行う。例えば、車輪の荒地成形においては、円柱状の素材を加熱し、1工程目の鍛造により半径方向の体積配分をおこない、2工程目の鍛造で製品の概略形状に成形する。リングなどの環状品の鍛造においては、まず、荒地成形工程として素材の据え込み鍛造をおこなう。このようにして得られた荒地は圧延や仕上鍛造により製品形状に仕上げられる。   Forging of forged products with a circular outer diameter (hereinafter simply referred to as “circular forged products”), such as disc-shaped or annular steel forged products such as wheels, gears and rings, or wasteland as intermediate products, Is subjected to several steps of forging to form a desired shape. For example, in the waste wheel forming of a wheel, a columnar material is heated, volume distribution in the radial direction is performed by forging in the first step, and the rough shape of the product is formed by forging in the second step. In the forging of an annular product such as a ring, first, upsetting forging of a material is performed as a wasteland forming process. The waste land thus obtained is finished into a product shape by rolling or finish forging.

荒地加工段階での荒地の形状精度が劣る場合には、後工程の圧延や仕上鍛造においてこれを完全に除去することが難しく、結果として製品の寸法精度を損ない、品質不良の原因となる。また、充満度の不足を補うために、最終機械加工代を大きくするなどの対策がとられるが、これによる歩留ロスが増すなどの問題が生じる。したがって、荒地の寸法精度の向上が重要となる。   When the shape accuracy of the wasteland in the wasteland processing stage is inferior, it is difficult to completely remove it in the subsequent rolling or finish forging, and as a result, the dimensional accuracy of the product is impaired, resulting in a quality defect. Further, in order to compensate for the lack of fullness, measures such as increasing the final machining allowance are taken, but this causes problems such as an increase in yield loss. Therefore, it is important to improve the dimensional accuracy of the wasteland.

例えば、特許文献1には、被加工材の側面を拘束する側壁がない上下金型を用いて円形素材を軸方向に圧下する鍛造加工方法において、軸方向圧下の途中または下死点まで圧下した時点において、被加工材の上下面を上下金型で拘束し、側面押圧用工具を用いて被加工材の側面に押圧成形を施すことにより、荒地成形時に発生する偏肉を矯正して、周方向に均一な形状の荒地を得ることを可能とした円形鍛造品の鍛造加工方式が開示されている。
特開2002−35881号公報
For example, in Patent Document 1, in a forging method in which a circular material is squeezed in the axial direction using upper and lower molds that do not have side walls that restrain the side surface of the workpiece, the squeezing is performed halfway in the axial direction or down to the bottom dead center. At the time, the upper and lower surfaces of the work piece are restrained with upper and lower molds, and the side wall of the work piece is pressed using the side pressing tool to correct the uneven thickness that occurs during the rough ground forming, A forging method of a circular forged product that has made it possible to obtain a wasteland having a uniform shape in the direction is disclosed.
JP 2002-35881 A

従来、縦型鍛造プレスの第1工程(据え込み加工)での荒地径(据え込み径)を決める際には、本番前の試作時に数回(2〜3回)の間座調整を行い、試行錯誤を繰り返して、据え込み率と据え込み径との関係を求め、据え込み率を決定し、荒地の寸法精度の向上を図っていた。そのため、試作時間ロスならびに試作NGが発生していた。   Conventionally, when determining the rough ground diameter (upsetting diameter) in the first step (upsetting process) of the vertical forging press, the spacer adjustment is performed several times (2 to 3 times) at the time of trial production before production, Through repeated trial and error, the relationship between the upsetting rate and the upsetting diameter was obtained, the upsetting rate was determined, and the dimensional accuracy of the wasteland was improved. Therefore, trial production time loss and trial production NG occurred.

また、特許文献1の方式によれば、周方向に均一な形状の荒地を得ることも可能となるが、据え込み径の変更に伴い複数の種類の側面押圧用工具が必要となる。したがって、金型のコストが上昇し、製品に応じた段取り変更等の作業が必要となる。   In addition, according to the method of Patent Document 1, it is possible to obtain a rough land having a uniform shape in the circumferential direction, but a plurality of types of side pressing tools are required as the upsetting diameter is changed. Therefore, the cost of the mold rises, and work such as setup change according to the product becomes necessary.

本発明は、このような従来の問題を解決するためになされたもので、試作時間の短縮並びにNG品削減による歩留まりアップを可能とした円形鍛造品の据え込み形状予測方法を提供しようとするものである。   The present invention has been made to solve such a conventional problem, and is intended to provide a method for predicting the upsetting shape of a circular forged product that can shorten the trial production time and increase the yield by reducing NG products. It is.

本願請求項1に記載の発明は、複数の品種の円形素材の各々について、据込鍛造時の直径と高さとの関係を有限要素法により所定の数求める第1の工程と、直径と高さとの関係から、対応する荒地の径拡大率と据込率との関係を所定の数求める第2の工程と、所定の数の径拡大率と据込率を用いて多項式近似を行い、複数の品種の円形素材の各々について予測式を求める第3の工程と、複数の予測式から最も信頼できる予測式を選択する第4の工程と、を有することを特徴とする円形鍛造品の据え込み形状予測方法である。   The invention according to claim 1 of the present application relates to a first step of obtaining a predetermined number of relationships between a diameter and a height during upsetting forging for each of a plurality of types of circular materials by a finite element method, From the relationship, the second step of obtaining a predetermined number of the relationship between the diameter expansion rate and the upsetting rate of the corresponding wasteland, and using a predetermined number of diameter expansion rate and upsetting rate, polynomial approximation, The upset shape of a circular forged product, comprising: a third step for obtaining a prediction formula for each of the circular materials of the type, and a fourth step for selecting the most reliable prediction formula from a plurality of prediction formulas. This is a prediction method.

本発明の円形鍛造品の据え込み形状予測方法によれば、現状把握できている据込みデータを使ったCAE解析を行い、得られた解析結果から据込み時のワーク高さとワーク外径の近似曲線を求め予測式を作成することにより、効率的な据え込み高さの設定が可能となるため、荒地試作の回数が減少し、試作時間の短縮並びにNG品削減による歩留まりアップが可能となる。   According to the upset shape prediction method for a circular forged product of the present invention, CAE analysis is performed using upset data that is currently known, and the workpiece height and workpiece outer diameter at the time of upsetting are approximated from the obtained analysis results. By obtaining a curve and creating a prediction formula, it is possible to efficiently set the upsetting height, thereby reducing the number of times of rough land trial production, shortening trial production time, and increasing yields by reducing NG products.

以下、本発明の実施形態である円形鍛造品の据え込み形状予測方法について、図を参照して詳細に説明をする。   Hereinafter, a method for predicting the upset shape of a circular forged product according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1(a)は、据え込み加工前のワークの形状を示す正面図である。略円筒状の形態を有するワーク1は、ワーク径φAとワーク高さBの形状からなる。ワーク径φAとワーク高さBは、使用する素材や品種等により相異なる数値を有するものである。   Fig.1 (a) is a front view which shows the shape of the workpiece | work before an upsetting process. A workpiece 1 having a substantially cylindrical shape has a workpiece diameter φA and a workpiece height B. The workpiece diameter φA and the workpiece height B have different numerical values depending on the materials and types used.

図1(b)は、据え込み加工後の荒地の形状を示す正面図である。略円盤状の形態である荒地2は、荒地径φCと、荒地高さDの形状からなる。荒地径φCと荒地高さDは、使用するワークや加工条件により異なる値となる。   FIG.1 (b) is a front view which shows the shape of the wasteland after upsetting. The wasteland 2 having a substantially disk shape has a shape of a wasteland diameter φC and a wasteland height D. The wasteland diameter φC and the wasteland height D are different values depending on the work to be used and machining conditions.

図1に示すように、据え込み加工により、径φAと高さBを有するワーク1は、縦方向にプレスされ荒地となり、その高さはBからDへ圧縮されるとともに、その径はφAからφCへ拡大することとなる。   As shown in FIG. 1, by upsetting, the workpiece 1 having a diameter φA and a height B is pressed in the vertical direction to become rough ground, the height is compressed from B to D, and the diameter is from φA. It will be expanded to φC.

ここで、C/Aを径拡大率Yとし、(B−D)/Bを据え込み率Xと定義することとする。   Here, C / A is defined as the diameter enlargement ratio Y, and (BD) / B is defined as the upsetting ratio X.

(CAE解析)
ワーク1の形状をCADデータ化し、コンピュータに入力後、有限要素法により鍛造のシミュレーションを行う。CAE解析の入力データとしては、上記ワーク1の形状の他に、材料の温度や、金型とワーク1との潤滑状態(摩擦状態)などがある。
(CAE analysis)
The shape of the workpiece 1 is converted into CAD data and input to a computer, and then forging is simulated by the finite element method. As input data for the CAE analysis, in addition to the shape of the workpiece 1, there are the temperature of the material and the lubrication state (friction state) between the mold and the workpiece 1.

CAE解析においては、据え込み加工途中における荒地径φCと荒地高さDの情報も求めることが可能であるため、一つのワーク1に対して、(C、D)、(C、D)、・・・、(C、D)の任意のn個のCAE解析データを得ることができる。 In the CAE analysis, it is possible to obtain information on the wasteland diameter φC and the wasteland height D during the upsetting process. Therefore, (C 1 , D 1 ), (C 2 , D) for one workpiece 1. 2 ),..., (C n , D n ), any n pieces of CAE analysis data can be obtained.

なお、本実施形態においては、(C、D)をCAE解析により得ているが、例えば、実測により(C、D)を得るということも可能である。ただし、実測にて(C、D)の情報を得る場合には、プレス設定の変更、金型調整を行う必要があり、膨大な時間を要することとなる。本実施形態のCAE解析の利点は、実際に機械・金型を準備し、動かすことなく、コンピュータ上での検討が可能であることである。 In the present embodiment, (C n , D n ) is obtained by CAE analysis, but it is also possible to obtain (C n , D n ) by actual measurement, for example. However, in order to obtain information on (C n , D n ) by actual measurement, it is necessary to change the press setting and adjust the die, which requires a huge amount of time. The advantage of the CAE analysis of the present embodiment is that the examination on the computer is possible without actually preparing and moving the machine / mold.

(近似曲線)
CAE解析データ(C、D)から、まず、径拡大率Y(=C/A)と据込率X(=(B−D)/B)との関係を任意のn個のCAE解析データに応じて求める。すなわち、一つのワーク1に対して、(X、Y)、(X、Y)、・・・、(X、Y)の、n個の関係を求めることができる。
(Approximate curve)
First, from the CAE analysis data (C n , D n ), the relationship between the diameter expansion rate Y (= C / A) and the upsetting rate X (= (BD) / B) is arbitrarily determined by n CAE analyzes. Calculate according to data. That is, n relationships of (X 1 , Y 1 ), (X 2 , Y 2 ),..., (X n , Y n ) can be obtained for one workpiece 1.

表1は、ワーク径φAが90mm、ワーク高さBが150mmのワークについてCAE解析を行いCAE解析データ(C、D)を求め、据込率Xと径拡大率Yとの関係(X、Y)を求めた結果を示す図である。 Table 1 shows the CAE analysis of workpieces with workpiece diameter φA of 90 mm and workpiece height B of 150 mm to obtain CAE analysis data (C n , D n ), and the relationship between upsetting ratio X and diameter expansion ratio Y (X It is a figure which shows the result of having calculated | required n , Yn).

Figure 2009289018
Figure 2009289018

そして、これらn個の(X、Y)データに基づいて多項式近似を行い、予測式を作成する。 Then, polynomial approximation is performed based on these n pieces of (X n , Y n ) data to create a prediction formula.

本実施形態においては、荒地径φCと荒地高さDとの関係から、直接予測式を求めるのではなく、径拡大率Yと据込率Xとの無次元の関係から予測式を求め、荒地径φCと荒地高さDの予測を行っている。これは、予測式を求めるにあたり、数十種の条件での結果を、同一グラフ上にプロットして評価する必要があるためである。   In the present embodiment, instead of directly obtaining a prediction formula from the relationship between the wasteland diameter φC and the wasteland height D, a prediction formula is obtained from a dimensionless relationship between the diameter expansion rate Y and the upsetting rate X, and the wasteland The diameter φC and the wasteland height D are predicted. This is because it is necessary to plot and evaluate the results under several tens of conditions on the same graph in order to obtain the prediction formula.

予測式は、以下のように表すことが可能である。なお、本実施形態では、4次式で多項式近似を行った。   The prediction formula can be expressed as follows. In the present embodiment, polynomial approximation is performed using a quartic equation.

(数式1)
Y=aX−bX+cX+dX+e
Yは、径拡大率(C/A)
Xは、据え込み率((B−D)/B)
(Formula 1)
Y = aX 4 −bX 3 + cX 2 + dX + e
Y is the diameter expansion rate (C / A)
X is the upsetting rate ((BD) / B)

4次式とした理由は、1次〜3次式だと、精度の良い近似ができないからであり、5次式以上にしなかった理由は、本発明者らの評価の結果、4次の多項式近似で十分に近似可能であることが判明したためである。   The reason why the quaternary expression is used is that accurate approximation cannot be performed if the expression is a first to third order expression. The reason why the quartic expression is not higher than the fifth order expression is that the fourth order polynomial expression This is because it has been found that approximation can be sufficiently approximated.

図2は、表1の(X、Y)データに基づいて多項式近似を行い、予測式を作成した結果を示す図である。また、予測式は
(数式2)
Y=0.0000000516X4-0.0000056679X3+0.0002701085X2+0.0039011020X+1.0173325299
となった。
FIG. 2 is a diagram illustrating a result of creating a prediction formula by performing polynomial approximation based on the (X n , Y n ) data in Table 1. The prediction formula is (Formula 2).
Y = 0.0000000516X 4 -0.0000056679X 3 + 0.0002701085X 2 + 0.0039011020X + 1.0173325299
It became.

単一の品種について予測式を求める方法は上述した通りであるが、実際には、ワーク1のワーク径φAとワーク高さBは、鍛造する品番・品種によって異なる。そこで、本実施形態では、ワーク1の品種W〜Wごとに、ワーク径とワーク高さの関係である(A、B)、(A、B)、・・・、(A、B)をワーク1の形状データとして入力し、CAE解析を行う。これにより、ワーク1の品種W〜Wごとに、(X、Y)〜(X、Y)を求めることとなる。そして、ワークの品種W〜Wごとに予測式を求め、結果として複数のm個の予測式を求めるものとする。 The method for obtaining the prediction formula for a single type is as described above, but in reality, the workpiece diameter φA and the workpiece height B of the workpiece 1 differ depending on the product number and type to be forged. Therefore, in this embodiment, each breed W 1 to W-m of the workpiece 1, the relationship of the workpiece diameter and workpiece height (A 1, B 1), (A 2, B 2), ···, ( A m , B m ) are input as the shape data of the work 1, and CAE analysis is performed. Accordingly, (X 1 , Y 1 ) to (X n , Y n ) are obtained for each of the workpieces W 1 to W m . Then, a prediction formula is obtained for each of the workpiece types W 1 to W m , and as a result, a plurality of m prediction formulas are obtained.

複数のm個の予測式をもとに、最も信頼できる予測式を導き出す。これにより、ワークの品種に依存しない、振込加工の予測式を導き出すことが可能となる。   The most reliable prediction formula is derived based on a plurality of m prediction formulas. As a result, it is possible to derive a transfer processing prediction formula that does not depend on the workpiece type.

表2に、ワーク1の形状(表の第1列及び第2列)と、ワーク1を据え込み加工した場合の荒地2の形状の実測値(表の第3列及び第4列)と、最も信頼できる近似式に基づく荒地長の予測値(補正前)(表の第5列及び第6列)と、最も信頼できる近似式に基づく荒地長の予測値(補正後)(表の第7列及び第8列)が示されている。   Table 2 shows the shape of the workpiece 1 (first and second rows in the table), and the measured value of the shape of the wasteland 2 when the workpiece 1 is upset (third and fourth rows in the table). Predicted values of rough land length based on the most reliable approximation formula (before correction) (columns 5 and 6 in the table), and predicted values of rough ground length based on the most reliable approximation formula (after correction) (seventh in the table) Column and column 8).

Figure 2009289018
Figure 2009289018

実測値(第3列及び第4列)と予測値(第5列及び第6列)とを比較した場合は、若干の誤差が生じていることがわかる。これは、上記で求めた予測式はあくまでCAE解析の結果をもとにしたものであるため、実際の値とは異なる可能性があるためである。   When the measured values (third and fourth columns) are compared with the predicted values (fifth and sixth columns), it can be seen that there is a slight error. This is because the prediction formula obtained above is based on the result of CAE analysis to the last, and may be different from the actual value.

また、実際の鍛造を行う場合、据込後の外径が大きすぎると、次工程の金型に入らないという不具合が生じることがある。この場合ワークは使用不可となるため、予測式で得られる寸法を小さめに見積もっておく必要がある。そこで、本実施形態においては予測式の誤差分を補正値3mmとして組み込むものとする。   Moreover, when performing an actual forging, if the outer diameter after upsetting is too large, there may be a problem that the die does not enter the next process. In this case, since the workpiece cannot be used, it is necessary to estimate the size obtained by the prediction formula to be smaller. Therefore, in this embodiment, the error in the prediction formula is incorporated as a correction value of 3 mm.

表2の第8列は、荒地長の予測値に補正値3mmを組み込んだ数値を表すものである。実測値(第4列)と予測値(第8列)とは、ほぼ一致しており、本実施形態の円形鍛造品の据え込み形状予測方法の妥当性が証明された。   The eighth column in Table 2 represents numerical values obtained by incorporating a correction value of 3 mm into the predicted value of the rough land length. The actual measurement value (fourth column) and the predicted value (eighth column) almost coincide with each other, and the validity of the upset shape prediction method for the circular forged product of this embodiment has been proved.

以上説明したように本実施形態の円形鍛造品の据え込み形状予測方法によれば、現状把握できている据込みデータを使ったCAE解析を行い、得られた解析結果から据込み時のワーク高さとワーク外径の近似曲線を求め予測式を作成することにより、荒地試作の回数が減少し、試作時間の短縮並びにNG品削減による歩留まりアップが可能となる。   As described above, according to the upset shape prediction method of the circular forged product of the present embodiment, the CAE analysis using the upset data that can be grasped at present is performed, and the workpiece height at the time of upsetting is obtained from the obtained analysis result. By calculating the approximate curve of the outer diameter of the workpiece and creating a prediction formula, the number of times of trial production on the rough ground is reduced, and it is possible to shorten the trial production time and increase the yield by reducing NG products.

本実施形態の円形鍛造品の据え込み形状予測方法における、据え込み加工前のワークの形状と据え込み加工後の荒地の形状を示す正面図である。It is a front view which shows the shape of the workpiece | work before upsetting, and the shape of the wasteland after upsetting in the upsetting shape prediction method of the circular forged product of this embodiment. 表1の(X、Y)データに基づいて多項式近似を行い、予測式を作成した結果を示す図である。Table 1 (X n, Y n) based on the data subjected to polynomial approximation is a diagram showing a result of creating a prediction equation.

Claims (1)

複数の品種の円形素材の各々について、据込鍛造時の直径と高さとの関係を有限要素法により所定の数求める第1の工程と、
前記直径と高さとの関係から、対応する荒地の径拡大率と据込率との関係を前記所定の数求める第2の工程と、
前記所定の数の前記径拡大率と前記据込率を用いて多項式近似を行い、前記複数の品種の円形素材の各々について予測式を求める第3の工程と、
前記複数の予測式から最も信頼できる予測式を選択し、円形素材の品種に依存しない予測式とする第4の工程と、
を有することを特徴とする円形鍛造品の据え込み形状予測方法。
For each of a plurality of types of circular materials, a first step of determining a predetermined number of diameters and heights during upsetting forging by a finite element method,
From the relationship between the diameter and the height, a second step for determining the predetermined number of the relationship between the diameter expansion rate and the upsetting rate of the corresponding wasteland,
A third step of performing a polynomial approximation using the predetermined number of the diameter expansion ratio and the upsetting ratio, and obtaining a prediction formula for each of the plurality of types of circular materials;
A fourth step of selecting the most reliable prediction formula from the plurality of prediction formulas and making the prediction formula independent of the type of circular material;
A method for predicting the upset shape of a circular forged product, comprising:
JP2008140717A 2008-05-29 2008-05-29 Method for predicting upset shape of circular forging Pending JP2009289018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140717A JP2009289018A (en) 2008-05-29 2008-05-29 Method for predicting upset shape of circular forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140717A JP2009289018A (en) 2008-05-29 2008-05-29 Method for predicting upset shape of circular forging

Publications (1)

Publication Number Publication Date
JP2009289018A true JP2009289018A (en) 2009-12-10

Family

ID=41458180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140717A Pending JP2009289018A (en) 2008-05-29 2008-05-29 Method for predicting upset shape of circular forging

Country Status (1)

Country Link
JP (1) JP2009289018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624900A (en) * 2015-02-11 2015-05-20 中国科学院金属研究所 Forging method for efficiently recovering internal defects of thin plate forged pieces
WO2016103316A1 (en) * 2014-12-22 2016-06-30 株式会社日立製作所 Material shape for hot upset forging
CN109822026A (en) * 2019-01-02 2019-05-31 中国原子能科学研究院 A kind of manufacturing method and mould therefor of abnormity blank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231377A (en) * 2005-02-25 2006-09-07 Sanyo Special Steel Co Ltd Method for predicting shape after upsetting with hot-forging
JP2007260730A (en) * 2006-03-29 2007-10-11 Iura Co Ltd Axial thickening-processing method
JP2007301604A (en) * 2006-05-11 2007-11-22 Kobe Steel Ltd Process design method and forging control method in ring forging
JP2008284604A (en) * 2006-07-10 2008-11-27 Kobe Steel Ltd Designing system for process of cogging and cogging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231377A (en) * 2005-02-25 2006-09-07 Sanyo Special Steel Co Ltd Method for predicting shape after upsetting with hot-forging
JP2007260730A (en) * 2006-03-29 2007-10-11 Iura Co Ltd Axial thickening-processing method
JP2007301604A (en) * 2006-05-11 2007-11-22 Kobe Steel Ltd Process design method and forging control method in ring forging
JP2008284604A (en) * 2006-07-10 2008-11-27 Kobe Steel Ltd Designing system for process of cogging and cogging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103316A1 (en) * 2014-12-22 2016-06-30 株式会社日立製作所 Material shape for hot upset forging
CN104624900A (en) * 2015-02-11 2015-05-20 中国科学院金属研究所 Forging method for efficiently recovering internal defects of thin plate forged pieces
CN109822026A (en) * 2019-01-02 2019-05-31 中国原子能科学研究院 A kind of manufacturing method and mould therefor of abnormity blank
CN109822026B (en) * 2019-01-02 2020-08-28 中国原子能科学研究院 Method for manufacturing special-shaped blank and die used in method

Similar Documents

Publication Publication Date Title
Sahoo et al. Six Sigma based approach to optimize radial forging operation variables
Shi et al. Electric hot incremental forming of low carbon steel sheet: accuracy improvement
Xu et al. Analytical prediction of stepped feature generation in multi-pass single point incremental forming
LANG et al. Pre-bulging effect during sheet hydroforming process of aluminum alloy box with unequal height and flat bottom
CN106607534A (en) Upsetting method of cylindrical ingot blank or bar with large height to diameter ratio
CN109772987A (en) A method of two spinning roller spinning mistakes are adjusted away from amount
He et al. Finite element modeling of incremental forming of aluminum sheets
JP2009289018A (en) Method for predicting upset shape of circular forging
Hsia et al. Fabrication improvement of cold forging hexagonal nuts by computational analysis and experiment verification
Paramasivam et al. Numerical simulation of cold orbital forging process for gear manufacturing
Zhou et al. The multi-objective optimization design of a new closed extrusion forging technology for a steering knuckle with long rod and fork
JP5758284B2 (en) Method for predicting the life of casting molds
Shen et al. Experiment and simulation of metal flow in multi-stage forming process of railway wheel
Snitko et al. Features finite-element modeling of the deformation exact mass
JP2008284604A (en) Designing system for process of cogging and cogging method
Singh et al. FEA analysis to study the influence of various forming parameters on springback occurs in single point incremental forming
Chval et al. Thermal analysis of the forging press LZK 4000
CN113297758A (en) Optimized design method for pre-forging forming initial blank of large-scale complex rib plate
JP6303815B2 (en) Forging crack prediction method, forging crack prediction program, and recording medium
JP7188234B2 (en) Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure
WO2013097836A1 (en) A method for the manufacture of a vessel bottom with a flange
JP5017999B2 (en) Forging method and forging apparatus
US9248493B2 (en) Forge press, die and tooling design with distributed loading
Pepelnjak et al. Computer-Assisted Design of Sheet Metal Component Formed from Stainless Steel
Gutierrez et al. Impact of tool wear on cross wedge rolling process stability and on product quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002