JP2008284604A - Designing system for process of cogging and cogging method - Google Patents

Designing system for process of cogging and cogging method Download PDF

Info

Publication number
JP2008284604A
JP2008284604A JP2007160476A JP2007160476A JP2008284604A JP 2008284604 A JP2008284604 A JP 2008284604A JP 2007160476 A JP2007160476 A JP 2007160476A JP 2007160476 A JP2007160476 A JP 2007160476A JP 2008284604 A JP2008284604 A JP 2008284604A
Authority
JP
Japan
Prior art keywords
pass
forging
shape
dimension
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007160476A
Other languages
Japanese (ja)
Other versions
JP4866302B2 (en
Inventor
Hideki Kakimoto
英樹 柿本
Hideki Takamori
秀樹 高森
Takahiko Nozaki
孝彦 野▲崎▼
Hiroyuki Hata
寛幸 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007160476A priority Critical patent/JP4866302B2/en
Publication of JP2008284604A publication Critical patent/JP2008284604A/en
Application granted granted Critical
Publication of JP4866302B2 publication Critical patent/JP4866302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a designing system and an apparatus for a process of cogging, wherein working conditions such as press-down rate and targeted shape, can be decided with a simple calculation, in spite of the experience difference between press-operators, in the cogging process for forming into a shaft material such as round bar, from a blank with a free-forging. <P>SOLUTION: The designing system for the process of cogging, in which the blank is finished to the shaft material by alternately repeating a press-down movement from the both sides of the blank and a feeding movement to the axial direction, has; a step 1, in which the last octagonal shape and the last square shape at this front step, are decided from the cross-sectional shape of the product shaft material; a step 2, in which when the pass number of times from the blank to the last square shaped size and two process, are defined as one pass unit U, a target shape size is decided at each one pass unit and the press-down rate in each pass is set by predicting the shape of the material to be cogged in each pass unit; a step 3, in which the size of the material to be cogged is measured in each pass unit; and a step 4, in which the press-down rates on and after following pass are corrected by comparing the above measured size and the target size. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、鋼塊から自由鍛造により丸棒などに成形する鍛伸加工の工程設計システムとそれを用いた鍛伸方法および鍛伸加工装置に関する。   The present invention relates to a forging process design system for forming a steel bar from a steel ingot into a round bar or the like, a forging method and a forging apparatus using the same.

自由鍛造プレスを用いて鋼塊などの加工用素材を、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、通常、最終4角形状を経て最終8角形状に鍛造された後、丸棒などの軸材に成形する鍛伸加工は、従来、プレス操作者の経験により、圧下量、送り、目標形状などの加工条件が決定されていた。経験豊富なプレス操作者は、経験と勘により被加工材の変形挙動を予測して目標形状を作るのに対し、経験の浅いプレス操作者は、経験豊富なプレス操作者ほどに、被加工材(被鍛伸材)の変形挙動を予測することができない。このため、経験豊富なプレス操作者と経験の浅いプレス操作者では、目標形状を作るのにパス数の差などを生じる結果、鍛造時間などのバラツキが大きいという問題があった。また、経験豊富なプレス操作者でも、その鍛伸パススケジュールが適正なものとは限らない。さらに、従来、被鍛伸材の寸法測定は、1パスの鍛伸加工終了後毎に、または2パスの鍛伸加工終了毎に、通常、被鍛伸材の長手方向の中央部、すなわち定常部の1箇所をプレスゲージなどの寸法測定具を用いて測定するだけであったため、被鍛伸材の長手方向全体の形状のバラツキが大きいという問題があった。   Using a free forging press, the material to be machined such as a steel ingot is repeatedly pressed down from two opposite directions perpendicular to the axial direction and the feeding operation in the axial direction alternately. After forging into a final octagonal shape after forming, the forging process for forming into a shaft such as a round bar has conventionally determined the processing conditions such as the amount of reduction, feed, and target shape based on the experience of the press operator. It was. An experienced press operator predicts the deformation behavior of a work material based on experience and intuition and creates a target shape, while an inexperienced press operator performs as much as an experienced press operator. The deformation behavior of the (wrought material) cannot be predicted. For this reason, the experienced press operator and the inexperienced press operator have a problem that there is a large variation in forging time and the like as a result of the difference in the number of passes for producing the target shape. Even an experienced press operator does not always have an appropriate forging pass schedule. Further, conventionally, the dimension measurement of the to-be-wrought material is usually performed at the center in the longitudinal direction of the to-be-wrought material, that is, every time after the end of the one-pass forging process or after the end of the two-pass forging process. Since only one part of the part was measured using a dimension measuring tool such as a press gauge, there was a problem that the variation in the shape of the entire stretched material in the longitudinal direction was large.

自由鍛造プレスを用いた鍛伸加工については、例えば、特許文献1に、棒材の鍛伸方法が開示されている。この棒材の鍛伸方法は、鍛造時間の短縮や精度の確保を目的として、任意の鋼塊から正8角形の断面材を鍛伸するに際し、鍛伸加工の最終段階において、ほぼ上下左右対称形の4角断面または8角断面形状に成形した後、互いに方向を異にする4パスの圧下により、あらかじめ与えられた寸法の正8角形断面を成形する方法である。また、例えば、特許文献2には、実測金型形状データと、素材形状データや成形条件データに基づいて、鍛造シミュレーションで材料の流れを予測し、この材料流れ予測に基づいて、成形欠陥や成形精度などの解析を行う鍛造成形品の品質予測システムが開示されている。
特開昭63−326332号公報 特開2005−238289号公報
For forging work using a free forging press, for example, Patent Document 1 discloses a bar forging method. This bar forging method is almost vertically and horizontally symmetrical at the final stage of forging when forging a regular octagonal cross section from any steel ingot for the purpose of shortening forging time and ensuring accuracy. This is a method of forming a regular octagonal cross section having a predetermined dimension by forming four rectangular cross-sections or octagonal cross-sectional shapes, and then reducing the directions by four passes. Further, for example, in Patent Document 2, a material flow is predicted by forging simulation based on measured mold shape data, material shape data, and molding condition data, and molding defects and molding are determined based on the material flow prediction. A quality prediction system for forged products that performs analysis such as accuracy is disclosed.
JP 63-326332 A JP 2005-238289 A

しかし、特許文献1に開示された棒材の鍛伸方法は、例えば、4角形の断面形状の鋼塊から正8角形の断面材に鍛伸する過程で、予め実験的に求めた変形挙動の予測式を用いて、1パス(圧下)毎に形状計算を行なう必要がある。また、前記鋼塊から、正8角形に鍛造する直前段階の4角形の目標形状への鍛伸については、具体的に記載されていない。また、4角形の断面形状の鋼塊から4角形の目標形状への鍛造方法については、従来から種々の方法が存在していたが、目標形状通りに、すなわち設計値通りに鍛造できないため、大きな寸法外れが発生していた。一方、特許文献2に開示された鍛造成形品の品質予測システムでは、3次元解析を行うため、解析コストが嵩み、解析時間も要するため、実機プレスへの適用が難しい。   However, the bar forging method disclosed in Patent Document 1 has a deformation behavior obtained experimentally in advance, for example, in the process of forging from a steel ingot having a square cross section to a regular octagonal cross section. It is necessary to calculate the shape for each pass (reduction) using the prediction formula. Further, forging from the steel ingot to a quadrangular target shape immediately before forging into a regular octagon is not specifically described. In addition, as for the forging method from a steel ingot having a quadrangular cross-sectional shape to a target shape having a quadrangular shape, various methods have conventionally existed, but forging cannot be performed according to the target shape, that is, according to the design value. The dimensions were off. On the other hand, in the quality prediction system for forged products disclosed in Patent Document 2, since the three-dimensional analysis is performed, the analysis cost is increased and the analysis time is also required, so that it is difficult to apply to the actual press.

そこで、この発明の課題は、鋼塊から自由鍛造により丸棒などの軸材に成形する鍛伸加工工程で、プレス操作者の経験の差にかかわらず、簡単な計算により、圧下量、送り量、目標形状などの加工条件を決定し、被加工材の最終8角形状前の最終4角形状を精度よく得ることができる鍛伸加工の工程設計システムとこの工程設計システムを用いた鍛伸加工方法、および被加工材の長手方向の寸法バラツキを少なくできる鍛伸加工装置を提供することである。   Therefore, the subject of the present invention is a forging process in which a steel bar is formed into a shaft material such as a round bar by free forging. Regardless of the experience of the press operator, the reduction amount and the feed amount are calculated by simple calculation. Forging process using this process design system, which determines the machining conditions such as target shape and can accurately obtain the final quadrilateral shape before the final octagonal shape of the workpiece It is an object of the present invention to provide a method and a forging apparatus that can reduce dimensional variations in the longitudinal direction of a workpiece.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係る鍛伸加工の工程設計システムは、加工用素材を、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、最終4角形状に、または最終4角形状を経て最終8角形状に鍛造した後、軸材に仕上げる鍛伸加工の工程設計システムであって、この工程設計システムが、製品軸材の断面形状から前記最終4角形状および最終8角形状寸法を決定するステップ1と、前記鋼塊から前記最終4角形状寸法までのパス回数およびこの各パスでの目標形状寸法(高さおよび幅)を決定し圧下量および送り量を設定するステップ2と、所要のパス毎に被鍛伸材の高さおよび幅を計測するステップ3と、この計測結果と当該被鍛伸材の目標寸法とを比較し、次パス以降の目標形状寸法に対する圧下量および送り量を修正するステップ4を備えたことを特徴とする。   The process design system for forging processing according to claim 1 alternately repeats the operation of lowering the working material from two opposing directions perpendicular to the axial direction and the feeding operation in the axial direction. A forging process design system that forges into a square shape or a final octagon shape through a final quadrangular shape, and then finishes the shaft material. The process design system is based on the cross-sectional shape of the product shaft material. Step 1 for determining the final quadrangular shape and final octagonal shape size, the number of passes from the steel ingot to the final square shape size, and the target shape size (height and width) in each pass are determined and reduced. Step 2 for setting the amount and feed amount, Step 3 for measuring the height and width of the to-be-wrought material for each required pass, and comparing the measurement results with the target dimensions of the to-be-wrought material, Pressure for target geometry after pass Characterized by comprising the steps 4 to modify the amount and feed rate.

請求項2に係る鍛伸加工の工程設計システムは、前記ステップ1で、最終4角形状から少なくとも4パスで最終8角形状に鍛造するための、前記最終4角形状寸法(一辺DS)および8角形状寸法(対辺寸法H)を、以下の式(1)および式(2)を用いて算出することを特徴とする。
DS=SQRT(δ×β×π×(DF)/4)---------------------(1)
DH=SQRT((β×π×(DF)/4)/tan(22.5°)/2) -------(2)
ここで、DFは、製品軸材の直径DAに機械加工代Mを加えた鍛造仕上げ材の寸法(直径)である(DF=DA+2M)。δは、上記少なくとも4パスによる総断面減少率Rtを用いて、δ=1/(1−Rt)で表され、βは、上記最終8角形状寸法から製品軸材の鍛造仕上げ寸法DFへの断面減少率Rfを用いて、β=1/(1−Rf))で表される。
In the step design system for forging processing according to claim 2, the final square shape dimensions (one side DS) and 8 for forging from the final quadrangular shape to the final octagonal shape in at least four passes in the step 1. The square shape dimension (opposite side dimension H) is calculated using the following formulas (1) and (2).
DS = SQRT (δ × β × π × (DF) 2/4) --------------------- (1)
DH = SQRT ((β × π × (DF) 2/4) / tan (22.5 °) / 2 ) ------- (2)
Here, DF is the dimension (diameter) of the forged finished material obtained by adding the machining allowance M to the diameter DA of the product shaft (DF = DA + 2M). δ is expressed by δ = 1 / (1−Rt) using the total cross-section reduction rate Rt by at least four passes, and β is the final octagonal shape dimension to the forging finish dimension DF of the product shaft material. Using the cross-sectional reduction rate Rf, β = 1 / (1-Rf)).

請求項3に係る鍛伸加工の工程設計システムは、前記製品軸材の鍛造仕上がり形状の断面積に対する面積増加率を、5〜20%の範囲で任意に少なくとも2水準抽出して前記最終8角形状の対辺寸法DHをそれぞれ算出するステップS10aと、この算出した対辺寸法DHを変形解析手段のインプットファイルにインプットするステップS10bと、所要のパス数で前記製品軸材の鍛造仕上げ寸法に仕上げる変形解析を行うステップS10cと、この変形解析結果から被鍛伸材の伸び率および断面減少率を算出するステップS10dと、この伸び率と前記抽出した断面積増加率との関係から、前記伸び率に等しくなる断面積増加率を算出するステップS10eから前記最終8角形状の寸法DHを算出し、この最終8角形状の寸法DHを用いて、前記断面減少率Rtを算出することを特徴とする。   In the forging process design system according to claim 3, the final octagon is obtained by arbitrarily extracting at least two levels of the area increase rate with respect to the cross-sectional area of the forged finished shape of the product shaft material within a range of 5 to 20%. Step S10a for calculating the opposite side dimension DH of the shape, Step S10b for inputting the calculated opposite side dimension DH to the input file of the deformation analysis means, and deformation analysis for finishing the forged finish dimension of the product shaft with the required number of passes. The step S10c is performed, the step S10d of calculating the elongation rate and the cross-sectional area reduction rate of the to-be-wrought material from the deformation analysis result, and the relationship between the elongation rate and the extracted cross-sectional area increase rate is equal to the elongation rate. The final octagonal dimension DH is calculated from step S10e for calculating the cross-sectional area increase rate, and the final octagonal dimension DH is used. And calculates the cross-sectional reduction rate Rt.

請求項4に係る鍛伸加工の工程設計システムは、前記最終8角形状の断面積に対する面積増加率を、5〜20%の範囲で任意に少なくとも2水準抽出して前記最終4角形状の一辺の寸法DSをそれぞれ算出するステップS10fと、この算出した寸法DSを変形解析手段のインプットファイルにインプットするステップS10gと、少なくとも4パスで前記最終8角形状の寸法に鍛造する変形解析を行うステップS10hと、この変形解析結果から被鍛伸材の伸び率を算出するステップS10iと、この伸び率と前記抽出した断面積増加率との関係から、前記伸び率に等しくなる断面積増加率を算出するステップS10jから前記最終4角形状の寸法DSを算出し、この最終4角形状の寸法DSを用いて、前記断面減少率Rfを算出することを特徴とする。   5. The forging process design system according to claim 4, wherein at least two levels of the area increase rate with respect to the cross-sectional area of the final octagonal shape are arbitrarily extracted within a range of 5 to 20%, and one side of the final quadrangular shape is extracted. Step S10f for calculating the respective dimensions DS, Step S10g for inputting the calculated dimensions DS to the input file of the deformation analysis means, and Step S10h for performing deformation analysis forging the final octagonal dimensions in at least four passes. And from step S10i which calculates the elongation rate of a to-be-wrought material from this deformation | transformation analysis result, and the relationship between this elongation rate and the extracted cross-sectional area increase rate, the cross-sectional area increase rate equal to the said elongation rate is calculated. The final square dimension DS is calculated from step S10j, and the sectional reduction rate Rf is calculated using the final square dimension DS. And features.

請求項5に係る鍛伸加工の工程設計システムは、前記ステップ2で、前記素材から前記最終4角形状寸法までの1パスあたりの平均減面率γmを設定し、前記鋼塊および最終4角形状の断面積をそれぞれS0およびSNとしたときに2パスを1パスユニットUとして、以下の(3)式により算出されるNcを切り上げた整数を総パスユニットUtとし、パスユニットUごとの減面率を設定してパスユニットUごとに被鍛伸材の目標形状寸法を決定し、以下の式(4)〜式(11)を用いて、各パスユニットUの第1パス後の高さH1および幅W1を予測し、前記目標形状寸法に鍛伸するための各パスユニットUでの圧下量Hf1およびHf2を算出することを特徴とする。
Nc=1/2×(LOG(SN/S0)/LOG(1−γm)
-------(3)
H1=H2×(W2/(W0×(H1/H0)−L-------------(4)
W1=W0×(H1/H0)―L ------------------------------(5)
L=1+S1-------------------------------------------------(6)
F=1+S2-------------------------------------------------(7)
S1=a0+a1×(B0/W0)+a2×(B0/W0)----------(8)
S2=a0+a1×(B1/H1)+a2×(B1/H1)----------(9)
Hf1=H0−H1-------------------------------------------(10)
Hf2=W1−W2-------------------------------------------(11)
ここで、H0およびW0は、パスユニットUの入側の被鍛伸材の高さおよび幅を、H2およびW2は、パスユニットUの出側の被鍛伸材の幅および高さを、H1は第1パス後の被鍛伸材の高さを示し、B0およびB1は、それぞれ、パスユニットUの第1パスおよび第2パスでの送り量を、S1およびS2は、それぞれ第1パスおよび第2パスでの幅広がり係数を示す。また、a0は定数、a1およびa2は係数である。
In the step design system for forging processing according to claim 5, in step 2, an average area reduction rate γm per pass from the material to the final square shape dimension is set, and the steel ingot and final square When the cross-sectional area of the shape is S0 and SN, respectively, two passes are defined as one pass unit U, and an integer obtained by rounding up Nc calculated by the following equation (3) is defined as a total pass unit Ut, and a decrease for each pass unit U. Set the area ratio and determine the target shape dimension of the to-be-wrought material for each pass unit U, and use the following formulas (4) to (11) to determine the height of each pass unit U after the first pass. H1 and width W1 are predicted, and reduction amounts Hf1 and Hf2 in each pass unit U for forging to the target shape dimension are calculated.
Nc = 1/2 × (LOG (SN / S0) / LOG (1-γm)
------- (3)
H1 = H2 * (W2 / (W0 * (H1 / H0) -L ) F ------------- (4)
W1 = W0 × (H1 / H0) -L ----------------------------- (5)
L = 1 + S1 ---------------------------------------------- -(6)
F = 1 + S2 --------------------------------------------- -(7)
S1 = a0 + a1 × (B0 / W0) + a2 × (B0 / W0) 2 ---------- (8)
S2 = a0 + a1 × (B1 / H1) + a2 × (B1 / H1) 2 ---------- (9)
Hf1 = H0-H1 ----------------------------------------- (10 )
Hf2 = W1-W2 ----------------------- (11 )
Here, H0 and W0 are the height and width of the to-be-worked stretched material on the entry side of the pass unit U, and H2 and W2 are the width and height of the to-be-worked stretched material on the exit side of the pass unit U, H1. Indicates the height of the stretched material after the first pass, B0 and B1 indicate the feed amounts of the pass unit U in the first pass and the second pass, respectively, S1 and S2 indicate the first pass and The width spread coefficient in the second pass is shown. A0 is a constant, and a1 and a2 are coefficients.

請求項6に係る鍛伸加工の工程設計システムは、前記ステップ2で、前記素材から前記最終4角形状寸法までの1パスあたりの平均減面率γmを設定し、前記鋼塊および最終4角形状の断面積をそれぞれS0およびSNとしたときに2パスを1パスユニットUとして、以下の(3)式により算出されるNcを切り上げた整数を総パスユニットUtとし、パスユニットUごとの減面率を設定してパスユニットUごとに被鍛伸材の目標形状寸法を決定し、以下の式(3)、式(4a)〜(7a)および式(10)、式(11)を用いて、各パスユニットUの第1パス後の高さH1および幅W1を予測し、前記目標形状寸法に鍛伸するための各パスユニットUでの圧下量Hf1およびHf2を算出することを特徴とする。
Nc=1/2×(LOG(SN/S0)/LOG(1-γm))
-------(3)
H1=H2×(W2/W1)−Sa2--------------------------------(4a)
W1=W0×(H1/H0)−Sa1 ----------------------------(5a)
Sa1=ζ×(B0/W0)/(1+B0/W0)---------------(6a)
Sa2=ζ×(B1/H1)/(1+B1/H1)---------------(7a)
Hf1=H0−H1-------------------------------------------(10)
Hf2=W1−W2-------------------------------------------(11)
ここで、H0およびW0は、パスユニットUの入側の被鍛伸材の高さおよび幅を、H2およびW2は、パスユニットUの出側の被鍛伸材の幅および高さを、H1は第1パス後の被鍛伸材の高さを示し、B0およびB1は、それぞれ、パスユニットUの第1パスおよび第2パスでの送り量を示し、Sa1およびSa2は、それぞれ第1パスおよび第2パスでの実質幅広がり係数を示す。
In the step design system for forging processing according to claim 6, in step 2, an average area reduction rate γm per pass from the material to the final square shape dimension is set, and the steel ingot and final square When the cross-sectional area of the shape is S0 and SN, respectively, two passes are defined as one pass unit U, and an integer obtained by rounding up Nc calculated by the following equation (3) is defined as a total pass unit Ut, and a decrease for each pass unit U. The surface area is set to determine the target shape dimension of the to-be-wrought material for each pass unit U, and the following formula (3), formula (4a) to (7a), formula (10), and formula (11) are used. Predicting the height H1 and the width W1 after the first pass of each pass unit U, and calculating the reduction amounts Hf1 and Hf2 in each pass unit U for forging to the target shape dimension. To do.
Nc = 1/2 × (LOG (SN / S0) / LOG (1-γm))
------- (3)
H1 = H2 × (W2 / W1) −Sa2 -------------------------------- (4a)
W1 = W0 × (H1 / H0) -Sa1 --------------------------- (5a)
Sa1 = ζ × (B0 / W0) / (1 + B0 / W0) -------------- (6a)
Sa2 = ζ × (B1 / H1) / (1 + B1 / H1) ------------ (7a)
Hf1 = H0-H1 ----------------------------------------- (10 )
Hf2 = W1-W2 ----------------------- (11 )
Here, H0 and W0 are the height and width of the to-be-worked stretched material on the entry side of the pass unit U, and H2 and W2 are the width and height of the to-be-worked stretched material on the exit side of the pass unit U, H1. Indicates the height of the stretched material after the first pass, B0 and B1 indicate the feed amounts of the pass unit U in the first pass and the second pass, respectively, and Sa1 and Sa2 indicate the first pass, respectively. And the substantial width spread coefficient in the second pass.

請求項7に係る鍛伸加工の工程設計システムは、前記最終4角形状寸法を少なくとも3水準以上抽出するステップS40aと、この抽出した寸法を変形解析手段のインプットファイルにインプットするステップS40bと、素材の変形抵抗および実機鍛造条件に基づいて選択した摩擦係数をインプットファイルにインプットするステップS40cと、前記解析手段により被鍛伸材の平均の伸び率を算出するステップS40dと、この平均の伸び率を用いて幅広がり係数Sを算出するステップS40eと、この幅広がり係数Sと前記の比率(B0/W0)との関係を最小2乗法により決定するステップS40fから、前記定数a0、係数a1およびa2を求めることを特徴とする。   The forging process design system according to claim 7 includes a step S40a for extracting at least three levels of the final square shape dimension, a step S40b for inputting the extracted dimension to an input file of the deformation analysis means, and a material. Step S40c for inputting the friction coefficient selected based on the deformation resistance and the actual machine forging conditions into the input file, Step S40d for calculating the average elongation rate of the to-be-forged material by the analysis means, and the average elongation rate. The constant a0, the coefficients a1 and a2 are obtained from the step S40e using the step S40e for calculating the width spread coefficient S and the step S40f for determining the relationship between the width spread coefficient S and the ratio (B0 / W0) by the least square method. It is characterized by seeking.

請求項8に係る鍛伸加工の工程設計システムは、前記最終4角形状寸法を少なくとも3水準以上抽出するステップS40aと、この抽出した寸法を変形解析手段のインプットファイルにインプットするステップS40bと、素材の変形抵抗および実機鍛造条件に基づいて選択した摩擦係数をインプットファイルにインプットするステップS40cと、前記解析手段により被鍛伸材の平均の伸び率を算出するステップS40dと、この平均の伸び率を用いて実質幅広がり係数Saを算出するステップS40eと、この実質幅広がり係数Saと噛み込み比(B/W)との関係を回帰分析により決定するステップ40fから、前記係数ζを求めることを特徴とする。   The process design system for forging processing according to claim 8 includes a step S40a for extracting at least three levels of the final square shape dimension, a step S40b for inputting the extracted dimension to an input file of the deformation analysis means, and a material Step S40c for inputting the friction coefficient selected based on the deformation resistance and the actual machine forging conditions into the input file, Step S40d for calculating the average elongation rate of the to-be-forged material by the analysis means, and the average elongation rate. The coefficient ζ is obtained from the step S40e used to calculate the real width spread coefficient Sa and the step 40f which determines the relationship between the real width spread coefficient Sa and the biting ratio (B / W) by regression analysis. And

請求項9に係る鍛伸加工の工程設計システムは、前記ステップ3で計測した被鍛伸材の寸法(高さおよび幅)と、前記ステップ2で決定した各パスユニットUの出側の被鍛伸材の寸法(高さおよび幅)を比較した結果に基づいて、次パスユニットUでの圧下量を修正することを特徴とする。   The forging process design system according to claim 9 includes the dimensions (height and width) of the to-be-forged material measured in Step 3 and the to-be-developed for each pass unit U determined in Step 2. The reduction amount in the next pass unit U is corrected based on the result of comparing the dimensions (height and width) of the drawn material.

請求項10に係る軸材の鍛伸加工方法は、加工用素材を、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、前記鋼塊からの初期パスから、2パスを1パスユニットUとして所要のパスユニット数で鍛造する軸材の鍛伸方法であって、請求項4に記載した鍛伸加工の工程設計システムを用いて、計測したパスユニットUの被鍛伸材の寸法(高さおよび幅)から、次パスユニットUの被鍛伸材の目標形状寸法(高さおよび幅)に鍛伸するための圧下量を決定するようにしたことを特徴とする。   The shaft forging and stretching method according to claim 10 alternately repeats the operation of rolling the work material from two opposing directions perpendicular to the axial direction and the feeding operation in the axial direction, A shaft forging method forging with a required number of pass units from an initial pass from a steel ingot with 2 passes as 1 pass unit U, using the forging process design system according to claim 4. From the measured dimensions (height and width) of the to-be-worked material of the pass unit U, the amount of reduction for forging to the target shape dimensions (height and width) of the to-be-worked material of the next pass unit U is determined. It was made to do.

請求項11に係る軸材の鍛伸加工装置は、加工用素材を、その軸方向に対して垂直方向の、対向する2方向から複数の工具を用いて圧下する動作とマニピュレータを用いて軸方向への送り動作を交互に繰り返して鍛造する軸材の鍛伸加工装置であって、前記鍛伸加工装置が、被鍛伸材の形状を入力および出力するための記憶装置と、入力値から被鍛伸材の鍛造後の形状を予測するための演算部を備え、請求項1から7のいずれかに記載の鍛伸加工の工程設計システムを組み入れて鍛造を行なうようにしたことを特徴とする。なお、前記鍛伸加工装置は、被鍛伸材の形状の入力値および出力値から算出される圧下量の表示装置を備えておくことが望ましい。   A shaft forging and processing apparatus according to claim 11 is an axial direction using a manipulator and an operation of reducing a processing material by using a plurality of tools from two opposing directions perpendicular to the axial direction. A shaft forging and forging apparatus for forging by alternately repeating the feeding operation to the storage device, wherein the forging and processing apparatus includes a storage device for inputting and outputting the shape of the to-be-forged material, and an input value. A calculation unit for predicting a forged shape of a forged material is provided, and forging is performed by incorporating the forging process design system according to any one of claims 1 to 7. . In addition, it is desirable that the forge processing apparatus is provided with a display device for a reduction amount calculated from an input value and an output value of the shape of the work material to be forged.

請求項12に係る軸材の鍛伸加工装置は、前記鍛造加工装置が、前記工具の出側で被鍛伸材の幅および高さをそれぞれ計測できる手段を備え、鍛伸加工後の被鍛伸材の寸法を計測し、この計測値を前記記憶装置に保持し、前記マニピュレータの走行量と連動させて、次パスの圧下量を決定するようにしたことを特徴とする。   A shaft forging and stretching apparatus according to claim 12, wherein the forging apparatus includes means capable of measuring a width and a height of the to-be-wrought material on the exit side of the tool, and the forged after forging. The dimension of the stretched material is measured, the measured value is held in the storage device, and the amount of reduction in the next pass is determined in conjunction with the travel amount of the manipulator.

この発明では、軸材の鍛伸加工工程で、製品軸材の断面形状から、最終8角形状寸法およびこの最終8角形状寸法に鍛造する直近の最終4角形状を算出し、加工用素材からこの最終4角形状までのパス回数を決定して目標圧下量および送り量を設定し、加工用素材からの2パスを1パスユニットUとして、1パスユニットUごとに計測した被鍛伸材の寸法を用いて簡単な計算で、次パスユニットUでの被鍛伸材の形状を予測して前記目標圧下量および送り量を修正するように、工程設計システムを構成したので、プレス操作者の経験の差にかかわらず、効率的に鍛伸加工を行うことができ、鍛伸加工に要する鍛造時間を従来よりも短縮することができる。   In this invention, in the forging process of the shaft material, the final octagonal shape dimension and the latest final quadrangular shape forged to this final octagonal shape dimension are calculated from the cross-sectional shape of the product shaft material, and from the processing material The number of passes until the final quadrilateral shape is determined, the target reduction amount and the feed amount are set, and two passes from the processing material are taken as one pass unit U. Since the process design system is configured to predict the shape of the to-be-forged material in the next pass unit U and correct the target reduction amount and feed amount by simple calculation using dimensions, the press operator's Regardless of the difference in experience, forging can be performed efficiently, and the forging time required for forging can be shortened as compared with the prior art.

また、寸法計測用カメラを配置して、金型出側での鍛伸加工後の被鍛伸材の幅および高さをそれぞれ全長にわたって計測するようにしたので、被鍛伸材の全長にわたって幅および高さ寸法のバラツキを小さくすることができる。   In addition, a dimensional measurement camera is arranged so that the width and height of the to-be-wrought material after forging on the mold exit side are measured over the entire length. In addition, variation in height dimension can be reduced.

以下に、この発明の実施形態を添付の図1および図10に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS. 1 and 10 attached.

図1は、実施形態の鍛伸加工の工程設計システムを用いた鍛伸加工の流れを示したものである。ステップ1では、鋼塊などを加工用素材とし、この加工用素材を、上下方向など、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、図2に示すように、最終4角形状から少なくとも4パスで最終8角形状に鍛造した後、タッピング等により丸棒などの製品軸材に仕上げる直前の前記最終8角形状の対辺寸法DH、およびこの最終8角形状に鍛造する直前の前記最終4角形状の一辺の寸法DSを算出する(S10(S10a〜S10j))。すなわち、製品軸材の直径をD0、機械加工代をMとすると、鍛造仕上げ軸材の直径DFは、DF=D0+2Mとなる。前記8角形状の対辺寸法Hおよび最終四角形状の一辺DSは、それぞれ以下の式(1)および式(2)で求めることができる。
DS=SQRT(δ×β×π×(DF)/4)--------------------(1)
DH=SQRT((β×π×(DF)/4)/tan(22.5°)/2) ------(2)
ここで、δは、上記パス数による総断面減少率Rtを用いて、δ=1/(1−Rt)で表され、βは、上記最終8角形状寸法から製品軸材の鍛造仕上げ寸法DFへの断面減少率Rfを用いて、β=1/(1−Rf))で表される。なお、前記最終4角形状から最終8角形状への鍛造におけるパス数の上限範囲は、通常、8〜12パス程度である。
FIG. 1 shows a flow of forging work using the process design system for forging work of the embodiment. In Step 1, a steel ingot or the like is used as a processing material, and this processing material is alternately moved in an up-down direction or the like in a direction perpendicular to the axial direction from two opposite directions and in an axial direction. As shown in FIG. 2, after forging from the final quadrangular shape to the final octagonal shape by at least 4 passes, the opposite side dimensions of the final octagonal shape just before finishing the product shaft material such as a round bar by tapping or the like DH and the dimension DS of one side of the final square shape immediately before forging into the final octagon shape are calculated (S10 (S10a to S10j)). That is, if the diameter of the product shaft is D0 and the machining allowance is M, the diameter DF of the forged shaft is DF = D0 + 2M. The opposite side dimension H of the octagonal shape and the one side DS of the final square shape can be obtained by the following equations (1) and (2), respectively.
DS = SQRT (δ × β × π × (DF) 2/4) -------------------- (1)
DH = SQRT ((β × π × (DF) 2/4) / tan (22.5 °) / 2 ) ------ (2)
Here, δ is expressed by δ = 1 / (1−Rt) using the total cross-section reduction rate Rt according to the number of passes, and β is the forged finish dimension DF of the product shaft material from the final octagonal shape dimension. Β = 1 / (1−Rf)) using the cross-sectional reduction rate Rf. In addition, the upper limit range of the number of passes in the forging from the final quadrangular shape to the final octagonal shape is usually about 8 to 12 passes.

上記式(1)および式(2)のδおよびβは以下のようにして求めることができる。図3は、製品軸材の鍛造仕上げ形状(断面積A2)がφ500mmの場合について、前記最終8形状(断面積A1)から所要のパス数、例えば1パスで鍛造(タッピング)する場合の、最終8角形状の断面積A1の最適値を、変形解析手段(3次元変形解析ソフト)を用いた変形解析により求める方法を示したものである。まず、前記鍛造仕上げ形状(φ500mm)の断面積A2に対する面積増加率を5〜20%の範囲で任意に3水準抽出して最終8角形状の断面積A1を決定してその対辺寸法DHを算出し(ステップS10a)、この算出した対辺寸法DHを前記変形解析のインプットファイルにインプットして(ステップS10b)、被鍛伸材(最終8角形状)に回転と圧下を交互に与えて1周回し、その後軸方向に送る動作を繰り返しながら、1パスで前記鍛造仕上げ形状に仕上げる場合の変形解析を行なう(ステップS10c)。そして、この変形解析結果から、被鍛伸材の伸び率λ(%)と断面減少率Re(=(1−A2/A1)×100(%))をそれぞれ算出する(ステップS10d)。この算出結果をプロット(3点)し、プロットした3点を直線回帰して、前記断面減少率Reと伸びλとの関係を示す予測線Peを求めて図中に記入し、断面減少率Reが伸び率λと等しくなる、すなわち、鍛造(タッピング)に際して被鍛伸材の体積一定条件を満足する、断面減少率の最適値を求め(ステップS10e)、図3から、鍛造仕上げ形状がφ500mmの場合には、この最適値は約9%となる。この断面減少率の最適値が、前記鍛造仕上がり形状に対する最終8角形状の面積増加率の最適値となる(A1=A2/(1−0.09))。すなわち、この断面減少率Reの最適値が、記最終8角形状寸法から製品軸材の鍛造仕上げ寸法DFへの断面減少率Rfとなり、係数βは、β=1/(1−Rf)により求めることができる。したがって、鍛造仕上げ形状がφ500mmの場合には、β=1/(1−0.09)≒1.1となる。前記鍛造仕上げ形状の断面積A2に対して、この最適面積増加率分だけ増加させた最終8角形状の最適の面積A1から、最終8角形状の対辺長さDHを算出し、最終8角形状の寸法を幾何学的に決定することができる。なお、前記最終8形状(断面積A1)から鍛造仕上げ形状(断面積A2)への所要のパス数は、高々2〜3パス程度である。   Δ and β in the above formulas (1) and (2) can be obtained as follows. FIG. 3 shows the case where the forged finish shape (cross-sectional area A2) of the product shaft material is φ500 mm and the forging (tapping) is performed in the required number of passes, for example, 1 pass from the final 8 shape (cross-sectional area A1). This shows a method for obtaining the optimum value of the octagonal cross-sectional area A1 by deformation analysis using deformation analysis means (three-dimensional deformation analysis software). First, three levels of the area increase rate with respect to the cross-sectional area A2 of the forged finished shape (φ500 mm) are arbitrarily extracted within a range of 5 to 20%, the final octagonal cross-sectional area A1 is determined, and the opposite side dimension DH is calculated. (Step S10a), the calculated opposite side dimension DH is input to the deformation analysis input file (Step S10b), and rotation and reduction are alternately applied to the work stretched material (final octagonal shape) to make one turn. Then, while repeating the operation of feeding in the axial direction, deformation analysis is performed in the case of finishing the forged finish shape in one pass (step S10c). Then, from the deformation analysis result, the elongation rate λ (%) and the cross-sectional reduction rate Re (= (1−A2 / A1) × 100 (%)) of the to-be-drawn material are calculated (step S10d). This calculation result is plotted (three points), and the three plotted points are linearly regressed to obtain a prediction line Pe indicating the relationship between the cross-section reduction rate Re and the elongation λ, and is entered in the figure. Is equal to the elongation rate λ, that is, the optimum value of the cross-sectional reduction rate that satisfies the constant volume condition of the forged material during forging (tapping) is obtained (step S10e), and the forged finish shape is φ500 mm from FIG. In this case, this optimum value is about 9%. The optimum value of the cross-section reduction rate is the optimum value of the area increase rate of the final octagonal shape with respect to the forged finished shape (A1 = A2 / (1-0.09)). That is, the optimum value of the cross-section reduction rate Re is the cross-section reduction rate Rf from the final octagonal shape dimension to the forging finish dimension DF of the product shaft, and the coefficient β is obtained by β = 1 / (1−Rf). be able to. Therefore, when the forged finish shape is φ500 mm, β = 1 / (1−0.09) ≈1.1. The opposite octagonal length DH of the final octagonal shape is calculated from the optimum area A1 of the final octagonal shape increased by the optimum area increase rate with respect to the cross-sectional area A2 of the forged finish shape, and the final octagonal shape is calculated. Can be determined geometrically. The required number of passes from the final 8 shapes (cross-sectional area A1) to the forged finish shape (cross-sectional area A2) is at most about 2 to 3 passes.

図4は、前記最終8角形状の対辺長さDHが500mmの場合について、前記最終4角形状(断面積A0)から少なくとも4パスで前記最終8角形状に鍛造する場合の、最終4角形状の断面積A0の最適値を、図3に示した場合と同様に、変形解析手段(3次元変形解析ソフト)を用いた変形解析により求める方法を示したものである。まず、前記最終8角形状(対辺寸法DH=500mm)の断面積A1に対する面積増加率を5〜20%の範囲で任意に4水準抽出して最終4角形状の断面積A0を決定してその一辺の寸法DSをそれぞれ算出し(ステップS10f)、この算出した一辺の寸法DSを前記変形解析のインプットファイルにインプットして(ステップS10g)、被鍛伸材(最終4角形状)を、送り量を工具幅(金敷幅)の1/2以上として、図2に示したように、縦方向(対角方向)圧下を全長にわたり行なう−90°転回横方向圧下を全長にわたり行なう−90°転回縦方向圧下を全長にわたり行なう−90°転回横方向圧下を全長にわたり行なう4パス圧下で前記最終8角形状に仕上げる場合の変形解析を行なう(ステップS10h)。そして、この変形解析結果から、被鍛伸材の伸び率λ(%)と断面減少率Re(=(1−A1/A0)×100(%))をそれぞれ算出する(ステップS10i)。この算出結果をプロット(4点)し、プロットした4点を直線回帰して、前記断面減少率と伸びλとの関係を示す予測線Peを求めて図中に記入し、断面減少率Reが伸び率λと等しくなる、すなわち、鍛造(鍛伸)に際して被鍛伸材の体積一定条件を満足する、断面減少率の最適値を求める(ステップS10j)。図4から、最終8角形状の対辺寸法DHが500mmの場合には、この最適値は約12%となる。この断面減少率Reの最適値が、前記最終8角形状に対する最終4角形状の面積増加率の最適値となる(A0=A1/(1−0.12))。すなわち、この断面減少率の最適値が、記最終4角形状寸法から少なくとも4パス圧下で最終8角形状へ鍛造する工程での断面減少率Rtとなり、係数δは、前述のように、δ=1/(1−Rt)により求めることができる。したがって、最終8角形状の対辺寸法DHが500mmの場合には、δ=1/(1−0.12)≒1.12となる。前記最終8角形状の断面積A1に対して、この最適面積増加率分だけ増加させた最終4角形状の最適の面積A0から、幾何学的に最終4角形状の一辺の長さDSを算出し、最終4角形状の寸法を決定することができる。   FIG. 4 shows the final quadrilateral shape when forging the final octagonal shape (cross-sectional area A0) from the final octagonal shape (cross-sectional area A0) to the final octagonal shape in at least four passes, when the opposite octagonal length DH is 500 mm. 3 shows a method for obtaining the optimum value of the cross-sectional area A0 by deformation analysis using deformation analysis means (three-dimensional deformation analysis software) as in the case shown in FIG. First, the area increase rate with respect to the cross-sectional area A1 of the final octagonal shape (opposite side dimension DH = 500 mm) is arbitrarily extracted at four levels within a range of 5 to 20% to determine the final quadrangular cross-sectional area A0. Each side dimension DS is calculated (step S10f), the calculated one side dimension DS is input to the deformation analysis input file (step S10g), and the work stretched material (final square shape) is fed. 2 or more of the tool width (anvil width), as shown in FIG. 2, the longitudinal (diagonal) reduction is performed over the entire length of −90 ° rolling and the lateral reduction is performed over the entire length of −90 ° rolling longitudinal. Deformation analysis is performed in the case where the final octagonal shape is finished under four-pass pressure in which directional reduction is performed over the entire length and -90 ° rolling lateral reduction is performed over the entire length (step S10h). Then, from this deformation analysis result, the elongation rate λ (%) and the cross-section reduction rate Re (= (1-A1 / A0) × 100 (%)) of the to-be-drawn material are calculated (step S10i). This calculation result is plotted (four points), and the four plotted points are linearly regressed to obtain a prediction line Pe indicating the relationship between the cross-section reduction rate and the elongation λ. An optimum value of the cross-section reduction rate that is equal to the elongation rate λ, that is, satisfies the constant volume condition of the to-be-forged material during forging (forging) (step S10j). From FIG. 4, when the opposite side dimension DH of the final octagonal shape is 500 mm, this optimum value is about 12%. The optimum value of the cross-section reduction rate Re becomes the optimum value of the area increase rate of the final quadrangular shape with respect to the final octagonal shape (A0 = A1 / (1-0.12)). That is, the optimum value of the cross-section reduction rate is the cross-section reduction rate Rt in the process of forging from the final square shape dimension to the final octagon shape under at least four-pass pressure, and the coefficient δ is δ = 1 / (1-Rt). Accordingly, when the opposite side dimension DH of the final octagonal shape is 500 mm, δ = 1 / (1−0.12) ≈1.12. The length DS of one side of the final quadrangular shape is geometrically calculated from the optimal area A0 of the final quadrangular shape that is increased by the optimal area increase rate with respect to the cross-sectional area A1 of the final octagonal shape. Then, the dimensions of the final square shape can be determined.

上述のようにして、式(1)および式(2)の係数δおよびβを決定することができる。この係数δおよびβは、前記製品軸材の鍛造仕上がり寸法や、それに伴う最終8角形状および最終4角形状の寸法によって異なるが、通常、1〜1.5の範囲にある。また、最終4角形状から最終8角形状へは、通常4パスで成形され、各パスでの圧下量S(i)は、最終4角形状の一辺の寸法DSの10〜50%程度の値(ks(i)=0.1〜0.5)に、送り量B(i)は、前記寸法DSの10〜100%程度の値(kb(i)=0.1〜1.0)にそれぞれ設定される(i:パスNo.)。なお、上記変形解析で用いる被鍛伸材の変形抵抗は、圧縮試験などを活用して、材質(鋼種)、加工温度、ひずみ、ひずみ速度依存性を明らかにしたものを用いる。また、変形解析に用いる素材温度分布は、実機測定値により検証した伝熱計算式により算出する。以下の変形解析においても同様である。   As described above, the coefficients δ and β in the equations (1) and (2) can be determined. The coefficients δ and β vary depending on the forged finished size of the product shaft material and the dimensions of the final octagonal shape and final quadrangular shape associated therewith, but are usually in the range of 1 to 1.5. Further, the final quadrangular shape to the final octagonal shape is usually formed by four passes, and the reduction amount S (i) in each pass is a value of about 10 to 50% of the dimension DS of one side of the final quadrangular shape. (Ks (i) = 0.1 to 0.5), the feed amount B (i) is about 10 to 100% of the dimension DS (kb (i) = 0.1 to 1.0). Each is set (i: path No.). In addition, the deformation resistance of the to-be-drawn material used in the deformation analysis is a material in which the material (steel type), processing temperature, strain, and strain rate dependency are clarified using a compression test or the like. In addition, the material temperature distribution used for the deformation analysis is calculated by a heat transfer calculation formula verified by actual machine measurement values. The same applies to the following deformation analysis.

次に、ステップ2では、前記加工用素材から前記最終4角形状までのパス回数を決定する(S20)。前記加工用素材(断面積S0)から前記最終4角形状(断面積SN)までの全パスでの平均減面率γmを設定し、以下の式(3)により算出されるNcを切り上げた整数Nuを総パスユニットUtとする。
Nc=1/2×LOG(SN/S0)/LOG(1−γm)---------(3)
通常、パス回数(総パス数)N(=2×Nu)は偶数となり、このパス回数Nが決定すると、前記加工用素材からの初期パス(第1パス)から2パスを1パスユニットUとして、1パスユニットUごとの減面率Ru(i)(i=1〜Nu)を決定する。この1パスユニットUごとの減面率Ru(i)は、製品軸材の形状に応じて決定することができる。製品軸材が、例えば、丸棒の場合、前記減面率Ru(i)は、鍛造実績データに基づいて、パスユニットの増加とともに直線的に減少するように決定する(図5(a)参照)。また、製品軸材が、型用鋼などの角材の場合には、製品形状に近づくにつれて角形状を形成するために、圧下量を少なくしていく必要がある。したがって、前記減面率Ru(i)は、図5(b)に示すように、鍛造実績データに基づいて、パスユニットの増加とともに2次曲線的に減少するように決定する。さらに、内部欠陥を閉鎖させる必要がある場合には、鍛伸初期過程での減面率を大きくとることが望ましいため、前記減面率Ru(i)は、図5(c)に示すように、鍛造実績データに基づいて、指数曲線的に減少するように決定する。このようにして、各パスユニットUの減面率Ru(i)が決定されると、各パスユニットUの入側および出側の被鍛伸材の断面積Su1およびSu2を算出できる。いま、図6に示すように、各パスユニットUの第1パスが「正方形状角→長方形状角」、第2パスがその逆の「長方形状角→正方形状角」となるパススケジュールで鍛伸を行なうとすれば、前記入側の断面積Su1=H0×W0(H0≒W0)、出側の断面積Su2=H2×W2(H2≒W2)となり、パスユニットUの入側および出側の被鍛伸材の寸法H0、W0およびH2、W2を設定することができる。また、初期形状(素材形状)が正方形状または矩形状4角形であり、型用鋼などのように、製品軸材の断面形状も正方形状または矩形状4角形の場合には、上記のように、パスユニットUの入側および出側の断面積Su1およびSu2を求めなくても、各パスパスユニットUの目標寸法は、前記四角形の一辺の長さを、パスユニットUごとに直線的に減少させるなどして決定することもできる。さらに、図5(a)〜(c)で、縦軸として、断面積のかわりに、被鍛伸材の寸法を表示することも可能である。
Next, in step 2, the number of passes from the processing material to the final quadrangular shape is determined (S20). An integer obtained by setting an average area reduction rate γm in all passes from the processing material (cross-sectional area S0) to the final square shape (cross-sectional area SN) and rounding up Nc calculated by the following equation (3) Let Nu be the total path unit Ut.
Nc = 1/2 × LOG (SN / S0) / LOG (1-γm) -------- (3)
Normally, the number of passes (total number of passes) N (= 2 × Nu) is an even number. When this number of passes N is determined, two passes from the initial pass (first pass) from the processing material are defined as one pass unit U. The area reduction rate Ru (i) (i = 1 to Nu) for each pass unit U is determined. The area reduction rate Ru (i) for each pass unit U can be determined according to the shape of the product shaft. When the product shaft is, for example, a round bar, the surface reduction rate Ru (i) is determined so as to decrease linearly with an increase in the pass unit based on the forging performance data (see FIG. 5A). ). Further, when the product shaft is a square material such as mold steel, it is necessary to reduce the amount of reduction in order to form a square shape as it approaches the product shape. Therefore, as shown in FIG. 5B, the surface reduction rate Ru (i) is determined so as to decrease in a quadratic curve as the number of pass units increases based on the forging performance data. Further, when it is necessary to close the internal defect, it is desirable to increase the area reduction rate in the initial forging process, so that the area reduction rate Ru (i) is as shown in FIG. Then, based on the forging performance data, it is determined to decrease exponentially. In this way, when the area reduction rate Ru (i) of each pass unit U is determined, the cross-sectional areas Su1 and Su2 of the to-be-worked stretched material on the entry side and the exit side of each pass unit U can be calculated. As shown in FIG. 6, the first pass of each pass unit U is “square corner → rectangular corner”, and the second pass is trained in a pass schedule in which the opposite is “rectangular corner → square corner”. If stretching is performed, the cross-sectional area Su1 = H0 × W0 (H0≈W0) and the cross-sectional area Su2 = H2 × W2 (H2≈W2) on the exit side are obtained. The dimensions H0, W0 and H2, W2 of the to-be-wrought material can be set. In addition, when the initial shape (material shape) is a square or rectangular quadrangular shape and the cross-sectional shape of the product shaft material is a square or rectangular quadrangular shape, such as steel for molds, as described above, Even if the cross-sectional areas Su1 and Su2 on the entry side and the exit side of the pass unit U are not obtained, the target dimension of each pass pass unit U linearly decreases the length of one side of the square for each pass unit U. It can also be determined by. Further, in FIGS. 5A to 5C, the dimension of the stretched material can be displayed as the vertical axis instead of the cross-sectional area.

前記ステップ3の被鍛伸材の寸法の計測は、各パスユニットUの出側の被鍛伸材の高さH2および幅W2を、熱間パス測定具、CCDまたはCMOS撮像素子を用いたセンサカメラ、レーザー寸法測定装置、およびプレスストローク測定装置等により計測することができる(S30)。   The dimension of the to-be-wrought material in step 3 is determined by measuring the height H2 and width W2 of the to-be-wrought material on the exit side of each pass unit U by using a hot path measuring tool, a CCD or a CMOS image sensor. It can be measured by a camera, a laser dimension measuring device, a press stroke measuring device, or the like (S30).

次に、ステップ4では、前記ステップ2で求めた1パスユニットUごとの入側および出側の被鍛伸材の寸法H0、W0およびH2、W2、第1パスおよび第2パスでの送り量B0およびB1を用いて、以下のようにして、第1パス後の被鍛伸材の高さH1および幅W1を予測することができる(S40(S40a〜S40f))。なお、前記送り量B0、B1として、通常、鍛伸加工工程の上流側(素材に近いパスユニットU)では、圧下する工具(金型)幅とほぼ等しい量が、鍛伸加工工程の中程では、工具幅の半分程度の量が、下流側(製品軸材に近いパスユニットU)では、製品軸材に応じて変化させ、工具幅の1/2〜1/5程度の量が、それぞれ用いられる。   Next, in step 4, the feed amounts in the first and second passes of dimensions H0, W0 and H2, W2 of the to-be-worked stretched material for each pass unit U obtained in step 2 above. Using B0 and B1, the height H1 and the width W1 of the to-be-forged material after the first pass can be predicted as follows (S40 (S40a to S40f)). In addition, as said feed amount B0 and B1, normally, in the upstream of the forge processing process (pass unit U close to a raw material), the quantity substantially equal to the tool (die) width to reduce is the middle of the forge process. Then, the amount of about half of the tool width is changed in accordance with the product shaft on the downstream side (pass unit U close to the product shaft), and the amount of about 1/2 to 1/5 of the tool width is Used.

一般に、鍛伸加工工程における鍛造では、式(12)の関係が成立する。
W1/W0=(H1/H0)―L -----------------------------(12)
L=1+S1-----------------------------------------------(6)
S1=a0+a1×(B0/W0)+a2×(B0/W0)--------(8)
式(12)から、第1パス後の被鍛伸材の幅W1は、
W1=W0×(H1/H0)―L -----------------------------(5)
一方、第2パス後の被鍛伸材の高さH2は、式(12)と同様の関係が成立することから、
H2=H1×(W2/W1)−F-------------------------------(13)
F=1+S2------------------------------------------------(7)
S2=a0+a1×(B1/H1)+a2×(B1/H1)---------(9)
式(12)と式(13)から、W1を消去すると、
H2=H1×(W2/(W0×(H1/H0)−L―F-----------(14)
式(14)から、
H1=H2×(W2/(W0×(H1/H0)−L-------------(4)
式(4)は、式(7)および式(9)からわかるように、右辺の指数FにもH1が含まれるが、数値計算により解(H1)を求めることができる。このH1を式(5)に代入すると、第1パス後の被鍛伸材の幅W1を算出することができ、パスユニットUの出側(第2パス後)の寸法H2、W2を満たす、第1パス後の寸法H1、W1を算出することができる。なお、式(8)および式(9)の定数a0、係数a1、a2は、変形解析手段(3次元変形解析ソフト)を用いた変形解析により、次のようにして求めることができる。
Generally, in the forging in the forging process, the relationship of Expression (12) is established.
W1 / W0 = (H1 / H0) -L ----------------------------- (12)
L = 1 + S1 ---------------------------------------------- (6)
S1 = a0 + a1 × (B0 / W0) + a2 × (B0 / W0) 2 -------- (8)
From formula (12), the width W1 of the to-be-forged material after the first pass is
W1 = W0 × (H1 / H0) -L ---------------------------- (5)
On the other hand, the height H2 of the stretched material after the second pass is the same as the formula (12).
H2 = H1 × (W2 / W1) -F ------------------------------ (13)
F = 1 + S2 --------------------------------------------- -(7)
S2 = a0 + a1 × (B1 / H1) + a2 × (B1 / H1) 2 --------- (9)
From equation (12) and equation (13), if W1 is deleted,
H2 = H1 × (W2 / (W0 × (H1 / H0) −L ) −F −−−−−−−−−−−− 14)
From equation (14)
H1 = H2 * (W2 / (W0 * (H1 / H0) -L ) F ------------- (4)
As can be seen from Expression (7) and Expression (9), Expression (4) includes H1 in the index F on the right side, but the solution (H1) can be obtained by numerical calculation. Substituting this H1 into equation (5), the width W1 of the to-be-forged material after the first pass can be calculated, and the dimensions H2 and W2 on the exit side (after the second pass) of the pass unit U are satisfied. The dimensions H1 and W1 after the first pass can be calculated. The constants a0 and the coefficients a1 and a2 in the equations (8) and (9) can be obtained as follows by deformation analysis using deformation analysis means (three-dimensional deformation analysis software).

まず、被鍛伸材の前記最終4角形状の一辺DSの寸法を、実機操業範囲内の寸法(例えば、DS=500mmなど)を3水準(3寸法)以上抽出し(ステップS40a)、前記変形解析手段のインプットファイルにインプットし(ステップS40b)、さらに、素材(被鍛伸材)の変形抵抗および、特願2006−203622号で提案したように、素材(被鍛伸材)の形状、工具(金敷)による圧下量、素材(被鍛伸材)の送り量などの実機鍛造条件に基づいて選択した摩擦係数をインプットファイルにインプットする(ステップS40c)。そして、前記変形解析手段により、素材(被鍛伸材)の平均の伸び率λを求める(ステップS40d)。この伸び(延び)率λは、素材(被鍛伸材)に予め伸び測定のための標準線を付して、圧下後の標準線の延び量を測定することにより求めることができる。すなわち、
λ=L1/L0 -------------------------------------------(15)
ここで、L0:標準線の初期(鍛造前)の長さ、L1:標準線の鍛造後の長さ、である。
First, the dimension of one side DS of the final square shape of the stretched material is extracted from three levels (three dimensions) or more within the actual machine operating range (for example, DS = 500 mm) (step S40a), and the deformation Input to the input file of the analysis means (step S40b), and further, the deformation resistance of the material (forged stretched material) and the shape of the material (forged stretched material) and the tool as proposed in Japanese Patent Application No. 2006-203622 The friction coefficient selected based on the actual machine forging conditions such as the amount of reduction by (anvil) and the feed amount of the material (forged material) is input to the input file (step S40c). And the average elongation rate (lambda) of a raw material (wrought material) is calculated | required by the said deformation | transformation analysis means (step S40d). This elongation (elongation) rate λ can be obtained by attaching a standard line for measuring elongation in advance to the material (forged stretched material) and measuring the amount of elongation of the standard line after reduction. That is,
λ = L1 / L0 ------------------------------------------ (15 )
Here, L0: initial length of the standard line (before forging), and L1: length of the standard line after forging.

前述のように、一般に、鍛伸加工工程における鍛造では、式(12)の関係が成立する。
W1/W0=(H1/H0)―L -----------------------------(12)
L=1+S1-----------------------------------------------(6)
S1=a0+a1×(B0/W0)+a2×(B0/W0)--------(8)
上記式(8)のS1は、平鍛造、すなわち鍛伸加工工程における鍛造時の前記第1パスにおける幅広がり係数Sに相当し、幅広がり係数Sが、被鍛伸材のパス入側の幅W(第1パスでは、パスユニットUの入側での幅W0)に対する送り量B(第1パスでは送り量B0)の比率、すなわち噛み込み比(B/W)を変数とする2次式で表されることは、炭素鋼を用いた鍛伸加工(平鍛造)の実験から知られている(例えば、非特許文献1参照)。パスユニットUの第2パスでは、パス入側の幅Wは、図6に示したように、第1パス後の高さH1になるため、噛み込み比B/Wは、B1/H1となる。
A.Tomlinson, A.Met et al.:Journal of the Iron and Steel Institute,Vol.193(1959),PP.157〜162
As described above, generally, in the forging in the forging process, the relationship of Expression (12) is established.
W1 / W0 = (H1 / H0) -L ----------------------------- (12)
L = 1 + S1 ---------------------------------------------- (6)
S1 = a0 + a1 × (B0 / W0) + a2 × (B0 / W0) 2 -------- (8)
S1 in the above formula (8) corresponds to the width expansion coefficient S in the first pass during flat forging, that is, forging in the forging process, and the width expansion coefficient S is the width of the to-be-forged material on the pass entrance side. A quadratic expression using as a variable the ratio of the feed amount B (feed amount B0 in the first pass) to W (width W0 on the entry side of the pass unit U in the first pass), that is, the biting ratio (B / W). It is known from the experiment of forge processing (flat forging) using carbon steel (for example, refer nonpatent literature 1). In the second pass of the pass unit U, as shown in FIG. 6, the width W on the pass entry side is the height H1 after the first pass, so the biting ratio B / W is B1 / H1. .
A. Tomlinson, A. Met et al .: Journal of the Iron and Steel Institute, Vol. 193 (1959), PP.157-162

上記の式(6)および式(8)の第1パスでの幅広がり係数S1を、幅広がり係数Sと置き直して
L=1+S -----------------------------------------------(6b)
S=a0+a1×(B0/W0)+a2×(B0/W0)---------(8b)
したがって、式(12)は、
W1/W0=(H1/H0)―1−S =(H1/H0) ―1×(H1/H0)−S
---------(16)
鍛伸加工時の被鍛伸材の体積一定の条件から(図6第1パス参照)、
L1×H1×W1=L0×H0×W0 ------------------------(17)
式(15)、式(16)および式(17)から、
λ=L1/L0=(H0×W0)/(H1×W1)=(W0/W1)×
(H0/H1)=(H1/H0) ------------------------------(18)
式(18)において、前記変形解析により、伸び率λ(=L1/L0)は既知であり、また鍛造前後(前記第1パスの入側および出側)の被鍛伸材の高さH0およびH1も既知となる。したがって、変形解析を用いて幅広がり係数Sを逆算することができる(ステップS40e)。
By replacing the width spread coefficient S1 in the first pass of the above equations (6) and (8) with the width spread coefficient S, L = 1 + S ---------------- ------------------------------- (6b)
S = a0 + a1 × (B0 / W0) + a2 × (B0 / W0) 2 --------- (8b)
Therefore, equation (12) is
W1 / W0 = (H1 / H0) −1−S = (H1 / H0) −1 × (H1 / H0) −S
--------- (16)
From the condition of a constant volume of the material to be forged during forging (see the first pass in FIG. 6),
L1 x H1 x W1 = L0 x H0 x W0 ------------------------ (17)
From equation (15), equation (16) and equation (17),
λ = L1 / L0 = (H0 × W0) / (H1 × W1) = (W0 / W1) ×
(H0 / H1) = (H1 / H0) S ----------------------------- (18)
In equation (18), the elongation λ (= L1 / L0) is known from the deformation analysis, and the height H0 of the to-be-forged material before and after forging (on the entry side and the exit side of the first pass) and H1 is also known. Therefore, the spread coefficient S can be calculated backward using deformation analysis (step S40e).

図7は、前記最終四角形状の寸法を、実機操業範囲内で8寸法抽出して、初期のパスユニットUの第1パスについての変形解析結果により求めた幅広がり係数Sを、噛み込み比(B0/W0)に対してプロットしたものである。図中には、これらのプロットを最小2乗法により噛み込み比(B0/W0)の2次式で回帰して幅広がり係数Sの予測式(20)を求め(ステップ40f)、図中に式(20)に基づく幅広がり係数Sの予測線Peを記入している。
S=−0.85+0.54×(B0/W0)−0.080×(B0/W0)
--------(19)
式(20)から、定数a0=−0.85、係数a1=0.54、係数a2=−0.080となる。このようにして、定数a0、係数a1およびa2を決定することができる。これらの定数a0、係数a1およびa2は、被鍛伸材(素材)の材質などに依存する。なお、上記の幅広がり係数Sは、圧下量に対する、式(15)に示した伸び(延び)率λを介して求められる係数であり、延び量が大きい程、係数Sの値は小さくなる、すなわち、幅広がり量が小さくなる。逆に延び量が小さいほど、係数Sの値は大きくなる、すなわち、幅広がり量が大きくなる。このように、幅広がり係数Sは被鍛伸材の幅広がり量に対応する係数である。
FIG. 7 shows that the final quadrangular dimension is extracted in the actual machine operating range by 8 dimensions, and the width spread coefficient S obtained from the deformation analysis result for the first pass of the initial pass unit U is set to the biting ratio ( B0 / W0). In the figure, these plots are regressed by a quadratic expression of the biting ratio (B0 / W0) by the least square method to obtain the prediction expression (20) of the width spread coefficient S (step 40f). The prediction line Pe of the width spread coefficient S based on (20) is entered.
S = −0.85 + 0.54 × (B0 / W0) −0.080 × (B0 / W0) 2
-------- (19)
From equation (20), constant a0 = −0.85, coefficient a1 = 0.54, coefficient a2 = −0.080. In this way, the constant a0 and the coefficients a1 and a2 can be determined. These constants a0, coefficients a1 and a2 depend on the material of the to-be-forged material (material). The above-described width spreading coefficient S is a coefficient obtained through the elongation (elongation) rate λ shown in the equation (15) with respect to the reduction amount, and the larger the elongation amount, the smaller the value of the coefficient S. That is, the amount of spread is reduced. Conversely, the smaller the amount of extension, the larger the value of the coefficient S, that is, the amount of width spread becomes larger. Thus, the width spread coefficient S is a coefficient corresponding to the width spread amount of the to-be-wrought material.

前記式(15)および式(5)からそれぞれ求めたH1およびW1を用いて、パスユニットUごとに、以下のように、第1パスおよび第2パスでの目標圧下量Hf1およびHf2を算出することができる。
Hf1=H0−H1-----------(10)
Hf2=W1−W2-----------(11)
そして、ステップ3で計測した被鍛伸材の高さH2aと、ステップ2で設定した第2パス後(パスユニットU出側)の高さH2sとの差ΔH=H2s−H2aを求め、この差が予め設定した値よりも大きい場合には、ステップ3で計測した被鍛伸材の高さH2aと幅W2aを、次パスユニットUの入側寸法H0、W0とし、このH0、W0と、上述のようにして予め設定した次パスユニットUの出側寸法H2、W2とから、次パスユニットUでの第1パス後の寸法H1、W1を算出して、式(16)、式(17)により、次パスユニットUでの圧下量を計算しなおして、この圧下量を実現するように鍛造を行なう。以下、パスユニットUごとに計測した被鍛伸材の寸法に基づいて、目標圧下量Hf1の修正を繰り返えしながら、最終4角形状まで鍛伸加工を継続する。製品軸材が丸棒のように軸対象形状の場合には、この最終4角形状のコーナー部(4隅)を対角方向に交互に圧下しながら、通常4パスで最終8角形状に成形した後、製品軸材に仕上げられる。
Using H1 and W1 obtained from the equations (15) and (5), the target reduction amounts Hf1 and Hf2 in the first pass and the second pass are calculated for each pass unit U as follows. be able to.
Hf1 = H0-H1 ---------- (10)
Hf2 = W1-W2 ---------- (11)
Then, the difference ΔH = H2s−H2a between the height H2a of the to-be-worked material measured in step 3 and the height H2s after the second pass (pass unit U exit side) set in step 2 is obtained. Is larger than a preset value, the height H2a and width W2a of the to-be-forged material measured in step 3 are set as the entry side dimensions H0 and W0 of the next pass unit U, and the above-described H0 and W0 The dimensions H1 and W1 after the first pass in the next pass unit U are calculated from the outgoing side dimensions H2 and W2 of the next pass unit U set in advance as described above, and the expressions (16) and (17) are calculated. Thus, the amount of reduction in the next pass unit U is recalculated and forging is performed so as to realize this amount of reduction. Thereafter, the forging process is continued to the final quadrangular shape while repeating the correction of the target reduction amount Hf1 based on the dimensions of the to-be-forged material measured for each pass unit U. When the product shaft is in the shape of a shaft, such as a round bar, the final quadrangular corners (four corners) are alternately squeezed diagonally, and the final octagonal shape is usually formed in four passes. After that, it is finished into a product shaft.

表1は、断面形状がΦ1000mmの加工用素材(鋼塊)から、断面形状がΦ500mmの製品軸材(丸棒)に鍛伸加工したときの、素材から製品軸材までの鍛造時間および歩留を、本発明の工程設計システムを組み入れた鍛伸加工装置を用いた鍛伸加工方法による場合(実施例)と、この工程設計システムを組み入れていない鍛伸加工装置を用いてプレス操作者が経験により鍛伸加工を行なった場合(比較例)について、比較した結果を示す。表2に、本発明の工程設計システムを用いた場合の、式(8)および式(9)の定数a0、および係数a1、a2を示す。なお、加工用素材(Φ1000mm)の高さH0および幅W0としては、Φ1000mmと同一断面積の正方形の一辺の寸法(H0=W0=886mm)を用いた。   Table 1 shows the forging time and yield from the raw material to the product shaft when forging from a processing material (steel ingot) having a cross-sectional shape of Φ1000 mm to a product shaft (round bar) having a cross-sectional shape of Φ500 mm. In the case of the forging method using the forging machine incorporating the process design system of the present invention (Example), the press operator has experienced using the forging machine not incorporating this process design system. The results of comparison are shown for the case where the forging process is performed by (Comparative Example). Table 2 shows constants a0 and coefficients a1 and a2 of the equations (8) and (9) when the process design system of the present invention is used. In addition, as the height H0 and the width W0 of the processing material (Φ1000 mm), a dimension of one side of a square having the same cross-sectional area as Φ1000 mm (H0 = W0 = 886 mm) was used.

Figure 2008284604
Figure 2008284604

Figure 2008284604
Figure 2008284604

表1から、上記工程設計システムを用いない比較例の場合、素材〜最終四角形状までのパス回数が多く、また最終四角形状も歪んだ形状であるため、最終四角形状〜最終8角形状までのパス回数も多くなった結果、鍛造時間が60分であるのに対して、上述の工程設計システムを用いた鍛伸加工方法による実施例の場合、素材〜最終四角形状まで、最終四角形状〜最終8角形状まで、のいずれもパス回数が少なくて済む結果、鍛造時間が45分と短縮され、歩留は従来の水準(85%)が維持され、25%程度の短縮効果が得られることを確認した。   From Table 1, in the case of the comparative example that does not use the above process design system, the number of passes from the material to the final quadrilateral shape is large, and the final quadrilateral shape is also a distorted shape. As a result of the increased number of passes, the forging time is 60 minutes, whereas in the case of the embodiment by the forging method using the above-described process design system, from the material to the final rectangular shape, the final rectangular shape to the final shape. As a result of the small number of passes, the forging time is shortened to 45 minutes, the yield is maintained at the conventional level (85%), and an effect of shortening by about 25% is obtained. confirmed.

前記の幅広がり係数Sは、式(8)および式(9)に示した2次式で近似するほかに、次のようにしても精度よく求めることができる。すなわち、前記幅広がり係数の代わりに、鍛伸加工工程における実質幅広がり係数Saを次のように定義する。
Sa=−ln(W1/W0)/ln(H1/H0)----------------(20)
鍛伸加工時の被鍛伸材の体積一定の条件から、
ln(W1/W0)+ln(L1/L0)=−ln(H1/H0)
----------------(21)
式(20)および式(21)から、
ln(L1/L0)/ln(H1/H0)=−1+Sa------------(22)
式(20)および式(22)から、
W1/W0=(H0/H1)Sa --------------------------------(23)
L1/L0=(H0/H1)1−Sa-------------------------------(24)
式(24)から、幅広がり係数Sの場合と同様に、変形解析結果を用いて式(15)に示した伸び率λを算出することにより、実質幅広がり係数Saを逆算することができる。この実質幅広がり係数Saも噛み込み比B/Wの関数で表され、前記幅広がり係数S(S1またはS2)とは、Sa=1+Sの関係にある。
In addition to the approximation by the quadratic expression shown in the equations (8) and (9), the width spread coefficient S can be obtained with high accuracy as follows. That is, instead of the width spread coefficient, a substantial width spread coefficient Sa in the forging process is defined as follows.
Sa = -ln (W1 / W0) / ln (H1 / H0) ---------------- (20)
From the condition of constant volume of forged material during forge processing,
ln (W1 / W0) + ln (L1 / L0) = − ln (H1 / H0)
---------------- (21)
From equation (20) and equation (21),
ln (L1 / L0) / ln (H1 / H0) =-1 + Sa ----------- (22)
From Equation (20) and Equation (22),
W1 / W0 = (H0 / H1) Sa -------------------------------- (23)
L1 / L0 = (H0 / H1) 1-Sa ------------------------------ (24)
As in the case of the width spread coefficient S, the actual width spread coefficient Sa can be calculated backward from the expression (24) by calculating the elongation rate λ shown in the expression (15) using the deformation analysis result. The substantial width spread coefficient Sa is also expressed as a function of the biting ratio B / W, and the width spread coefficient S (S1 or S2) has a relationship of Sa = 1 + S.

図8は、前記最終四角形状の寸法を、実機操業範囲内で9寸法抽出して、図7に示した場合と同様に、初期のパスユニットUの第1パスについての変形解析結果により求めた幅広がり係数Saを、噛み込み比(B0/W0)に対してプロットしたものである。図中には、後述の実質幅広がり係数Saの予測式(25a)から求めた実質幅広がり係数Saの予測線Paeを記入している。ここで、噛み込み比B/W=1の場合には、実質幅広がり係数Saと延び係数(1−Sa)(式(24)右辺の指数)は等しいと考えられるため、Sa=1−Saから、Sa=1/2となる。また、噛み込み比B/Wが非常に小さい場合には、幅広がりが生じないため、W1/W0=1から、Sa=0となる。さらに、噛み込み比B/Wが非常に大きい場合では、延び(伸び)がなくなるため、延び係数1−Sa=0から、Sa=1となる。これらの両極限状態を満たす関数Sa=F(B/W)で最も簡単な関数形は、以下の式(25)のようになる。
Sa=ζ×(B/W)/(1+B/W)--------------------------(25)
ここで、ζはデータ回帰によって求まる係数(定数)である。図8に示した噛み込み比と実質幅広がり係数Saのデータを回帰分析、たとえば最小2乗法により回帰して係数ζを求めると、ζ=1.216となる。したがって、実質幅広がり係数Saの予測式は、次のように決定される。
Sa=1.216×(B/W)/(1+B/W)----------------(25a)
ここで、B/Wは、前記パスユニットUの1パス目ではB0/W0に、2パス目ではB1/H1に相当する(図6参照)。
FIG. 8 shows the dimensions of the final quadrangular shape extracted by 9 dimensions within the actual machine operating range, and obtained from the deformation analysis results for the first pass of the initial pass unit U, as in the case shown in FIG. The width spread coefficient Sa is plotted against the biting ratio (B0 / W0). In the figure, a prediction line Pae of the actual width spread coefficient Sa obtained from a prediction formula (25a) of the actual width spread coefficient Sa described later is shown. Here, when the biting ratio B / W = 1, it is considered that the substantial width spreading coefficient Sa and the elongation coefficient (1−Sa) (the index on the right side of Expression (24)) are equal, and therefore Sa = 1−Sa. Therefore, Sa = 1/2. Further, when the biting ratio B / W is very small, no widening occurs, so W1 / W0 = 1 to Sa = 0. Further, when the biting ratio B / W is very large, the elongation (elongation) is eliminated, so that the elongation coefficient 1-Sa = 0 to Sa = 1. The simplest function form of the function Sa = F (B / W) satisfying these extreme states is expressed by the following equation (25).
Sa = ζ × (B / W) / (1 + B / W) ------------------------- (25)
Here, ζ is a coefficient (constant) obtained by data regression. When the data of the biting ratio and the substantial width spread coefficient Sa shown in FIG. 8 is regressed by regression analysis, for example, by the least square method to obtain the coefficient ζ, ζ = 1.216. Therefore, the prediction formula of the substantial width spread coefficient Sa is determined as follows.
Sa = 1.216 × (B / W) / (1 + B / W) ----------------- (25a)
Here, B / W corresponds to B0 / W0 in the first pass of the path unit U and to B1 / H1 in the second pass (see FIG. 6).

図9は、実機での1パスユニットUの第1パスおよび第2パスの被鍛伸材の寸法測定結果から求めた、噛み込み比B/Wに対する実質幅広がり係数Saをプロットしたもので、図中に、式(25a)の予測式から求めた予測線を実線で、実質幅広がり係数Saを噛み込み比B/Wの2次式で回帰したときの予測式から求めた予測線を破線で示した。表3に、式(25a)および上記2次式回帰の場合の相関係数rをそれぞれ示す。式(25a)の実質幅広がり係数Saの予測式では、前述のように、噛み込み比B/W≒0でSa=0、B/W≒1でSa=1と両極限状態を考慮しているため、2次式回帰による予測式よりも相関係数rが大きく、より高精度の予測式となっている。   FIG. 9 is a plot of the actual width spread coefficient Sa with respect to the biting ratio B / W obtained from the dimension measurement results of the to-be-forged material in the first pass and the second pass of the 1-pass unit U in an actual machine. In the figure, the prediction line obtained from the prediction expression of the equation (25a) is a solid line, and the prediction line obtained from the prediction expression when the real width spreading factor Sa is regressed by a quadratic expression of the biting ratio B / W is a broken line. It showed in. Table 3 shows the correlation coefficient r in the case of the equation (25a) and the quadratic regression described above. In the prediction formula of the substantial width spread coefficient Sa of the equation (25a), as described above, Sa = 0 when the biting ratio B / W≈0 and Sa = 1 when B / W≈1, taking into account the extreme state. Therefore, the correlation coefficient r is larger than the prediction formula based on the quadratic regression, and the prediction formula is more accurate.

Figure 2008284604
Figure 2008284604

上記のようにしても、実質幅広がり係数Saを予測することができ、この実質幅広がり係数Saと伸び(延び)率λ(=L1/L0)から、前記の式(24)により、パスユニットUの第1パス後の被鍛伸材の高さH1を求めることができる。そして、この被鍛伸加工材の高さH1を前記の式(23)に代入することにより、第1パス後の被鍛伸材の幅W1を求めることができる。したがって、これらの高さH1および幅W1を用いることにより、パスユニットUごとに、目標圧下量Hf1およびHf2を精度よく算出することができる。   Even in the above-described manner, the substantial width spread coefficient Sa can be predicted. From the substantial width spread coefficient Sa and the elongation (elongation) ratio λ (= L1 / L0), the path unit can be calculated by the above equation (24). The height H1 of the forged material after the first pass of U can be obtained. And the width W1 of the to-be-forged material after the 1st pass can be calculated | required by substituting the height H1 of this to-be-forged material into said Formula (23). Therefore, the target reduction amounts Hf1 and Hf2 can be accurately calculated for each pass unit U by using the height H1 and the width W1.

なお、前記加工用素材(断面積S0)から前記最終4角形状(断面積SN)までの全パスでの平均減面率γmを設定し、以下の式(3a)により算出されるNpを切り上げた整数を総パス回数Nとして、上述の2パスを1パスユニットUとするかわりに、1パスごとに、図5(a)〜(c)に示したようにして断面積を求めて、目標寸法を決定して圧下量を算出するようにすることもできる。
Np=LOG(SN/S0)/LOG(1−γm)-----------(3a)
この1パスごとの目標寸法の決定は、通常、前記最終4角形状に精度よく鍛造するために、鍛伸工程の下流側(製品軸材に近いパス側)で行われる場合が多く、この場合、1パスごとに計測した寸法(高さおよび幅)を用いて、決定した目標寸法、すなわち圧下量を修正することができる。
Note that an average area reduction rate γm in all passes from the processing material (cross-sectional area S0) to the final square shape (cross-sectional area SN) is set, and Np calculated by the following equation (3a) is rounded up. The total number of passes is N, and instead of the above-mentioned two passes as one pass unit U, the cross-sectional area is obtained for each pass as shown in FIGS. It is also possible to calculate the amount of reduction by determining the dimensions.
Np = LOG (SN / S0) / LOG (1-γm) ---------- (3a)
The determination of the target dimension for each pass is usually performed on the downstream side of the forging process (pass side close to the product shaft) in order to forge accurately into the final quadrangular shape. Using the dimensions (height and width) measured for each pass, the determined target dimension, that is, the reduction amount can be corrected.

図10(a)および(b)は、実施形態の鍛伸加工装置を模式的に示したものである。図10(a)に示したように、加工用素材、すなわち被鍛伸材1をその軸方向に対して垂直方向の、対向する2方向から圧下するための工具である金型2、2の出側で、被鍛伸材1の幅Wおよび高さHをそれぞれ計測できる手段である、CCD撮像素子を用いたラインセンサカメラ3および4が、鍛伸加工装置のセンサー取付け部(図示省略)に設置されている。このカメラ3、4による幅Wおよび高さHの計測結果は、図10(b)に示したように、1回の被鍛伸材1の圧下ごとに、送り量Bだけ被鍛伸材1を鍛伸加工方向に引き出すマニピュレータ5の走行量Tmとともに、鍛伸加工工程を制御するコンピュータの記憶装置6に取り込まれる。この記憶装置6には、上述の工程設計システムの構成要素が格納されている。金型2、2の出側で、すなわち圧下直後に計測した被鍛伸材1の幅Wおよび高さHの計測データおよびマニピュレータ5の走行量Tmデータを用いて、前記コンピュータの演算装置7で、被鍛伸材1の長手方向の各位置での圧下量を算出することができる。具体的に説明すると、前記幅Wおよび高さHの計測データとマニピュレータ5の走行量Tmを連動すなわち対応付けて記憶装置6に記憶・保持させることにより、被鍛伸材1の全体形状を把握することができる。前記高さHの計測データは、金型2、2の圧下(間隔)設定により一定値となるが、幅Wの計測データは、圧下量が異なるため、被鍛伸材1の長手方向で変化する。このように、次パスである被鍛伸材1を90°回転させてその幅W(W1)を圧下するパスユニットUの第2パスにおいて(図6参照)、被鍛伸材1の幅Wおよび高さHの計測データとマニピュレータ5の走行量Tmを対応付けて記憶・保持することにより、この次パスでの目標形状(高さHおよび幅)に対して、マニピュレータ5の走行量Tmを操作して、すなわち金型2、2への噛み込み量を操作して、被鍛伸材1の長手方向の位置ごとに、手動または自動で圧下調整を行なうことができる。それにより、被鍛伸材1の全長にわたって、幅Wおよび高さHの寸法バラツキを少なくすることができる。そして、このバラツキの少ない幅Wおよび高さHの寸法を、上述の工程設計システムにおける各パスユニットUの出側での計測データとして用いることができる。なお、前記カメラ3、4として、CMOS撮像素子を用いたカメラでもよく、また、撮像素子を1次元に配列したラインセンサカメラのみならず、2次元に配列したカメラも用いることができる。   FIGS. 10A and 10B schematically show the forging apparatus according to the embodiment. As shown in FIG. 10 (a), the molds 2 and 2 which are tools for reducing the working material, that is, the to-be-shaped material 1 from two opposite directions perpendicular to the axial direction of the work material. Line sensor cameras 3 and 4 using a CCD image sensor, which are means capable of measuring the width W and height H of the stretched material 1 on the exit side, are sensor mounting portions (not shown) of the forging apparatus. Is installed. As shown in FIG. 10B, the measurement results of the width W and the height H by the cameras 3 and 4 are as follows. Along with the travel amount Tm of the manipulator 5 that draws out in the forging process direction, it is taken into the storage device 6 of the computer that controls the forging process. The storage device 6 stores the components of the process design system described above. Using the measured data of the width W and height H of the to-be-worked stretched material 1 and the travel amount Tm data of the manipulator 5 measured on the exit side of the molds 2 and 2, that is, immediately after the reduction, the calculation device 7 of the computer The amount of reduction at each position in the longitudinal direction of the stretched material 1 can be calculated. Specifically, the measurement data of the width W and the height H and the travel amount Tm of the manipulator 5 are linked, that is, associated with each other and stored in the storage device 6 so that the overall shape of the work stretchable material 1 is grasped. can do. The measurement data of the height H becomes a constant value depending on the reduction (interval) setting of the molds 2 and 2, but the measurement data of the width W changes in the longitudinal direction of the work stretched material 1 because the amount of reduction is different. To do. In this way, in the second pass of the pass unit U that rotates the to-be-shaped material 1 as the next pass by 90 ° and reduces the width W (W1) (see FIG. 6), the width W of the to-be-shaped material 1 Further, by storing and holding the measurement data of the height H and the travel amount Tm of the manipulator 5 in association with each other, the travel amount Tm of the manipulator 5 is set with respect to the target shape (height H and width) in this next pass. By operating, that is, by operating the amount of biting into the molds 2 and 2, the reduction adjustment can be performed manually or automatically for each position in the longitudinal direction of the stretched material 1. Thereby, the dimensional variation of the width W and the height H can be reduced over the entire length of the stretchable material 1. And the dimension of width W and height H with few variations can be used as measurement data on the exit side of each pass unit U in the above-described process design system. As the cameras 3 and 4, a camera using a CMOS image sensor may be used, and not only a line sensor camera in which image sensors are arranged one-dimensionally but also a camera arranged in two dimensions can be used.

実施形態の工程設計システムを用いた鍛伸加工の流れを示す説明図である。It is explanatory drawing which shows the flow of the forging process using the process design system of embodiment. 鍛伸加工の最終4角形状から鍛造仕上げ形状までを模式的に示す説明図である。It is explanatory drawing which shows typically from the last square shape of forge processing to a forge finishing shape. 最終8角形状の最適断面積を求める方法を示す説明図である。It is explanatory drawing which shows the method of calculating | requiring the optimal cross-sectional area of a final octagon shape. 最終4角形状の最適断面積を求める方法を示す説明図である。It is explanatory drawing which shows the method of calculating | requiring the optimal cross-sectional area of the last square shape. (a)〜(c)実施形態の工程設計システムで、各パスユニットUの出側の被鍛伸材の断面積を決定する方法を模式的に示す説明図である。(A)-(c) It is explanatory drawing which shows typically the method of determining the cross-sectional area of the to-be-forged stretch material of each pass unit U in the process design system of embodiment. 各パスユニットUでの第1パス目と第2パス目の変形状態を模式的に示す説明図である。FIG. 6 is an explanatory diagram schematically showing a deformed state of a first pass and a second pass in each pass unit U. 幅広がり係数Sと噛み込み比B0/W0との関係を示す説明図である。It is explanatory drawing which shows the relationship between the breadth spreading coefficient S and biting ratio B0 / W0. 実質幅広がり係数Saと噛み込み比B0/W0との関係を示す説明図である。It is explanatory drawing which shows the relationship between the substantial width expansion coefficient Sa and the biting ratio B0 / W0. 実機データに基づいた実質幅広がり係数Saと噛み込み比B/Wとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the real breadth coefficient Sa based on real machine data, and the biting ratio B / W. (a)実施形態の鍛伸加工装置を模式的に示す説明図(斜視図)である。(b)同上(側面図)(A) It is explanatory drawing (perspective view) which shows typically the forge processing apparatus of embodiment. (B) Same as above (side view)

符号の説明Explanation of symbols

1、1a〜1c:被鍛伸材 2:金型 3、4:ラインセンサカメラ
5:マニピュレータ 6:記憶装置 7:演算装置
DESCRIPTION OF SYMBOLS 1, 1a-1c: Wrought material 2: Die 3, 4: Line sensor camera 5: Manipulator 6: Storage device 7: Arithmetic device

Claims (12)

加工用素材を、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、最終4角形状に、または最終4角形状を経て最終8角形状に鍛造した後、軸材に仕上げる鍛伸加工の工程設計システムであって、この工程設計システムが、製品軸材の断面形状から前記最終4角形状および最終8角形状寸法を決定するステップ1と、前記鋼塊から前記最終4角形状までのパス回数およびこの各パスでの目標形状寸法(高さおよび幅)を決定し圧下量および送り量を設定するステップ2と、所要のパス毎に被鍛伸材の高さおよび幅を計測するステップ3と、この計測結果と当該被鍛伸材の目標寸法とを比較し、次パス以降の目標形状寸法に対する圧下量および送り量を修正するステップ4を備えたことを特徴とする鍛伸加工の工程設計システム。   The operation of rolling down the processing material from two opposite directions perpendicular to the axial direction and the feeding operation in the axial direction are repeated alternately to obtain the final quadrangular shape or the final quadrangular shape and the final 8 A forging process design system for finishing a shaft after forging into a square shape, wherein the process design system determines the final square shape and final octagon shape dimensions from the cross-sectional shape of the product shaft 1, step 2 for determining the number of passes from the steel ingot to the final quadrangular shape and the target shape dimensions (height and width) in each pass and setting the amount of reduction and feed, and for each required pass Step 3 for measuring the height and width of the to-be-drawn material, and comparing the measurement result with the target size of the to-be-drawn material, and correcting the reduction amount and feed amount for the target shape size after the next pass. Having step 4 Process Planning System extend forging process, characterized. 前記ステップ1で、最終4角形状から少なくとも4パスで最終8角形状に鍛造するための、前記最終4角形状寸法(一辺DS)および8角形状寸法(対辺寸法DH)を、以下の式(1)および式(2)を用いて算出することを特徴とする請求項1に記載の鍛伸加工の工程設計システム。
DS=SQRT(δ×β×π×(DF)/4)--------(1)
DH=SQRT((β×π×(DF)/4)/tan(22.5°)/2) -------(2)
ここで、DFは、製品軸材の直径DAに機械加工代Mを加えた鍛造仕上げ材の寸法(直径)である(DF=DA+2M)。δは、上記パス数による総断面減少率Rtを用いて、δ=1/(1−Rt)で表され、βは、上記最終8角形状寸法から製品軸材の鍛造仕上げ寸法DFへの断面減少率Rfを用いて、β=1/(1−Rf))で表される。
In step 1, the final square shape dimension (one side DS) and the octagonal shape dimension (opposite side dimension DH) for forging from the final square shape to the final octagonal shape in at least four passes are expressed by the following formula ( The forging process design system according to claim 1, which is calculated using 1) and formula (2).
DS = SQRT (δ × β × π × (DF) 2/4) -------- (1)
DH = SQRT ((β × π × (DF) 2/4) / tan (22.5 °) / 2 ) ------- (2)
Here, DF is the dimension (diameter) of the forged finished material obtained by adding the machining allowance M to the diameter DA of the product shaft (DF = DA + 2M). δ is represented by δ = 1 / (1−Rt) using the total cross-section reduction rate Rt according to the number of passes, and β is a cross section from the final octagonal shape dimension to the forging finish dimension DF of the product shaft. Using the reduction rate Rf, it is expressed by β = 1 / (1−Rf)).
前記製品軸材の鍛造仕上がり形状の断面積に対する面積増加率を、5〜20%の範囲で任意に少なくとも2水準抽出して前記最終8角形状の対辺寸法DHをそれぞれ算出するステップS10aと、この算出した対辺寸法DHを変形解析手段のインプットファイルにインプットするステップS10bと、所要のパス数で前記製品軸材の鍛造仕上げ寸法に仕上げる変形解析を行うステップS10cと、この変形解析結果から被鍛伸材の伸び率および断面減少率を算出するステップS10dと、この伸び率と前記抽出した断面積増加率との関係から、前記伸び率に等しくなる断面積増加率を算出するステップS10eから前記最終8角形状の寸法DHを算出し、この最終8角形状の寸法DHを用いて、前記断面減少率Rtを算出することを特徴とする請求項2に記載の鍛伸加工の工程設計システム。   Step S10a for calculating the opposite side dimension DH of the final octagonal shape by extracting at least two levels of the area increase rate with respect to the cross-sectional area of the forged finished shape of the product shaft, respectively, Step S10b, in which the calculated opposite side dimension DH is input to the input file of the deformation analysis means, step S10c, in which a deformation analysis is performed to finish the forged dimensions of the product shaft with the required number of passes, From step S10d for calculating the elongation rate and the cross-sectional area reduction rate of the material, and from step S10e for calculating the cross-sectional area increase rate equal to the elongation rate from the relationship between the elongation rate and the extracted cross-sectional area increase rate, the final 8 A rectangular dimension DH is calculated, and the cross-sectional reduction rate Rt is calculated using the final octagonal dimension DH. Process Planning System extend forging process according to claim 2. 前記最終8角形状の断面積に対する面積増加率を、5〜20%の範囲で任意に少なくとも2水準抽出して前記最終4角形状の一辺の寸法DSをそれぞれ算出するステップS10fと、この算出した寸法DSを変形解析手段のインプットファイルにインプットするステップS10gと、少なくとも4パスで前記最終8角形状の寸法に鍛造する変形解析を行うステップS10hと、この変形解析結果から被鍛伸材の伸び率を算出するステップS10iと、この伸び率と前記抽出した断面積増加率との関係から、前記伸び率に等しくなる断面積増加率を算出するステップS10jから前記最終4角形状の寸法DSを算出し、この最終4角形状の寸法DSを用いて、前記断面減少率Rfを算出することを特徴とする請求項2または請求項3に記載の鍛伸加工の工程設計システム。   The step S10f of calculating at least two levels of the area increase rate with respect to the cross-sectional area of the final octagonal shape within a range of 5 to 20% to calculate the dimension DS of one side of the final quadrangular shape, and this calculation. Step S10g for inputting the dimension DS to the input file of the deformation analysis means, Step S10h for performing deformation analysis forging into the final octagonal dimension in at least four passes, and the elongation rate of the to-be-forged material from this deformation analysis result From the relationship between the step S10i for calculating the cross-sectional area and the extracted cross-sectional area increase rate, the final square dimension DS is calculated from the step S10j for calculating the cross-sectional area increase rate equal to the elongation rate. 4. The forging according to claim 2, wherein the cross-section reduction rate Rf is calculated using the final square-shaped dimension DS. 5. Processing of the process design system. 前記ステップ2で、前記素材から前記最終4角形状寸法までの1パスあたりの平均減面率γmを設定し、前記鋼塊および最終4角形状の断面積をそれぞれS0およびSNとしたときに2パスを1パスユニットUとして、以下の(3)式により算出されるNcを切り上げた整数を総パスユニットUtとし、パスユニットUごとの減面率を設定してパスユニットUごとに被鍛伸材の目標形状寸法を決定し、以下の式(4)〜式(11)を用いて、各パスユニットUの第1パス後の高さH1および幅W1を予測し、前記目標形状寸法に鍛伸するための各パスユニットUでの圧下量Hf1およびHf2を算出することを特徴とする請求項1から4のいずれかに記載の鍛伸加工の工程設計システム。
Nc=1/2×(LOG(SN/S0)/LOG(1-γm))
-------(3)
H1=H2×(W2/(W0×(H1/H0)−L-------------(4)
W1=W0×(H1/H0)―L ------------------------------(5)
L=1+S1-------------------------------------------------(6)
F=1+S2-------------------------------------------------(7)
S1=a0+a1×(B0/W0)+a2×(B0/W0)----------(8)
S2=a0+a1×(B1/H1)+a2×(B1/H1)----------(9)
Hf1=H0−H1-------------------------------------------(10)
Hf2=W1−W2-------------------------------------------(11)
ここで、H0およびW0は、パスユニットUの入側の被鍛伸材の高さおよび幅を、H2およびW2は、パスユニットUの出側の被鍛伸材の幅および高さを、H1は第1パス後の被鍛伸材の高さを示し、B0およびB1は、それぞれ、パスユニットUの第1パスおよび第2パスでの送り量を、S1およびS2は、それぞれ第1パスおよび第2パスでの幅広がり係数を示す。また、a0は定数、a1およびa2は係数である。
In Step 2, when an average area reduction rate γm per pass from the material to the final square shape dimension is set, and the cross-sectional areas of the steel ingot and the final square shape are S0 and SN, 2 Assuming that a pass is one pass unit U, an integer obtained by rounding up Nc calculated by the following equation (3) is a total pass unit Ut, and a surface area reduction rate is set for each pass unit U, and the toughening elongation for each pass unit U. The target shape dimension of the material is determined, the height H1 and the width W1 after the first pass of each pass unit U are predicted using the following formulas (4) to (11), and the target shape dimension is forged. The forging process design system according to any one of claims 1 to 4, wherein the rolling reduction amounts Hf1 and Hf2 in each pass unit U for stretching are calculated.
Nc = 1/2 × (LOG (SN / S0) / LOG (1-γm))
------- (3)
H1 = H2 * (W2 / (W0 * (H1 / H0) -L ) F ------------- (4)
W1 = W0 × (H1 / H0) -L ----------------------------- (5)
L = 1 + S1 ---------------------------------------------- -(6)
F = 1 + S2 --------------------------------------------- -(7)
S1 = a0 + a1 × (B0 / W0) + a2 × (B0 / W0) 2 ---------- (8)
S2 = a0 + a1 × (B1 / H1) + a2 × (B1 / H1) 2 ---------- (9)
Hf1 = H0-H1 ----------------------------------------- (10 )
Hf2 = W1-W2 ----------------------- (11 )
Here, H0 and W0 are the height and width of the to-be-worked stretched material on the entry side of the pass unit U, and H2 and W2 are the width and height of the to-be-worked stretched material on the exit side of the pass unit U, H1. Indicates the height of the stretched material after the first pass, B0 and B1 indicate the feed amounts of the pass unit U in the first pass and the second pass, respectively, S1 and S2 indicate the first pass and The width spread coefficient in the second pass is shown. A0 is a constant, and a1 and a2 are coefficients.
前記ステップ2で、前記素材から前記最終4角形状寸法までの1パスあたりの平均減面率γmを設定し、前記鋼塊および最終4角形状の断面積をそれぞれS0およびSNとしたときに2パスを1パスユニットUとして、以下の(3)式により算出されるNcを切り上げた整数を総パスユニットUtとし、パスユニットUごとの減面率を設定してパスユニットUごとに被鍛伸材の目標形状寸法を決定し、以下の式(3)、式(4a)〜(7a)および式(10)、式(11)を用いて、各パスユニットUの第1パス後の高さH1および幅W1を予測し、前記目標形状寸法に鍛伸するための各パスユニットUでの圧下量Hf1およびHf2を算出することを特徴とする請求項1から4のいずれかに記載の鍛伸加工の工程設計システム。
Nc=1/2×(LOG(SN/S0)/LOG(1-γm))
-------(3)
H1=H2×(W2/W1)−Sa2--------------------------------(4a)
W1=W0×(H1/H0)−Sa1 ----------------------------(5a)
Sa1=ζ×(B0/W0)/(1+B0/W0)---------------(6a)
Sa2=ζ×(B1/H1)/(1+B1/H1)---------------(7a)
Hf1=H0−H1-------------------------------------------(10)
Hf2=W1−W2-------------------------------------------(11)
ここで、H0およびW0は、パスユニットUの入側の被鍛伸材の高さおよび幅を、H2およびW2は、パスユニットUの出側の被鍛伸材の幅および高さを、H1は第1パス後の被鍛伸材の高さを示し、B0およびB1は、それぞれ、パスユニットUの第1パスおよび第2パスでの送り量を示し、Sa1およびSa2は、それぞれ第1パスおよび第2パスでの実質幅広がり係数を示す。
In Step 2, when an average area reduction rate γm per pass from the material to the final square shape dimension is set, and the cross-sectional areas of the steel ingot and the final square shape are S0 and SN, 2 Assuming that a pass is one pass unit U, an integer obtained by rounding up Nc calculated by the following equation (3) is a total pass unit Ut, and a surface area reduction rate is set for each pass unit U, and the toughening elongation for each pass unit U. The target shape dimension of the material is determined, and the height of each pass unit U after the first pass is calculated using the following formulas (3), (4a) to (7a), (10), and (11). The forging according to any one of claims 1 to 4, characterized in that the reduction amounts Hf1 and Hf2 in each pass unit U for predicting H1 and the width W1 and forging to the target shape dimension are calculated. Processing process design system.
Nc = 1/2 × (LOG (SN / S0) / LOG (1-γm))
------- (3)
H1 = H2 × (W2 / W1) −Sa2 -------------------------------- (4a)
W1 = W0 × (H1 / H0) -Sa1 --------------------------- (5a)
Sa1 = ζ × (B0 / W0) / (1 + B0 / W0) -------------- (6a)
Sa2 = ζ × (B1 / H1) / (1 + B1 / H1) ------------ (7a)
Hf1 = H0-H1 ----------------------------------------- (10 )
Hf2 = W1-W2 ----------------------- (11 )
Here, H0 and W0 are the height and width of the to-be-worked stretched material on the entry side of the pass unit U, and H2 and W2 are the width and height of the to-be-worked stretched material on the exit side of the pass unit U, H1. Indicates the height of the stretched material after the first pass, B0 and B1 indicate the feed amounts of the pass unit U in the first pass and the second pass, respectively, and Sa1 and Sa2 indicate the first pass, respectively. And the substantial width spread coefficient in the second pass.
前記最終4角形状寸法を少なくとも3水準以上抽出するステップS40aと、この抽出した寸法を変形解析手段のインプットファイルにインプットするステップS40bと、素材の変形抵抗および実機鍛造条件に基づいて選択した摩擦係数をインプットファイルにインプットするステップS40cと、前記解析手段により被鍛伸材の平均の伸び率を算出するステップS40dと、この平均の伸び率を用いて幅広がり係数Sを算出するステップS40eと、この幅広がり係数Sと前記の比率(B0/W0)との関係を最小2乗法により決定するステップ40fから、前記定数a0、係数a1およびa2を求めることを特徴とする請求項5に記載の鍛伸加工の工程設計システム。   Step S40a for extracting at least three levels of the final square shape dimension, Step S40b for inputting the extracted dimension to the input file of the deformation analysis means, and the friction coefficient selected based on the deformation resistance of the material and the actual forging conditions To the input file, step S40d for calculating the average elongation rate of the to-be-wrought material by the analyzing means, step S40e for calculating the width expansion coefficient S using the average elongation rate, 6. The forging according to claim 5, wherein the constant a0, the coefficients a1 and a2 are obtained from the step 40f for determining the relationship between the width spread coefficient S and the ratio (B0 / W0) by the least square method. Processing process design system. 前記最終4角形状寸法を少なくとも3水準以上抽出するステップS40aと、この抽出した寸法を変形解析手段のインプットファイルにインプットするステップS40bと、素材の変形抵抗および実機鍛造条件に基づいて選択した摩擦係数をインプットファイルにインプットするステップS40cと、前記解析手段により被鍛伸材の平均の伸び率を算出するステップS40dと、この平均の伸び率を用いて幅広がり係数Sを算出するステップS40eと、この幅広がり係数Sと噛み込み比(B/W)との関係を回帰分析により決定するステップ40fから、前記係数ζを求めることを特徴とする請求項6に記載の鍛伸加工の工程設計システム。   Step S40a for extracting at least three levels of the final square shape dimension, Step S40b for inputting the extracted dimension to the input file of the deformation analysis means, and the friction coefficient selected based on the deformation resistance of the material and the actual forging conditions To the input file, step S40d for calculating the average elongation rate of the to-be-wrought material by the analyzing means, step S40e for calculating the width expansion coefficient S using the average elongation rate, The forging process design system according to claim 6, wherein the coefficient ζ is obtained from step 40 f in which a relationship between the spread coefficient S and the biting ratio (B / W) is determined by regression analysis. 前記ステップ3で計測した被鍛伸材の寸法(高さおよび幅)と、前記ステップ2で決定した各パスユニットUの出側の被鍛伸材の寸法(高さおよび幅)を比較した結果に基づいて、次パスユニットUでの圧下量を修正することを特徴とする請求項5から8のいずれかに記載の鍛伸加工の工程設計システム。   Results of comparing the dimensions (height and width) of the to-be-wrought material measured in Step 3 and the dimensions (height and width) of the to-be-wrought material on the exit side of each pass unit U determined in Step 2 9. The forging process design system according to claim 5, wherein the amount of reduction in the next pass unit U is corrected based on the above. 加工用素材を、その軸方向に対して垂直方向の、対向する2方向から圧下する動作と軸方向への送り動作を交互に繰り返し、前記素材を鍛造する初期パスから、2パスを1パスユニットUとして所要のパスユニット数で鍛造する軸材の鍛伸方法であって、請求項4に記載した鍛伸加工の工程設計システムを用いて、計測したパスユニットUの被鍛伸材の寸法(高さおよび幅)から、次パスユニットUの被鍛伸材の目標形状寸法(高さおよび幅)に鍛伸するための圧下量および送り量を決定するようにしたことを特徴とする軸材の鍛伸加工方法。   The processing material is alternately lowered from two opposing directions perpendicular to the axial direction, and the feeding operation in the axial direction is repeated alternately, and from the initial pass forging the material, two passes are made into one pass unit. A method of forging a shaft material forged with a required number of pass units as U, the dimension of the to-be-forged material of the pass unit U measured using the forging process design system according to claim 4 ( A shaft material characterized by determining a reduction amount and a feed amount for forging to a target shape dimension (height and width) of a to-be-stretched material of the next pass unit U from a height and a width) Forging process. 加工用素材を、その軸方向に対して垂直方向の、対向する2方向から複数の工具を用いて圧下する動作とマニピュレータを用いて軸方向への送り動作を交互に繰り返して鍛造する軸材の鍛伸加工装置であって、前記鍛伸加工装置が、被鍛伸材の形状を入力および出力するための記憶装置と、入力値から被鍛伸材の鍛造後の形状を予測するための演算部を備え、請求項1から9のいずれかに記載の鍛伸加工の工程設計システムを組み入れて鍛造を行なうようにしたことを特徴とする軸材の鍛伸加工装置。   A shaft material that is forged by alternately repeating the operation of reducing the material for processing from two opposing directions perpendicular to the axial direction using a plurality of tools and the feeding operation in the axial direction using a manipulator. A forging device, wherein the forging device inputs and outputs the shape of the to-be-forged material, and an operation for predicting the forged shape of the to-be-forged material from the input value. 10. A shaft forging and processing apparatus comprising: a forging process incorporating the forging process design system according to any one of claims 1 to 9. 前記鍛造加工装置が、前記工具の出側で被鍛伸材の幅および高さをそれぞれ計測できる手段を備え、鍛伸加工後の被鍛伸材の寸法を計測し、この計測値を前記記憶装置に保持し、前記マニピュレータの走行量と連動させて、次パスの圧下量を決定するようにしたことを特徴とする請求項11に記載の軸材の鍛伸加工装置。   The forging device includes means capable of measuring the width and height of the to-be-forged material on the exit side of the tool, measures the dimensions of the to-be-forged material after forging, and stores the measured values in the memory 12. The shaft forge processing apparatus according to claim 11, wherein the shaft is forged and held in an apparatus, and the amount of reduction in the next pass is determined in conjunction with the travel amount of the manipulator.
JP2007160476A 2006-07-10 2007-06-18 Forging process design system and forging process Expired - Fee Related JP4866302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160476A JP4866302B2 (en) 2006-07-10 2007-06-18 Forging process design system and forging process

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006189771 2006-07-10
JP2006189771 2006-07-10
JP2006257533 2006-09-22
JP2006257533 2006-09-22
JP2007112029 2007-04-20
JP2007112029 2007-04-20
JP2007160476A JP4866302B2 (en) 2006-07-10 2007-06-18 Forging process design system and forging process

Publications (2)

Publication Number Publication Date
JP2008284604A true JP2008284604A (en) 2008-11-27
JP4866302B2 JP4866302B2 (en) 2012-02-01

Family

ID=40144822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160476A Expired - Fee Related JP4866302B2 (en) 2006-07-10 2007-06-18 Forging process design system and forging process

Country Status (1)

Country Link
JP (1) JP4866302B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289018A (en) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd Method for predicting upset shape of circular forging
CN102091752A (en) * 2010-11-25 2011-06-15 中南大学 Method for planning linkage track of automatic forging manipulator and pressing machine
JP2011140043A (en) * 2010-01-07 2011-07-21 Kobe Steel Ltd Forging method for remedying internal defect of forged material
JP2018094571A (en) * 2016-12-09 2018-06-21 大同特殊鋼株式会社 Hot forging device
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268529A (en) * 1986-12-01 1988-11-07 Kobe Steel Ltd Radial forging method for bar stock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268529A (en) * 1986-12-01 1988-11-07 Kobe Steel Ltd Radial forging method for bar stock

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289018A (en) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd Method for predicting upset shape of circular forging
JP2011140043A (en) * 2010-01-07 2011-07-21 Kobe Steel Ltd Forging method for remedying internal defect of forged material
CN102091752A (en) * 2010-11-25 2011-06-15 中南大学 Method for planning linkage track of automatic forging manipulator and pressing machine
JP2018094571A (en) * 2016-12-09 2018-06-21 大同特殊鋼株式会社 Hot forging device
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine

Also Published As

Publication number Publication date
JP4866302B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Liu et al. Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation
JP4866302B2 (en) Forging process design system and forging process
CN113787108B (en) Manufacturing method and system of bent pipe
JP2002153909A (en) Method and device for measuring and/or controlling flatness and flatness control system
JP2007152388A (en) Method and apparatus for correcting perpendicularity of flange of wide flange shape
JP6518169B2 (en) Control method and control device for sizing press
Povorov et al. Method for calculating of cross-sectional dimensions of sheet blank at intermediate stages of roller forming process
JP4986463B2 (en) Shape control method in cold rolling
JP4813999B2 (en) Forging shape prediction method and program thereof
JP2011183417A (en) Method of evaluating stability of spring back
JP2009034705A (en) Method for estimating yield stress and elastic modulus of material to be straightened in hot roller-straightening, and method for operating roller leveler
JP5262763B2 (en) Method for controlling tip warpage of rolled material
JP5028831B2 (en) Surface shape quantification method
JP4956518B2 (en) Method for forging work material
Byon et al. A study of roll gap adjustment due to roll wear in groove rolling: experiment and modelling
Byon et al. A semi-analytical model for predicting the wear contour in rod rolling process
JP7407277B2 (en) Metal tube manufacturing method and equipment
Aksakal et al. Determination of experimental axial and sideways metal flow in open die forging
JP2014176858A (en) Shape control method in cold rolling and shape control method
Tamura et al. Optimization of open-die forging process design to ensure homogeneous grain size refinement of cast structures by three-dimensional rigid-plastic finite element analysis
JP2005052860A (en) Roller leveler and straightening method
Tamura et al. Optimisation of spiral forging process design for ensuring dimensional precision of forged round billets by three-dimensional rigid–plastic finite element analysis
JP2009183969A (en) Method for predicting rolling load in cold rolling
KR100910491B1 (en) Method for decision of strip target shape using thickness profile
JP2007222922A (en) Linear heating method and linear heating control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees