JP2014176858A - Shape control method in cold rolling and shape control method - Google Patents
Shape control method in cold rolling and shape control method Download PDFInfo
- Publication number
- JP2014176858A JP2014176858A JP2013051101A JP2013051101A JP2014176858A JP 2014176858 A JP2014176858 A JP 2014176858A JP 2013051101 A JP2013051101 A JP 2013051101A JP 2013051101 A JP2013051101 A JP 2013051101A JP 2014176858 A JP2014176858 A JP 2014176858A
- Authority
- JP
- Japan
- Prior art keywords
- shape
- shape control
- rolling
- elongation
- control means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
本発明は、小径ワークロールを用いた冷間圧延において圧延された金属帯の板形状が目標形状に一致するように圧延条件を適正化する方法に関する。 The present invention relates to a method for optimizing rolling conditions so that a plate shape of a metal strip rolled in cold rolling using a small-diameter work roll matches a target shape.
従来実施されている冷間圧延では、圧延機出側に配置された形状検出器で圧延中の圧延材形状を測定し、測定結果に基づいてロールベンダー、ロールシフト、あるいはバックアップロールのサドル押込み等の形状制御手段の制御量を補正する方法が一般的に採用されている。また、圧延中の形状制御に先立って、圧延開始時に圧延形状を形状制御手段や圧延荷重等の関数で表わした圧延形状予測式に基づいて形状制御手段を初期設定するプリセット制御が一般に行われている。 In conventional cold rolling, the shape of the rolling material being measured is measured with a shape detector arranged on the exit side of the rolling mill, and a roll bender, roll shift, backup roll saddle push, etc. based on the measurement result A method of correcting the control amount of the shape control means is generally employed. Prior to the shape control during rolling, preset control is generally performed to initially set the shape control means based on a rolling shape prediction formula that expresses the rolled shape as a function of the shape control means or rolling load at the start of rolling. Yes.
また、圧延機から離れた位置に配置された形状検出器で圧延材の形状を測定すると検出遅れが生じ、応答性の高い制御が困難であるとの問題がある。かかる問題を解消すべく、下記特許文献1〜3に開示されているように、高速応答性で形状制御するために、板形状の直接測定に代えて圧延荷重を測定し、圧延荷重の測定値に基づいて各形状制御手段の制御量を補正する種々の方式が提案されている。 Further, when the shape of the rolled material is measured with a shape detector arranged at a position away from the rolling mill, there is a problem that detection delay occurs and control with high responsiveness is difficult. In order to solve this problem, as disclosed in the following Patent Documents 1 to 3, in order to control the shape with high-speed response, the rolling load is measured instead of the direct measurement of the plate shape, and the measured value of the rolling load is measured. Various methods for correcting the control amount of each shape control means based on the above have been proposed.
ここで、上述した何れの方式も、圧延形状を圧延荷重の関数で表わした圧延形状予測式に基づいて形状制御しているが、圧延形状予測式では板幅方向の1ヶ所の形状のみで圧延形状を評価している。そのため、圧延荷重が大きく変動する場合、板幅全体にわたって良好な形状を得がたい。 Here, in any of the methods described above, the shape of the rolled shape is controlled based on the rolling shape prediction formula expressed as a function of the rolling load. In the rolling shape prediction formula, rolling is performed only at one shape in the sheet width direction. The shape is being evaluated. Therefore, when the rolling load fluctuates greatly, it is difficult to obtain a good shape over the entire plate width.
このような問題を解消するため、本発明者等は、板幅方向に沿った複数箇所で圧延材の形状として伸び率差を取り込んだ数式モデルを使用することにより、圧延荷重の変動に応じて形状制御手段の制御量を補正し、板幅全体にわたって良好な形状をもつ鋼帯を製造する方法を開発し、下記特許文献4において紹介した。この方法は、圧延中の形状制御を対象にしているが、圧延開始時に形状制御手段を初期設定するプリセット制御についても数式モデルをそのまま適用できる。 In order to eliminate such a problem, the present inventors use a mathematical model that incorporates the difference in elongation as the shape of the rolled material at a plurality of locations along the plate width direction. A method of correcting the control amount of the shape control means and manufacturing a steel strip having a good shape over the entire plate width was developed and introduced in Patent Document 4 below. Although this method is intended for shape control during rolling, the mathematical model can be applied as it is to preset control for initially setting shape control means at the start of rolling.
上記特許文献4の方法により形状制御を行えば、ワークロールが比較的大きい場合には伸び率差を評価する板幅方向に沿った複数箇所の位置の選定にかかわらず良好な形状が得られる。しかし、上記特許文献4の方法は、圧延材の形状として伸び率差を評価する板幅方向に沿った複数箇所の位置が明確でないため、箔圧延のように直径60mm以下の小径ワークロールを用いた圧延では、ワークロールのたわみ変形が複雑になるため、評価位置が適正でないと良好な形状が得られない場合がある。 If shape control is performed by the method of the above-mentioned Patent Document 4, when the work roll is relatively large, a good shape can be obtained regardless of selection of positions at a plurality of locations along the plate width direction for evaluating the difference in elongation. However, the method of Patent Document 4 uses a small-diameter work roll having a diameter of 60 mm or less as in foil rolling because the positions of a plurality of locations along the plate width direction in which the elongation difference is evaluated as the shape of the rolled material are not clear. In conventional rolling, since the bending deformation of the work roll becomes complicated, a good shape may not be obtained unless the evaluation position is appropriate.
また、圧延機出側に配置された形状検出器で圧延中の圧延材形状を測定し、測定結果に基づいて形状制御する場合にも、形状の評価位置が適正でないと直径60mm以下の小径ワークロールを用いた圧延では、良好な形状が得られない場合がある。 In addition, when the shape of the rolled material being rolled is measured with a shape detector arranged on the delivery side of the rolling mill and the shape is controlled based on the measurement result, a small diameter workpiece having a diameter of 60 mm or less is required if the shape evaluation position is not appropriate. In rolling using a roll, a good shape may not be obtained.
本発明は、このような問題を解消すべく案出されたものであり、圧延材の形状として伸び率差の評価位置を適正化することにより、直径60mm以下の小径ワークロールを用いた圧延にも対応できるようにし、形状精度に優れた圧延材を高生産性で製造できる制御方法を提供することを目的とする。 The present invention has been devised to solve such a problem. By optimizing the evaluation position of the elongation difference as the shape of the rolled material, the present invention can be used for rolling using a small-diameter work roll having a diameter of 60 mm or less. It is an object of the present invention to provide a control method that can produce a rolled material with excellent shape accuracy with high productivity.
ここで、本発明者らは、60mm以下の小径ワークロールを用いた冷間圧延においても良好な形状が得られるような形状の評価領域の適正化方法を種々調査検討した。その結果、板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の領域及び板幅中央から両側にそれぞれ45%〜55%の領域の3箇所を形状の評価領域とすると形状を適切に評価することが可能となること、及び当該評価方法を用いることにより良好な形状をもつ圧延材が製造されることを見出した。 Here, the present inventors have investigated and examined various methods for optimizing the shape evaluation region so that a good shape can be obtained even in cold rolling using a small diameter work roll of 60 mm or less. As a result, the first evaluation region within 50 mm from the plate edge, the region of 65% to 75% on each side from the center of the plate width, and the region of 45% to 55% on each side from the plate width center to evaluate the shape It was found that the shape can be appropriately evaluated in the region, and that a rolled material having a good shape can be produced by using the evaluation method.
上述した知見に基づいて提供される本発明の冷間圧延における形状制御方法は、直径が60mm以下であって鋼帯を挟み込む一対のワークロールとバックアップロールとの間に複数の中間ロールを有し、各中間ロールを軸方向にシフト可能とするシフト機構を含む形状制御手段を備えた多段圧延機による冷間圧延における形状制御方法であって、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域を形状の評価領域とし、板幅中央における伸び率と、前記第一評価領域、前記第二評価領域、及び前記第三評価領域のそれぞれにおける伸び率との差に基づいて前記形状制御手段による制御量を設定することを特徴とする。 The shape control method in the cold rolling of the present invention provided based on the above-described knowledge has a plurality of intermediate rolls between a pair of work rolls and backup rolls having a diameter of 60 mm or less and sandwiching a steel strip. , A shape control method in cold rolling by a multi-stage rolling mill provided with a shape control means including a shift mechanism capable of shifting each intermediate roll in the axial direction, and the first evaluation within 50 mm from the plate end of the steel strip The area, the second evaluation area of 65% to 75% on each side from the center of the sheet width, and the third evaluation area of 45% to 55% on each side from the center of the sheet width to the shape evaluation area, the elongation at the center of the sheet width The control amount by the shape control means is set based on the difference between the rate and the elongation rate in each of the first evaluation region, the second evaluation region, and the third evaluation region. .
また、本発明の冷間圧延における形状制御方法は、直径が60mm以下であって鋼帯を挟み込む一対のワークロールとバックアップロールとの間に複数の中間ロールを有し、各中間ロールを軸方向にシフト可能とするシフト機構を含む形状制御手段を備えた多段圧延機による冷間圧延における形状制御方法であって、圧延荷重及び形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率との差を伸び率差として表す数式モデルを予め作成しておき、前記冷間圧延を行うに際して、これから冷間圧延しようとする圧延荷重を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、前記形状制御手段による制御量を前記算出された制御量に設定して前記冷間圧延を行う
ことを特徴とする。
Moreover, the shape control method in the cold rolling of the present invention has a plurality of intermediate rolls between a pair of work rolls and a backup roll having a diameter of 60 mm or less and sandwiching a steel strip, and each intermediate roll is axially arranged. Is a shape control method in cold rolling by a multi-high rolling mill equipped with a shape control means including a shift mechanism that can shift to a variable, and the control amount of the rolling load and shape control means is a variable, the sheet width center of the steel strip The first evaluation region within 50 mm from the plate edge of the steel strip, the second evaluation region of 65% to 75% from the plate width center to both sides, and 45% to 55 from the plate width center to both sides, respectively. A mathematical model expressing the difference between the respective elongation rates in the third evaluation area of 3% as an elongation rate difference is created in advance, and when performing the cold rolling, cold rolling is going to be performed from now on. A rolling load is substituted into the mathematical model, a control amount by the shape control means is calculated so that any of the elongation difference in the three regions matches a target value, and a control amount by the shape control means is calculated. The cold rolling is performed with the controlled amount set.
本発明の冷間圧延における形状制御方法は、直径が60mm以下であって鋼帯を挟み込む一対のワークロールとバックアップロールとの間に複数の中間ロールを有し、各中間ロールを軸方向にシフト可能とするシフト機構を含む形状制御手段を備えた多段圧延機による冷間圧延における形状制御方法であって、圧延荷重及び形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率と差を伸び率差として表す数式モデルを予め作成しておき、冷間圧延中に連続的に測定された圧延荷重の測定値を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、前記形状制御手段による制御量を、前記算出された制御量に随時補正して前記冷間圧延を行うことを特徴とする。 The shape control method in the cold rolling according to the present invention has a plurality of intermediate rolls between a pair of work rolls and a backup roll having a diameter of 60 mm or less and sandwiching a steel strip, and each intermediate roll is shifted in the axial direction. A shape control method in cold rolling by a multi-high mill equipped with a shape control means including a shift mechanism that enables the rolling load and the control amount of the shape control means as variables, and the elongation at the center of the sheet width of the steel strip A first evaluation area within 50 mm from the plate edge of the steel strip, a second evaluation area of 65% to 75% on each side from the center of the sheet width, and 45% to 55% on each side from the center of the sheet width. A mathematical model expressing the elongation and difference in each of the three regions of the third evaluation region as an elongation difference is prepared in advance, and the measured value of the rolling load continuously measured during the cold rolling is the mathematical model. Substituting and calculating a control amount by the shape control means so that all of the elongation difference in the three regions match a target value, and correcting the control amount by the shape control means to the calculated control amount as needed Then, the cold rolling is performed.
また、本発明の冷間圧延における形状制御方法は、直径が60mm以下であって鋼帯を挟み込む一対のワークロールとバックアップロールとの間に複数の中間ロールを有し、各中間ロールを軸方向にシフト可能とするシフト機構を含む形状制御手段を備えた多段圧延機による冷間圧延における形状制御方法であって、形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率との差を伸び率差として表す数式モデルを予め作成しておき、圧延機出側に配置された形状検出器で冷間圧延中の鋼帯について連続的に測定された測定値に基づいて前記3領域のそれぞれについて導出された伸び率差を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、前記形状制御手段による制御量を、前記算出された制御量に随時補正して前記冷間圧延を行うことを特徴とする。 Moreover, the shape control method in the cold rolling of the present invention has a plurality of intermediate rolls between a pair of work rolls and a backup roll having a diameter of 60 mm or less and sandwiching a steel strip, and each intermediate roll is axially arranged. A shape control method in cold rolling by a multi-stage rolling mill equipped with a shape control means including a shift mechanism capable of shifting to a shape, wherein the amount of control of the shape control means is a variable, and the elongation at the center of the sheet width of the steel strip A first evaluation region within 50 mm from the plate edge of the steel strip, a second evaluation region of 65% to 75% on each side from the center of the plate width, and a 45% to 55% first evaluation region on each side from the center of the plate width. A mathematical model representing the difference between the respective elongation rates in the three regions of the three evaluation regions as the elongation difference is created in advance, and the steel strip during the cold rolling is continuously formed by the shape detector arranged on the rolling mill exit side. In A shape control means for substituting the elongation difference derived for each of the three regions based on the measured values into the mathematical model, so that all of the elongation differences in the three regions coincide with a target value. The control amount is calculated, the control amount by the shape control means is corrected to the calculated control amount as needed, and the cold rolling is performed.
このように、圧延材の形状として伸び率差の評価位置を適正化することにより、直径60mm以下の小径ワークロールを用いた圧延にも対応できるようにし、形状精度に優れた圧延材の生産性を向上させることができる。 Thus, by optimizing the evaluation position of the elongation difference as the shape of the rolled material, it is possible to cope with rolling using a small-diameter work roll having a diameter of 60 mm or less, and the productivity of the rolled material with excellent shape accuracy. Can be improved.
本実施形態において形状制御方法について検討した圧延機1は、60mm以下の小径ワークロール10を有し、形状制御手段として中間ロール20のシフト機構と、バックアップロール30のクラウン調整機構を有する12段圧延機である。図1に示すように、テーパ開始点から板端までの距離Lsでシフト位置を定義し、テーパ開始点が板端よりも内側にある場合を負、外側にある場合を正とする。 The rolling mill 1 which examined the shape control method in the present embodiment has a small-diameter work roll 10 of 60 mm or less, and a 12-stage rolling having a shift mechanism of the intermediate roll 20 and a crown adjustment mechanism of the backup roll 30 as shape control means. Machine. As shown in FIG. 1, the shift position is defined by the distance Ls from the taper start point to the plate end, and the case where the taper start point is inside the plate end is negative, and the case where the taper start point is outside is positive.
図2に示すように、バックアップロール30は7個のサドル32と6個のベアリング34から構成されており、中央の第4サドル32に対する各サドル32の相対的な圧下位置でバックアップロール30のクラウン調整量を定義する。具体的には、第4サドル32に対する第1,7サドル32の相対的な圧下位置の平均をS1、第4サドル32に対する第2,6サドル32の相対的な圧下位置の平均をS2、第4サドル32に対する第3,5サドル32の相対的な圧下位置の平均をS3とする。 As shown in FIG. 2, the backup roll 30 is composed of seven saddles 32 and six bearings 34, and the crown of the backup roll 30 is positioned at a relative reduction position of each saddle 32 with respect to the central fourth saddle 32. Define the amount of adjustment. Specifically, the average of the relative reduction positions of the first and seventh saddles 32 with respect to the fourth saddle 32 is S 1 , and the average of the relative reduction positions of the second and sixth saddles 32 with respect to the fourth saddle 32 is S 2. The average of the relative reduction positions of the third and fifth saddles 32 with respect to the fourth saddle 32 is S3.
図3、4に示すように、本圧延機1において圧延形状を調査した結果、直径60mm以下の小径ワークロール10を用いた圧延では、中間ロール20のシフト位置、バックアップロール30のクラウン調整量を広範囲に変化させても、板幅中央から両側にそれぞれ45%〜55%の領域が板幅中央に対して相対的に伸びにくいとともに、板幅中央から両側にそれぞれ65%〜75%の領域が板幅中央から45%〜55%の領域に対して相対的に伸びやすいことが判明した。また、同じく図3、4に示すように、中間ロール20のシフト位置、バックアップロール30のクラウン調整量を変更すると、板端から50mm以内の第一評価領域では伸び率差が大きく変化することが判明した。 As shown in FIGS. 3 and 4, as a result of investigating the rolling shape in the rolling mill 1, in rolling using the small-diameter work roll 10 having a diameter of 60 mm or less, the shift position of the intermediate roll 20 and the crown adjustment amount of the backup roll 30 are set. Even if it is changed over a wide range, 45% to 55% of the region from the center of the plate width to each side is difficult to extend relative to the center of the plate width, and 65% to 75% of the region from the center of the plate width to each side. It has been found that it is relatively easy to extend in the region of 45% to 55% from the center of the plate width. Similarly, as shown in FIGS. 3 and 4, if the shift position of the intermediate roll 20 and the crown adjustment amount of the backup roll 30 are changed, the elongation difference may change greatly in the first evaluation area within 50 mm from the plate end. found.
そこで、本発明においては、板端から50mm以内の第一評価領域(板端近傍領域)、板幅中央から両側にそれぞれ65%〜75%の領域(以下、「第二評価領域」とも称す)、及び板幅中央から両側にそれぞれ45%〜55%の領域(以下、「第三評価領域」とも称す)の3箇所を形状の評価領域として、形状制御する。具体的には、板幅中央における伸び率に対する第一評価領域、第二評価領域、及び第三評価領域における伸び率の差(以下、「伸び率差」とも称す)をそれぞれεe、ε70、ε50として数式モデルを予め作成しておき、これらを用いて圧延形状を定義する。また、第一評価領域における伸び率をele、板幅中央から両側にそれぞれ65%〜75%の領域(第二評価領域)の伸び率をel70、板幅中央から両側にそれぞれ45%〜55%の領域(第三評価領域)における伸び率をel50、板幅中央における伸び率をelcとする。具体的には、板幅が650mmである場合には、板幅中央からそれぞれ211.25mm〜243.75mmの距離にある領域が第二評価領域に相当し、板幅中央からそれぞれ146.25mm〜178.75mmの距離にある領域が第三評価領域に相当する。このとき、伸び率差εe,ε70,ε50は、それぞれ式(1)〜(3)で表される。 Therefore, in the present invention, a first evaluation region (region near the plate end) within 50 mm from the plate end, and a region of 65% to 75% on both sides from the plate width center (hereinafter also referred to as “second evaluation region”). In addition, the shape is controlled by using three locations of 45% to 55% regions (hereinafter also referred to as “third evaluation regions”) on both sides from the center of the plate width as shape evaluation regions. Specifically, the difference in elongation rate between the first evaluation region, the second evaluation region, and the third evaluation region with respect to the elongation rate at the center of the plate width (hereinafter also referred to as “elongation rate difference”) is represented by ε e and ε 70 , respectively. , Ε 50 , a mathematical model is created in advance, and the rolling shape is defined using them. Further, the elongation rate in the first evaluation region is el e , the elongation rate in the region (second evaluation region) of 65% to 75% on both sides from the plate width center is el 70 , and the elongation rate in the plate width center is 45% on each side. The elongation in the 55% region (third evaluation region) is el 50 , and the elongation in the center of the plate width is el c . Specifically, when the plate width is 650 mm, the regions at a distance of 211.25 mm to 243.75 mm from the center of the plate width correspond to the second evaluation region, respectively, and from 146.25 mm to the plate width center, respectively. A region at a distance of 178.75 mm corresponds to the third evaluation region. At this time, the elongation difference ε e , ε 70 , ε 50 is expressed by equations (1) to (3), respectively.
εe= ele− elc ・・・ (1)
ε70=el70− elc ・・・ (2)
ε50=el50− elc ・・・ (3)
ε e = el e -el c (1)
ε 70 = el 70 −el c (2)
ε 50 = el 50 −el c (3)
ここで、圧延材の形状に及ぼす影響要因として、圧延材寸法、材質、潤滑状態、前後方張力、圧延荷重、形状制御手段の制御量、素材クラウン量、及び圧延前形状等がある。これらのうち、圧延材寸法については板厚及び板幅毎にテーブル区分すると、区分内での圧延材寸法の変化が形状に及ぼす影響を小さくできる。材質、潤滑状態及び前後方張力は、圧延材の形状に影響するが、その影響のほとんどは圧延荷重を介したロール撓みの変化によって生じる。また、60mm以下の小径ワークロール10を用いた圧延では、ワークロール10に大きなたわみ変形が生じるため、素材クラウンの形状に及ぼす影響は小さくなりやすい。また、スキンパス圧延のように圧下率が小さい場合には圧延前形状の影響は大きいが、圧下率5%以上の通常の冷間圧延においては圧延前形状の影響は小さい。したがって、形状変化に及ぼす主要因は、圧延荷重,形状制御手段の制御量(ここでは、中間ロール20のシフト位置Ls及びクラウン調整量S1、S2、S3に相当)ということができる。そこで、圧延荷重,形状制御手段の制御量が圧延形状に及ぼす定量的な影響を検討した。 Here, factors affecting the shape of the rolled material include the size of the rolled material, the material, the lubrication state, the front / rear tension, the rolling load, the control amount of the shape control means, the material crown amount, and the shape before rolling. Among these, regarding the rolled material dimensions, if the table is divided for each plate thickness and width, the influence of the change in the rolled material size in the section on the shape can be reduced. The material, the lubrication state, and the front / rear tension affect the shape of the rolled material, but most of the influence is caused by changes in roll deflection through the rolling load. Moreover, in rolling using the small-diameter work roll 10 of 60 mm or less, since the work roll 10 is greatly deformed, the influence on the shape of the material crown tends to be small. In addition, when the rolling reduction is small as in skin pass rolling, the influence of the shape before rolling is large, but in normal cold rolling with a rolling reduction of 5% or more, the influence of the shape before rolling is small. Therefore, it can be said that the main factors affecting the shape change are the rolling load and the control amount of the shape control means (here, the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 ). Therefore, the quantitative effects of the rolling load and the control amount of the shape control means on the rolling shape were examined.
圧延荷重の変化は、ロール撓みの変化となって現れ、圧延材の形状を変化させる。圧延荷重とロール撓み量との関係は弾性領域における変形を対象としていることからほぼ線形的な関係にある。したがって、式(1)〜(3)で表される伸び率差εe,ε70,ε50も図5に示すように圧延荷重Pと線形関係にある。 The change in rolling load appears as a change in roll deflection and changes the shape of the rolled material. The relationship between the rolling load and the amount of roll deflection is almost linear since it is intended for deformation in the elastic region. Therefore, the elongation differences ε e , ε 70 , ε 50 expressed by the equations (1) to (3) are also linearly related to the rolling load P as shown in FIG.
形状制御手段である中間ロール20のシフト機構もワークロール10と中間ロール20間の接触圧力分布を変化させることによりロール撓みを変化させて圧延形状を変化させるものである。したがって、図6に示すように中間ロール20のシフト位置Lsと伸び率差εe,ε70,ε50との関係も、線形関係にある。 The shift mechanism of the intermediate roll 20 as the shape control means also changes the rolling shape by changing the roll deflection by changing the contact pressure distribution between the work roll 10 and the intermediate roll 20. Therefore, as shown in FIG. 6, the relationship between the shift position Ls of the intermediate roll 20 and the elongation differences ε e , ε 70 , ε 50 is also a linear relationship.
バックアップロール30のクラウン調整もロール撓みを変化させて圧延形状を変化させるものである。したがって、図7〜9に示すようにクラウン調整量S1、S2、S3と伸び率差εe,ε70,ε50との間も線形関係にある。 The crown adjustment of the backup roll 30 also changes the rolling shape by changing the roll deflection. Therefore, as shown in FIGS. 7 to 9, the crown adjustment amounts S 1 , S 2 , S 3 and the elongation difference ε e , ε 70 , ε 50 are also in a linear relationship.
以上の各要因相互の関係から、ae,be,ce,de,ee,fe,a70,b70,c70,d70,e70, f70,a50,b50,c50,d50,e50,f50を影響係数として、式(4)〜(6)で圧延形状予測式を表すことができる。 From each factor mutual relationship above, ae, be, ce, de , ee, fe, a 70, b 70, c 70, d 70, e 70, f 70, a 50, b 50, c 50, d 50 , E 50 , f 50 as influence coefficients, the rolling shape prediction formula can be expressed by the equations (4) to (6).
εe=ae・P+be・Ls+ce・S1+de・S2+ee・S3+fe …(4)
ε70=a70・P+b70・Ls+c70・S1+d70・S2+e70・S3+f70 …(5)
ε50=a50・P+b50・Ls+c50・S1+d50・S2+e50・S3+f50 …(6)
ε e = ae · P + be · Ls + ce · S 1 + de · S 2 + ee · S 3 + fe (4)
ε 70 = a 70 · P + b 70 · Ls + c 70 · S 1 + d 70 · S 2 + e 70 · S 3 + f 70 (5)
ε 50 = a 50 · P + b 50 · Ls + c 50 · S 1 + d 50 · S 2 + e 50 · S 3 + f 50 (6)
影響係数ae,be,ce,de,ee,fe,a70,b70,c70,d70,e70,f70,a50,b50,c50,d50,e50,f50は、板幅、板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅、板厚、材質等の区分毎にテーブル設定し、或いは板幅,板厚,材質等の関数として数式化される。 Influence coefficient ae, be, ce, de, ee, fe, a 70, b 70, c 70, d 70, e 70, f 70, a 50, b 50, c 50, d 50, e 50, f 50 is It is a constant determined by the production type such as plate width, plate thickness, and material, and is obtained from an experiment or a simulation based on an analysis model in which an elastic deformation analysis of a roll and a plastic deformation analysis of a material are coupled. Each influence coefficient is set in a table for each section of the plate width, plate thickness, material, etc., or expressed as a function of the plate width, plate thickness, material, etc.
中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3の初期設定に際しては、圧延荷重を予測し、圧延荷重の予測値Pを式(4)〜(6)に代入し、式(4)〜(6)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を算出し、設定する。 In the initial setting of the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30, the rolling load is predicted, and the predicted value P of the rolling load is expressed by the equations (4) to (6). And the intermediate roll 20 is shifted so that the elongation differences ε e , ε 70 , ε 50 correspond to the respective target values ε e 0 , ε 70 0 , ε 50 0 in equations (4) to (6). The position Ls and the crown adjustment amount S 1 , S 2 , S 3 of the backup roll 30 are calculated and set.
ここで、中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3の組合せとしては、任意の組合せを採用できるが、いずれか一つの形状制御手段の制御量を固定したり、クラウン調整量S1、S2、S3の関係に制約を加えることにより一つの組合せに固定できる。なお、圧延荷重の予測値Pは圧延条件から圧延荷重式にしたがって算出することも可能であり、当該コイルまでの圧延荷重の実績値を学習計算することによっても求められる。 Here, as a combination of the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30, any combination can be adopted, but the control amount of any one shape control means is It can be fixed to one combination by fixing or adding restrictions to the relationship between the crown adjustment amounts S 1 , S 2 , S 3 . Note that the predicted value P of the rolling load can be calculated from the rolling conditions according to the rolling load formula, and can also be obtained by learning and calculating the actual value of the rolling load up to the coil.
圧延中の形状制御として、形状検出器を備えていない圧延機1では、圧延荷重を連続的に測定し、圧延荷重の測定値Pを式(4)〜(6)に代入する。式(4)〜(6)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を算出し、随時補正しつつ冷間圧延を実施する。 As the shape control during rolling, in the rolling mill 1 that does not include a shape detector, the rolling load is continuously measured, and the measured value P of the rolling load is substituted into the equations (4) to (6). The shift position Ls of the intermediate roll 20 and the backup so that the elongation difference ε e , ε 70 , ε 50 matches the respective target values ε e 0 , ε 70 0 , ε 50 0 in equations (4) to (6). The crown adjustment amounts S 1 , S 2 and S 3 of the roll 30 are calculated, and cold rolling is performed while correcting as needed.
また、形状検出器を備えている場合には、形状検出器によって連続的に測定される形状の測定値から求められた伸び率差εe 1,ε70 1,ε50 1を下記の式(7)〜(9)に代入し、伸び率差εe,ε70,ε50を導出する。また、伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3の補正量dLsとdS1、dS2、dS3を算出し、中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を随時補正する。すなわち、下記式(7)〜(9)に対し、実測された伸び率差εe 1,ε70 1,ε50 1及びこれに対応する条件を代入することにより、シフト位置Ls及びクラウン調整量S1、S2、S3をそれぞれ補正量dLs及び補正量dS1、dS2、dS3だけ補正したときの伸び率差εe,ε70,ε50が表される。補正量dLs及び補正量dS1、dS2、dS3は、伸び率差εe,ε70,ε50が目標値となるように随時算出され、補正される。この場合も、中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3の補正量dLsとdS1、dS2、dS3の組合せとしては、任意の組合せを採用できるが、いずれか一つの形状制御手段の制御量を固定したり、クラウン調整量の補正量dS1、dS2、dS3の関係に制約を加えることにより一つの組合せに固定できる。 When a shape detector is provided, the elongation differences ε e 1 , ε 70 1 , and ε 50 1 obtained from the measured values of the shape continuously measured by the shape detector are expressed by the following formula ( Substituting into 7) to (9), the elongation difference ε e , ε 70 , ε 50 is derived. Further, the shift position Ls of the intermediate roll 20 and the crown adjustment amount S of the backup roll 30 are set so that the elongation difference ε e , ε 70 , ε 50 matches the target values ε e 0 , ε 70 0 , ε 50 0. 1 , S 2 , S 3 correction amounts dLs and dS 1 , dS 2 , dS 3 are calculated, and the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 are corrected as needed. To do. That is, by substituting the actually measured elongation difference ε e 1 , ε 70 1 , ε 50 1 and the corresponding conditions into the following formulas (7) to (9), the shift position Ls and the crown adjustment amount are substituted. The elongation differences ε e , ε 70 , and ε 50 when S 1 , S 2 , and S 3 are corrected by the correction amount dLs and the correction amounts dS 1 , dS 2 , and dS 3 , respectively, are represented. The correction amount dLs and the correction amounts dS 1 , dS 2 , dS 3 are calculated and corrected as necessary so that the elongation differences ε e , ε 70 , ε 50 become target values. Also in this case, any combination is adopted as a combination of the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 and dS 1 , dS 2 , dS 3. However, it can be fixed to one combination by fixing the control amount of any one of the shape control means or by restricting the relationship between the correction amounts dS 1 , dS 2 , dS 3 of the crown adjustment amount.
εe=εe 1+be・dLs+ce・dS1+de・dS2+ee・dS3 … (7)
ε70=ε70 1+b70・dLs+c70・dS1+d70・dS2+e70・dS3 … (8)
ε50=ε50 1+b50・dLs+c50・dS1+d50・dS2+e50・dS3 … (9)
ε e = ε e 1 + b e · dLs + ce · dS 1 + de · dS 2 + e e · dS 3 (7)
ε 70 = ε 70 1 + b 70 · dLs + c 70 · dS 1 + d 70 · dS 2 + e 70 · dS 3 (8)
ε 50 = ε 50 1 + b 50 · dLs + c 50 · dS 1 + d 50 · dS 2 + e 50 · dS 3 (9)
本実施形態では、60mm以下の小径ワークロール10を有する12段圧延機を対象に本発明の形状制御方法について説明するが、60mm以下の小径ワークロールを有する20段圧延機等の他の多段圧延機に対しても同様に本発明が適用されることは勿論である。 In the present embodiment, the shape control method of the present invention is described for a 12-high rolling mill having a small diameter work roll 10 of 60 mm or less, but other multi-stage rolling such as a 20-high rolling mill having a small diameter work roll of 60 mm or less. Of course, the present invention is similarly applied to the machine.
50mmの小径ワークロール10を有し、形状制御手段として中間ロール20のシフト機構2とバックアップロール30のクラウン調整機構3を有する12段圧延機1を用いて板幅650mm、板厚0.1mmの冷延鋼板を0.09mmに冷間圧延する際に本発明を適用した例を図10で説明する。図2と同様に、本圧延機1のバックアップロール30は7個のサドル32と6個のベアリング34から構成されている。 Using a 12-high rolling mill 1 having a 50 mm small-diameter work roll 10 and having a shift mechanism 2 for the intermediate roll 20 and a crown adjusting mechanism 3 for the backup roll 30 as shape control means, the sheet width is 650 mm and the sheet thickness is 0.1 mm. An example in which the present invention is applied when cold rolling a cold-rolled steel sheet to 0.09 mm will be described with reference to FIG. As in FIG. 2, the backup roll 30 of the rolling mill 1 includes seven saddles 32 and six bearings 34.
上位コンピュータ4には予め圧延条件が入力されており、圧延荷重式にしたがって圧延荷重Pが算出される。プロセスコンピュータ5では板幅,板厚及び材質の区分毎に予め算出した影響係数を取り込んでおり、式(4)〜(6)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を算出し、初期設定した。なお、形状の評価領域は板端から20mmの位置、板幅中央から70%の領域及び板幅中央から50%の領域の3箇所とした。また、伸び率差εe,ε70,ε50の目標値εe 0,ε70 0,ε50 0はいずれも0とした。 Rolling conditions are input to the host computer 4 in advance, and the rolling load P is calculated according to the rolling load equation. The process computer 5 incorporates influence coefficients calculated in advance for each of the sheet width, sheet thickness, and material classification, and the elongation differences ε e , ε 70 , and ε 50 are the target values according to the equations (4) to (6). The shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , and S 3 of the backup roll 30 were calculated and initially set so as to coincide with ε e 0 , ε 70 0 , and ε 50 0 . In addition, the shape evaluation area | region was made into three places, the position of 20 mm from the board edge, the area | region of 70% from the board width center, and the area | region of 50% from the board width center. Further, the target values ε e 0 , ε 70 0 , and ε 50 0 of the elongation difference ε e , ε 70 , ε 50 were all set to 0.
圧延開始後は形状検出器6の出力値に基づいて式(7)〜(9)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3の補正量dLsとdS1、dS2、dS3を算出し、中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を補正しながら圧延した。 After starting rolling, the elongation differences ε e , ε 70 , ε 50 are the target values ε e 0 , ε 70 0 , ε 50 0 according to equations (7) to (9) based on the output value of the shape detector 6. The shift position Ls of the intermediate roll 20 and the correction amounts dLs of the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 and dS 1 , dS 2 , dS 3 are calculated so as to coincide with Rolling was performed while correcting the position Ls and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30.
比較のため、形状の評価領域の設定が明確でない上記特許文献4(特開平11−267727号公報)に記載の方法により板端から20mmの位置、板幅中央から50%の領域の2箇所を形状の評価領域として中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を初期設定し、圧延開始後は形状検出器6の出力値に基づいて形状制御しながら圧延した。 For comparison, two locations of a position 20 mm from the plate edge and a region 50% from the center of the plate width are measured by the method described in Patent Document 4 (Japanese Patent Laid-Open No. 11-267727) where the setting of the shape evaluation region is not clear. As the shape evaluation region, the shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 are initially set, and after the start of rolling, the shape is controlled based on the output value of the shape detector 6. Rolled while.
本発明に係る方法により形状の評価領域を適正化して形状制御を行った鋼帯は、図11に示すように板幅中央から両側にそれぞれ65%〜75%の領域の伸びが抑制され、図12に示すように圧延開始からコイル全長にわたって急峻度が0.5%以内に収められており、良好な形状に圧延されていた。これに対し、形状の評価領域が明確化されていない従来法では、圧延開始からコイル全長にわたって急峻度が約0.7%前後の板幅中央から両側にそれぞれ65%〜75%の領域が伸びた形状を生じていた。 The steel strip that has been subjected to shape control by optimizing the shape evaluation region by the method according to the present invention, as shown in FIG. As shown in FIG. 12, the steepness was kept within 0.5% over the entire length of the coil from the start of rolling, and it was rolled into a good shape. On the other hand, in the conventional method in which the evaluation area of the shape has not been clarified, the area of 65% to 75% extends from the center of the sheet width where the steepness is about 0.7% over the entire length of the coil from the start of rolling to both sides. The resulting shape.
30mmの小径ワークロール10を有し、形状制御手段として中間ロール20のシフト機構2とバックアップロール30のクラウン調整機構3を有する12段圧延機1を用いて板幅650mm、板厚0.1mmの冷延鋼板を0.09mmに冷間圧延する際に本発明を適用した例を図13で説明する。図2と同様に、本圧延機1のバックアップロール30は7個のサドル32と6個のベアリング34から構成されている。 Using a 12-high rolling mill 1 having a 30 mm small-diameter work roll 10 and having a shift mechanism 2 for the intermediate roll 20 and a crown adjustment mechanism 3 for the backup roll 30 as shape control means, the sheet width is 650 mm and the sheet thickness is 0.1 mm. An example in which the present invention is applied when cold-rolling a cold-rolled steel sheet to 0.09 mm will be described with reference to FIG. As in FIG. 2, the backup roll 30 of the rolling mill 1 includes seven saddles 32 and six bearings 34.
上位コンピュータ4には予め圧延条件が入力されており、圧延荷重式にしたがって圧延荷重Pが算出される。プロセスコンピュータ5では板幅,板厚及び材質の区分毎に予め算出した影響係数を取り込んでおり、式(4)〜(6)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を算出し、初期設定した。なお、形状の評価領域は板端から20mmの位置、板幅中央から70%の領域及び板幅中央から50%の領域の3箇所とした。また、伸び率差εe,ε70,ε50の目標値εe 0,ε70 0,ε50 0はいずれも0とした。圧延開始後は荷重計7により圧延荷重を連続的に測定し、式(4)〜(6)で伸び率差εe,ε70,ε50がそれぞれの目標値εe 0,ε70 0,ε50 0に一致するように中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を算出し、補正しながら圧延した。 Rolling conditions are input to the host computer 4 in advance, and the rolling load P is calculated according to the rolling load equation. The process computer 5 incorporates influence coefficients calculated in advance for each of the sheet width, sheet thickness, and material classification, and the elongation differences ε e , ε 70 , and ε 50 are the target values according to the equations (4) to (6). The shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , and S 3 of the backup roll 30 were calculated and initially set so as to coincide with ε e 0 , ε 70 0 , and ε 50 0 . In addition, the shape evaluation area | region was made into three places, the position of 20 mm from the board edge, the area | region of 70% from the board width center, and the area | region of 50% from the board width center. Further, the target values ε e 0 , ε 70 0 , and ε 50 0 of the elongation difference ε e , ε 70 , ε 50 were all set to 0. After the start of rolling, the rolling load is continuously measured by the load meter 7, and the elongation differences ε e , ε 70 , ε 50 are the target values ε e 0 , ε 70 0 , The shift position Ls of the intermediate roll 20 and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 were calculated so as to coincide with ε 50 0 and rolled while correcting.
比較のため、形状の評価領域の設定が明確でない特開平11−267727号の方法により板端から20mmの位置、板幅中央から50%の領域の2箇所を形状の評価領域として中間ロール20のシフト位置Lsとバックアップロール30のクラウン調整量S1、S2、S3を初期設定し、圧延開始後は荷重計7で連続的に測定した圧延荷重に基づいて形状制御しながら圧延した。 For comparison, according to the method of Japanese Patent Laid-Open No. 11-267727, in which the setting of the shape evaluation area is not clear, the intermediate roll 20 is positioned at two locations, a position 20 mm from the plate edge and a region 50% from the center of the plate width. The shift position Ls and the crown adjustment amounts S 1 , S 2 , S 3 of the backup roll 30 were initially set, and after starting rolling, rolling was performed while controlling the shape based on the rolling load continuously measured by the load meter 7.
本発明に係る方法により形状の評価領域を適正化して形状制御を行った鋼帯は、図14に示すように板幅中央から両側にそれぞれ65%〜75%の領域の伸びが抑制され、図15に示すように圧延開始からコイル全長にわたって急峻度が0.5%以内に収められており、良好な形状に圧延されていた。これに対し、形状の評価領域が明確化されていない従来法では、圧延開始からコイル全長にわたって急峻度が約0.7%前後の板幅中央から両側にそれぞれ65%〜75%の領域が伸びた形状を生じていた。 As shown in FIG. 14, the steel strip that has been subjected to shape control by optimizing the shape evaluation region by the method according to the present invention has an extension of 65% to 75% on both sides from the center of the plate width. As shown in FIG. 15, the steepness was kept within 0.5% over the entire length of the coil from the start of rolling, and it was rolled into a good shape. On the other hand, in the conventional method in which the evaluation area of the shape has not been clarified, the area of 65% to 75% extends from the center of the sheet width where the steepness is about 0.7% over the entire length of the coil from the start of rolling to both sides. The resulting shape.
1 圧延機
2 シフト機構
6 形状検出器
10 ワークロール(小径ワークロール)
20 中間ロール
30 バックアップロール
32 サドル
34 ベアリング
DESCRIPTION OF SYMBOLS 1 Rolling machine 2 Shift mechanism 6 Shape detector 10 Work roll (small diameter work roll)
20 Intermediate roll 30 Backup roll 32 Saddle 34 Bearing
Claims (4)
前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域を形状の評価領域とし、
板幅中央における伸び率と、前記第一評価領域、前記第二評価領域、及び前記第三評価領域のそれぞれにおける伸び率との差に基づいて前記形状制御手段による制御量を設定する
ことを特徴とする冷間圧延における形状制御方法。 A shape control means including a shift mechanism having a plurality of intermediate rolls between a pair of work rolls having a diameter of 60 mm or less and sandwiching a steel strip and a backup roll, and capable of shifting each intermediate roll in the axial direction. A shape control method in cold rolling by a multi-high rolling mill,
A first evaluation area within 50 mm from the plate end of the steel strip, a second evaluation area of 65% to 75% on each side from the center of the sheet width, and a third evaluation of 45% to 55% on each side from the center of the sheet width. Let the area be the shape evaluation area,
The control amount by the shape control means is set based on the difference between the elongation at the center of the plate width and the elongation at each of the first evaluation region, the second evaluation region, and the third evaluation region. A shape control method in cold rolling.
圧延荷重及び形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率との差を伸び率差として表す数式モデルを予め作成しておき、
前記冷間圧延を行うに際して、これから冷間圧延しようとする圧延荷重を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、
前記形状制御手段による制御量を前記算出された制御量に設定して前記冷間圧延を行う
ことを特徴とする直径60mm以下の小径ワークロールを用いた冷間圧延における形状制御方法。 A shape control means including a shift mechanism having a plurality of intermediate rolls between a pair of work rolls having a diameter of 60 mm or less and sandwiching a steel strip and a backup roll, and capable of shifting each intermediate roll in the axial direction. A shape control method in cold rolling by a multi-high rolling mill,
Using the rolling load and the control amount of the shape control means as variables, the elongation rate at the sheet width center of the steel strip, the first evaluation area within 50 mm from the sheet end of the steel strip, 65% to both sides from the sheet width center Create a mathematical model in advance that expresses the difference between each of the 75% second evaluation area and the three areas of the third evaluation area of 45% to 55% on the both sides from the center of the plate width as an elongation difference. Every
When performing the cold rolling, a rolling load to be cold rolled from now is substituted into the mathematical model, and a control amount by the shape control means so that any of the elongation difference in the three regions coincides with a target value. To calculate
A shape control method in cold rolling using a small-diameter work roll having a diameter of 60 mm or less, wherein the cold rolling is performed by setting a control amount by the shape control means to the calculated control amount.
圧延荷重及び形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率と差を伸び率差として表す数式モデルを予め作成しておき、
冷間圧延中に連続的に測定された圧延荷重の測定値を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、
前記形状制御手段による制御量を、前記算出された制御量に随時補正して前記冷間圧延を行う
ことを特徴とする直径60mm以下の小径ワークロールを用いた冷間圧延における形状制御方法。 A shape control means including a shift mechanism having a plurality of intermediate rolls between a pair of work rolls having a diameter of 60 mm or less and sandwiching a steel strip and a backup roll, and capable of shifting each intermediate roll in the axial direction. A shape control method in cold rolling by a multi-high rolling mill,
Using the rolling load and the control amount of the shape control means as variables, the elongation rate at the sheet width center of the steel strip, the first evaluation area within 50 mm from the sheet end of the steel strip, 65% to both sides from the sheet width center A mathematical model is created in advance that expresses the difference in elongation between the 75% second evaluation area and the 3rd evaluation area of 45% to 55% on each side from the center of the plate width as the difference in elongation. ,
The measured value of the rolling load continuously measured during the cold rolling is substituted into the mathematical model, and the control amount by the shape control means is set so that any of the elongation difference in the three regions matches the target value. Calculate
A shape control method in cold rolling using a small-diameter work roll having a diameter of 60 mm or less, wherein the cold rolling is performed by correcting the control amount by the shape control means as needed at the calculated control amount.
形状制御手段の制御量を変数とし、前記鋼帯の板幅中央における伸び率と、前記鋼帯の板端から50mm以内の第一評価領域、板幅中央から両側にそれぞれ65%〜75%の第二評価領域、及び板幅中央から両側にそれぞれ45%〜55%の第三評価領域の3領域におけるそれぞれの伸び率との差を伸び率差として表す数式モデルを予め作成しておき、
圧延機出側に配置された形状検出器で冷間圧延中の鋼帯について連続的に測定された測定値に基づいて前記3領域のそれぞれについて導出された伸び率差を前記数式モデルに代入し、前記3領域における前記伸び率差のいずれもが目標値と一致するように形状制御手段による制御量を算出し、
前記形状制御手段による制御量を、前記算出された制御量に随時補正して前記冷間圧延を行う
ことを特徴とする直径60mm以下の小径ワークロールを用いた冷間圧延における形状制御方法。 A shape control means including a shift mechanism having a plurality of intermediate rolls between a pair of work rolls having a diameter of 60 mm or less and sandwiching a steel strip and a backup roll, and capable of shifting each intermediate roll in the axial direction. A shape control method in cold rolling by a multi-high rolling mill,
With the control amount of the shape control means as a variable, the elongation rate at the plate width center of the steel strip, the first evaluation area within 50 mm from the plate end of the steel strip, and 65% to 75% on each side from the plate width center Create a mathematical model in advance representing the difference between the second evaluation area and each of the three evaluation areas in the third evaluation area of 45% to 55% on each side from the center of the plate width as an elongation difference,
Substituting the difference in elongation derived for each of the three regions into the mathematical model based on the measurement values continuously measured for the steel strip during cold rolling by the shape detector arranged on the delivery side of the rolling mill. , Calculating the control amount by the shape control means so that any of the elongation difference in the three regions matches the target value,
A shape control method in cold rolling using a small-diameter work roll having a diameter of 60 mm or less, wherein the cold rolling is performed by correcting the control amount by the shape control means as needed at the calculated control amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013051101A JP6232193B2 (en) | 2013-03-13 | 2013-03-13 | Shape control method and shape control method in cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013051101A JP6232193B2 (en) | 2013-03-13 | 2013-03-13 | Shape control method and shape control method in cold rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014176858A true JP2014176858A (en) | 2014-09-25 |
JP6232193B2 JP6232193B2 (en) | 2017-11-15 |
Family
ID=51697373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013051101A Active JP6232193B2 (en) | 2013-03-13 | 2013-03-13 | Shape control method and shape control method in cold rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6232193B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108090673A (en) * | 2017-12-15 | 2018-05-29 | 马鞍山钢铁股份有限公司 | A kind of evaluation method of the plate shape in kind of cold-strip steel |
CN115034121A (en) * | 2022-08-11 | 2022-09-09 | 太原科技大学 | Strip steel process regulation and control method based on organization performance intelligent prediction model |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54151066A (en) * | 1978-05-18 | 1979-11-27 | Nippon Steel Corp | Expression method of strip shape pattern |
JPS62214814A (en) * | 1986-03-17 | 1987-09-21 | Kobe Steel Ltd | Nonlinear control method for plate shape in multistage rolling mill |
JPS62253732A (en) * | 1986-04-28 | 1987-11-05 | Nippon Steel Corp | Production of austenitic stainless steel strip and sheet having excellent polishability |
JPS63273506A (en) * | 1987-05-01 | 1988-11-10 | Kobe Steel Ltd | Shape control method for multistage rolling mill |
JPH0263605A (en) * | 1988-08-29 | 1990-03-02 | Nisshin Steel Co Ltd | Method for preventing generation of shape defect on steel strip during rolling by cluster type multi-roll mill |
JPH11267727A (en) * | 1998-03-24 | 1999-10-05 | Nisshin Steel Co Ltd | Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling |
JP2000301222A (en) * | 1999-04-21 | 2000-10-31 | Nisshin Steel Co Ltd | Shape control device |
JP2001137926A (en) * | 1999-11-08 | 2001-05-22 | Nisshin Steel Co Ltd | Method for controlling shape in multi roll mill |
JP2006272460A (en) * | 2005-03-03 | 2006-10-12 | Kobe Steel Ltd | Rolling control unit, rolling apparatus and rolling control method |
JP2008110386A (en) * | 2006-10-31 | 2008-05-15 | Nippon Steel Corp | Method for producing cold rolled steel sheet having excellent ductility and cold aging resistance |
-
2013
- 2013-03-13 JP JP2013051101A patent/JP6232193B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54151066A (en) * | 1978-05-18 | 1979-11-27 | Nippon Steel Corp | Expression method of strip shape pattern |
JPS62214814A (en) * | 1986-03-17 | 1987-09-21 | Kobe Steel Ltd | Nonlinear control method for plate shape in multistage rolling mill |
JPS62253732A (en) * | 1986-04-28 | 1987-11-05 | Nippon Steel Corp | Production of austenitic stainless steel strip and sheet having excellent polishability |
JPS63273506A (en) * | 1987-05-01 | 1988-11-10 | Kobe Steel Ltd | Shape control method for multistage rolling mill |
JPH0263605A (en) * | 1988-08-29 | 1990-03-02 | Nisshin Steel Co Ltd | Method for preventing generation of shape defect on steel strip during rolling by cluster type multi-roll mill |
JPH11267727A (en) * | 1998-03-24 | 1999-10-05 | Nisshin Steel Co Ltd | Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling |
JP2000301222A (en) * | 1999-04-21 | 2000-10-31 | Nisshin Steel Co Ltd | Shape control device |
JP2001137926A (en) * | 1999-11-08 | 2001-05-22 | Nisshin Steel Co Ltd | Method for controlling shape in multi roll mill |
JP2006272460A (en) * | 2005-03-03 | 2006-10-12 | Kobe Steel Ltd | Rolling control unit, rolling apparatus and rolling control method |
JP2008110386A (en) * | 2006-10-31 | 2008-05-15 | Nippon Steel Corp | Method for producing cold rolled steel sheet having excellent ductility and cold aging resistance |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108090673A (en) * | 2017-12-15 | 2018-05-29 | 马鞍山钢铁股份有限公司 | A kind of evaluation method of the plate shape in kind of cold-strip steel |
CN108090673B (en) * | 2017-12-15 | 2022-03-01 | 马鞍山钢铁股份有限公司 | Method for evaluating physical plate shape of cold-rolled strip steel |
CN115034121A (en) * | 2022-08-11 | 2022-09-09 | 太原科技大学 | Strip steel process regulation and control method based on organization performance intelligent prediction model |
CN115034121B (en) * | 2022-08-11 | 2022-10-25 | 太原科技大学 | Strip steel process regulation and control method based on organization performance intelligent prediction model |
Also Published As
Publication number | Publication date |
---|---|
JP6232193B2 (en) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4452323B2 (en) | Learning method of rolling load prediction in hot strip rolling. | |
US9623459B2 (en) | Performance feed-forward thickness control method in tandem cold mill | |
JP2009113101A (en) | Method and apparatus for learning control of rolling load, and manufacturing method of steel sheet | |
WO2016155603A1 (en) | Rolling method for boards with different longitudinal thicknesses | |
JP6315818B2 (en) | Control device and control method for tandem rolling mill | |
JP4948301B2 (en) | Shape control method in cold rolling | |
JP6232193B2 (en) | Shape control method and shape control method in cold rolling | |
JP4986463B2 (en) | Shape control method in cold rolling | |
JP4330134B2 (en) | Shape control method in cold rolling | |
JP6105328B2 (en) | Profile design method of intermediate roll in multi-high mill | |
JP4623738B2 (en) | Shape control method in cold rolling | |
JP2019055415A (en) | Plate crown control method, plate crown control device, and steel plate manufacturing method | |
JP2017164796A (en) | Shape control method in cold rolling | |
JP2005319492A (en) | Method for controlling shape in cold rolling | |
JP4813014B2 (en) | Shape control method for cold tandem rolling mill | |
JP2003001311A (en) | Plate width control method in cold tandem rolling | |
JP4102267B2 (en) | Sheet width control method in cold tandem rolling | |
JP6685785B2 (en) | Shape control method in cold rolling | |
TW201831241A (en) | Method and device for rolling metal strips | |
JP6020348B2 (en) | Metal strip rolling method and rolling apparatus | |
JP2005177819A (en) | Shape control method cold rolling | |
JP5899915B2 (en) | Leveling setting method in hot rolling line | |
JP6280764B2 (en) | Shape control method of material to be rolled in reverse rolling mill | |
JP2023033788A (en) | Meandering control method of rolled material | |
JP2020049519A (en) | Setting method and setting device for pass schedule for manufacturing cold rolled metal stip, and cold rolled metal strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6232193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |