JP2017164796A - Shape control method in cold rolling - Google Patents

Shape control method in cold rolling Download PDF

Info

Publication number
JP2017164796A
JP2017164796A JP2016053912A JP2016053912A JP2017164796A JP 2017164796 A JP2017164796 A JP 2017164796A JP 2016053912 A JP2016053912 A JP 2016053912A JP 2016053912 A JP2016053912 A JP 2016053912A JP 2017164796 A JP2017164796 A JP 2017164796A
Authority
JP
Japan
Prior art keywords
rolling
exit side
side tension
limit value
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016053912A
Other languages
Japanese (ja)
Other versions
JP6644593B2 (en
Inventor
相沢 敦
Atsushi Aizawa
敦 相沢
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
康太 伊藤
Kota Ito
康太 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2016053912A priority Critical patent/JP6644593B2/en
Publication of JP2017164796A publication Critical patent/JP2017164796A/en
Application granted granted Critical
Publication of JP6644593B2 publication Critical patent/JP6644593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To prevent both of drawing and plate breaking in the whole rolling direction area from the rolling start through the rolling end, between stands in a cold tandem mill.CONSTITUTION: A shape control method in cold rolling comprises: determining a drawing limit value of tension at an outlet side of a plate end part that causes drawing in a rolling material, a breaking limit value of tension at the outlet side of the plate end part that causes plate breaking in the rolling material, and a relationship between rolling speeds and friction coefficients, in advance; creating a prediction formula representing the tension of the outlet side of the plate end part; calculating a control quantity for shape control means that makes the tension at the outlet side of the plate end part at the rolling material rolling starting time calculated by the prediction formula, to be equal to or greater than the drawing limit value as well as to be equal to or less than the breaking value; setting the calculated control quantity as a control quantity for the shape control means; predicting rolling loads continuously according to changes of the rolling speed on the basis of the relationship between the rolling speeds and the friction coefficients; recalculating the control quantity for the shape control means to make the tension at the outlet side of the plate end part calculated by the prediction formula to be equal to or greater than the drawing limit value as well as to be equal to or less than the breaking value; and performing correction using the recalculated control quantity as the control quantity for the shape control means.SELECTED DRAWING: Figure 12

Description

本発明は、圧延された金属帯が板破断および絞り込みを生じないように圧延条件を適正化する方法に関する。   The present invention relates to a method for optimizing rolling conditions so that a rolled metal strip does not cause sheet breakage and narrowing.

冷間圧延機において鋼帯を圧延する際には、鋼帯の厚さや圧延条件によって圧延形状の不良を引き起こし、製品の品質不良を発生させてしまう。圧延形状の不良とは具体的には、中伸び形状(圧延方向の長さの歪のうち、中央部分が延びてしまうこと)や耳伸び形状(圧延方向の長さの歪のうち、圧延材の両端部が延びてしまうこと)が挙げられる。   When rolling a steel strip in a cold rolling mill, a rolling shape defect is caused depending on the thickness of the steel strip and rolling conditions, resulting in poor product quality. Specifically, the rolling shape defect is a medium-elongation shape (the central portion of the length distortion in the rolling direction is extended) or an ear extension shape (of the length distortion in the rolling direction, the rolled material). For example, both ends of the end of the substrate may extend).

このような形状不良を抑制するため、冷間タンデムミルでは、ワークロールベンダー、中間ロールベンダー、中間ロールシフト等の形状制御手段の制御量を適正値に設定することにより、スタンド間の板形状が悪化しないように図られている。しかし、板端部には微小な割れが存在することが多いため、平均出側張力が大きい場合やスタンド間の圧延材形状が中伸びの場合には板端部出側張力が過大となり、板破断を生じる場合がある。   In order to suppress such shape defects, in cold tandem mills, the plate shape between stands can be set by setting the control amount of the shape control means such as work roll bender, intermediate roll bender, intermediate roll shift to an appropriate value. It is designed not to get worse. However, there are many small cracks at the end of the plate, so if the average exit tension is large or the rolled material between the stands has a medium elongation, the exit tension on the end of the plate becomes excessive. Breakage may occur.

そこで、特開平4−200904号公報では、冷間タンデムミルのスタンド間で金属帯端部の急峻度が耳割れの成長しない限界値以上の耳伸び形状となるように形状制御することで板破断を防止する冷間圧延方法が提案されている。これは、平均出側張力が小さい場合に、スタンド間の圧延形状が耳伸び形状となることにより板端部出側張力が小さくなることで、板破断を防止する方法である。   Therefore, in Japanese Patent Application Laid-Open No. 4-200904, the plate breaks by controlling the shape so that the steepness of the end of the metal band between the stands of the cold tandem mill is not less than the limit value where the ear crack does not grow. A cold rolling method for preventing the above has been proposed. This is a method of preventing plate breakage by reducing the plate end portion exit side tension when the average exit side tension is small and the rolled shape between the stands becomes an extended ear shape.

しかし、特開平4−200904号の方法では、平均出側張力が大きく耳伸びの程度が軽い場合に板端部出側張力が過大となり、板破断を生じる場合がある。   However, in the method disclosed in Japanese Patent Laid-Open No. 4-200904, the plate end portion exit side tension becomes excessive when the average exit side tension is large and the degree of ear extension is light, and the plate may break.

そこで、特開平8−141620号公報では、冷間リバース圧延機において形状検出器出力に基づいて算出される板端部出側張力が予め定めた値よりも大きくなった際に全張力を低減すること(平均出側張力を低減することと同一)により、板端部出側張力が予め定めた値以下として形状制御を行うことを特徴とする圧延機における形状制御方法が提案されている。   Therefore, in Japanese Patent Laid-Open No. 8-141620, the total tension is reduced when the plate end portion exit side tension calculated based on the output of the shape detector in the cold reverse rolling mill becomes larger than a predetermined value. Therefore, a shape control method in a rolling mill has been proposed in which shape control is performed with the sheet end portion exit side tension being equal to or less than a predetermined value.

特開平4−200904号公報Japanese Patent Laid-Open No. 4-200904 特開平8−141620号公報JP-A-8-141620

特許文献2の方法は、被圧延材の形状を形状検出器で検出し、幅方向のユニット張力の最大値及び特定の幅方向の位置ユニット張力の少なくとも一方が、それぞれの予め定めた値よりも大きくなった際に全張力を低減させることで板端部出側張力を小さくすることができ、それによって板破断を防止することができるものである。   In the method of Patent Document 2, the shape of the material to be rolled is detected by a shape detector, and at least one of the maximum value of the unit tension in the width direction and the position unit tension in the specific width direction is more than a predetermined value. By reducing the total tension when it becomes larger, the plate end portion exit side tension can be reduced, thereby preventing the plate from breaking.

しかし、特許文献2の方法では、板端部出側張力が過小となる場合があり、圧延材に絞り込みが生じる場合がある。圧延荷重は圧延速度により変化するものであり、一般的に、圧延速度が速くなると荷重は下がり、圧延速度が遅くなると荷重は上がる。圧延工程では、材料を入れ始めた時(圧延開始時)の低速状態(低速部)からやがて高速状態(高速部)となり、材料を抜く時(圧延終了時)は再び低速状態(低速部)になる。そうすると、板の先端と真ん中とでは荷重が変化し、板厚にも差異が生じることになる。   However, in the method of Patent Document 2, the plate end portion exit side tension may be too small, and the rolled material may be narrowed down. The rolling load varies depending on the rolling speed. Generally, the load decreases as the rolling speed increases, and increases as the rolling speed decreases. In the rolling process, when the material starts to be put (at the start of rolling), it gradually changes from the low speed state (low speed part) to the high speed state (high speed part), and when the material is pulled out (at the end of rolling), the low speed state (low speed part) is restored Become. If it does so, a load will change with the front-end | tip of a board, and the middle, and a difference will also arise in board thickness.

具体的には、圧延開始時と終了時における圧延速度の低速部では高速部に比べて圧延油の取り込み量が減少し、摩擦係数が大きくなるので、これにより圧延荷重が増加し、圧延材の圧延形状が耳伸び側に変化する。ここで、圧延開始時と終了時の低速部には、図1に示すようなコイル同士を溶接して連続圧延する場合の1コイルの圧延開始時と終了時の低速部を含む。そこで、高速部における板破断を防止するため、板端部出側張力を小さくすると、低速部において、耳伸び形状に起因して板端部出側張力が過小となり、圧延材に絞り込みが生じる場合がある。また、低速部から高速部または高速部から低速部への圧延速度が変化する領域においても、板端部出側張力の制御によっては、板端部出側張力が過小となり、絞り込みが生じる場合がある。   Specifically, the rolling oil uptake amount and the friction coefficient increase at the low speed part of the rolling speed at the start and end of rolling compared to the high speed part, thereby increasing the rolling load, and the rolling material. The rolling shape changes to the ear extension side. Here, the low speed portion at the start and end of rolling includes a low speed portion at the start and end of rolling of one coil in the case of continuous rolling by welding coils as shown in FIG. Therefore, in order to prevent the plate breakage at the high speed part, if the plate end part exit side tension is reduced, the plate end part exit side tension becomes too low due to the shape of the ear extension at the low speed part, and the rolled material is narrowed down. There is. Also, even in the region where the rolling speed changes from the low speed part to the high speed part or from the high speed part to the low speed part, depending on the control of the plate end portion exit side tension, the plate end portion exit side tension may become too small and narrowing may occur. is there.

本発明は、このような問題を解消すべく案出されたものであり、圧延開始から終了に至るまで圧延方向全域にわたり絞り込みおよび板破断の両方を防止する形状制御方法を提供することを目的とする。   The present invention has been devised to solve such a problem, and an object thereof is to provide a shape control method for preventing both narrowing and sheet breakage throughout the rolling direction from the start to the end of rolling. To do.

これらの目的を達成するため、請求項1に記載の発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、前記板端部出側張力を表す予測式を予め作成し、圧延材の圧延開始時において前記予測式により算出した前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を算出し、該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に圧延荷重を予測し、前記予測式により算出した前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を再度算出し、該再度算出された制御量を前記形状制御手段の制御量として補正することで、前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   In order to achieve these objects, the invention described in claim 1 includes a narrowing limit value of a plate end portion exit side tension at which a rolled material is squeezed, a rupture limit of a plate end portion exit side tension at which the rolled material is ruptured. Value and the correlation between the rolling speed and the friction coefficient are obtained in advance, and a prediction formula representing the strip end portion exit side tension is created in advance, and the plate end portion output calculated by the prediction formula at the start of rolling of the rolled material is calculated. After calculating the control amount of the shape control means so that the side tension is not less than the narrowing limit value and not more than the fracture limit value, and setting the calculated control amount as the control amount of the shape control means, the rolling speed and the friction Based on the correlation with the coefficient, the rolling load is continuously predicted according to the change in the rolling speed, and the plate end portion exit side tension calculated by the prediction formula is not less than the narrowing limit value and not more than the fracture limit value. The control amount of the shape control Out, by correcting the control amount calculated 該再 degree as a controlled variable of the shape control means is a shape control method in a cold rolling and controlling the plate end exit side tension.

請求項2に記載の発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、圧延材の圧延開始時において前記平均出側張力と前記圧延荷重の予測値とを前記板端部出側張力を表す予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に圧延荷重を予測し、前記平均出側張力および予測した前記圧延荷重を前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、該算出された制御量を前記形状制御手段の制御量に補正することで、前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   The invention according to claim 2 is the limit value of the tension at the strip end side where the rolling material is squeezed, the limit value of the strip end side tension at which the rupture occurs in the rolled material, and the rolling speed and friction coefficient. Is calculated in advance, and a prediction formula representing the sheet end portion exit side tension is created in advance using the average exit side tension, rolling load, and control amount of the shape control means as variables, and the average is calculated at the start of rolling of the rolled material. Substituting the predicted value of the exit side tension and the rolling load into the prediction formula representing the end side exit side tension of the plate end, so that the end side exit side tension is not less than the narrowing limit value and not more than the fracture limit value. After calculating the control amount of the shape control means and setting the calculated control amount as the control amount of the shape control means, it is continuously changed according to the change of the rolling speed based on the correlation between the rolling speed and the friction coefficient. Predict the rolling load, the average exit tension and the prediction The rolling load is substituted into the prediction formula, and the control amount of the shape control means is calculated so that the plate end portion exit side tension is not less than the narrowing limit value and not more than the fracture limit value, and the calculated control is calculated. The shape control method in cold rolling is characterized in that the sheet end portion exit side tension is controlled by correcting the amount to the control amount of the shape control means.

請求項3に記載の発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、圧延材の圧延開始時において、前記平均出側張力、前記圧延荷重の予測値とおよび前記素材クラウン量とを前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に前記圧延荷重を予測し、前記平均出側張力、予測した前記圧延荷重および前記素材クラウン量を前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、該算出された制御量を前記形状制御手段の制御量に補正することで、前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   The invention according to claim 3 is the limit value of the tension at the strip end side where the rolling material is squeezed, the limit value of the strip end side tension at which the plate material is ruptured, the rolling speed and the friction coefficient. Is calculated in advance, and a prediction formula representing the exit end tension of the plate edge is created in advance using the average exit tension, rolling load, material crown amount and control amount of the shape control means as variables, and rolling of the rolled material is started. At that time, the average delivery side tension, the predicted value of the rolling load, and the material crown amount are substituted into the prediction formula, and the plate end exit side tension is not less than the narrowing limit value and not more than the fracture limit value. And calculating the control amount of the shape control means, and setting the calculated control amount as the control amount of the shape control means, and then responding to the change in the rolling speed based on the correlation between the rolling speed and the friction coefficient. Predict the rolling load continuously. Substituting the average exit side tension, the predicted rolling load and the material crown amount into the prediction formula, and the shape control means so that the exit end tension of the plate end portion is not less than the narrowing limit value and not more than the fracture limit value. A shape control method in cold rolling, wherein the sheet end portion exit side tension is controlled by correcting the calculated control amount to the control amount of the shape control means. is there.

請求項4に記載の発明は、さらに、前記圧延材の圧延開始時と終了時の圧延速度の低速部および圧延中における圧延速度の高速部の一定速度領域で、連続的に前記圧延荷重を測定し、前記予測式にて算出した前記圧延荷重の予測値に代えて該測定した圧延荷重を用いることで、前記板端部出側張力を制御することを特徴とする請求項1〜3に記載の冷間圧延における形状制御方法である。   The invention according to claim 4 further measures the rolling load continuously in a constant speed region of a low speed part of the rolling speed at the start and end of rolling of the rolled material and a high speed part of the rolling speed during rolling. The sheet end portion exit side tension is controlled by using the measured rolling load instead of the predicted value of the rolling load calculated by the prediction formula. This is a shape control method in cold rolling.

以上に説明したように、本発明においては、冷間タンデムミルのスタンド間において、圧延開始から終了に至る圧延方向全域にわたり、絞り込みおよび板破断の両方を防止することが可能となる。   As described above, in the present invention, it is possible to prevent both narrowing and sheet breakage across the entire rolling direction from the start to the end of rolling between the stands of the cold tandem mill.

圧延開始時と終了時の圧延速度の低速部および圧延中の圧延速度の高速部を説明する図である。It is a figure explaining the low speed part of the rolling speed at the time of the rolling start and completion | finish, and the high speed part of the rolling speed during rolling. 圧延荷重が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which a rolling load has on the elongation difference of the board edge part with respect to the average value of a board width direction. ワークロールベンダー力が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the work roll bender force exerts on the elongation difference of the board edge part with respect to the average value of a board width direction. 中間ロールベンダー力が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the intermediate roll bender force exerts on the elongation difference of the board edge part with respect to the average value of a board width direction. 中間ロールシフト位置が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the intermediate | middle roll shift position has on the elongation difference of the board edge part with respect to the average value of a board width direction. 素材クラウン量が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the amount of material crowns has on the elongation difference of the board edge part to the average value of the board width direction. 図8の条件1〜条件10の詳細を示す図である。It is a figure which shows the detail of the conditions 1-condition 10 of FIG. 板端部出側張力と絞り込みの有無との関係を表した図である。It is a figure showing the relationship between a board edge part exit side tension | tensile_strength and the presence or absence of narrowing. 図10の条件1〜条件10の詳細を示す図である。It is a figure which shows the detail of the conditions 1-condition 10 of FIG. 板端部出側張力と板破断の有無との関係を表した図である。It is a figure showing the relationship between board edge part exit side tension | tensile_strength and the presence or absence of board fracture. 圧延速度と摩擦係数との関係を表した図である。It is a figure showing the relationship between a rolling speed and a friction coefficient. 実施例で使用した6段圧延機及び制御系統の概略図である。It is the schematic of the 6-high rolling mill and control system which were used in the Example.

本発明者らは、板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、板端部出側張力が圧延開始から終了に至るまで圧延方向全域にわたって絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を設定または補正することにより板端部出側張力を制御することで、圧延開始から終了に至るまで圧延方向全域にわたって絞り込みおよび板破断の両方を防止できる形状制御方法を種々調査検討した。   The inventors calculated the plate end portion exit side tension using a prediction formula representing the plate end portion exit side tension, and the narrowing limit over the entire rolling direction from the start to the end of the plate end exit side tension. By controlling the sheet end portion exit side tension by setting or correcting the control amount of the shape control means so as to be not less than the value and not more than the fracture limit value, the entire area in the rolling direction can be narrowed down from the start to the end of rolling. Various shape control methods that can prevent both plate breakage were investigated and investigated.

その結果、板端部出側張力が平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量とほぼ線形関係にあることに着目し、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式を用いて形状制御手段の制御量を制御することにより、板端部出側張力を圧延開始から終了に至るまで圧延方向全域にわたって絞り込み限界値以上、且つ破断限界値以下とすることを可能とし、圧延開始から終了に至るまで圧延方向全域にわたって絞り込みおよび板破断の両方を防止できることを見出した。   As a result, paying attention to the fact that the plate end exit tension is almost linearly related to the average exit tension, rolling load, material crown amount, and control amount of the shape control means, the average exit side tension, rolling load, material crown amount And by controlling the control amount of the shape control means using a predictive equation that represents the tension at the end of the plate end using the control amount of the shape control means as a variable, the end tension at the end of the plate is rolled from the start to the end of rolling. It has been found that it is possible to set the value to be not less than the narrowing limit value and not more than the fracture limit value throughout the entire direction, and to prevent both narrowing and plate breakage throughout the entire rolling direction from the start to the end of rolling.

以下、4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された形状制御手段としてワークロールベンダー、中間ロールベンダー、中間ロールシフトを有する6段圧延機を対象に本発明の形状制御方法について説明するが、他のスタンドに設置された圧延機や4段圧延機等の6段圧延機以外の圧延機に対しても同様に本発明が適用されることは勿論である。   Hereinafter, the shape control method of the present invention for a 6-roll mill having a work roll bender, an intermediate roll bender, and an intermediate roll shift as a shape control means installed in No. 3 stand of a cold tandem mill consisting of 4 stands. Of course, the present invention is similarly applied to a rolling mill other than a six-high rolling mill such as a rolling mill or a four-high rolling mill installed in another stand.

板端部出側張力Teは、式(1)のように平均出側張力Tavと圧延形状による張力差(板端部出側張力と平均出側張力との差)ΔTとの和で表される。
Te=Tav+ΔT (1)
The plate end portion exit side tension Te is expressed by the sum of the average exit side tension Tav and the tension difference due to the rolling shape (difference between the plate end portion exit side tension and the average exit side tension) ΔT as shown in Equation (1). The
Te = Tav + ΔT (1)

そして、板幅方向の張力差から板幅方向の伸び率差を算出するという形状検出器の原理から明らかなように、ヤング率をE、板幅方向の平均値に対する板端部の伸び率差Δεとすると、圧延形状による張力差ΔTは式(2)で表される。
ΔT=E・Δε・(−1) (2)
Then, as is apparent from the principle of the shape detector that calculates the elongation difference in the plate width direction from the tension difference in the plate width direction, the Young's modulus is E, and the difference in elongation at the plate edge relative to the average value in the plate width direction. Assuming Δε, the tension difference ΔT due to the rolling shape is expressed by the equation (2).
ΔT = E · Δε · (−1) (2)

圧延材の形状に及ぼす影響要因としては、圧延材寸法、材質、潤滑状態、前後方張力、圧延荷重、形状制御手段の制御量、素材クラウン量、圧延前形状等がある。このうち、圧延材寸法については板厚、板幅毎にテーブル区分すると、区分内における圧延材寸法の変化が形状に及ぼす影響を小さくすることができる。材質、潤滑状態及び前後方張力は圧延材の形状に影響するが、その影響のほとんどは圧延荷重を介したロール撓みの変化によって生じる。   Factors affecting the shape of the rolled material include the rolled material size, material, lubrication state, front / rear tension, rolling load, control amount of the shape control means, material crown amount, pre-rolling shape, and the like. Of these, regarding the rolled material dimensions, if the table is divided for each plate thickness and width, the influence of the change in the rolled material size in the section on the shape can be reduced. The material, lubrication state, and front / rear tension affect the shape of the rolled material, but most of the effect is caused by changes in roll deflection through the rolling load.

また、スキンパス圧延のように圧下率が小さい場合には圧延前形状の影響は大きいが、圧下率5%以上の通常の冷間圧延においては圧延前形状の影響は小さい。したがって、形状変化に及ぼす主要因は、圧延荷重、素材クラウン量、形状制御手段の制御量ということができる。   In addition, when the rolling reduction is small as in skin pass rolling, the influence of the shape before rolling is large, but in normal cold rolling with a rolling reduction of 5% or more, the influence of the shape before rolling is small. Therefore, it can be said that the main factors affecting the shape change are the rolling load, the material crown amount, and the control amount of the shape control means.

そこで、圧延荷重、素材クラウン量、形状制御手段の制御量が圧延形状に及ぼす定量的な影響を検討した。ここで「形状制御手段」により制御される対象は、ロールベンダー、ロールシフト、圧下率・圧延荷重、スポットクラーント等の一部またはこれらの全部を指す。   Therefore, the quantitative effects of the rolling load, the material crown amount, and the control amount of the shape control means on the rolling shape were examined. Here, the object controlled by the “shape control means” refers to a part or all of a roll bender, a roll shift, a rolling reduction / rolling load, a spot clarant, and the like.

図2は、圧延荷重P(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。圧延荷重の変化が、ロール撓みの変化となって現れ、圧延材の形状を変化させる。圧延荷重とロール撓み量との関係は弾性領域における変形を対象としていることからほぼ線形的な関係にある。したがって、板幅方向の平均値に対する板端部の伸び率差Δεも圧延荷重Pと線形関係にある。   FIG. 2 shows the influence of the rolling load P (kN) on the elongation difference Δε at the plate edge with respect to the average value in the plate width direction. A change in rolling load appears as a change in roll deflection, and changes the shape of the rolled material. The relationship between the rolling load and the amount of roll deflection is almost linear since it is intended for deformation in the elastic region. Therefore, the elongation difference Δε at the plate end with respect to the average value in the plate width direction is also linearly related to the rolling load P.

図3は、ワークロールベンダー力Wb(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。形状制御手段であるワークロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものであるので、ワークロールベンダー力Wbと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 3 shows the influence of the work roll bender force Wb (kN) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. Since the work roll bender, which is a shape control means, changes the rolling shape by changing the roll deflection in the same manner as the rolling load, the difference in elongation at the plate end with respect to the average value in the work roll bender force Wb and the plate width direction. There is also a linear relationship with Δε.

図4は、中間ロールベンダー力Ib(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。中間ロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものである。したがって中間ロールベンダー力Ibと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 4 shows the influence of the intermediate roll bender force Ib (kN) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The intermediate roll bender also changes the rolling shape by changing the roll deflection in the same manner as the rolling load. Therefore, there is also a linear relationship between the intermediate roll bender force Ib and the elongation difference Δε at the plate end with respect to the average value in the plate width direction.

図5は、中間ロールシフト位置Ls(mm)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。中間ロールシフト位置をテーパ開始点から板端までの距離で定義し、テーパ開始点が板端よりも内側にある場合を負、外側にある場合を正とする。中間ロールシフトもワークロールと中間ロール間の接触圧力分布を変化させることによりロール撓みを変化させて圧延形状を変化させるものである。したがって、中間ロールシフト位置Lsと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 5 shows the influence of the intermediate roll shift position Ls (mm) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The intermediate roll shift position is defined by the distance from the taper start point to the plate end. The case where the taper start point is inside the plate end is negative, and the case where the taper start point is outside is positive. The intermediate roll shift also changes the rolling shape by changing the roll deflection by changing the contact pressure distribution between the work roll and the intermediate roll. Therefore, the intermediate roll shift position Ls and the elongation difference Δε at the plate end with respect to the average value in the plate width direction are also in a linear relationship.

図6は、素材クラウン量Cr(μm)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。素材クラウン量を板端部と板幅中央の板厚差で定義した。その結果、素材クラウン量Crと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にあることがわかった。   FIG. 6 shows the influence of the material crown amount Cr (μm) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The amount of material crown was defined by the difference in plate thickness between the plate edge and the plate width center. As a result, it was found that the material crown amount Cr and the elongation difference Δε at the plate end with respect to the average value in the plate width direction also have a linear relationship.

以上の各要因相互の関係から、ae、be、ce、de、ee、feを影響係数として、式(3)で板幅方向の平均値に対する板端部の伸び率差Δεを表すことができる。
Δε=ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe (3)
From the relationship between the above factors, the elongation difference Δε at the plate edge with respect to the average value in the plate width direction can be expressed by Equation (3) using ae, be, ce, de, ee, and fe as influence coefficients. .
Δε = ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe (3)

影響係数ae、be、ce、de、ee、feは、板幅、板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅、板厚、材質等の各区分毎にテーブル設定し、或いは板幅、板厚、材質等の関数として数式化される。   The influence coefficients ae, be, ce, de, ee, and fe are constants determined by the production type such as the plate width, plate thickness, and material, and are combined with the experiment or the elastic deformation analysis of the roll and the plastic deformation analysis of the material. It is obtained from the simulation by the analysis model. Each influence coefficient is set in a table for each section such as a plate width, a plate thickness, and a material, or expressed as a function as a function of the plate width, the plate thickness, the material, and the like.

各影響係数は具体的には、ae:圧延荷重と伸び率差の関係を表す直線の傾き(図2を参照)、be:素材クラウン量と伸び率差の関係を表す直線の傾き(図6参照)、ce:ワークロールベンダー力と伸び率差の関係を表す直線の傾き(図3参照)、de:中間ロールベンダー力と伸び率差の関係を表す直線の傾き(図4参照)、ee:中間ロールシフト位置と伸び率差の関係を表す直線の傾き(図5参照)、fe:定数項である。   Specifically, each influence coefficient includes: ae: slope of a straight line representing the relationship between rolling load and elongation difference (see FIG. 2); be: slope of a straight line representing the relationship between the amount of material crown and elongation difference (FIG. 6). See), ce: slope of a straight line representing the relationship between work roll bender force and elongation difference (see FIG. 3), de: slope of a straight line representing the relationship between intermediate roll bender force and elongation difference (see FIG. 4), ee : Slope of a straight line representing the relationship between the intermediate roll shift position and elongation difference (see FIG. 5), fe: constant term.

なお、ワークロール径400mm程度が一般的な6段圧延機やワークロール径100mm以下が一般的な20段圧延機等では、ワークロールに大きな撓み変形が生じやすい。そのため、圧延荷重が圧延材の形状に及ぼす影響は大きいが、素材クラウン量が圧延材の形状に及ぼす影響は小さくなりやすい。この場合には、式(3)において素材クラウン量Crをゼロとして素材クラウン量の影響項を無視することも可能である。   In a typical 6-high rolling mill having a work roll diameter of about 400 mm, a general 20-high rolling mill having a work roll diameter of 100 mm or less, and the like, the work roll is likely to be greatly deformed. Therefore, although the influence of the rolling load on the shape of the rolled material is large, the influence of the material crown amount on the shape of the rolled material tends to be small. In this case, in Equation (3), the material crown amount Cr can be set to zero, and the influence term of the material crown amount can be ignored.

式(1)〜(3)より、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式は式(4)で表される。
Te=Tav−E(ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe) (4)
From Equations (1) to (3), a prediction equation representing the plate end portion exit side tension with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables is expressed by Equation (4). .
Te = Tav−E (ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe) (4)

次に、タンデムミル出側の板厚0.3mm〜0.5mm、板幅850mm〜1050mmにおける板端部出側張力と絞り込みの有無との関係について調査した。図7には、圧延条件(条件1〜条件10)毎に各パラメータ(圧延荷重、素材クラウン量、平均出側張力、ワークロールベンダー力、中間ロールベンダー力、中間ロールシフト位置)が設定されている。そこで、条件毎に上記式(4)により板端部出側張力の予測値を計算し、絞り込みの有無を調査した。   Next, the relationship between the plate end portion exit side tension and the presence or absence of narrowing in the plate thickness of 0.3 mm to 0.5 mm and the plate width of 850 mm to 1050 mm on the tandem mill exit side was investigated. In FIG. 7, each parameter (rolling load, material crown amount, average delivery tension, work roll bender force, intermediate roll bender force, intermediate roll shift position) is set for each rolling condition (condition 1 to condition 10). Yes. Therefore, the predicted value of the plate end portion exit side tension was calculated according to the above formula (4) for each condition, and the presence or absence of narrowing was investigated.

その結果を図8に示す。図8に示すように、条件1〜5までは絞り込みは生じなかったものの、条件6〜10においては絞込みが生じた。つまり、板端部出側張力に絞り込み限界値が存在し、板端部出側張力が絞り込み限界値以下になると、絞り込みが生じることが判明した。このように、各条件と式(4)により、板端部出側張力の予測値を得ることができ、得られた予測値から絞り込みが生じるか否かを予測することができる。   The result is shown in FIG. As shown in FIG. 8, no narrowing occurred under conditions 1 to 5, but narrowing occurred under conditions 6 to 10. That is, it has been found that a narrowing limit value exists in the plate end portion exit side tension, and that narrowing occurs when the plate end portion exit side tension is equal to or less than the narrowing limit value. In this manner, the predicted value of the plate end portion exit side tension can be obtained from each condition and Expression (4), and it can be predicted whether or not narrowing will occur from the obtained predicted value.

換言すると、式(4)により算出される板端部出側張力が圧延開始から終了に至るまで圧延方向全域にわたって絞り込み限界値以上となるように形状制御手段の制御量を設定または補正すれば、圧延開始から終了に至るまで圧延方向全域にわたって絞り込みを防止することが可能となる。   In other words, if the control amount of the shape control means is set or corrected so that the plate end exit tension calculated by the equation (4) is equal to or greater than the narrowing limit value over the entire rolling direction from the start to the end of rolling, It is possible to prevent narrowing down over the entire rolling direction from the start to the end of rolling.

また、図8の場合と同様に、タンデムミル出側の板厚0.3mm〜0.5mm、板幅850mm〜1050mmにおける板端部出側張力と板破断の有無との関係について調査した。図9には、圧延条件(条件1〜条件10)毎に各パラメータ(圧延荷重、素材クラウン量、平均出側張力、ワークロールベンダー力、中間ロールベンダー力、中間ロールシフト位置)が設定されている。そこで、条件毎に上記式(4)により板端部出側張力の予測値を計算し、板破断の有無を調査した。   Similarly to the case of FIG. 8, the relationship between the plate end portion exit side tension and the presence or absence of plate breakage in the plate thickness of 0.3 mm to 0.5 mm and the plate width of 850 mm to 1050 mm on the tandem mill exit side was investigated. In FIG. 9, each parameter (rolling load, material crown amount, average delivery tension, work roll bender force, intermediate roll bender force, intermediate roll shift position) is set for each rolling condition (condition 1 to condition 10). Yes. Therefore, the predicted value of the plate end portion exit side tension was calculated according to the above formula (4) for each condition, and the presence or absence of plate breakage was investigated.

その結果を図10に示す。図10に示すように、条件1〜5までは板破断は生じなかったものの、条件6〜10においては板破断が生じた。つまり、図10に示すように、板端部出側張力に破断限界値が存在し、板端部出側張力が破断限界値以上になると板破断を生じることが判明した。このように、各パラメータと式(4)により、板端部出側張力の予測値を得ることができ、得られた予測値から板破断が生じるか否かを予測することができる。   The result is shown in FIG. As shown in FIG. 10, plate breakage did not occur under conditions 1-5, but plate breakage occurred under conditions 6-10. That is, as shown in FIG. 10, it has been found that there is a breaking limit value in the plate end portion exit side tension, and that the plate end breakage occurs when the plate end portion exit side tension is equal to or greater than the break limit value. Thus, the predicted value of the plate end portion exit side tension can be obtained from each parameter and the equation (4), and it can be predicted from the obtained predicted value whether or not the plate breaks.

換言すると、式(4)により算出される板端部出側張力が圧延開始から終了に至るまで圧延方向全域にわたって破断限界値以下となるように形状制御手段の制御量を設定または補正すれば、圧延開始から終了に至るまで圧延方向全域にわたって板破断を防止することが可能となる。   In other words, if the control amount of the shape control means is set or corrected so that the plate end exit side tension calculated by the equation (4) is equal to or less than the fracture limit value over the entire rolling direction from the start to the end of rolling, It is possible to prevent plate breakage over the entire rolling direction from the start to the end of rolling.

上記の結果より、式(4)により算出される板端部出側張力が圧延開始から終了に至るまで圧延方向全域にわたって絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を設定または補正することで、圧延開始から終了に至るまでの圧延方向全域にわたって絞り込みおよび板破断の両方を防止することが可能となる。   From the above results, the shape control means controls so that the plate end portion exit side tension calculated by the equation (4) is not less than the narrowing limit value and not more than the fracture limit value in the entire rolling direction from the start to the end of rolling. By setting or correcting the amount, it is possible to prevent both narrowing and sheet breakage throughout the entire rolling direction from the start to the end of rolling.

ところで、圧延速度と摩擦係数との関係を調査した結果、図11に示すように、高速域では摩擦係数が圧延速度に及ぼす影響は小さいが、低速域では圧延速度の減少とともに摩擦係数が増加することがわかった。つまり、圧延速度と摩擦係数との間には、相関性があるといえる。   By the way, as a result of investigating the relationship between the rolling speed and the friction coefficient, as shown in FIG. 11, the influence of the friction coefficient on the rolling speed is small in the high speed range, but the friction coefficient increases with the reduction of the rolling speed in the low speed range. I understood it. That is, it can be said that there is a correlation between the rolling speed and the friction coefficient.

形状制御手段の初期設定に際しては、図11で求めた圧延速度と摩擦係数との関係に基づいて圧延荷重Pを、Bland&Fordの式、Hillの式等の圧延荷重式を用いて予測し、平均出側張力Tav、圧延荷重の予測値Pおよび素材クラウンの測定値Crを板端部出側張力Teを表す予測式(4)に代入し、板端部出側張力Teが絞り込み限界値以上、且つ破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、設定する。   In the initial setting of the shape control means, the rolling load P is predicted based on the relationship between the rolling speed and the friction coefficient obtained in FIG. 11 using rolling load formulas such as the Brand & Ford formula, the Hill formula, etc. Substituting the side tension Tav, the rolling load prediction value P, and the material crown measurement value Cr into the prediction formula (4) representing the plate end portion exit side tension Te, and the plate end portion exit side tension Te is equal to or greater than the narrowing limit value, and The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are calculated and set so as to be equal to or less than the breaking limit value.

また、圧延中の圧延材の形状制御においては、図11で求めた圧延速度と摩擦係数との関係に基づいて圧延速度の変化に応じて連続的に圧延荷重Pを予測し、平均出側張力Tav、圧延荷重の予測値Pおよび素材クラウンの測定値Crを板端部出側張力Teを表す予測式(4)に代入し、板端部出側張力Teが絞り込み限界値以上且つ破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、補正する。   In the shape control of the rolled material during rolling, the rolling load P is continuously predicted according to the change of the rolling speed based on the relationship between the rolling speed and the friction coefficient obtained in FIG. Substituting Tav, rolling load predicted value P and material crown measured value Cr into prediction formula (4) representing the sheet end exit side tension Te, the sheet end exit side tension Te is equal to or greater than the narrowing limit value and the fracture limit value The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are calculated and corrected so as to be as follows.

また、圧延開始時と終了時における圧延速度の低速部および圧延中における圧延速度の高速部の一定速度領域では、連続的に圧延荷重Pを測定し、平均出側張力Tav、圧延荷重の測定値Pおよび素材クラウンの測定値Crを板端部出側張力Teを表す予測式(4)に代入し、板端部出側張力Teが絞り込み限界値以上且つ破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、補正すれば、一定速度領域での形状制御の精度が向上する。   Further, in the constant speed region of the low speed part of the rolling speed at the start and end of rolling and the high speed part of the rolling speed during rolling, the rolling load P is continuously measured, and the average delivery side tension Tav and the measured values of the rolling load are measured. The measured value Cr of P and the material crown is substituted into the prediction formula (4) representing the plate end exit side tension Te, and the work roll is set so that the plate end exit side tension Te is not less than the narrowing limit value and not more than the fracture limit value. If the bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are calculated and corrected, the shape control accuracy in a constant speed region is improved.

なお、板端部出側張力Teの目標値は絞り込み限界値以上且つ破断限界値以下としているが、絞り込み限界値と破断限界値の平均値近傍になるように板端部出側張力Teの予測値を設定または補正すれば、外乱要因等により板端部出側張力Teが予測値からずれたとしても、絞り込み限界値以上且つ破断限界値以下となりやすく、圧延開始から終了に至るまで圧延方向全域にわたって絞り込みおよび板破断の両方を防止することが可能である。   The target value of the plate end portion exit side tension Te is not less than the narrowing limit value and not more than the fracture limit value, but the plate end portion exit side tension Te is predicted to be close to the average value of the narrowing limit value and the fracture limit value. If the value is set or corrected, even if the plate end portion exit side tension Te deviates from the predicted value due to a disturbance factor or the like, it tends to be more than the narrowing limit value and less than the fracture limit value. It is possible to prevent both narrowing and plate breakage.

以上の説明では、ワークロールベンダー、中間ロールベンダーおよび中間ロールシフトの三つの形状制御手段の制御量を設定または補正することを前提としたが、使用する形状制御手段の組合せはワークロールベンダー、中間ロールベンダーおよび中間ロールシフトの組合せに限ったものではなく、形状制御手段としてワークロールベンダー、中間ロールベンダーおよび中間ロールシフトを有する6段圧延機においても、圧延中の形状制御においては、応答性の悪い中間ロールシフトを除いたワークロールベンダーおよび中間ロールベンダーの二つの形状制御手段の制御量を補正してもよい。この場合は、式(4)において中間ロールシフト位置Lsを初期設定値に固定する。   In the above description, it is assumed that the control amounts of the three shape control means of the work roll bender, the intermediate roll bender, and the intermediate roll shift are set or corrected. However, the combination of the shape control means to be used is the work roll bender, the intermediate roll bender. It is not limited to a combination of a roll bender and an intermediate roll shift. Even in a 6-high rolling mill having a work roll bender, an intermediate roll bender and an intermediate roll shift as shape control means, the shape control during rolling is responsive. The control amounts of the two shape control means of the work roll bender and the intermediate roll bender excluding the bad intermediate roll shift may be corrected. In this case, the intermediate roll shift position Ls is fixed to the initial set value in the equation (4).

また、4段圧延機のように形状制御手段がワークロールベンダーのみの場合には、式(4)の代わりに式(5)を用い、板端部出側張力Teが絞り込み限界値以上且つ破断限界値以下となるようにワークロールベンダー力Wbを算出し、設定または補正する。   Further, when the shape control means is only a work roll bender as in the case of a four-high rolling mill, the formula (5) is used instead of the formula (4), and the plate end portion exit side tension Te is equal to or more than the narrowing limit value and the fracture occurs. The work roll bender force Wb is calculated so as to be equal to or less than the limit value, and is set or corrected.

Te=Tav−E(ae・P+be・Cr+ce・Wb+fe) (5)   Te = Tav−E (ae · P + be · Cr + ce · Wb + fe) (5)

4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された6段圧延機においてタンデムミル出側の板厚が0.3mm〜0.5mmの冷延鋼板500コイルを圧延する際に本発明を適用した例を説明する。   When rolling a cold-rolled steel sheet 500 coil having a thickness of 0.3 mm to 0.5 mm on the tandem mill outlet side in a 6-high rolling mill installed in No. 3 stand of a cold tandem mill consisting of 4 stands, the present invention An example in which is applied will be described.

6段圧延機1は、図12に示すように、ワークロールベンダー2、中間ロールベンダー3、中間ロールシフト4を形状制御手段として備えている。上位コンピュータ5には予め圧延条件(例えば、ワークロールの回転速度、ワークロール径、圧延速度と摩擦係数との関係、板幅、入出側板厚、平均入出側張力、圧延材の変形抵抗等)が入力されており、図11で求めた圧延速度と摩擦係数の関係に基づいて圧延荷重式に従って圧延荷重Pが算出される。   As shown in FIG. 12, the six-high rolling mill 1 includes a work roll bender 2, an intermediate roll bender 3, and an intermediate roll shift 4 as shape control means. The host computer 5 has in advance rolling conditions (for example, the rotation speed of the work roll, the work roll diameter, the relationship between the rolling speed and the friction coefficient, the plate width, the input / output side plate thickness, the average input / output side tension, the deformation resistance of the rolled material, etc.). The rolling load P is calculated according to the rolling load equation based on the relationship between the rolling speed and the friction coefficient obtained in FIG.

プロセスコンピュータ6では板幅、板厚及び材質の区分毎に予め算出した影響係数(ae、be、ce、de、ee、fe)と素材クラウンCrの測定値を取り込んでおり、板端部出側張力Teを表す予測式(4)で板端部出側張力Teが絞り込み限界値と破断限界値との平均値となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、初期設定した。なお、絞り込み限界値については図8で求めた値を採用し、破断限界値については図10で求めた値を採用した。   The process computer 6 captures the influence coefficient (ae, be, ce, de, ee, fe) and the measured value of the material crown Cr that are calculated in advance for each of the plate width, plate thickness, and material classification, and the plate edge exit side The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls so that the plate end portion exit side tension Te is an average value of the narrowing limit value and the breaking limit value in the prediction formula (4) representing the tension Te. Was calculated and initialized. In addition, the value calculated | required in FIG. 8 was employ | adopted about the narrowing-down limit value, and the value calculated | required in FIG. 10 was employ | adopted about the fracture limit value.

また、圧延開始後は、図11で求めた圧延速度と摩擦係数との関係に基づいて圧延速度の変化に応じて連続的に圧延荷重Pを算出し、板端部出側張力Teを表す予測式(4)で板端部出側張力Teが絞り込み限界値と破断限界値との平均値となるようにワークロールベンダー力Wbおよび中間ロールベンダー力Ibを算出し、補正した。なお、中間ロールシフト位置Lsは初期設定値に固定した。   Moreover, after rolling starts, the rolling load P is continuously calculated according to the change of the rolling speed based on the relationship between the rolling speed and the friction coefficient obtained in FIG. The work roll bender force Wb and the intermediate roll bender force Ib were calculated and corrected so that the plate end portion exit side tension Te was an average value of the narrowing limit value and the breaking limit value in the formula (4). The intermediate roll shift position Ls was fixed at an initial set value.

また、圧延開始と終了時における圧延速度の低速部および圧延中における圧延速度の高速部の一定速度領域では、連続的に圧延荷重Pを測定し、板端部出側張力Teを表す予測式(4)で板端部出側張力Teが絞り込み限界値と破断限界値との平均値となるようにワークロールベンダー力Wbおよび中間ロールベンダー力Ibを算出し、補正した。   Moreover, in the constant speed area | region of the low-speed part of the rolling speed at the time of rolling start and completion | finish, and the high-speed part of the rolling speed during rolling, the rolling load P is measured continuously and the prediction formula (T) In 4), the work roll bender force Wb and the intermediate roll bender force Ib were calculated and corrected so that the plate end exit side tension Te would be an average value of the narrowing limit value and the breaking limit value.

その結果、従来は、500コイルにつき2コイルで絞り込み、3コイルで板破断を生じていたところ、本発明法を適用した結果、500コイルでは絞り込みおよび板破断のいずれも生じなかった。   As a result, conventionally, when 500 coils were squeezed with 2 coils, plate breakage occurred with 3 coils, but as a result of applying the method of the present invention, neither squeezing nor plate breakage occurred with 500 coils.

このように、板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、算出した板端部出側張力が圧延開始から終了に至るまで圧延方向全域にわたって絞り込み限界値以上且つ破断限界値以下となるように形状制御手段の制御量を設定または補正することにより板端部出側張力を制御することで、冷間タンデムミルのスタンド間において、圧延開始から終了に至る圧延方向全域にわたり、絞り込みおよび板破断の両方を防止することが可能となる。   In this way, the plate end portion exit side tension is calculated using a prediction formula representing the plate end portion exit side tension, and the calculated plate end portion exit side tension is limited over the entire rolling direction from the start to the end of rolling. From the start to the end of rolling between the stands of the cold tandem mill, by controlling the tension at the edge of the plate end by setting or correcting the control amount of the shape control means so that it is greater than the value and less than the fracture limit value It is possible to prevent both narrowing and sheet breakage throughout the entire rolling direction.

1:6段圧延機
2:ワークロールベンダー
3:中間ロールベンダー
4:中間ロールシフト
5:上位コンピュータ
6:プロセスコンピュータ
7:荷重計
8:圧延材
9:ワークロール
10:中間ロール
11:バックアップロール
1: Six-high rolling mill 2: Work roll bender 3: Intermediate roll bender 4: Intermediate roll shift 5: Upper computer 6: Process computer 7: Load meter 8: Rolled material 9: Work roll 10: Intermediate roll 11: Backup roll

Claims (4)

圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、
前記板端部出側張力を表す予測式を予め作成し、
圧延材の圧延開始時において前記予測式により算出した前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を算出し、
該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に圧延荷重を予測し、前記予測式により算出した前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように形状制御手段の制御量を再度算出し、
該再度算出された制御量を前記形状制御手段の制御量として補正することで、前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。
Squeezing limit value of the sheet end portion exit side tension that causes the rolling material to squeeze, the rupture limit value of the sheet end portion exit side tension that causes the plate breakage of the rolled material, and the correlation between the rolling speed and the friction coefficient in advance,
Create a prediction formula representing the plate end portion exit side tension in advance,
Calculate the control amount of the shape control means so that the sheet end portion exit side tension calculated by the prediction formula at the start of rolling of the rolled material is not less than the narrowing limit value and not more than the fracture limit value,
After setting the calculated control amount as the control amount of the shape control means, the rolling load is continuously predicted according to the change in the rolling speed based on the correlation between the rolling speed and the friction coefficient, and the prediction formula Recalculate the control amount of the shape control means so that the plate end portion exit side tension calculated by the above is not less than the narrowing limit value and not more than the fracture limit value,
The shape control method in cold rolling, wherein the sheet end portion exit side tension is controlled by correcting the recalculated control amount as a control amount of the shape control means.
圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、
平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、
圧延材の圧延開始時において前記平均出側張力と前記圧延荷重の予測値とを前記板端部出側張力を表す予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、
該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に圧延荷重を予測し、
前記平均出側張力および予測した前記圧延荷重を前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、
該算出された制御量を前記形状制御手段の制御量に補正することで、前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。
Squeezing limit value of the sheet end portion exit side tension that causes the rolling material to squeeze, the rupture limit value of the sheet end portion exit side tension that causes the plate breakage of the rolled material, and the correlation between the rolling speed and the friction coefficient in advance,
Preliminarily creating a prediction formula representing the sheet end portion exit side tension with the average exit side tension, rolling load and control amount of the shape control means as variables,
When the rolling start of the rolled material, the average exit side tension and the predicted value of the rolling load are substituted into a prediction formula representing the plate end part exit side tension, and the plate end part exit side tension is equal to or more than a narrowing limit value, and Calculate the control amount of the shape control means so that it is below the fracture limit value,
After setting the calculated control amount as a control amount of the shape control means, based on the correlation between the rolling speed and the friction coefficient, predicting the rolling load continuously according to the change of the rolling speed,
Substituting the average exit side tension and the predicted rolling load into the prediction formula, and calculating the control amount of the shape control means so that the exit end tension on the plate end is not less than the narrowing limit value and not more than the fracture limit value. And
The shape control method in cold rolling characterized by controlling the sheet end portion exit side tension by correcting the calculated control amount to the control amount of the shape control means.
圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値、圧延材に板破断が生じる板端部出側張力の破断限界値、および圧延速度と摩擦係数との相関性を予め求め、
平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、
圧延材の圧延開始時において、前記平均出側張力、前記圧延荷重の予測値とおよび前記素材クラウン量とを前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、
該算出された制御量を前記形状制御手段の制御量として設定した後、圧延速度と摩擦係数との相関性に基づき該圧延速度の変化に応じて連続的に前記圧延荷重を予測し、
前記平均出側張力、予測した前記圧延荷重および前記素材クラウン量を前記予測式に代入し、前記板端部出側張力が絞り込み限界値以上、且つ破断限界値以下となるように前記形状制御手段の制御量を算出し、
該算出された制御量を前記形状制御手段の制御量に補正することで、前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。
Squeezing limit value of the sheet end portion exit side tension that causes the rolling material to squeeze, the rupture limit value of the sheet end portion exit side tension that causes the plate breakage of the rolled material, and the correlation between the rolling speed and the friction coefficient in advance,
Preliminarily creating a prediction formula representing the plate end portion exit side tension with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables,
At the start of rolling of the rolled material, the average exit side tension, the predicted value of the rolling load, and the material crown amount are substituted into the prediction formula, and the plate end exit side tension is equal to or greater than the narrowing limit value and fracture Calculate the control amount of the shape control means to be below the limit value,
After setting the calculated control amount as the control amount of the shape control means, predicting the rolling load continuously according to the change of the rolling speed based on the correlation between the rolling speed and the friction coefficient,
Substituting the average exit side tension, the predicted rolling load and the material crown amount into the prediction formula, and the shape control means so that the exit end tension of the plate end portion is not less than the narrowing limit value and not more than the fracture limit value. Control amount of
The shape control method in cold rolling characterized by controlling the sheet end portion exit side tension by correcting the calculated control amount to the control amount of the shape control means.
さらに、前記圧延材の圧延開始時と終了時の圧延速度の低速部および圧延中における圧延速度の高速部の一定速度領域で、連続的に前記圧延荷重を測定し、前記予測式にて算出した前記圧延荷重の予測値に代えて該測定した圧延荷重を用いることで、前記板端部出側張力を制御する
ことを特徴とする請求項1〜3に記載の冷間圧延における形状制御方法。
Further, the rolling load was continuously measured in the constant speed region of the low speed part of the rolling speed at the start and end of rolling of the rolled material and the high speed part of the rolling speed during rolling, and calculated by the prediction formula The shape control method in cold rolling according to any one of claims 1 to 3, wherein the strip end side tension is controlled by using the measured rolling load instead of the predicted value of the rolling load.
JP2016053912A 2016-03-17 2016-03-17 Shape control method in cold rolling Active JP6644593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053912A JP6644593B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053912A JP6644593B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Publications (2)

Publication Number Publication Date
JP2017164796A true JP2017164796A (en) 2017-09-21
JP6644593B2 JP6644593B2 (en) 2020-02-12

Family

ID=59909578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053912A Active JP6644593B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Country Status (1)

Country Link
JP (1) JP6644593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110968831A (en) * 2019-12-18 2020-04-07 太原恒信科达重工成套设备有限公司 Method for determining basic rotating speed of roller of super-large-diameter sizing and reducing mill
CN117655118A (en) * 2024-01-29 2024-03-08 太原科技大学 Strip steel plate shape control method and device with multiple modes fused

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110968831A (en) * 2019-12-18 2020-04-07 太原恒信科达重工成套设备有限公司 Method for determining basic rotating speed of roller of super-large-diameter sizing and reducing mill
CN110968831B (en) * 2019-12-18 2023-05-02 太原恒信科达重工成套设备有限公司 Method for determining basic rotating speed of roller of ultra-large caliber sizing and reducing mill
CN117655118A (en) * 2024-01-29 2024-03-08 太原科技大学 Strip steel plate shape control method and device with multiple modes fused
CN117655118B (en) * 2024-01-29 2024-04-19 太原科技大学 Strip steel plate shape control method and device with multiple modes fused

Also Published As

Publication number Publication date
JP6644593B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
JP2017164796A (en) Shape control method in cold rolling
JP4948301B2 (en) Shape control method in cold rolling
JP6358222B2 (en) Pass schedule determination method when changing the thickness of the running plate in continuous cold rolling
JP2007203303A (en) Shape control method in cold rolling
JP6644592B2 (en) Shape control method in cold rolling
JP6685785B2 (en) Shape control method in cold rolling
WO2018016533A1 (en) Calculation device and calculation method
JP3649208B2 (en) Tandem rolling equipment control method and tandem rolling equipment
JP4623738B2 (en) Shape control method in cold rolling
AU2006326732A1 (en) Method and computer program for controlling a rolling process
JP6232193B2 (en) Shape control method and shape control method in cold rolling
JP4813014B2 (en) Shape control method for cold tandem rolling mill
JP4330134B2 (en) Shape control method in cold rolling
JP6382431B1 (en) Arithmetic device, arithmetic method, information processing program, and recording medium
KR101439682B1 (en) Apparatus and method of controlling profile of black plate
KR20030053610A (en) Control method of edge drop of tendem mill
JP6801642B2 (en) Running plate thickness change method and equipment
JP6251334B1 (en) Arithmetic apparatus and arithmetic method
JP3252751B2 (en) Strip width control method in cold tandem rolling
JP2020011297A (en) Meandering control method for rolled material, meandering control device for rolled material, and rolled material manufacturing method
JP2003001311A (en) Plate width control method in cold tandem rolling
CN112974545B (en) Method for preventing and controlling S-shaped middle wave defect of extremely-thin T5 material
JP3832216B2 (en) Sheet width control method in cold tandem rolling
JP2001179306A (en) Rolling method using cold tandem rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350