JP3252751B2 - Strip width control method in cold tandem rolling - Google Patents

Strip width control method in cold tandem rolling

Info

Publication number
JP3252751B2
JP3252751B2 JP11060397A JP11060397A JP3252751B2 JP 3252751 B2 JP3252751 B2 JP 3252751B2 JP 11060397 A JP11060397 A JP 11060397A JP 11060397 A JP11060397 A JP 11060397A JP 3252751 B2 JP3252751 B2 JP 3252751B2
Authority
JP
Japan
Prior art keywords
rolling
stand
width
sheet
shape control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11060397A
Other languages
Japanese (ja)
Other versions
JPH10296312A (en
Inventor
龍次 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11060397A priority Critical patent/JP3252751B2/en
Publication of JPH10296312A publication Critical patent/JPH10296312A/en
Application granted granted Critical
Publication of JP3252751B2 publication Critical patent/JP3252751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属板の冷間圧延方
法に関し、さらにくわしくは、複数のコイルを接続して
連続圧延する場合に、先行コイルと後行コイルの接続点
での板破断を防止し、かつ、圧延速度変化に伴う板幅変
動を防止する冷間圧延方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cold rolling a metal plate, and more particularly, to a method for connecting a plurality of coils to perform continuous rolling, which is capable of breaking a plate at a connection point between a preceding coil and a following coil. The present invention relates to a cold rolling method for preventing a sheet width from being changed due to a change in a rolling speed.

【0002】[0002]

【従来の技術】近年、各種材質の圧延によって製造され
た板材(以下、単に「圧延板」と記す)の品質精度向上
に対する需要家の要求が増している。
2. Description of the Related Art In recent years, there has been an increasing demand from customers for improving the quality accuracy of plate materials (hereinafter simply referred to as "rolled plates") manufactured by rolling various materials.

【0003】冷間圧延分野では、板厚精度や平坦、曲が
り等の平坦形状については多くの改善手段が構築され高
精度の圧延が可能となっている。しかし、板幅精度の改
善に関しては十分ではない。圧延後の板幅が予定よりも
狭くなると寸法不良となる。幅不足を避けるために予め
板幅を広く圧延すると、圧延後に余幅部分を除去しなけ
ればならないので、生産性や歩留が低下する。
[0003] In the field of cold rolling, many means for improving flatness such as plate thickness accuracy and flatness and bending have been constructed, and high-precision rolling has been made possible. However, the improvement of the plate width accuracy is not enough. If the strip width after rolling is smaller than expected, dimensional defects will occur. If the width of the sheet is rolled beforehand to avoid the width shortage, the extra width must be removed after the rolling, so that the productivity and the yield are reduced.

【0004】複数の圧延機を用いてコイルをタンデム圧
延する際、圧延速度が変化すると板幅が変動する。減速
時に板幅が広くなり、増速時に板幅が狭くなる。複数の
コイルを接続して連続圧延する時のコイル接続点では、
異なる寸法(厚さや幅)のコイル同士を接続する場合が
あるうえ、接続される熱延コイルの内外周は材質的にも
不安定で、非金属介在物や表面疵等を多く含むので板破
断が生じやすい部位でもある。板厚が薄くなり、材料が
硬化し、張力を高めて圧延される後段スタンドでは特に
板破断の危険性が高い。このため、コイル接続点が圧延
される時には減速して通板される。この減速時に大きな
板幅変動が生じることが観察されており、その改善策が
望まれている。
[0004] When a coil is tandem-rolled using a plurality of rolling mills, a change in rolling speed causes a change in sheet width. The plate width becomes wider at the time of deceleration, and becomes smaller at the time of speed increase. At the coil connection point when connecting multiple coils and performing continuous rolling,
In some cases, coils of different dimensions (thickness and width) are connected, and the inner and outer peripheries of the hot-rolled coil to be connected are also unstable in terms of material and contain many nonmetallic inclusions and surface flaws, so the plate breaks. It is also a part where the occurrence of liability is likely to occur. The risk of plate breakage is particularly high in a later stage where the plate thickness is reduced, the material is hardened, and the tension is increased and rolled. For this reason, when the coil connection point is rolled, it is passed at a reduced speed. It has been observed that large width fluctuations occur during this deceleration, and improvement measures are desired.

【0005】圧延速度の変動に対応して、スタンド間張
力を制御して板幅を目標値に調整する方法が特開平5−
76916号公報に開示されている。この方法において
は、減速部での板幅広がりを防止するためには張力を増
加させる必要がある。このため、通常の操業条件におい
ても破断の危険性がある連続圧延時のコイル接続部では
破断の確率がさらに高くなるという問題がある。
A method for controlling the tension between stands to adjust the sheet width to a target value in response to fluctuations in the rolling speed is disclosed in Japanese Patent Application Laid-Open No. Hei 5-
No. 76916. In this method, it is necessary to increase the tension in order to prevent the plate width from spreading at the reduction portion. For this reason, there is a problem that the probability of breakage is further increased at the coil connection portion during continuous rolling where there is a risk of breakage even under normal operating conditions.

【0006】特開昭62−296904号公報には、板
クラウン比率を制御して板幅変動量を目標値に調整する
方法が開示されている。この方法では、板クラウン量を
板幅中央部の板厚で除した値である板クラウン比率が大
きくなるように圧延すると板幅が広くなり、逆に、板ク
ラウン比率が小さくなるように圧延すれば、圧延された
金属板の板幅は狭くなる。
Japanese Unexamined Patent Publication (Kokai) No. 62-296904 discloses a method of adjusting a sheet width fluctuation amount to a target value by controlling a sheet crown ratio. In this method, when rolling is performed so that the sheet crown ratio, which is a value obtained by dividing the sheet crown amount by the sheet thickness at the center of the sheet width, is increased, the sheet width is increased, and conversely, rolling is performed so that the sheet crown ratio is reduced. In this case, the width of the rolled metal plate is reduced.

【0007】図9に、圧延による板幅方向の板厚分布の
変化に対応して生じる平坦形状の変化を模式的に示す。
板クラウン量(C)は板幅方向中央部の板厚(hc )と
板幅方向端部の板厚(he )の差(hc −he )であ
り、板クラウン比率(γ)は、(hc −he )÷hc
して求められる。図9(a)は、圧延前に較べて板クラ
ウン比率が大きくなるように圧延した場合であり、圧延
後の平坦形状は耳波傾向になる。図9(b)は板クラウ
ン比率が小さくなるように圧延した場合であり、圧延後
の平坦形状は中伸び傾向になる。
FIG. 9 schematically shows a change in flat shape that occurs in response to a change in thickness distribution in the width direction of the sheet due to rolling.
Strip crown amount (C) is the difference of the plate thickness (h c) and the thickness of the plate end portion in the width direction of the plate width direction central portion (h e) (h c -h e), the strip crown ratio (gamma) It is obtained as (h c -h e) ÷ h c. FIG. 9 (a) shows a case where rolling is performed so that the sheet crown ratio becomes larger than before rolling, and the flat shape after rolling tends to have an ear wave. FIG. 9 (b) shows a case where rolling is performed so that the sheet crown ratio becomes small, and the flat shape after rolling tends to elongate in the middle.

【0008】特開昭62−296904号公報に開示さ
れる方法で板幅を制御すると、板幅を広くする場合には
平坦形状は耳波になり、板幅を狭くする場合には中伸び
となる。先に述べたように、連続圧延時に減速をおこな
うために板幅変動が生じやすい接続点近傍で減速によっ
て生じる板幅広がりを抑制するためには、平坦形状が中
伸びとなるような制御が必要となる。しかし、中伸び形
状で圧延すると、張力が板幅端部に集中して板幅端部か
ら破断しやすくなる。特開昭62−296904号公報
に開示される方法はスタンド間の張力を高めて圧延され
る冷間圧延時に生じやすい破断について何等考慮されて
おらず、この方法をそのまま適用するには問題がある。
When the plate width is controlled by the method disclosed in Japanese Patent Application Laid-Open No. 62-296904, when the plate width is increased, the flat shape becomes an ear wave, and when the plate width is reduced, the middle shape is elongated. Become. As described above, in order to suppress the spread of the sheet width caused by the deceleration near the connection point where the sheet width is likely to fluctuate because the speed is reduced during continuous rolling, it is necessary to control the flat shape to have middle elongation. Becomes However, when rolling is performed in the middle elongation shape, the tension is concentrated on the end portion of the sheet width, and the sheet is easily broken from the end portion of the sheet width. The method disclosed in Japanese Patent Application Laid-Open No. 62-296904 does not take into account any breakage that easily occurs during cold rolling in which the tension between stands is increased, and there is a problem in applying this method as it is. .

【0009】[0009]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、圧延速度を変化させても板破断等のトラブ
ルが無く板幅変動が防止できる冷間タンデム圧延におけ
る板幅制御方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of controlling a sheet width in cold tandem rolling which can prevent a change in the sheet width without a trouble such as a sheet break even if the rolling speed is changed. It is to be.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は下記の、
冷間タンデム圧延における板幅制御方法にある。
The gist of the present invention is as follows.
The present invention relates to a method for controlling a sheet width in cold tandem rolling.

【0011】複数の圧延機を用いる冷間タンデム圧延に
おいて、各鋼種、各板厚、板幅毎に、被圧延材の板幅変
動に対する圧延荷重と形状制御手段の制御量の影響、被
圧延材の板幅端部と中央部の伸び歪の差異に対する圧延
荷重と形状制御量の影響および圧延速度と圧延荷重との
関係を各スタンド毎に予め求めておき、圧延速度の変更
に対応して、各スタンドで生じる板幅変動の和を所定の
範囲に収めるのに必要で、かつ、各スタンドで生じる板
幅端部と中央部の伸び歪率の差異が所定の限界値を下回
らない範囲の形状制御手段の適正な制御量を各スタンド
毎に算出し、この算出値にしたがって各スタンドの形状
制御手段を制御することを特徴とする冷間タンデム圧延
における板幅制御方法。
In the cold tandem rolling using a plurality of rolling mills, the influence of the rolling load and the control amount of the shape control means on the variation of the width of the material to be rolled for each steel type, each thickness and the width of the material, The effect of the rolling load and the shape control amount on the difference in the elongation strain between the plate width end and the center and the relationship between the rolling speed and the rolling load are obtained in advance for each stand, and in response to the change in the rolling speed, A shape that is necessary to keep the sum of the plate width fluctuations generated at each stand within the specified range, and that the difference in the elongation strain rate at the end and the center of the plate width generated at each stand does not fall below the specified limit value A width control method in cold tandem rolling, wherein an appropriate control amount of the control means is calculated for each stand, and the shape control means of each stand is controlled according to the calculated value.

【0012】本発明は、冷間圧延時に生じる板幅変動に
関する以下の知見を基にして完成された。
The present invention has been completed on the basis of the following findings regarding the plate width fluctuation occurring during cold rolling.

【0013】(1)図8は、本発明者がおこなった、冷
間圧延時の圧延条件の変動に伴って生じる板幅の変動状
況を、実験用の圧延機を用いて調査した結果を示す図で
ある。図8に示されているように、圧延速度の増加、張
力の増加、圧下率の減少およびロールベンディング力の
増加に伴って板幅が減少する。圧延速度、張力または圧
下率が変化すると圧延荷重も変るので、板幅変動に対す
る上記の圧延条件の影響は、近似的には圧延荷重との関
係として整理できる。
(1) FIG. 8 shows the results of a study conducted by the inventor of the present invention on the state of fluctuations in the sheet width caused by the fluctuations in the rolling conditions during cold rolling, using an experimental rolling mill. FIG. As shown in FIG. 8, the sheet width decreases as the rolling speed increases, the tension increases, the rolling reduction decreases, and the roll bending force increases. When the rolling speed, the tension or the rolling reduction changes, the rolling load also changes. Therefore, the influence of the above-mentioned rolling conditions on the variation in the sheet width can be approximately arranged as a relationship with the rolling load.

【0014】(2)図8(e)に示すように、圧延によ
る板クラウン比率の変動量と板幅変動量との間には比例
関係がある。板クラウン量は上下のワークロール間に形
成されるロール間隙の分布に影響されるので、ワークロ
ールのたわみ量を制御する手段の制御量(例えば、ワー
クロールベンダーのベンディング力。以下、単に「形状
制御手段」および「形状制御量」と記す)と板幅変動量
との間にも比例関係がある。ロールの軸方向に曲げモー
メントを加えてロールの撓みを制御するロールベンディ
ング法のように、圧延荷重に直接的な影響がない方法で
形状制御をおこなえば、圧延荷重を変化させることなく
板クラウンを変更することができる。
(2) As shown in FIG. 8 (e), there is a proportional relationship between the amount of change in the sheet crown ratio due to rolling and the amount of change in the sheet width. Since the sheet crown amount is affected by the distribution of the roll gap formed between the upper and lower work rolls, the control amount of the means for controlling the amount of deflection of the work roll (for example, the bending force of a work roll bender. There is also a proportional relationship between the "control means" and "shape control amount") and the sheet width fluctuation amount. If the shape is controlled by a method that does not directly affect the rolling load, such as the roll bending method that controls the bending of the roll by applying a bending moment in the axial direction of the roll, the sheet crown can be changed without changing the rolling load. Can be changed.

【0015】(3)速度変動に伴って生じる圧延荷重の
変動から板幅の変動を予測し、この板幅変動を打ち消す
ように形状制御量を調整すれば、速度変動に伴う板幅変
動を抑制することが出来る。
(3) By predicting a change in the sheet width from a change in the rolling load caused by the change in the speed, and adjusting the shape control amount so as to cancel the change in the sheet width, the change in the sheet width due to the change in the speed is suppressed. You can do it.

【0016】板クラウン量を変化させると平坦形状が変
化する。板クラウン比率が大きくなる方向に形状制御手
段を調整する場合には、板端部に張力が集中して板が破
断するおそれが生じる。特に板厚が薄く、張力が高い状
態で圧延されるタンデム圧延機の後段で板クラウン比率
を増す方向に制御すると破断の危険性が増す。
When the crown is changed, the flat shape changes. When adjusting the shape control means in the direction in which the sheet crown ratio increases, there is a possibility that the sheet is broken due to the concentration of tension at the end of the sheet. In particular, if the thickness of the sheet is controlled to increase the sheet crown ratio at the subsequent stage of the tandem rolling mill in which the sheet is thin and the tension is high, the risk of breakage increases.

【0017】これを防ぐために、上記の(1)〜(3)
に加えてさらに下記(4)および(5)の条件を付加し
て圧延する。
In order to prevent this, the above (1) to (3)
In addition to the above, rolling is performed under the following conditions (4) and (5).

【0018】(4)冷間タンデム圧延での圧延速度変更
時には、主として前段スタンドで板クラウン比率を調整
する。減速時には板クラウン比率が小さくなる方向に形
状制御手段を調整して板幅を狭くする。増速時には元に
戻す。前段スタンドでは板厚が厚いので、板クラウン制
御効果、すなわち、板幅制御効果が大きい。また、板厚
が厚い場合には、圧延時に板クラウン比率を大きく変更
しても平坦形状が変化しにくい。このため、前段スタン
ドで板クラウン比率を小さくすれば、後段スタンドに較
べると中延びが発生し難く、さらに、後段スタンドに較
べると板厚も厚いので破断する危険性が少ない。このよ
うに、前段スタンドで必要な幅調整をおこなうことによ
って、後段スタンドでは通板性に最適な平坦形状を維持
して圧延できる。
(4) When changing the rolling speed in cold tandem rolling, the crown ratio is adjusted mainly by the former stand. During deceleration, the width of the plate is reduced by adjusting the shape control means in the direction in which the plate crown ratio decreases. When speeding up, return to the original. Since the front stand has a large plate thickness, a plate crown control effect, that is, a plate width control effect is large. When the sheet thickness is large, the flat shape is hard to change even if the sheet crown ratio is greatly changed during rolling. For this reason, if the sheet crown ratio is reduced in the front stand, the center elongation is less likely to occur as compared to the rear stand, and the risk of breakage is small because the sheet thickness is thicker than the rear stand. As described above, by performing the necessary width adjustment in the former stand, the latter stand can perform rolling while maintaining a flat shape optimal for the sheet passing property.

【0019】(5)後段スタンドは、板破断を防止する
ために耳波傾向で圧延するのがよい。このため、「板幅
端部の伸び歪」−「板幅中央部位置の伸び歪」で表され
る伸び歪差に下限を設ける。伸び歪差は、板が圧延され
たときの圧延時の伸び歪の板幅方向での差異を示す値で
あり、たとえば、伸び歪差が負であれば中延び傾向に圧
延されたことを意味する。伸び歪差は、形状制御量を変
更する方法で調整できる。伸び歪差が過度に負になる
と、後段スタンドでは板端部に張力が集中し、破断する
おそれが増す。これを避けるために伸び歪差に下限を設
けるのである。各スタンドの形状制御手段の制御量は、
形状制御の結果生じる伸び歪差が上記の下限値以上にな
る範囲に決められる。これにより後段スタンドでの破断
を防止することが出来る。
(5) The latter stand is preferably rolled with an ear wave tendency in order to prevent the plate from breaking. For this reason, a lower limit is set for the elongation-strain difference represented by “elongational strain at the end of the width of the sheet” − “elongational strain at the position of the center of the sheet width”. The elongation strain difference is a value indicating the difference in elongation strain in the width direction of the sheet when the sheet is rolled when the sheet is rolled. I do. The elongation-strain difference can be adjusted by changing the shape control amount. If the elongation-strain difference becomes excessively negative, tension is concentrated on the plate edge in the subsequent stand, and the possibility of breakage increases. In order to avoid this, a lower limit is set for the elongation-strain difference. The control amount of the shape control means of each stand is
The range is determined so that the difference in elongation strain resulting from the shape control is equal to or greater than the above lower limit. This can prevent breakage at the subsequent stand.

【0020】以上に述べたように、速度変化によって生
じる板幅変動に対しては、板クラウン量制御効果が大き
く板破断のおそれも少ない前段スタンドの形状制御手段
を調整して対応する。板端部に張力が集中し板破断が発
生しやすい後段スタンドでは、通板するのに好適な平坦
形状が得られるように形状制御手段を制御する。
As described above, the shape control means of the front stand is adjusted to cope with the sheet width fluctuation caused by the speed change by controlling the sheet crown amount control effect and reducing the possibility of sheet breakage. In the latter stand where the tension is concentrated on the plate edge and the plate is likely to break, the shape control means is controlled so that a flat shape suitable for threading is obtained.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態をさらに詳細
かつ具体的に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in more detail and specifically.

【0022】図1は、本発明の制御方法を5スタンドタ
ンデム圧延機に適用した場合の制御要領説明図である。
FIG. 1 is an explanatory view of a control procedure when the control method of the present invention is applied to a five-stand tandem rolling mill.

【0023】図2は、本発明の制御方法の制御系を示す
ブロック図である。
FIG. 2 is a block diagram showing a control system of the control method of the present invention.

【0024】本発明では、冷間タンデム圧延において、
鋼種、各スタンドの入り側での板厚、板幅毎に、被圧延
材の板幅変動に対する圧延荷重と形状制御手段の制御量
の影響を表す後述の関係式と、被圧延材の板幅端部と
中央部の伸び歪差に対する圧延荷重と形状制御量の影響
を表す後述の関係式と、圧延速度と圧延荷重との関係
を表す関係式とを回帰式などによって各スタンド毎に予
め求めておく。
In the present invention, in cold tandem rolling,
For each steel type, plate thickness at the entrance side of each stand, and plate width, the following relational expression representing the effect of the rolling load and the control amount of the shape control means on the plate width variation of the rolled material, and the plate width of the rolled material The following relational expression expressing the effect of the rolling load and the shape control amount on the difference in elongation strain between the end and the central part, and the relational expression expressing the relationship between the rolling speed and the rolling load are obtained in advance for each stand by a regression equation or the like. Keep it.

【0025】減速により生じる荷重変動予測量と、通板
性などから別途決められる伸び歪差の下限値を基に、形
状制御手段の制御量の限界値を式に基づいて計算す
る。また、荷重変動によって生じる板幅変動量の全スタ
ンドでの総和を0にするのに必要な形状制御量を式に
基づいて演算し、式で求められた各スタンドの限界範
囲内で各スタンドの制御量の修正値を決定する。圧延時
には、コイル接続点近傍で通板速度を減速するタイミン
グに合わせて形状制御量を上記の修正量に合わせて変更
する。
A limit value of a control amount of the shape control means is calculated based on an equation based on a predicted amount of load fluctuation caused by deceleration and a lower limit value of the elongation-strain difference which is determined separately from the passing property and the like. In addition, the shape control amount required to make the sum of the plate width fluctuation amount caused by the load fluctuation in all the stands to 0 is calculated based on the formula, and within the limit range of each stand obtained by the formula, the shape control amount of each stand is calculated. Determine the correction value of the control amount. At the time of rolling, the shape control amount is changed in accordance with the above-mentioned correction amount in accordance with the timing at which the sheet passing speed is reduced near the coil connection point.

【0026】以下に、本発明の板幅制御方法の実施に必
要な関係式の導き方を説明する。
Hereinafter, a method of deriving a relational expression necessary for implementing the sheet width control method of the present invention will be described.

【0027】板クラウン比率変化量と、それによる板幅
の変動量は比例関係にあると仮定すると、両者の関係は
下記の式で表される。なお、以下に示す添字「i」
は、i番目のスタンドを意味する。
Assuming that the amount of change in the sheet crown ratio and the amount of change in the sheet width caused by the change are proportional, the relationship between the two is expressed by the following equation. The subscript "i" shown below
Means the i-th stand.

【0028】ΔWi=ai・Δγi ----- ここで、ΔW:板幅変動量 Δγ:板クラウン比率変化量 a:板厚、板幅、鋼種で決まる定数。ΔWi = ai · Δγi where ΔW: sheet width variation Δγ: sheet crown ratio change a: constant determined by sheet thickness, sheet width, and steel type.

【0029】板クラウン比率変化量は圧延荷重変動量と
形状制御変更量のいずれとも比例関係にあると仮定すれ
ば、i番目のスタンドでのこれらの関係は式で表され
る。
Assuming that the sheet crown ratio change amount is proportional to both the rolling load change amount and the shape control change amount, these relations at the i-th stand are expressed by equations.

【0030】 Δγi=αi・ΔPi−βi・ΔFi ----- ここでΔP:圧延荷重の変動量 ΔF:形状制御の変更量 α、β:板厚、板幅、鋼種で決まる定数 なお、形状制御量の符号に関しては、中伸び形状となる
方向を正とする。
Δγi = αi · ΔPi−βi · ΔFi where ΔP: fluctuation amount of rolling load ΔF: change amount of shape control α, β: constant determined by plate thickness, plate width, steel type Regarding the sign of the control amount, the direction in which the middle extension shape is formed is positive.

【0031】圧延荷重と形状制御量の変化によって発生
する板幅変動量は、式、より式として求められ
る。
The sheet width fluctuation amount caused by the change in the rolling load and the shape control amount can be obtained as an equation from an equation.

【0032】 ΔWi=ai(αi・ΔPi−βi・ΔFi)--- 一方、「板幅端部の伸び歪」−「板幅中央部の伸び歪」
で表される伸び歪差の変動量は、圧延荷重変動量と形状
制御量の変化量それぞれと比例関係にあると仮定して、
i番目のスタンドで圧延された後の伸び歪差(λi )
は、下記の式のように表される。
ΔWi = ai (αi · ΔPi−βi · ΔFi) --- On the other hand, “elongational strain at end of width” − “elongational strain at center of width”
Assuming that the variation of the elongation-strain difference represented by is in a proportional relationship with each of the rolling load variation and the variation of the shape control amount,
Elongation difference (λi) after rolling at the i-th stand
Is represented by the following equation.

【0033】 λi=λi0+mi・ΔPi−ni・ΔFi ----- ここで、λi0は荷重や形状制御量が変化する前の伸び歪
差(伸び歪差の初期値)を意味し、圧延機の初期設定時
に計算などにより求めておく。mi、niは厚さ、鋼種で
決まる定数である。
Λi = λi0 + mi · ΔPi−ni · ΔFi ----- Here, λi0 means an elongation-strain difference (an initial value of the elongation-strain difference) before a load or a shape control amount is changed. It is obtained by calculation at the time of initial setting. mi and ni are constants determined by the thickness and the type of steel.

【0034】通板性を良好に保つために伸び歪差の下限
値λi(min)をスタンド毎に別途設定すれば、減速時の荷
重変動量ΔPを用いて、式から誘導された下記の式
によってi番目のスタンドでの形状制御量の限界値(Δ
Fi(max))が求められる。
If the lower limit value of the elongation-strain difference λi (min) is separately set for each stand in order to maintain a good threading property, the following equation derived from the equation using the load variation ΔP during deceleration can be obtained. Limit value of the shape control amount at the i-th stand (Δ
Fi (max)) is obtained.

【0035】[0035]

【数1】 (Equation 1)

【0036】各スタンド毎の形状制御の修正量ΔFi の
決定については種々の方法が考えられるが、例えば、式
より求まる限界値ΔFi(max)よりも伸び歪差が大きく
なる方向に、各スタンド共ΔF’だけ余裕を持たせた、
式で表される形状制御量ΔFi に設定する方法が好適
である。
Various methods are conceivable for determining the correction amount ΔFi of the shape control for each stand. For example, each stand has a direction in which the difference in elongation strain becomes larger than the limit value ΔFi (max) obtained from the equation. With a margin of ΔF ',
A method of setting the shape control amount ΔFi represented by the equation is preferable.

【0037】ΔFi=ΔFi(max)−ΔF’--- 従って、i番目のスタンドに関して、伸び歪差の下限値
から求められる形状制御量は下記の式で表される。
ΔFi = ΔFi (max) −ΔF ′ --- Therefore, for the i-th stand, the shape control amount obtained from the lower limit value of the elongation-strain difference is represented by the following equation.

【0038】[0038]

【数2】 (Equation 2)

【0039】また、スタンド毎の板幅変動量の総和(Σ
ΔWi)は0とする必要があるので、スタンド毎の形状
制御修正量は、式から誘導される下記の式の範囲を
満たすように決定する。
Further, the total sum of the plate width fluctuation amounts for each stand (Σ
Since ΔWi) needs to be 0, the shape control correction amount for each stand is determined so as to satisfy the range of the following equation derived from the equation.

【0040】[0040]

【数3】 (Equation 3)

【0041】ここで、Σは、全スタンドについて合計す
ることを表す。
Here, Σ indicates that the sum is calculated for all the stands.

【0042】式、式より、スタンド数分の未知数△
Fi と1個の未知数△F’に対して、スタンド数分の式
と1個の式が導かれるので、これらを連立一次方程
式として解を求めれば、ΔFi およびΔF’は一義的に
求められる。
From the equation, the unknown number corresponding to the number of stands △
For Fi and one unknown △ F ′, equations for the number of stands and one equation are derived. If these are solved as simultaneous linear equations, ΔFi and ΔF ′ can be uniquely obtained.

【0043】定数ai、αi、βi、mi、niは、予め実
験ないしは数値計算により求めておけばよい。
The constants ai, αi, βi, mi and ni may be obtained in advance by experiments or numerical calculations.

【0044】図3は上述のスタンド毎の形状制御量の決
定方法を説明する概念図である。
FIG. 3 is a conceptual diagram for explaining a method of determining the shape control amount for each stand described above.

【0045】図4は、各スタンドでの伸び歪差の下限の
設定例を示す図であり、(a)が本発明例である。同図
に示すように、スタンド間張力が高く、厚さが薄くなっ
て破断の危険性が増すタンデム圧延機の後段スタンドは
耳波傾向で通板するのが好ましいので、本発明では、後
段スタンドの伸び歪差は高めに制限する。また、前述し
たように板厚が薄くなる後段スタンドでは形状制御して
も板幅変更効果が小さい。これらの理由から、速度変更
時の板幅補償は前段スタンドでおこなうのが好ましく、
5スタンド圧延機の場合であれば前方3スタンド、さら
に好ましくは前方2スタンド迄でおこなうのがよい。
FIG. 4 is a diagram showing an example of setting the lower limit of the elongation-strain difference at each stand. FIG. 4A shows an example of the present invention. As shown in the figure, the rear stand of the tandem rolling mill, in which the tension between stands is high and the thickness of the stand is reduced and the risk of breakage increases, is preferably passed through with an ear wave tendency. Is limited to a relatively high elongation difference. In addition, as described above, in a post-stage stand where the plate thickness is reduced, the effect of changing the plate width is small even if the shape is controlled. For these reasons, it is preferable that the width compensation at the time of speed change is performed in the former stand,
In the case of a five-stand rolling mill, the rolling is preferably performed in three front stands, more preferably up to two front stands.

【0046】減速時の形状制御変更量は、予め定常部で
の速度および形状制御量等のプリセット条件をもとに、
減速部での目標速度で生じる荷重変動量を予測し、演算
しておく。コイル接続点が近づいたら、減速のタイミン
グで圧延速度に同期させて形状制御量を所定の値へ変更
する。
The shape control change amount at the time of deceleration is determined in advance based on preset conditions such as the speed and the shape control amount in the steady portion.
The amount of load change occurring at the target speed in the deceleration section is predicted and calculated. When the coil connection point approaches, the shape control amount is changed to a predetermined value in synchronization with the rolling speed at the timing of deceleration.

【0047】なお、板幅制御をおこなう形状制御手段に
ついては、ロールベンディング、油圧や機械構造による
ロールクラウン変更、ロールクロス角変更、ロールシフ
ト等、オンラインでロール間隔プロフィルが変更可能な
方法であれば何を用いてもよい。
The shape control means for controlling the sheet width may be any method capable of changing the roll interval profile online, such as roll bending, change of roll crown, change of roll cross angle, change of roll, etc. Any may be used.

【0048】[0048]

【実施例】【Example】

(実施例1)5スタンド冷間タンデム圧延機を用いて、
本発明の板幅制御方法の効果を検証した。形状制御方法
としては、最大能力50トン/チョックのインクリース
式ワークロールベンダを用い、また、スタンド毎の形状
制御変更量の決定方法は、式、に示す方法を採用し
た。ワークロール径:400mm、バックアップロール
径:1400mm、ロール胴長:1800mmの4段圧
延機を用い、板厚:4mm、板幅:1200mmの普通
鋼のコイルをNo.1から4スタンドまでを圧下率30
%、No.5スタンドを圧下率5%にて圧延して0.9
1mmの鋼板とした。圧延油は40℃における粘度:4
0cstの鉱油系圧延油をエマルションにて使用し、定
常部での圧延速度:1000m/min、減速部の圧延
速度:100m/minとした。
(Example 1) Using a five-stand cold tandem rolling mill,
The effect of the strip width control method of the present invention was verified. As a shape control method, an increment type work roll bender having a maximum capacity of 50 tons / chock was used, and a method of determining a shape control change amount for each stand employed a method shown in the formula. Using a four-high rolling mill having a work roll diameter of 400 mm, a backup roll diameter of 1400 mm, and a roll body length of 1800 mm, a normal steel coil having a thickness of 4 mm and a width of 1200 mm was used. 30 rolling reduction from 1 to 4 stands
%, No. 5 stands rolled at 5% reduction and 0.9
A 1 mm steel plate was used. Rolling oil viscosity at 40 ° C .: 4
A 0 cst mineral oil-based rolling oil was used in the emulsion, and the rolling speed in the steady portion: 1000 m / min, and the rolling speed in the reduction portion: 100 m / min.

【0049】圧延条件変更時の板幅、形状、荷重変動等
を演算する関係式の諸係数は、操業時の実績値より数値
演算にて推定した。なお、圧延に用いたコイルは圧延前
にエッジトリミングを行い、全長均一な板幅にした母材
を用いた。圧延後の板幅は圧延機出側に設置した光学式
の板幅計で測定した。
The coefficients of the relational expressions for calculating the sheet width, shape, load variation and the like when changing the rolling conditions were estimated by numerical calculations from the actual values during operation. Note that the coil used for rolling was edge-trimmed before rolling to use a base material having a uniform width over the entire length. The strip width after rolling was measured by an optical strip width meter installed on the exit side of the rolling mill.

【0050】図4に、予め設定した各スタンドの伸び歪
差の下限値を示す。(a)は本発明例であり、後段スタ
ンドは板破断を防止するために耳波傾向になるように伸
び歪差の下限値を設定した(以下、「条件1」と記
す)。(b)は比較例として実施したもので、伸び歪差
の下限値となる条件で、条件1と同等の板幅制御量が得
られるように、各スタンドの伸び歪差の下限値はほぼ均
等にした(以下、「条件2」と記す)。これらの下限値
を用いてスタンド毎の形状制御変更量を式およびか
ら求めた。比較例においてはいずれのスタンドのロール
ベンディング力も変更しなかった。
FIG. 4 shows a preset lower limit value of the elongation strain difference of each stand. (A) is an example of the present invention, and the lower stand set the lower limit value of the elongation-strain difference so as to have an ear wave tendency in order to prevent plate breakage (hereinafter referred to as “condition 1”). (B) is a comparative example, in which the lower limit value of the elongation-strain difference of each stand is substantially equal so that a plate width control amount equivalent to the condition 1 is obtained under the condition of the lower limit value of the elongation-strain difference. (Hereinafter referred to as “condition 2”). Using these lower limits, the shape control change amount for each stand was determined from the formula and the following formula. In the comparative example, the roll bending force of any of the stands was not changed.

【0051】図5に圧延途中で圧延速度を変更したとき
の圧延機出側の速度と板幅測定値、および、各スタンド
のロールベンディング力(WRBF)の変化を示す。
(a)に示した条件1の本発明例では、速度変動に伴う
荷重変動に対応してロールベンディング力が変化してお
り、圧延機出側で計測した加減速部での板幅変動量が小
さくなっている。他方、制御を行っていない同図(b)
の比較例では、加速および減速部で最大2mm程度の板
幅変動が生じている。この結果より、加減速部において
本発明方法にて形状制御手段を適切におこなうことによ
って板幅変動の抑制が可能であることが明らかである。
FIG. 5 shows the change in the speed at the exit side of the rolling mill, the measured value of the sheet width, and the roll bending force (WRBF) of each stand when the rolling speed is changed during the rolling.
In the example of the present invention under the condition 1 shown in (a), the roll bending force changes in response to the load fluctuation accompanying the speed fluctuation, and the sheet width fluctuation amount at the acceleration / deceleration section measured at the rolling mill exit side is reduced. It is getting smaller. On the other hand, FIG.
In the comparative example, a maximum width of about 2 mm occurs in the acceleration and deceleration portions. From this result, it is apparent that the width variation can be suppressed by appropriately performing the shape control means in the acceleration / deceleration section by the method of the present invention.

【0052】(実施例2)本発明の方法を多数のコイル
の圧延に適用し、本発明の効果を明らかにした。圧延機
は実施例1に記載の5スタンド冷間タンデム圧延機を用
い、厚さ:2.5〜5.5mm、幅:800〜1600
mmの低炭素鋼の母材を0.5〜1.5mmに連続圧延
する際に本発明の方法を適用してその効果を確認した。
伸び歪差の下限値の設定を、図4の(a)、(b)に示
す2種類(条件1、2)として速度変動時の形状制御修
正をおこなった場合と、伸び歪差の下限値の設定は条件
1と同一であるが速度変更時の形状制御修正をおこなわ
なかった場合(条件3)の合計3例について板幅変動量
および板破断発生比率を調査した。速度変動時の形状制
御は、式、から求めた。板幅制御精度は、同一コイ
ル内での定常部と減速部での板幅の差によって評価し
た。
(Example 2) The effect of the present invention was clarified by applying the method of the present invention to rolling of a large number of coils. The rolling mill used was the 5-stand cold tandem rolling mill described in Example 1, and had a thickness of 2.5 to 5.5 mm and a width of 800 to 1600.
The effect of applying the method of the present invention when continuously rolling a low-carbon steel base material of 0.5 mm to 0.5 to 1.5 mm was confirmed.
The lower limit of the elongation-strain difference is set as two types (conditions 1 and 2) shown in FIGS. 4A and 4B, and the lower limit of the elongation-strain difference is set. Were set as in the condition 1, but the shape width variation and the breakage ratio were investigated for a total of three cases in which the shape control was not corrected when the speed was changed (condition 3). The shape control at the time of the speed change was obtained from the equation. The plate width control accuracy was evaluated based on the difference in plate width between the steady portion and the deceleration portion in the same coil.

【0053】図6に、それぞれの条件で圧延した場合の
板幅変動量の度数分布表を示す。同図(a)は本発明に
係わる実施例であり、スタンド毎の伸び率差の下限値を
前述の条件1とした場合である。(b)は比較例であ
り、スタンド毎の伸び差率の下限を前述の条件2とした
場合である。(c)は比較例として制御をおこなわなか
った条件3の場合である。また、図7はこれらの条件で
圧延した場合の圧延中に発生した板破断発生件数の比率
を示す。
FIG. 6 shows a frequency distribution table of the sheet width variation when rolling is performed under each condition. FIG. 7A shows an embodiment according to the present invention, and shows a case where the lower limit value of the elongation rate difference for each stand is set to Condition 1 described above. (B) is a comparative example, in which the lower limit of the elongation difference rate for each stand is set to the above-described condition 2. (C) is the case of condition 3 in which no control was performed as a comparative example. FIG. 7 shows the ratio of the number of sheet breaks that occurred during rolling when rolling was performed under these conditions.

【0054】図6(a)および図7の条件1の結果に示
されているように、本発明例の条件1では板幅変動量の
偏差が小さく、板破断発生率も低くて良好である。しか
し、各スタンドでの形状制約条件(伸び歪差限界)を一
定にした条件2で圧延した場合は、板幅偏差が条件1に
比べて若干が大きい。これは、鋼板の寸法によっては、
前段スタンドでの伸び歪差の下限の設定値が小さいため
形状制御手段の制御量が不足し、十分な制御が出来なか
った場合があったためである。条件2の場合の板破断件
数は条件1の3倍程度に増加した。減速時の形状制御を
行っていない比較例である条件3では、板破断件数は低
いものの、板幅変動の偏差が大きい。
As shown in FIG. 6 (a) and the result of condition 1 in FIG. 7, under the condition 1 of the present invention example, the deviation of the sheet width fluctuation amount is small, and the sheet breakage occurrence rate is low and good. . However, when rolling is performed under the condition 2 in which the shape constraint condition (elongation strain difference limit) at each stand is constant, the sheet width deviation is slightly larger than the condition 1. This depends on the dimensions of the steel plate
This is because the control amount of the shape control means was insufficient due to a small set value of the lower limit of the elongation-strain difference in the former stage stand, and sufficient control could not be performed in some cases. In the case of the condition 2, the number of sheet breaks increased to about three times that of the condition 1. Under Condition 3, which is a comparative example in which the shape control during deceleration is not performed, the number of sheet breaks is low, but the deviation of the sheet width fluctuation is large.

【0055】[0055]

【発明の効果】本発明によれば、冷間タンデム圧延にお
いて先行コイルと後行コイルの接続点での板破断を防止
し、かつ、圧延速度変化に伴う板幅変動を防止する事に
よって、安定した操業にて寸法精度に優れた金属板を製
造可能となる。
According to the present invention, in cold tandem rolling, strip breakage at a connection point between a leading coil and a trailing coil is prevented, and a change in strip width due to a change in rolling speed is prevented, thereby achieving a stable operation. It is possible to manufacture a metal plate with excellent dimensional accuracy by the above operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御方法を5スタンドタンデム圧延機
に適用した場合の制御要領の説明図である。
FIG. 1 is an explanatory diagram of a control procedure when a control method of the present invention is applied to a five-stand tandem rolling mill.

【図2】本発明の制御方法に係わる制御系を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a control system according to a control method of the present invention.

【図3】本発明におけるスタンド毎の形状制御量の決定
方法を説明する概念図である。
FIG. 3 is a conceptual diagram illustrating a method of determining a shape control amount for each stand according to the present invention.

【図4】本発明の実施例に係わる、スタンド毎の伸び歪
差の下限値の設定例を表す図である。(a)は本発明
例、(b)は比較例を示す。
FIG. 4 is a diagram illustrating a setting example of a lower limit value of an elongation-strain difference for each stand according to the embodiment of the present invention. (A) shows an example of the present invention, and (b) shows a comparative example.

【図5】本発明の実施例に係わる、冷間タンデム圧延を
おこなった場合の、圧延速度の変化に伴う形状制御実施
状況と板幅の変動を示した図である。(a)は本発明
例、(b)は比較例を示す。
FIG. 5 is a diagram showing a state of shape control and a change in a sheet width according to a change in a rolling speed when cold tandem rolling is performed according to the embodiment of the present invention. (A) shows an example of the present invention, and (b) shows a comparative example.

【図6】本発明の実施例に係わる、減速部での板幅変動
の状況を度数分布で示したものであり、(a)は本発明
例、(b)および(c)は比較例の結果を示す図であ
る。
FIGS. 6A and 6B are graphs showing the state of plate width fluctuation in the deceleration section in a frequency distribution according to the embodiment of the present invention, wherein FIG. 6A shows an example of the present invention, and FIGS. It is a figure showing a result.

【図7】本発明の実施例と従来法とにおける、圧延中の
板破断の発生頻度を比較して示す図である。
FIG. 7 is a diagram showing a comparison of the frequency of occurrence of sheet breakage during rolling between an example of the present invention and a conventional method.

【図8】各種の圧延条件の変動と、これにより生じる板
幅変化との関係についての実験結果を示す図である。
FIG. 8 is a diagram showing experimental results on the relationship between fluctuations in various rolling conditions and changes in the resulting sheet width.

【図9】圧延での板クラウンの変化と平坦形状との関係
を示す説明図である。
FIG. 9 is an explanatory diagram showing a relationship between a change in a sheet crown in rolling and a flat shape.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の圧延機を用いる冷間タンデム圧延に
おいて、鋼種、板厚、板幅毎に、被圧延材の板幅変動に
対する圧延荷重と形状制御手段の制御量の影響、被圧延
材の板幅端部と中央部の伸び歪の差異に対する圧延荷重
と形状制御量の影響および圧延速度と圧延荷重との関係
を各スタンド毎に予め求めておき、圧延速度の変更によ
り各スタンドで生じる板幅変動の和を所定の範囲に収め
るのに必要で、かつ、各スタンドで生じる板幅端部と中
央部の伸び歪率の差異が所定の限界値を下回らない範囲
の形状制御手段の適正な制御量を各スタンド毎に算出
し、この算出値にしたがって各スタンドの形状制御手段
を制御することを特徴とする冷間タンデム圧延における
板幅制御方法。
In cold tandem rolling using a plurality of rolling mills, the effect of a rolling load and a control amount of a shape control means on a sheet width variation of a material to be rolled, for each steel type, sheet thickness, and sheet width; The effect of rolling load and shape control amount on the difference in elongation strain between the end portion and the central portion of the sheet width and the relationship between rolling speed and rolling load are determined in advance for each stand, and changes in the rolling speed occur at each stand. Appropriate shape control means in a range that is necessary to keep the sum of plate width fluctuations within a predetermined range, and that the difference in elongation strain rate between the end portion and the center portion of the plate width generated at each stand does not fall below a predetermined limit value. A control amount for each stand, and controlling the shape control means of each stand according to the calculated value.
JP11060397A 1997-04-28 1997-04-28 Strip width control method in cold tandem rolling Expired - Fee Related JP3252751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11060397A JP3252751B2 (en) 1997-04-28 1997-04-28 Strip width control method in cold tandem rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11060397A JP3252751B2 (en) 1997-04-28 1997-04-28 Strip width control method in cold tandem rolling

Publications (2)

Publication Number Publication Date
JPH10296312A JPH10296312A (en) 1998-11-10
JP3252751B2 true JP3252751B2 (en) 2002-02-04

Family

ID=14540039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11060397A Expired - Fee Related JP3252751B2 (en) 1997-04-28 1997-04-28 Strip width control method in cold tandem rolling

Country Status (1)

Country Link
JP (1) JP3252751B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671544B2 (en) * 2001-06-21 2011-04-20 日新製鋼株式会社 Sheet width control method in cold tandem rolling
JP6835008B2 (en) * 2018-02-20 2021-02-24 Jfeスチール株式会社 Cold rolling method of metal strip
CN109954753B (en) * 2019-03-07 2020-10-27 山西太钢不锈钢股份有限公司 Method for reducing quick-opening broken belt of acid continuous rolling tension leveler

Also Published As

Publication number Publication date
JPH10296312A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP3252751B2 (en) Strip width control method in cold tandem rolling
US20230118015A1 (en) Method Of Controlling Flatness Of Strip Of Rolled Material, Control System And Production Line
JP3649208B2 (en) Tandem rolling equipment control method and tandem rolling equipment
JPH06154829A (en) Method for controlling plate thickness and tension in rolling plate
JP2002282918A (en) Shape control method for continuous cold rolling
JP2003001315A (en) Cold rolling method for steel strip
JP4813014B2 (en) Shape control method for cold tandem rolling mill
JP3506120B2 (en) Method of changing rolling load distribution of tandem rolling mill
WO2021192713A1 (en) Shape control method for rolling machine and shape control device
JPH067824A (en) Method for controlling plate thickness in rolling mill
JP4227686B2 (en) Edge drop control method during cold rolling
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JP3832216B2 (en) Sheet width control method in cold tandem rolling
JP2004001031A (en) Method for cold-rolling metal plate
JP2719216B2 (en) Edge drop control method for sheet rolling
JPH0618651B2 (en) Width direction plate thickness difference control method and control device in the longitudinal direction of a thin steel plate
JP3244112B2 (en) Plate rolling machine and plate rolling method
JP2023033788A (en) Meandering control method of rolled material
JP3244113B2 (en) Edge drop control method for sheet material
JP2001179320A (en) Method to control shape at finishing rolling of hot- rolled steel plate
JP2000015315A (en) Method for controlling position of work roll and device therefor
JP6152835B2 (en) Steel strip temper rolling equipment and temper rolling method
JP2000301221A (en) Method for controlling edge drop during cold rolling
JP3302411B2 (en) Strip crown control method in rolling of single crown metal strip
JP2021159982A (en) Cold rolling method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees