JPH11267727A - Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling - Google Patents

Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling

Info

Publication number
JPH11267727A
JPH11267727A JP10075754A JP7575498A JPH11267727A JP H11267727 A JPH11267727 A JP H11267727A JP 10075754 A JP10075754 A JP 10075754A JP 7575498 A JP7575498 A JP 7575498A JP H11267727 A JPH11267727 A JP H11267727A
Authority
JP
Japan
Prior art keywords
rolling
shape
roll bender
calculated
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10075754A
Other languages
Japanese (ja)
Other versions
JP4086119B2 (en
Inventor
Atsushi Aizawa
敦 相沢
Kenji Hara
健治 原
Kazunari Nakamoto
一成 中本
Tetsuhiko Okano
哲彦 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP07575498A priority Critical patent/JP4086119B2/en
Publication of JPH11267727A publication Critical patent/JPH11267727A/en
Application granted granted Critical
Publication of JP4086119B2 publication Critical patent/JP4086119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To execute cold rolling of a hot rolled band-shaped sheet before pickling with deposited scale into a favorable shape. SOLUTION: A numerical formula model is previously formed to indicate a difference of elongation percentage of a plurality of spots at different distances from the side edges to the center of the width of the sheet, and taking up actully measured values of continuous measurement of rolling load as variables, based on the numerical formula model, a control amount of an intermediate roll bender 1 and/or a work roll bender 2 is calculated and adjusted so that the difference of elongation percentage may coincide with a target value. In the case that thus calculated control amount of the intermediate roll bender 1 or the work roll bender 2 is deviated from the maximum value or the minimum value in the range of specification, the maximum value or the minimum value is taken into the numerical formula model, and then a control amount of the other work roll bender 2 or the intermediate roll bender 1 is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コイル形状を制御しな
がら酸洗前熱延鋼帯を冷間圧延する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cold rolling a hot-rolled steel strip before pickling while controlling a coil shape.

【0002】[0002]

【従来の技術】冷間圧延における形状制御としては、圧
延機出側に配置された形状検出器で圧延中の圧延材形状
を測定し、測定結果に基づいてロールベンダ,ロールシ
フト等の形状制御手段の制御量を補正する方式が一般的
である。しかし、圧延機から離れた位置に配置された形
状検出器で圧延材の形状が測定されるため、検出遅れが
生じ、応答性の高い制御が困難である。そこで、圧延材
の形状変化に圧延荷重の変動が影響を及ぼしていること
の前提で板形状の直接測定に替えて圧延荷重を測定し、
その測定値に基づいて各形状制御手段の制御量を補正す
る方式が紹介されている(特公昭52−23873号公
報,特開昭57−7309号公報,特開平8−2576
12号公報)。
2. Description of the Related Art As for shape control in cold rolling, the shape of a rolled material being rolled is measured by a shape detector arranged on the exit side of a rolling mill, and shape control such as roll bender and roll shift is performed based on the measurement result. A method of correcting the control amount of the means is generally used. However, since the shape of the rolled material is measured by a shape detector arranged at a position distant from the rolling mill, a detection delay occurs, and it is difficult to perform control with high responsiveness. Therefore, the rolling load was measured in place of the direct measurement of the plate shape on the premise that the variation in the rolling load affected the shape change of the rolled material,
A method of correcting the control amount of each shape control means based on the measured value is introduced (Japanese Patent Publication No. 52-23873, Japanese Patent Application Laid-Open No. 57-7309, Japanese Patent Application Laid-Open No. 8-2576).
No. 12).

【0003】ところで、脱スケール性の向上を狙って酸
洗前熱延鋼帯を酸洗前に冷間圧延(以下、酸洗前冷延と
いう)することがある。酸洗前冷延で接触式ロールタイ
プの形状検出器を使用すると、圧延中に鋼帯から剥離し
たスケール付着の影響を受け易く、板形状の高精度測定
が困難である。また、剥離したスケールによりロールが
疵つき、その疵が圧延材に転写されて疵になる点から
も、接触式ロールタイプの形状検出器を使用することに
は問題がある。他方、非接触の励磁式形状検出器は、測
定可能な板厚範囲に制約があり、板厚の厚い圧延材では
測定精度が低下することが欠点である。
In some cases, a hot-rolled steel strip before pickling is cold-rolled before pickling (hereinafter referred to as cold-rolling before pickling) in order to improve descalability. When a contact roll type shape detector is used in cold rolling before pickling, it is susceptible to the adhesion of scale peeled from the steel strip during rolling, and it is difficult to measure the plate shape with high accuracy. In addition, there is a problem in using a contact roll type shape detector from the point that the roll is flawed by the peeled scale and the flaw is transferred to a rolled material to become a flaw. On the other hand, the non-contact excitation shape detector has a drawback in that the range of the plate thickness that can be measured is limited, and the measurement accuracy is reduced in a rolled material having a large plate thickness.

【0004】[0004]

【発明が解決しようとする課題】酸洗前冷延では、圧延
中のスケールの剥離状況に応じて潤滑状態が変化し、圧
延荷重が大きく変動する。圧延荷重の変動に伴って板厚
も変動してしまう。その結果、圧下装置の操作により自
動板厚制御する場合には圧下位置を変更することにな
り、自動板厚制御を行わない場合に比較して圧延荷重の
変動が拡大される。そこで、前述した圧延荷重の測定値
に基づいて形状制御手段の制御量を補正する方式が採用
されている。この場合、圧延形状を圧延荷重の関数で表
した圧延形状予測式に基づいて形状が制御されるが、圧
延形状予測式において板幅方向の1か所の形状のみで圧
延形状が評価されている。そのため、圧延荷重変動の小
さい酸洗済み材の圧延では板幅全体にわたって良好な形
状が得られても、圧延荷重が大きく変動する酸洗前冷延
では、板幅全体にわたって良好な形状を得ることが難し
く、形状不良となるケースが多発している。
In cold rolling before pickling, the lubricating state changes according to the scale peeling state during rolling, and the rolling load greatly fluctuates. The sheet thickness also changes with the change in the rolling load. As a result, when the automatic thickness control is performed by operating the reduction device, the rolling position is changed, and the fluctuation of the rolling load is enlarged as compared with the case where the automatic thickness control is not performed. Therefore, a method of correcting the control amount of the shape control means based on the measured value of the rolling load described above is adopted. In this case, the rolling shape is controlled based on a rolling shape prediction formula that expresses the rolling shape as a function of the rolling load. In the rolling shape prediction formula, the rolling shape is evaluated using only one shape in the sheet width direction. . Therefore, even if a good shape can be obtained over the entire width of the strip when rolling pickled materials with small fluctuations in rolling load, a good shape can be obtained over the entire width of the strip with cold rolling before pickling, where the rolling load fluctuates greatly. Is difficult and the shape is often defective.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、板幅方向に関し
て複数箇所について伸び率差を取り込んだ数式モデルを
使用することにより、圧延荷重の変動に応じて形状制御
手段の制御量を補正し、板幅全体にわたって良好な形状
をもつ鋼帯を製造することを目的とする。本発明の形状
制御方法は、その目的を達成するため、板端から距離が
異なる複数の箇所について板幅中央に対する伸び率差を
表す圧延荷重を変数とした数式モデルを予め作成し、連
続的に測定した圧延荷重の実測値を前記数式モデルに代
入して前記伸び率差が目標値に一致するように中間ロー
ルベンダ及び/又はワークロールベンダの制御量を算出
し調整することを特徴とする。算出された中間ロールベ
ンダ又はワークロールベンダの制御量が仕様範囲の最大
値又は最小値を外れる場合、その最大値又は最小値を数
式モデルに取り込み、他方のワークロールベンダ又は中
間ロールベンダの制御量を算出する。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. By using a mathematical model which takes in elongation differences at a plurality of locations in the width direction of the sheet, An object of the present invention is to correct a control amount of a shape control unit in accordance with a change in a rolling load, and to manufacture a steel strip having a good shape over the entire width of a sheet. In order to achieve the object, the shape control method of the present invention previously creates a mathematical model with a variable rolling load representing an elongation difference with respect to the center of the sheet width at a plurality of points having different distances from the sheet edge, and continuously creates the model. A control value of the intermediate roll bender and / or the work roll bender is calculated and adjusted so that the measured rolling load measured value is substituted into the mathematical model so that the elongation difference matches the target value. If the calculated control value of the intermediate roll vendor or work roll vendor deviates from the maximum value or the minimum value of the specification range, incorporate the maximum value or minimum value into the mathematical model, and control the other work roll vendor or intermediate roll vendor. Is calculated.

【0006】[0006]

【実施の形態】本発明者等は、圧延荷重の変動を考慮し
て各形状制御手段の制御量を補正することにより板幅全
体にわたって良好な形状が得られるような酸洗前冷延の
形状制御方法を種々調査検討した。その結果、板端から
の距離が異なる複数箇所における伸び率と板幅中央部の
伸び率との差が圧延荷重と比例関係にあることに着目
し、伸び率の差に圧延荷重が与える影響を取り込んだ数
式モデルを使用すると、形状制御手段が精度良く且つ高
い応答性で働き、良好な形状をもつ酸洗前熱延鋼帯が製
造されることを見出した。酸洗前冷延では、耳伸び,中
伸び等の単純な形状不良に止まらず、クォータ伸びや各
種伸びが複雑に組み合わさった複合伸びが圧延材に発生
する。このような複雑な形状不良が発生し易い酸洗前冷
延において板幅全体にわたって常に良好な形状を得るた
めには、圧延形状を複数の指標で評価し制御することが
要求される。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors correct the control amount of each shape control means in consideration of the fluctuation of the rolling load so that the shape of cold rolling before pickling can be obtained so that a good shape can be obtained over the entire width of the sheet. Various control methods were investigated and studied. As a result, paying attention to the fact that the difference between the elongation rate at a plurality of places at different distances from the sheet edge and the elongation rate at the center of the sheet width is proportional to the rolling load, the effect of the rolling load on the difference in elongation rate is considered. Using the imported mathematical model, the inventors found that the shape control means worked with high accuracy and high responsiveness, and that a hot-rolled steel strip before pickling having a good shape was produced. In cold rolling before pickling, not only simple shape defects such as ear elongation and medium elongation but also complex elongation, which is a complex combination of quarter elongation and various types of elongation, occurs in the rolled material. In order to always obtain a good shape over the entire sheet width in cold rolling before pickling in which such complicated shape defects are likely to occur, it is necessary to evaluate and control the rolling shape with a plurality of indices.

【0007】そこで、本発明においては、板幅方向に関
して異なった複数の箇所で伸び率を測定し、測定された
伸び率を板幅中央部の伸び率に対する差を求め、伸び率
差で圧延形状を評価している。具体的には、板端部及び
クォータ部の板幅中央に対する伸び率差εe ,εq で圧
延形状を定義する。伸び率差εe ,εq は、板端部の伸
び率をele ,クォータ部の伸び率をelq ,板幅中央の伸
び率をelc とするとき、式(1),(2)でそれぞれ表
される。なお、板端部及びクォータ部の測定位置につい
ては、形状を適切に表し、且つ精度のよい数式モデルが
得られるように経験的に定められる。 εe =ele −elc ・・・・(1) εq =elq −elc ・・・・(2)
Therefore, in the present invention, the elongation is measured at a plurality of different positions in the sheet width direction, and the difference between the measured elongation and the elongation at the center of the sheet width is determined. Has been evaluated. Specifically, the rolled shape is defined by the elongation differences ε e and ε q of the plate edge and the quarter portion with respect to the center of the plate width. Elongation difference epsilon e, is epsilon q, when el e elongation of the plate edge, el q elongation quota portion, the elongation of the sheet width center and el c, equation (1), (2) Respectively. Note that the measurement positions of the plate edge and the quarter portion are empirically determined so as to appropriately represent the shape and obtain an accurate mathematical model. ε e = el e −el c (1) ε q = el q −el c (2)

【0008】圧延材の形状に影響する変動要因には、板
厚,材質,潤滑状態,圧延荷重等の外乱や中間ロールベ
ンダ,ワークロールベンダ,中間ロールシフト等の形状
制御手段の制御量がある。板厚は、重要な品質項目であ
り、通常は自動板厚制御によってほぼ一定値となるよう
に制御されている。材質及び酸洗前冷延において大きな
変動要因となる潤滑状態は圧延材の形状に影響するが、
その影響の大半は圧延荷重の変動に応じてロール撓みが
変化することにより生じる。したがって、圧延中に形状
変化をもたらす主要因は、圧延荷重及び形状制御手段の
制御量である。形状制御手段の代表的なものとしては中
間ロールベンダ,ワークロールベンダ,中間ロールシフ
ト等があるが、応答性を考慮すると圧延中は中間ロール
シフトを固定し、中間ロールベンダ及びワークロールベ
ンダを制御手段として使用することが好ましい。
Factors that affect the shape of the rolled material include disturbances such as plate thickness, material, lubrication state, and rolling load, and control amounts of shape control means such as an intermediate roll bender, a work roll bender, and an intermediate roll shift. . The sheet thickness is an important quality item, and is usually controlled to be substantially constant by automatic sheet thickness control. The lubrication state, which is a major factor in the cold rolling before pickling, is affected by the shape of the rolled material.
Most of the effect is caused by a change in roll deflection according to a change in rolling load. Therefore, the main factors causing the shape change during rolling are the rolling load and the control amount of the shape control means. Typical examples of the shape control means include an intermediate roll bender, a work roll bender, and an intermediate roll shift. However, in consideration of responsiveness, the intermediate roll shift is fixed during rolling and the intermediate roll bender and the work roll bender are controlled. Preferably, it is used as a means.

【0009】圧延荷重が変化すると、圧延反力によるロ
ールの撓みが変化し、圧延材の形状を変化させる。ここ
で、単位幅当りの圧延荷重とロールの撓み量とは線形関
係にあるため、式(1)及び(2)で表される圧延形状
εe ,εq も図1に示すように単位幅当りの圧延荷重と
線形関係にある。中間ロールベンダ及びワークロールベ
ンダも、圧延荷重と同じくロールの撓みを変化させて圧
延形状を変化させるものであり、それぞれ図2及び図3
に示すように中間ロールベンダ及びワークロールベンダ
と圧延形状εe ,εq との間に線形関係が成立する。し
たがって、圧延形状予測式は、式(3)及び(4)で表
される。
[0009] When the rolling load changes, the deflection of the roll due to the rolling reaction force changes, and changes the shape of the rolled material. Here, since the rolling load per unit width and the amount of deflection of the roll are in a linear relationship, the rolling shapes ε e and ε q expressed by the equations (1) and (2) are also equal to the unit width as shown in FIG. It has a linear relationship with the rolling load per hit. The intermediate roll bender and the work roll bender also change the roll shape by changing the roll deflection like the rolling load.
As shown in (1), a linear relationship is established between the intermediate roll bender and the work roll bender and the rolling shapes ε e and ε q . Therefore, the rolling shape prediction formula is represented by formulas (3) and (4).

【0010】 εe =ae・p+be +ce・FI +de・FW ・・・・(3) εq =aq・p+bq +cq・FI +dq・FW ・・・・(4) ただし、p:単位幅当りの圧延荷重 FI :中間ロールベンダの制御量 FW :ワークロールベンダの制御量 ae ,be ,ce ,de ,aq ,bq ,cq ,dq :影
響係数
[0010] ε e = a e · p + b e + c e · F I + d e · F W ···· (3) ε q = a q · p + b q + c q · F I + d q · F W ···· (4) However, p: rolling load per unit width F I: control amount of the intermediate roll bender F W: control quantity a e of the work roll bender, b e, c e, d e, a q, b q, c q , dq : Influence coefficient

【0011】影響係数ae ,be ,ce ,de ,aq
q ,cq ,dq は、板幅,板厚及び材質等の製造品種
によって定まる定数であり、実験又はロールの弾性変形
解析と素材の塑性変形解析とを連成させた解析モデルに
よるシミュレーションからそれぞれ求められる。たとえ
ば、他の圧延条件を全て一定にし、各形状制御手段の制
御量FI ,FW 及び単位幅当りの圧延荷重p等を変化さ
せたとき、制御量FI,FW と及び圧延荷重pと圧延形
状εe ,εq との間で成立している線形関係における傾
きとして求められる。各影響係数は、板幅,板厚,材質
等の各区分ごとにテーブル設定し、或いは板幅,板厚,
材質等の関数として数式化される。酸洗前冷延では、圧
延中のスケールの剥離状況に応じて潤滑状態が変化する
ため、圧延荷重が図4に示すように大きく変動する。た
とえば、圧延当初では大きな圧延荷重であったものが、
スケール剥離が進行するに従って大幅に圧延荷重が低下
する。そこで、圧延荷重の変動によって圧延形状が悪化
することを防止するため、圧延荷重Pを荷重計で連続的
に測定し、圧延荷重P及び板幅wから式(5)に従って
単位幅当りの圧延荷重pを算出する。算出結果に基づ
き、式(3)及び(4)で表される圧延形状εe ,εq
がそれぞれ目標値εe 0,εq 0となるような中間ロールベ
ンダの制御量FI 及びワークロールベンダの制御量FW
を常時補正する。 p=P/w ・・・・(5)
[0011] The influence coefficient a e, b e, c e , d e, a q,
b q , c q , and d q are constants determined by the product type, such as the sheet width, sheet thickness, and material, and are simulations based on experiments or analysis models obtained by coupling the elastic deformation analysis of a roll and the plastic deformation analysis of a material. Respectively. For example, when all the other rolling conditions are kept constant and the control amounts F I and F W of each shape control means and the rolling load p per unit width are changed, the control amounts F I and F W and the rolling load p And the rolling shape ε e , ε q . Each influence coefficient is set in a table for each category such as sheet width, sheet thickness, material, etc.
Formulated as a function such as material. In cold rolling before pickling, the lubricating state changes according to the scale peeling state during rolling, so that the rolling load greatly changes as shown in FIG. For example, what was initially a large rolling load at the beginning of rolling,
As the scale peeling progresses, the rolling load decreases significantly. Therefore, in order to prevent the rolling shape from being deteriorated by the fluctuation of the rolling load, the rolling load P is continuously measured with a load meter, and the rolling load per unit width is calculated from the rolling load P and the sheet width w according to the formula (5). Calculate p. Based on the calculation results, the rolling shapes ε e , ε q represented by equations (3) and (4)
Controlled variable F W of but controlled variable F I and the work roll bender of the intermediate roll bender such that each target value ε e 0, ε q 0
Is constantly corrected. p = P / w (5)

【0012】また、圧延時の圧延荷重が大きく変動する
場合、式(3)及び(4)で表される圧延形状εe ,ε
q がそれぞれの目標値εe 0,εq 0となるように算出され
た中間ロールベンダの制御量FI 及びワークロールベン
ダの制御量FW の何れか一方又は双方がその仕様範囲を
超えることがある。この場合には、仕様範囲を超える形
状制御手段の制御量FI ,FW を最大値又は最小値と
し、式(6)で示す評価関数Jが最小となるように仕様
範囲を超えない形状制御手段の制御量を算出し、常時補
正する。ただし、式(6)のwe ,wq は、それぞれ重
み係数を示す。 J=wee −εe 0)2+wqq −εq 0)2 ・・・・(6)
When the rolling load at the time of rolling greatly fluctuates, the rolling shapes ε e and ε expressed by the equations (3) and (4) are used.
q is each target value epsilon e 0, either or both of the control amount F W of the controlled variable F I and the work roll bender of the calculated intermediate roll bender such that epsilon q 0 can exceed its specification range There is. In this case, the control amounts F I and F W of the shape control means that exceed the specification range are set to the maximum value or the minimum value, and the shape control that does not exceed the specification range is performed so that the evaluation function J expressed by the equation (6) is minimized. The control amount of the means is calculated and constantly corrected. However, w e, w q of formula (6), respectively indicate weighting factors. J = w e (ε e -ε e 0) 2 + w q (ε q -ε q 0) 2 ···· (6)

【0013】たとえば、式(3)及び(4)で表される
圧延形状εe ,εq がそれぞれの目標値εe 0,εq 0とな
るように算出された中間ロールベンダの制御量FI 及び
ワークロールベンダの制御量FW のうち、ワークロール
ベンダの制御量FW がその仕様範囲の最大値FWmaxを超
える場合には、その制御量FW を最大値FWmaxとする。
他方、ワークロールベンダの制御量FW がその仕様範囲
の最小値FWminを下回る場合には、その制御量FW を最
大値FWminとする。これにより、式(3)及び(4)は
それぞれ式(7)及び(8)のように書き換えられる。 εe =ae・p+be'+ce・FI ・・・・(7) εq =aq・p+bq'+cq・FI ・・・・(8) ただし、be'及びbq'は、式(9)及び(10)で表さ
れる関数である。 be'=be +de・FWmax 又は be'=be +de・FWmin ・・・・(9) bq'=bq +dq・FWmax 又は bq'=bq +dq・FWmin ・・・・(10)
For example, the control amount F of the intermediate roll bender calculated so that the rolling shapes ε e and ε q represented by the equations (3) and (4) become the target values ε e 0 and ε q 0 , respectively. among the control amount F W I and the work roll bender, when the control amount F W of the work roll bender exceeds the maximum value F Wmax of the specification range, the maximum value F Wmax the controlled variable F W.
On the other hand, when the control amount FW of the work roll vendor is smaller than the minimum value FWmin of the specification range, the control amount FW is set to the maximum value FWmin . Thus, equations (3) and (4) are rewritten as equations (7) and (8), respectively. ε e = a e · p + b e '+ c e · F I ···· (7) ε q = a q · p + b q' + c q · F I ···· (8) However, b e 'and b q 'Is a function represented by equations (9) and (10). b e '= b e + d e · F Wmax or b e' = b e + d e · F Wmin ···· (9) b q '= b q + d q · F Wmax or b q' = b q + d q・ F Wmin・ ・ ・ ・ (10)

【0014】式(7)及び(8)を式(6)に代入し、
評価関数Jが最小となるような中間ロールベンダの制御
量FI を算出し、常時補正する。中間ロールベンダの制
御量FI がその仕様範囲の最大値FImax又は最小値FIm
inを外れる場合も、同様にしてワークロールベンダの制
御量FW を算出し、常時補正する。中間ロールベンダ及
びワークロールベンダの何れか一方の形状制御手段を備
えている圧延機では、前述した形状制御手段の仕様範囲
を超える場合と同様に扱い、備わっている形状制御手段
の制御量を算出し、算出値に基づいて常時補正する。以
上の説明では、板端部及びクォータ部の2点について板
幅中央に対する伸び率差で圧延形状を定義し、各形状制
御手段を補正している。しかし、本発明は、これに拘束
されるものではなく、たとえば板幅方向3か所以上につ
いての板幅中央に対する伸び率差で圧延形状を定義する
場合でも式(6)と同様な評価関数を用いて圧延形状を
制御できる。
Substituting equations (7) and (8) into equation (6),
The evaluation function J is calculated controlled variable F I of the intermediate roll bender that minimizes, constantly corrected. The control amount F I of the intermediate roll bender is the maximum value F Imax or the minimum value F Im of the specification range.
In the case of deviation from "in" , the control amount FW of the work roll bender is calculated in the same manner and is constantly corrected. In a rolling mill provided with one of the shape control means of the intermediate roll bender and the work roll bender, it is handled in the same manner as when the shape control means is out of the specification range, and the control amount of the provided shape control means is calculated. Then, it is constantly corrected based on the calculated value. In the above description, the rolling shape is defined by the elongation difference with respect to the center of the sheet width at two points of the sheet edge and the quarter, and each shape control means is corrected. However, the present invention is not limited to this. For example, even when the rolled shape is defined by the elongation difference with respect to the center of the sheet width in three or more sheet width directions, the evaluation function similar to the equation (6) is obtained. Can be used to control the rolling shape.

【0015】[0015]

【実施例】図5に示すように中間ロールベンダ1及びワ
ークロールベンダ2を形状制御手段として備えた6段圧
延機3を使用し、径300mmのワークロールにより板
幅1060mm,板厚3.0mmの酸洗前熱延鋼帯を板
厚1.5mmに圧延した。上位コンピュータ4には、圧
延条件が予め入力されており、また荷重計5で連続的に
測定した圧延荷重の測定値を入力した。プロセスコンピ
ュータ6では、板幅,板厚,材質等の製造品種区分ごと
に予め算出した影響係数を取り込んで実測値から中間ロ
ールベンダ1及びワークロールベンダ2の最適制御量を
算出した。各算出値は、中間ロールベンダ1及びワーク
ロールベンダ2にそれぞれ入力され、それぞれの制御量
I ,FW を補正した。圧延形状は、板端部及びクォー
タ部の2点についての板幅中央に対する伸び率差で定義
し、式(1)及び(2)のεe ,εq で表した。このと
き、板端部の位置としては、測定誤差や影響係数の算出
誤差の影響が小さくなる板端から20mm内側に位置を
選定した。クォータ部としては、使用した圧延機におい
て形状のピークが生じ易い板幅中央からw/(2√2)
の位置を選定した。
EXAMPLE As shown in FIG. 5, a 6-high rolling mill 3 having an intermediate roll bender 1 and a work roll bender 2 as shape control means was used, and a work roll having a diameter of 300 mm, a sheet width of 1060 mm and a sheet thickness of 3.0 mm. Was rolled to a sheet thickness of 1.5 mm. The rolling conditions were previously input to the host computer 4, and the measured values of the rolling loads continuously measured by the load cells 5 were input. In the process computer 6, the optimum control amounts of the intermediate roll bender 1 and the work roll bender 2 are calculated from the actually measured values by taking in the influence coefficients calculated in advance for each type of production such as plate width, plate thickness, and material. The calculated values are input to the intermediate roll bender 1 and the work roll bender 2, respectively, and the respective control amounts F I and F W are corrected. The rolled shape was defined by a difference in elongation percentage with respect to the center of the plate width at two points of the plate end and the quarter portion, and was represented by ε e and ε q in equations (1) and (2). At this time, as the position of the plate end, a position 20 mm inward from the plate end where the influence of the measurement error and the calculation error of the influence coefficient was small was selected. The quarter part is w / (2√2) from the center of the sheet width where the peak of the shape easily occurs in the rolling mill used.
Was selected.

【0016】圧延中、荷重計5で圧延荷重Pを連続的に
測定し、圧延荷重P及び板幅wから式(5)に従って単
位幅当りの圧延荷重pを算出した。そして、式(3)及
び(4)で表される圧延形状εe ,εq がそれぞれの目
標値εe 0,εq 0となるような中間ロールベンダ1の制御
量FI 及びワークロールベンダ2の制御量FW を算出し
た。なお、圧延形状の目標値εe 0,εq 0は、共にεe 0
0,εq 0=0とした。算出された制御量FI 及びFW
何れも仕様範囲であったので、そのまま制御量を補正し
ながら圧延を継続した。
During rolling, the rolling load P was continuously measured by the load meter 5, and the rolling load p per unit width was calculated from the rolling load P and the sheet width w according to the equation (5). Then, equation (3) and rolling shape represented by (4) ε e, ε q each target value ε e 0, ε q 0 and becomes such an intermediate roll bender 1 of the controlled variable F I and the work roll bender The control amount FW of 2 was calculated. Note that the target values ε e 0 and ε q 0 of the rolling shape are both ε e 0 =
0, ε q 0 = 0. Since calculated control amount F I and F W was both a specification range was continued rolling while correcting the intact control amount.

【0017】圧延中、圧延荷重は図6に示すように変化
した。これに対し、圧延形状を板幅方向に関し1か所の
形状のみで評価した圧延形状予測式に基づいて形状制御
する従来法に従った圧延では、圧延荷重でみる限り本発
明法と大差なかった。しかし、圧延された形状をオフラ
インの形状測定器を用いて板幅方向20か所の位置で測
定し、得られた急峻度分布の最大値として板幅方向最大
急峻度を求めたところ、図7の対比から明らかなように
従来法では圧延の進行に従って形状が悪化し、0.8%
を超える最大急峻度になった。これに対し、本発明に従
った圧延では、最大急峻度が0.5%以内に納まってお
り、良好な形状をもつ鋼帯が得られたことが判る。
During rolling, the rolling load changed as shown in FIG. On the other hand, in the rolling according to the conventional method in which the rolling shape is controlled based on the rolling shape prediction formula in which the rolling shape is evaluated only at one location in the sheet width direction, there is no great difference from the method of the present invention as far as the rolling load is concerned. . However, the rolled shape was measured at 20 positions in the sheet width direction using an off-line shape measuring instrument, and the maximum steepness in the sheet width direction was obtained as the maximum value of the obtained steepness distribution. As is clear from the comparison, the shape deteriorates with the progress of rolling in the conventional method,
The maximum steepness exceeded. On the other hand, in the rolling according to the present invention, the maximum steepness was within 0.5%, which indicates that a steel strip having a good shape was obtained.

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、荷重変動を考慮した圧延形状予測式に基づいて圧延
形状を制御する際、圧延形状予測式の中で複数の指標を
用いて圧延形状を評価している。そのため、スケールの
影響によって圧延荷重が大きく変動し、しかも鋼帯表面
にあるスケール又はスケール剥離片のため形状検出器が
使用できない酸洗前鋼帯であっても、全長にわたって良
好な形状に圧延される。
As described above, according to the present invention, when controlling the rolling shape based on the rolling shape prediction formula in consideration of the load variation, the rolling is performed by using a plurality of indexes in the rolling shape prediction formula. The shape is being evaluated. Therefore, the rolling load fluctuates greatly due to the effect of the scale, and even if the steel strip before pickling cannot use a shape detector because of scale or scale peeling pieces on the steel strip surface, it is rolled into a good shape over the entire length. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 単位幅当りの圧延荷重が圧延形状に及ぼす影
響を示したグラフ
FIG. 1 is a graph showing an effect of a rolling load per unit width on a rolling shape.

【図2】 中間ロールベンダの制御量が圧延形状に及ぼ
す影響を示したグラフ
FIG. 2 is a graph showing an influence of a control amount of an intermediate roll bender on a rolling shape.

【図3】 ワークロールベンダの制御量が圧延形状に及
ぼす影響を示したグラフ
FIG. 3 is a graph showing an influence of a control amount of a work roll bender on a rolling shape.

【図4】 酸洗前鋼帯を圧延したときの圧延荷重の変動
をコイル長手方向に表したグラフ
FIG. 4 is a graph showing, in the longitudinal direction of a coil, a change in rolling load when a steel strip before pickling is rolled.

【図5】 実施例で使用した6段圧延機及び制御系統の
概略図
FIG. 5 is a schematic diagram of a six-high rolling mill and a control system used in the embodiment.

【図6】 本発明に従った制御条件下で酸洗前鋼帯を圧
延したときの圧延荷重の変動を従来法と対比したグラフ
FIG. 6 is a graph showing a change in rolling load when a steel strip before pickling is rolled under control conditions according to the present invention, in comparison with a conventional method.

【図7】 本発明に従って圧延された鋼帯の急峻度を従
来法で圧延された鋼帯の急峻度と対比したグラフ
FIG. 7 is a graph comparing the steepness of a steel strip rolled according to the present invention with the steepness of a steel strip rolled by a conventional method.

【符号の説明】[Explanation of symbols]

1:中間ロールベンダ 2:ワークロールベンダ
3:6段圧延機 4:上位コンピュータ 5:荷重計 6:プロセス
コンピュータ
1: Intermediate roll vendor 2: Work roll vendor
3: 6-high rolling mill 4: Host computer 5: Load cell 6: Process computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡野 哲彦 愛媛県東予市北条962−14 日新製鋼株式 会社東予建設本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuhiko Okano 962-14 Hojo, Toyo City, Ehime Prefecture Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 板端から距離が異なる複数の箇所につい
て板幅中央に対する伸び率差を表す圧延荷重を変数とし
た数式モデルを予め作成し、連続的に測定した圧延荷重
の実測値を前記数式モデルに代入して前記伸び率差が目
標値に一致するように中間ロールベンダ及び/又はワー
クロールベンダの制御量を算出し調整することを特徴と
する酸洗前熱延鋼帯の冷間圧延における形状制御方法。
An equation model is prepared in advance with a rolling load representing a difference in elongation relative to the center of a sheet width as a variable for a plurality of locations at different distances from a sheet edge, and an actual measured value of a continuously measured rolling load is calculated using the equation. Cold rolling of a hot-rolled steel strip before pickling, wherein a control amount of an intermediate roll bender and / or a work roll bender is calculated and adjusted so as to be substituted into a model so that the difference in elongation is equal to a target value. Shape control method.
【請求項2】 算出された中間ロールベンダ又はワーク
ロールベンダの制御量が仕様範囲の最大値又は最小値を
外れる場合、その最大値又は最小値を数式モデルに取り
込み、ワークロールベンダ又は中間ロールベンダの制御
量を算出する請求項1記載の形状制御方法。
2. When the calculated control amount of the intermediate roll vendor or the work roll vendor deviates from the maximum value or the minimum value of the specification range, the maximum value or the minimum value is taken into a mathematical model, and the work roll vendor or the intermediate roll vendor is obtained. The shape control method according to claim 1, wherein the control amount is calculated.
JP07575498A 1998-03-24 1998-03-24 Shape control method in cold rolling of hot rolled steel strip before pickling Expired - Fee Related JP4086119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07575498A JP4086119B2 (en) 1998-03-24 1998-03-24 Shape control method in cold rolling of hot rolled steel strip before pickling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07575498A JP4086119B2 (en) 1998-03-24 1998-03-24 Shape control method in cold rolling of hot rolled steel strip before pickling

Publications (2)

Publication Number Publication Date
JPH11267727A true JPH11267727A (en) 1999-10-05
JP4086119B2 JP4086119B2 (en) 2008-05-14

Family

ID=13585361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07575498A Expired - Fee Related JP4086119B2 (en) 1998-03-24 1998-03-24 Shape control method in cold rolling of hot rolled steel strip before pickling

Country Status (1)

Country Link
JP (1) JP4086119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268566A (en) * 2006-03-31 2007-10-18 Nisshin Steel Co Ltd Method for controlling shape in cold rolling
JP2009022985A (en) * 2007-07-20 2009-02-05 Nisshin Steel Co Ltd Shape control method in cold rolling
JP2014176858A (en) * 2013-03-13 2014-09-25 Nisshin Steel Co Ltd Shape control method in cold rolling and shape control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268566A (en) * 2006-03-31 2007-10-18 Nisshin Steel Co Ltd Method for controlling shape in cold rolling
JP4623738B2 (en) * 2006-03-31 2011-02-02 日新製鋼株式会社 Shape control method in cold rolling
JP2009022985A (en) * 2007-07-20 2009-02-05 Nisshin Steel Co Ltd Shape control method in cold rolling
JP2014176858A (en) * 2013-03-13 2014-09-25 Nisshin Steel Co Ltd Shape control method in cold rolling and shape control method

Also Published As

Publication number Publication date
JP4086119B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
US4776192A (en) Controlling the profile of sheet during rolling thereof
KR980008369A (en) Rolling method and rolling mill of plate material for reducing edge drop
JPH11267727A (en) Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling
JP4948301B2 (en) Shape control method in cold rolling
JP4086120B2 (en) Cold rolling method for hot rolled steel strip before pickling
JP4986463B2 (en) Shape control method in cold rolling
JP4330134B2 (en) Shape control method in cold rolling
JP2002292414A (en) Shape control method in cold rolling
JP2001137925A (en) Method for controlling shape in multi roll mill
Gittins et al. Strength of steels in hot strip mill rolling
JP3516726B2 (en) Edge drop control method during cold rolling
JP4227686B2 (en) Edge drop control method during cold rolling
KR19990052681A (en) Prediction of High-Precision Plate Crown Considering Thickness Profile of Hot-rolled Plate Width
JPH09155420A (en) Method for learning setup model of rolling mill
JPH05208204A (en) Method for controlling shape in strip rolling
JP2001137926A (en) Method for controlling shape in multi roll mill
JP2002224726A (en) Temper rolling method for metal strip
JP2004034032A (en) Method for controlling edge drop in tandem cold- rolling
JP3664151B2 (en) Sheet width control method, cold rolled metal sheet manufacturing method, and cold rolling apparatus
JP2003048008A (en) Method for controlling shape in multi roll mill
JP2719215B2 (en) Edge drop control method for sheet rolling
JP2000301221A (en) Method for controlling edge drop during cold rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JP2000225407A (en) Method for correcting predicting model of roll profile
JPH0957315A (en) Method and device for estimating width of hot rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees