JP7188234B2 - Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure - Google Patents

Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure Download PDF

Info

Publication number
JP7188234B2
JP7188234B2 JP2019065073A JP2019065073A JP7188234B2 JP 7188234 B2 JP7188234 B2 JP 7188234B2 JP 2019065073 A JP2019065073 A JP 2019065073A JP 2019065073 A JP2019065073 A JP 2019065073A JP 7188234 B2 JP7188234 B2 JP 7188234B2
Authority
JP
Japan
Prior art keywords
cylindrical
speed
manufacturing
mold
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065073A
Other languages
Japanese (ja)
Other versions
JP2020163412A (en
Inventor
孝次 木寅
淳史 須釜
克哉 乘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019065073A priority Critical patent/JP7188234B2/en
Publication of JP2020163412A publication Critical patent/JP2020163412A/en
Application granted granted Critical
Publication of JP7188234B2 publication Critical patent/JP7188234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、前後方押出し鍛造による筒状構造体の製造方法及び製造装置に関する。 TECHNICAL FIELD The present invention relates to a manufacturing method and manufacturing apparatus for a cylindrical structure by front-rear extrusion forging.

現在、断面の形状がH型の筒状構造体は、機械設備、自動車、化学プラントのスペーサ部品や軸受スリーブ、歯車などに使用され、その多くは丸棒材の切削により製造されている。
丸棒の切削により筒状構造体を製造すると、材料歩留まりが低く、生産タクトも著しく低い。そのため、近年では、板材をプレス装置で押圧して、最終製品に近い形状であるニアネットシェイプ形状まで成形し、その後切削加工を施して最終の製品形状とすることが多くなっている。
At present, cylindrical structures with an H-shaped cross section are used for mechanical equipment, automobiles, spacer parts, bearing sleeves, gears, etc. of chemical plants, and most of them are manufactured by cutting round bars.
If a cylindrical structure is manufactured by cutting a round bar, the material yield is low and the production takt time is extremely low. For this reason, in recent years, it has become common to press a plate material with a press to form it into a near-net shape, which is a shape close to the final product, and then perform cutting to obtain the final product shape.

このようなニアネットシェイプ形状の筒状構造体を製造する方法の一つとして、円柱状の素材を前後方に分流させて押し出す前後方押出し鍛造が知られている(特許文献1参照)。 As one of the methods for manufacturing such a near-net-shape tubular structure, front-rear extrusion forging is known, in which a columnar raw material is split in the front-rear direction and extruded (see Patent Document 1).

特開2006-007260号公報Japanese Patent Application Laid-Open No. 2006-007260

上述の前後方押出し鍛造で、仕切板部を有する筒状構造体を製造する場合、前方向及び後方向にそれぞれ流れる素材の先端は、金型で拘束されておらず自由端となるため、押し出す長さを制御することが難しい。そのため、所望の形状を得ることが難しく、鍛造後の切削工程において切削量が多くなってしまう。 When manufacturing a cylindrical structure having a partition plate portion by the above-mentioned forward and backward extrusion forging, the tip of the material flowing in the forward and backward directions is not restrained by the mold and becomes a free end, so it is extruded. Difficult to control length. Therefore, it is difficult to obtain a desired shape, and a large amount of cutting is required in the cutting process after forging.

従って、本発明は、仕切板部を有する筒状構造体を前後方押出し鍛造により製造する場合に、任意の場所に仕切板部を形成可能な製造方法及び製造装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of forming a partition plate portion at an arbitrary location when a tubular structure having a partition plate portion is produced by front-rear extrusion forging. .

本発明は、円柱状素材から前後方押出し鍛造により円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体を製造する製造方法であって、前記円柱状素材の外径と少なくとも同じ大きさの内径の円環形状を有する側方型の内側に、前記円柱状素材の外径よりも小さい所定の直径を有する円柱形状の上型及び下型を設置し、前記上型と前記下型との間に前記円柱状素材を配置して、前記上型の加工方向の速度を所定の速度V1とし、前記側方型の加工方向に沿った移動速度をV2とし、前記下型の加工方向の速度を所定の速度V3とし、前記仕切板部の板厚中心から前記筒状構造体の上端までの所望の長さをH1及び下端までの所望の長さをH2とする場合に、前記上型と前記下型とを相対的に近づけるように移動させて前記円柱状素材を押圧すると共に、前記側方型を下記の数式(1)で表されるV2の速度で移動させる製造方法に関する。

Figure 0007188234000001
但し、V1及びV3は下方向を正とし、V2は上方向を正とし、H1及びH2はV2=0で加工した場合のそれぞれのH1及びH2の実測値とする。 The present invention is a manufacturing method for manufacturing a cylindrical structure having a cylindrical portion and a partition plate portion for partitioning the interior of the cylindrical portion from a cylindrical material by front-rear extrusion forging, wherein the outer diameter of the cylindrical material and the A cylindrical upper mold and a lower mold having a predetermined diameter smaller than the outer diameter of the cylindrical material are installed inside a side mold having an annular shape with an inner diameter of at least the same size, and the upper mold and the lower mold are installed. The columnar material is arranged between the lower mold, the speed of the upper mold in the processing direction is set to a predetermined speed V1, the moving speed of the side mold along the processing direction is set to V2, and the lower mold The speed in the processing direction is a predetermined speed V3, the desired length from the center of the plate thickness of the partition plate portion to the upper end of the cylindrical structure is H1, and the desired length to the lower end is H2. , the upper mold and the lower mold are moved relatively close to each other to press the cylindrical material, and the side mold is moved at a speed of V2 represented by the following formula (1). Regarding the method.
Figure 0007188234000001
However, V1 and V3 are positive in the downward direction, V2 is positive in the upward direction, and H10 and H20 are measured values of H1 and H2 when V2 = 0 .

また、前記数式(1)において、-0.55≦V2/(V1+V3)≦-0.45となるように、V2の速度を設定することが好ましい。 Moreover, in the above formula (1), it is preferable to set the speed of V2 so that −0.55≦V2/(V1+V3)≦−0.45.

また、前記数式(1)において、V3=0とすることが好ましい。 Moreover, it is preferable to set V3=0 in the above formula (1).

また、本発明は、円柱状素材から前後方押出し鍛造により円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体を製造するための製造装置であって、前記円柱状素材の外径と少なくとも同じ大きさの内径の円環形状を有し、加工方向に沿って移動可能な側方型と、前記側方型の内側に設置され、前記円柱状素材の外径よりも小さい所定の直径を有する円柱形状の上型及び下型と、を備え、前記上型の加工方向の速度を所定の速度V1とし、前記側方型の加工方向に沿った移動速度をV2とし、前記下型の加工方向の速度を所定の速度V3とし、前記仕切板部の板厚中心から前記筒状構造体の上端までの所望の長さをH1及び下端までの所望の長さをH2とする場合に、前記上型と前記下型とを相対的に近づけるように移動させ、前記側方型を下記の数式(1)で表されるV2の速度で移動させるよう制御する製造装置に関する。

Figure 0007188234000002
但し、V1及びV3は下方向を正、V2は上方向を正、H1及びH2はV2=0で加工した場合のそれぞれのH1及びH2の実測値とする。 Further, the present invention provides a manufacturing apparatus for manufacturing a cylindrical structure having a cylindrical portion and a partition plate portion for partitioning the inside of the cylindrical portion from a cylindrical material by front-rear extrusion forging, the manufacturing apparatus comprising: a side mold that has an annular shape with an inner diameter that is at least as large as the outer diameter of the cylindrical material and is movable along the processing direction; a cylindrical upper die and a lower die having a small predetermined diameter, wherein the speed of the upper die in the processing direction is set to a predetermined speed V1, and the moving speed of the side die along the processing direction is set to V2; The speed of the lower die in the working direction is set to a predetermined speed V3, the desired length from the center of the plate thickness of the partition plate portion to the upper end of the cylindrical structure is H1, and the desired length to the lower end is H2. In this case, the present invention relates to a manufacturing apparatus that moves the upper mold and the lower mold relatively closer to each other and controls the lateral mold to move at a speed of V2 represented by the following formula (1).
Figure 0007188234000002
However, V1 and V3 are positive in the downward direction, V2 is positive in the upward direction, and H10 and H20 are measured values of H1 and H2 when V2 = 0 .

また、本発明は、前記製造方法により製造される円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体であって、前記筒状構造体の鍛流線は、前記仕切板部においては、径方向に沿うように形成されており、前記円筒部においては、前記仕切板部から続いて内側面から上端面又は下端面に沿って外側面に達するように形成されており、該外側面における鍛流線の方向は、大部分が径方向に沿っている筒状構造体に関する。 Further, the present invention provides a cylindrical structure having a cylindrical portion manufactured by the manufacturing method and a partition plate portion that partitions the inside of the cylindrical portion, wherein the grain flows of the cylindrical structure are formed by the partition The plate portion is formed along the radial direction, and the cylindrical portion is formed so as to continue from the partition plate portion and extend from the inner surface to the outer surface along the upper end surface or the lower end surface. , the direction of the grain flow lines on the outer surface for the tubular structure being mostly along the radial direction.

また、本発明は、-0.55≦V2/(V1+V3)≦-0.45にV2の速度を設定した前記製造方法により製造される円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体であって、前記筒状構造体の鍛流線は、前記仕切板部においては、径方向に沿うように形成されており、前記円筒部においては、前記仕切板部の板厚の中心面について上下略対称に形成されている筒状構造体に関する。 In addition, the present invention provides a cylindrical portion manufactured by the above manufacturing method in which the speed of V2 is set to −0.55≦V2/(V1+V3)≦−0.45 and a partition plate portion that partitions the inside of the cylindrical portion. In the cylindrical structure, the grain flows of the cylindrical structure are formed along the radial direction in the partition plate portion, and in the cylindrical portion, the plate of the partition plate portion The present invention relates to a tubular structure formed vertically substantially symmetrically about a center plane of thickness.

本発明によれば、前後方押出し鍛造の際にコンテナの移動速度を所定の条件で制御することにより、任意の場所に仕切板部が設けられた筒状構造体を製造することができる。 According to the present invention, by controlling the movement speed of the container under a predetermined condition during the front-rear extrusion forging, it is possible to manufacture a cylindrical structure provided with a partition plate portion at an arbitrary location.

本発明の実施形態に係る製造方法の説明図である。It is explanatory drawing of the manufacturing method which concerns on embodiment of this invention. 本発明の製造方法により得られる筒状構造体の説明図である。It is explanatory drawing of the cylindrical structure obtained by the manufacturing method of this invention. ダイを固定する場合の上下対称の筒状構造体を得る方法の説明図である。FIG. 4 is an explanatory diagram of a method for obtaining a vertically symmetrical tubular structure when fixing a die; ダイを固定しない場合の上下対称の筒状構造体を得る方法の説明図である。FIG. 4 is an explanatory diagram of a method for obtaining a vertically symmetrical cylindrical structure without fixing a die; 筒状構造体の形状とコンテナ速度との関係を示す対数グラフである。4 is a logarithmic graph showing the relationship between the shape of a tubular structure and container speed. コンテナ速度の条件式の係数を算出するための方法についての説明図である。FIG. 4 is an explanatory diagram of a method for calculating a coefficient of a container speed conditional expression; 上下対称の筒状構造体が得られる製造方法の説明図である。It is explanatory drawing of the manufacturing method by which a vertically symmetrical cylindrical structure is obtained. 上下対称の筒状構造体の鍛流線の形状について説明するための模式図である。FIG. 4 is a schematic diagram for explaining the shape of grain flow lines of a vertically symmetrical cylindrical structure; 実施例1で得られた筒状構造体の断面形状及び鍛流線の観察結果を示す。4 shows the observation results of the cross-sectional shape and grain flow lines of the tubular structure obtained in Example 1. FIG. 上下対称の筒状構造体の用途の一例について示す。An example of application of a vertically symmetrical cylindrical structure is shown. 変形強度の測定を行うための試験片の切り出し形状について説明するための図である。FIG. 4 is a diagram for explaining a cut-out shape of a test piece for measuring deformation strength; 変形強度の試験方法について説明するための模式図である。It is a schematic diagram for demonstrating the test method of deformation strength. 強度試験(1)の結果を示すグラフである。4 is a graph showing the results of strength test (1). 強度試験(2)の結果を示すグラフである。It is a graph which shows the result of a strength test (2).

以下、本発明の筒状構造体の製造方法及び製造装置の好ましい実施形態について、図1~図8を参照しながら説明する。 Preferred embodiments of the method and apparatus for manufacturing a tubular structure according to the present invention will be described below with reference to FIGS. 1 to 8. FIG.

<実施形態>
図1は、本実施形態に係る製造方法を説明するための製造装置1の断面模式図であり、図2は、本実施形態の製造方法で得られる筒状構造体の説明図である。
<Embodiment>
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus 1 for explaining the manufacturing method according to this embodiment, and FIG. 2 is an explanatory diagram of a tubular structure obtained by the manufacturing method according to this embodiment.

図1に示すように、製造装置1は、上型としてのパンチ10と、側方型としてのコンテナ20と、下型としてのダイ30と、で構成されており、パンチ10及びダイ30は、コンテナ20の内側にそれぞれの中心軸が一致するように配置される。 As shown in FIG. 1, the manufacturing apparatus 1 includes a punch 10 as an upper die, a container 20 as a side die, and a die 30 as a lower die. They are arranged inside the container 20 so that their central axes are aligned.

パンチ10は、被加工体である円柱状素材40Aの外径よりも小さい所定の直径の円柱形状を有し、上下に移動可能である。 The punch 10 has a cylindrical shape with a predetermined diameter smaller than the outer diameter of the cylindrical material 40A, which is the object to be processed, and can move up and down.

コンテナ20は、円柱状素材40Aの外径と一致する内径の円環形状を有し、加工方向について上下に移動可能である。なお、コンテナ20の内径は、円柱状素材40Aの外径よりもやや大きくてもよいが、加工開始から加工終了まで円柱状素材40Aの側面を拘束し続けることができる点で、円柱状素材40Aの外径と一致することが好ましい。 The container 20 has an annular shape with an inner diameter that matches the outer diameter of the cylindrical material 40A, and is movable up and down in the processing direction. The inner diameter of the container 20 may be slightly larger than the outer diameter of the cylindrical material 40A. preferably match the outer diameter of the

ダイ30は、円柱状素材40Aの外径よりも小さい所定の直径の円柱形状を有し、上下に移動可能である。本実施形態では、内径が一定の筒状構造体を製造するため、ダイ30の直径は、パンチ10と一致するように構成される。 The die 30 has a cylindrical shape with a predetermined diameter smaller than the outer diameter of the cylindrical material 40A, and is movable up and down. In this embodiment, the diameter of the die 30 is configured to match the punch 10 to produce a tubular structure with a constant inner diameter.

円柱状素材40Aの原素材としては、特殊鋼やステンレス鋼の鋼板や、丸棒材を切断して据込んで円盤状にしたもの等を用いることができる。 As a raw material for the cylindrical material 40A, a special steel or stainless steel plate, a round bar material cut and swept into a disc shape, or the like can be used.

本実施形態の製造方法では、円柱状素材40Aをパンチ10とダイ30との間に配置し、パンチ10を所定の速度V1(下方向を正とする)で、ダイ30を所定の速度V3(下方向を正とする)で、相対的に近づけるように移動させて円柱状素材40Aを押圧すると共に、コンテナ20を速度V2(上方向を正とする)で移動させて加工を行い、所望の形状の筒状構造体40Bを得る。コンテナ速度V2は、後に説明する条件式に基づいて設定される。 In the manufacturing method of this embodiment, the cylindrical material 40A is arranged between the punch 10 and the die 30, the punch 10 is moved at a predetermined speed V1 (positive in the downward direction), and the die 30 is moved at a predetermined speed V3 ( The downward direction is assumed to be positive), and the cylindrical material 40A is moved relatively closer to press the cylindrical material 40A. A shaped tubular structure 40B is obtained. The container speed V2 is set based on a conditional expression to be described later.

図2を参照して、筒状構造体40Bの形状について説明する。
筒状構造体40Bは、円筒部41と円筒部41の内部を仕切る仕切板部42とを備える(図2(a)参照)。その断面形状はH型となり、仕切板部42の板厚中心から筒状構造体の上端までの長さをH1とし、下端までの長さをH2とする(図2(b)参照)。
筒状構造体40Bの高さ(H1+H2)は、本発明の製造方法によれば、所望のH1、H2を設定して仕切板部42を任意の場所に形成した筒状構造体40Bを得ることができる。
The shape of the tubular structure 40B will be described with reference to FIG.
The tubular structure 40B includes a cylindrical portion 41 and a partition plate portion 42 that partitions the interior of the cylindrical portion 41 (see FIG. 2(a)). The cross-sectional shape is H-shaped, the length from the thickness center of the partition plate portion 42 to the upper end of the tubular structure is H1, and the length to the lower end is H2 (see FIG. 2B).
According to the manufacturing method of the present invention, the height (H1+H2) of the tubular structure 40B can be obtained by setting desired H1 and H2 to obtain the tubular structure 40B in which the partition plate portion 42 is formed at an arbitrary location. can be done.

まず、円柱状素材40Aにプレス加工を施して、板厚の中心で上下軸対称な断面形状がH型の筒状構造体40B、即ち、H1=H2となる筒状構造体40Bを得る方法について図3及び図4を参照して説明する。 First, a method for obtaining a tubular structure 40B having an H-shaped cross-sectional shape vertically symmetrical at the center of the plate thickness by pressing the cylindrical material 40A, that is, obtaining a tubular structure 40B satisfying H1=H2. Description will be made with reference to FIGS. 3 and 4. FIG.

ダイ30が固定される場合について、図3を用いて説明する。プレス加工前の円柱状素材40Aの板厚をt(図3(a)参照)とし、プレス加工後の板厚をt(図3(b)参照)とする。
図3に示すように、円柱状素材40Aの板厚方向(上向き)の座標をXとし、プレス加工前にパンチ10及びダイ30で挟まれた状態の円柱状素材40Aの底部をX座標の原点としプレス加工前後について板厚中心の座標の遷移について考える。
プレス加工前の円柱状素材40Aの板厚中心の座標は、X=t/2と表せる。パンチ10の移動量をX1とし、ダイ30は固定したとすると、プレス加工後の仕切板部42の板厚tは、t=t-X1となり、仕切板部42の板厚中心の座標は、X=t/2=(t-X1)/2となる。
A case where the die 30 is fixed will be described with reference to FIG. The plate thickness of the cylindrical material 40A before press working is t 0 (see FIG. 3(a)), and the plate thickness after press working is t (see FIG. 3(b)).
As shown in FIG. 3, X is the coordinate in the plate thickness direction (upward) of the cylindrical material 40A, and the origin of the X coordinate is the bottom of the cylindrical material 40A sandwiched between the punch 10 and the die 30 before press working. Let us consider the transition of the coordinates of the sheet thickness center before and after press working.
The coordinates of the plate thickness center of the cylindrical material 40A before press working can be expressed as X=t 0 /2. Assuming that the movement amount of the punch 10 is X1 and the die 30 is fixed, the plate thickness t of the partition plate portion 42 after press working is t=t 0 -X1, and the coordinates of the plate thickness center of the partition plate portion 42 are , X=t/2=(t 0 −X1)/2.

プレス加工後の筒状構造体40Bが上下対称になるためには、円筒部41のX方向の中心座標が仕切板部42の板厚中心の座標と一致するように、仕切板部42の板厚の中心線を一直線に保ったまま、筒状構造体40Bに加工する必要がある。
そのために、円筒部41となる部位のX方向の中心線が円柱状素材40Aの板厚の中心線に追随できるように、コンテナ20を移動量X2で補正することを考える。
コンテナ20をX2の移動量で移動させた場合の円筒部41のX方向の中心線の座標は、X=t/2+X2となり、これが仕切板部42の板厚中心の座標であるX=(t-X1)/2と一致すればよい。これより、X2=-(1/2)X1が得られ、移動量X1及びX2を移動速度V1=X1/s、V2=X2/s(s:プレスにかかる時間)に変換すると、V2/V1=-0.5の関係式1が得られる。
つまり、V2/V1=-0.5の関係式1を満たせば、摩擦係数やV1、V2の大きさや円柱状素材40Aの材料による影響を受けずに、板厚中心で上下対称のH型の筒状構造体40Bを得ることができる。
In order for the cylindrical structure 40B after press working to be vertically symmetrical, the plate of the partition plate portion 42 is arranged so that the center coordinates in the X direction of the cylindrical portion 41 match the coordinates of the plate thickness center of the partition plate portion 42. It is necessary to process the tubular structure 40B while keeping the center line of thickness straight.
For this reason, it is considered to correct the container 20 by the movement amount X2 so that the X-direction center line of the portion that becomes the cylindrical portion 41 can follow the center line of the plate thickness of the cylindrical material 40A.
The coordinates of the center line in the X direction of the cylindrical portion 41 when the container 20 is moved by the movement amount of X2 are X=t 0 /2+X2, which is the coordinate of the plate thickness center of the partition plate portion 42 X=( t 0 -X1)/2. From this, X2=-(1/2)X1 is obtained. Converting the moving amounts X1 and X2 into moving speed V1=X1/s and V2=X2/s (s: time required for pressing), V2/V1 A relational expression 1 of =-0.5 is obtained.
In other words, if the relational expression 1 of V2/V1=-0.5 is satisfied, the H-shaped structure is vertically symmetrical about the center of the plate thickness without being affected by the coefficient of friction, the sizes of V1 and V2, and the material of the cylindrical material 40A. A tubular structure 40B can be obtained.

次に、ダイ30が固定されずに移動速度V3で移動する場合について図4を用いて説明する。プレス加工前の円柱状素材40Aの板厚をt(図4(a)参照)とし、プレス加工後の板厚をt(図4(b)参照)とする。
図4に示すように、円柱状素材40Aの板厚方向(上向き)の座標をXとし、プレス加工前にパンチ10及びダイ30で挟まれた状態の円柱状素材40Aの底部をX座標の原点としプレス加工前後について板厚中心の座標の遷移について考える。
プレス加工前の円柱状素材40Aの板厚中心の座標は、X=t/2と表せる。パンチ10の移動量をX1とし、ダイ30の移動量をX3とすると、プレス加工後の仕切板部42の板厚中心の座標は、プレス加工後の板厚tの1/2にX3の移動によるずれ量を加え、X=t/2+X3と表せる。プレス加工後の仕切板部42の板厚tは、t=t-X1+X3となり、仕切板部42の板厚中心の座標は、X=t/2+X3=(t-X1+X3)/2+X3となる。
Next, the case where the die 30 is not fixed and moves at the moving speed V3 will be described with reference to FIG. The plate thickness of the cylindrical material 40A before press working is t 0 (see FIG. 4(a)), and the plate thickness after press working is t (see FIG. 4(b)).
As shown in FIG. 4, the coordinate in the plate thickness direction (upward) of the cylindrical material 40A is X, and the bottom of the cylindrical material 40A sandwiched between the punch 10 and the die 30 before press working is the origin of the X coordinate. Let us consider the transition of the coordinates of the sheet thickness center before and after press working.
The coordinates of the plate thickness center of the cylindrical material 40A before press working can be expressed as X=t 0 /2. Assuming that the movement amount of the punch 10 is X1 and the movement amount of the die 30 is X3, the coordinates of the plate thickness center of the partition plate portion 42 after press working are moved by X3 to 1/2 of the plate thickness t after press working. is added, X=t/2+X3 can be expressed. The plate thickness t of the partition plate portion 42 after press working is t=t 0 -X1+X3, and the coordinates of the plate thickness center of the partition plate portion 42 are X=t/2+X3=(t 0 -X1+X3)/2+X3. .

コンテナ20をX2で移動させた場合の円筒部41のX方向の中心線の座標は、X=t/2+X2となり、これが仕切板部42の板厚中心の座標であるX=(t-X1+X3)/2+X3と一致すればよい。これより、X2=-(X1+X3)/2が得られ、移動量X1、X2及びX3を移動速度V1=X1/s、V2=X2/s、V3=X3/s(s:プレスにかかる時間)に変換すると、V2/(V1+V3)=-0.5の関係式2が得られる。
つまり、V2/(V1+V3)=-0.5の関係式2を満たせば、摩擦係数やV1、V2、V3の大きさや円柱状素材40Aの材料による影響を受けずに、板厚中心で上下対称のH型の筒状構造体40Bを得ることができる。
The coordinates of the center line in the X direction of the cylindrical portion 41 when the container 20 is moved by X2 are X=t 0 /2+X2, which is the coordinate of the plate thickness center of the partition plate portion 42 X=(t 0 − X1+X3)/2+X3 is sufficient. From this, X2=-(X1+X3)/2 is obtained, and moving amounts X1, X2 and X3 are changed to moving speed V1=X1/s, V2=X2/s, V3=X3/s (s: time required for pressing) , the relational expression 2 of V2/(V1+V3)=-0.5 is obtained.
In other words, if the relational expression 2 of V2/(V1+V3)=-0.5 is satisfied, the friction coefficient, the sizes of V1, V2, and V3, and the material of the cylindrical material 40A do not affect the vertical symmetry at the thickness center. can obtain the H-shaped tubular structure 40B.

次に、所望のH1、H2を設定して仕切板部42を任意の場所に形成した筒状構造体40Bを得る方法について説明する。コンテナ速度V2を設定するための条件式を求めるために、所定のパンチ速度V1及び所定のダイ速度V3で、コンテナ速度V2を変えた場合の筒状構造体40Bの形状について、シミュレーションした結果を表1に示す。
パンチ速度V1=3で一定とし、ダイ30は固定し(V3=0)、コンテナ速度V2を-33≦V2≦30とした。また、パンチ及びダイの直径は17mm、パンチ及びダイの角部の曲率半径は0.3mm、コンテナの内径は24mm、円柱状素材40Aの直径は24mm、板厚は4.2mmとし、円柱状素材40Aを加工後の筒状構造体40Bの仕切板部42の板厚が1.2mmとなるような条件でシミュレーションを行った。
Next, a method for obtaining a tubular structure 40B in which desired H1 and H2 are set and the partition plate portion 42 is formed at an arbitrary location will be described. In order to obtain a conditional expression for setting the container speed V2, the results of simulating the shape of the tubular structure 40B when the container speed V2 is changed at a predetermined punch speed V1 and a predetermined die speed V3 are shown. 1.
The punch speed was constant at V1=3, the die 30 was fixed (V3=0), and the container speed V2 was set at −33≦V2≦30. The diameter of the punch and die is 17 mm, the radius of curvature of the corners of the punch and die is 0.3 mm, the inner diameter of the container is 24 mm, the diameter of the cylindrical material 40A is 24 mm, and the plate thickness is 4.2 mm. The simulation was performed under the condition that the plate thickness of the partition plate portion 42 of the tubular structure 40B after processing 40A was 1.2 mm.

Figure 0007188234000003
Figure 0007188234000003

図5に示すように、コンテナ速度V2を変えることで、様々な形状に成形できることが示された。 As shown in FIG. 5, it was shown that various shapes can be formed by changing the container speed V2.

コンテナ速度V2を設定するための条件式を求めるため、表1のV2/(V1+V3)とH2/H1との相関関係を図5の対数グラフに示した。なお、表には示さないが、図5にはパンチ速度V1=2、ダイ速度V3=-1でシミュレーションした結果も示した。 In order to obtain a conditional expression for setting the container speed V2, the correlation between V2/(V1+V3) in Table 1 and H2/H1 is shown in the logarithmic graph of FIG. Although not shown in the table, FIG. 5 also shows the results of a simulation with the punch speed V1=2 and the die speed V3=-1.

図5のグラフによれば、V2/(V1+V3)=-0.5のときH2/H1=1の点を通る所定の傾きaと所定の切片bをもった直線になっていることが見て取れる。
以下、V2/(V1+V3)とH2/H1との関係式を求め、その関係式からV2の条件式を求める。
V2/(V1+V3)をxとし、H2/H1をyとして、次の数式(2)の傾きaと切片bとを求める。
logy=ax+b・・・(2)
尚、図5に示すグラフから、数式(2)が成り立つH2/H1の範囲は、おおよそ1/7≦H2/H1≦7であることが見て取れる。
ここで数式(2)のa、bを考えると、x=0、つまり、図6に示すようにコンテナ速度V2=0(コンテナ20を動かさない場合)として、プレス加工した場合のH1、H2の値をそれぞれH1、H2とすると、数式(2)よりb=logH2/H1となる。また、前述より、x=V2/(V1+V3)=-0.5のとき、y=H2/H1=1となるので、これを数式(2)に代入すると、a=2bとなる。これらより、a=2logH2/H1と表せる。
数式(2)のa、bはH2、H1で表せるので、コンテナ20を動かさない場合のH1、H2を測定することで、V2/(V1+V3)とH2/H1との関係式を求めることができる。
According to the graph of FIG. 5, it can be seen that a straight line having a predetermined slope a and a predetermined intercept b passes through the point of H2/H1=1 when V2/(V1+V3)=-0.5.
Below, a relational expression between V2/(V1+V3) and H2/H1 is obtained, and a conditional expression for V2 is obtained from the relational expression.
Assuming that V2/(V1+V3) is x and H2/H1 is y, the slope a and the intercept b of the following formula (2) are obtained.
logy=ax+b (2)
From the graph shown in FIG. 5, it can be seen that the range of H2/H1 in which the formula (2) holds is approximately 1/7≦H2/H1≦7.
Considering a and b in formula (2), the values of H1 and H2 when press working is performed with x=0, that is, the container speed V2=0 (when the container 20 is not moved) as shown in FIG. Assuming that the values are H1 0 and H2 0 respectively, b=logH2 0 /H1 0 from Equation (2). Further, from the above, when x=V2/(V1+V3)=-0.5, y=H2/H1=1, so substituting this into equation (2) yields a=2b. From these, it can be expressed as a=2logH2 0 /H1 0 .
Since a and b in formula (2) can be represented by H2 0 and H1 0 , by measuring H1 and H2 when the container 20 is not moved, the relational expression between V2/(V1+V3) and H2/H1 can be obtained. can be done.

V2の条件式を求めるため、数式(2)に、x=V2/(V1+V3)、y=H2/H1、a=2logH2/H1、b=logH2/H1を代入して、V2について整理すると、次の数式(1)が得られる。

Figure 0007188234000004
但し、1/7≦H2/H1≦7。 To find the conditional expression for V2, substitute x=V2/(V1+V3), y=H2/H1, a=2logH2 0 /H1 0 and b=logH2 0 /H1 0 into the equation (2) to obtain By rearranging, the following formula (1) is obtained.
Figure 0007188234000004
However, 1/7≤H2/H1≤7.

以上より、所定のパンチ速度V1、所定のダイ速度V3において、所望のH1、H2の筒状構造体40Bを得るには、数式(1)からコンテナ速度V2を算出すればよい。
例えば、表1のV1=3、V3=0の条件において、V2=0の時、H2/H1=H2/H1=0.74となるので、H2/H1=2となるコンテナ速度V2は、数式(1)から、V2=-4.95と算出することができる。つまり、プレス加工時にコンテナ20を下方に4.95の速さで移動させれば、H2/H1が略2となる筒状構造体40Bを得ることができる。
From the above, in order to obtain the desired cylindrical structure 40B with H1 and H2 at a predetermined punch speed V1 and a predetermined die speed V3, the container speed V2 should be calculated from Equation (1).
For example, under the conditions of V1=3 and V3=0 in Table 1, when V2= 0 , H2/H1 = H20/H10=0.74. , V2=−4.95 can be calculated from the equation (1). That is, if the container 20 is moved downward at a speed of 4.95 during press working, the cylindrical structure 40B with H2/H1 of approximately 2 can be obtained.

また、数式(1)によれば、筒状構造体40Bを仕切板部42の板厚中心面で上下対称の構造となるようにしたい場合、即ち、H1=H2としたい場合には、V2=-1/2(V1+V3)と設定すればよく、これは、図4で説明し前述の関係式2と一致する。V2/(V1+V3)=-0.5を中心に-0.55≦V2/(V1+V3)≦-0.45となるようにV2を設定すると、略上下対称形状の筒状構造体40Bが得られる。特に、図7に示すように、ダイ30を固定する場合(V3=0)には、V2=-1/2V1と設定すればよく、これは、図3で説明し前述の関係式1と一致する。プレス加工時にコンテナ20を下方に1/2V1の速さで移動させれば、上下対称形状の筒状構造体40Bを得ることができる。 Further, according to the formula (1), when it is desired to make the tubular structure 40B vertically symmetrical with respect to the plate thickness center plane of the partition plate portion 42, that is, when it is desired to set H1=H2, V2= It may be set to -1/2(V1+V3), which agrees with relational expression 2 described above with reference to FIG. When V2 is set such that -0.55≤V2/(V1+V3)≤-0.45 centering on V2/(V1+V3)=-0.5, a substantially vertically symmetrical cylindrical structure 40B can be obtained. . In particular, as shown in FIG. 7, when the die 30 is fixed (V3=0), V2=-1/2V1 may be set, which corresponds to the relational expression 1 described in FIG. do. If the container 20 is moved downward at a speed of 1/2V1 during press working, a vertically symmetrical tubular structure 40B can be obtained.

以上の説明においては、ダイ30を固定する場合について示したが、これに限らない。ダイ30を固定することで片押しのプレス装置を用いて加工を行うことができ、パンチ10もダイ30も両方駆動する両押しのプレス装置に比べて、簡易な設備でプレス加工を行うことができる。 In the above description, the case where the die 30 is fixed has been shown, but the present invention is not limited to this. By fixing the die 30, processing can be performed using a single-pressing press device, and press processing can be performed with simple equipment compared to a double-pressing press device in which both the punch 10 and the die 30 are driven. can.

次に、発明の製造方法により製造される筒状構造体40Bに形成される鍛流線を示した模式断面図である図8を参照して、鍛流線の形状について説明する。図8(a)は、筒状構造体40Bが仕切板部42の板厚中心面で上下非対称の構造(H1≠H2)となる場合を示し、図8(b)は、筒状構造体40Bが仕切板部42の板厚中心面で上下対称の構造となる場合(H1=H2)を示す。 Next, the shape of the grain flow lines will be described with reference to FIG. 8, which is a schematic sectional view showing the grain flow lines formed in the tubular structure 40B manufactured by the manufacturing method of the invention. FIG. 8(a) shows a case where the tubular structure 40B has a vertically asymmetrical structure (H1≠H2) with respect to the plate thickness center plane of the partition plate portion 42, and FIG. 8(b) shows the tubular structure 40B. shows a case (H1=H2) in which the structure is vertically symmetrical with respect to the center plane of the plate thickness of the partition plate portion 42 .

円柱状素材40Aとして圧延により製造された鋼材製の丸棒や鋼板を用いて、本発明の製造方法で筒状構造体40Bを鍛造した場合、図8(a)及び(b)に示すように、鍛流線MFは互いに交差せず、途切れることなく、筒状構造体の形状に沿って形成される。更に詳しく説明すると、鍛流線MFは、仕切板部42においては、板厚方向に略垂直な方向、即ち径方向に沿うように形成され、円筒部41においては、仕切板部42から続いて内側面から上端面又は下端面に沿って外側面に達するように形成される。外側面における鍛流線MFの方向は、大部分が径方向に沿うように形成される。従って、筒状構造体40Bの機械的特性を向上させることができる。 When the cylindrical structure 40B is forged by the manufacturing method of the present invention using a steel round bar or steel plate manufactured by rolling as the cylindrical material 40A, as shown in FIGS. , the grain flow lines MF are formed along the shape of the tubular structure without intersecting each other and without being interrupted. More specifically, the grain flows MF are formed in the partition plate portion 42 in a direction substantially perpendicular to the plate thickness direction, i.e., along the radial direction, and in the cylindrical portion 41, continue from the partition plate portion 42. It is formed so as to reach the outer surface along the upper end surface or the lower end surface from the inner surface. The direction of the grain flows MF on the outer surface is mostly along the radial direction. Therefore, the mechanical properties of the tubular structure 40B can be improved.

また、図8(b)に示すように、筒状構造体40Bが上下対称の形状を備える場合は、円筒部41において鍛流線MFも仕切板部42の板厚の中心面について上下略対称に形成される。また、その中心線上には円柱状素材40Aを得るために鋼材製の丸棒や鋼板を圧延する際に集積した異物質が含まれている。その集積した異物質は、中心線上の鍛流線と同じ経路を辿っているので、鍛流線の代替となる。従って、形状が上下略対称かつ歪の分布も上下略対称であり、強度も上下略対称と考えられるので、後の工程で切削加工を施す場合に、上下の区別なく同じ切削荷重で切削加工を行える。また、後の工程で焼入れ等の熱処理をする場合に、歪の分布が上下略対称なので、反りの発生を低減することができる。 As shown in FIG. 8B, when the cylindrical structure 40B has a vertically symmetrical shape, the grain flow lines MF in the cylindrical portion 41 are also substantially symmetrical about the central plane of the plate thickness of the partition plate portion 42. formed in In addition, on the center line, foreign substances accumulated when rolling a steel round bar or steel plate to obtain the cylindrical material 40A are included. The accumulated foreign matter follows the same route as the grain flow line on the center line, so it can substitute for the grain flow line. Therefore, the shape is almost symmetrical in the vertical direction, the strain distribution is also almost symmetrical in the vertical direction, and the strength is also considered to be almost symmetrical in the vertical direction. can do In addition, when heat treatment such as quenching is performed in a later step, warpage can be reduced because the strain distribution is substantially symmetrical in the vertical direction.

以上説明したように、本発明の製造方法により製造した筒状構造体40Bにおける鍛流線の形状は、従来技術を用いて製造した丸棒状又はパイプ状のものを用いた加工品や板材から切削工法での加工品における鍛流線の形状とは明らかに異なる。そのため、断面の鍛流線を電解エッチングにより可視化して鍛流線を観察することで、従来技術により製造されたものか、本発明により製造されたものが容易に区別するこが可能である。 As described above, the shape of the grain flow in the cylindrical structure 40B manufactured by the manufacturing method of the present invention can be obtained by cutting from a processed product or plate material using a round bar or pipe manufactured using conventional technology. It is clearly different from the shape of the grain flow line in the product processed by the construction method. Therefore, by visualizing the grain flow lines in the cross section by electrolytic etching and observing the grain flow lines, it is possible to easily distinguish between those manufactured by the conventional technology and those manufactured by the present invention.

以上説明した本実施形態の筒状構造体40Bの製造方法及び製造装置1によれば、以下のような効果を奏する。 According to the manufacturing method and manufacturing apparatus 1 of the tubular structure 40B of the present embodiment described above, the following effects are obtained.

(1)円柱状素材40Aから前後方押出し鍛造により円筒部41と円筒部41の内部を仕切る仕切板部42とを有する筒状構造体40Bを、円柱状素材40Aの外径と少なくとも同じ大きさの内径の円環形状を有する側方型20の内側に、円柱状素材40Aの外径よりも小さい所定の直径を有する円柱形状の上型10及び下型30を設置し、上型10と下型30との間に円柱状素材40Aを配置して、上型10の加工方向の速度を所定の速度V1とし、側方型20の加工方向に沿った移動速度をV2とし、下型30の加工方向の速度を所定の速度V3とし、仕切板部42の板厚中心から筒状構造体40Bの上端までの所望の長さをH1及び下端までの所望の長さをH2とする場合に、上型10と下型30とを相対的に近づけるように移動させて円柱状素材40Aを押圧すると共に、側方型20を下記の数式(1)で表されるV2の速度で移動させて製造するものとした。

Figure 0007188234000005
但し、V1及びV3は下方向を正とし、V2は上方向を正とし、H1及びH2はV2=0で加工した場合のそれぞれのH1及びH2の実測値とする。
これにより、円筒部41の任意の場所に仕切板部42を設けることができるので、ニアネットシェイプ加工を行うことができ、また、後の工程で切削加工が必要な場合でも、切削量を削減することができる。 (1) A tubular structure 40B having a cylindrical portion 41 and a partition plate portion 42 for partitioning the inside of the cylindrical portion 41 is formed by forging from the cylindrical material 40A by front-rear extrusion forging to have a size at least equal to the outer diameter of the cylindrical material 40A. A cylindrical upper mold 10 and a lower mold 30 having a predetermined diameter smaller than the outer diameter of the cylindrical material 40A are installed inside the side mold 20 having an annular shape with an inner diameter of . The cylindrical material 40A is arranged between the mold 30, the speed in the processing direction of the upper mold 10 is set to a predetermined speed V1, the moving speed of the side mold 20 along the processing direction is set to V2, and the lower mold 30 When the speed in the processing direction is a predetermined speed V3, the desired length from the thickness center of the partition plate portion 42 to the upper end of the cylindrical structure 40B is H1, and the desired length to the lower end is H2, The upper mold 10 and the lower mold 30 are moved relatively close to each other to press the cylindrical material 40A, and the side mold 20 is moved at a speed of V2 represented by the following formula (1). shall be.
Figure 0007188234000005
However, V1 and V3 are positive in the downward direction, V2 is positive in the upward direction, and H10 and H20 are measured values of H1 and H2 when V2 = 0 .
As a result, the partition plate portion 42 can be provided at an arbitrary location on the cylindrical portion 41, so that near-net shape processing can be performed, and even if cutting is required in a later process, the amount of cutting can be reduced. can do.

(2)数式(1)において、-0.55≦V2/(V1+V3)≦-0.45となるように、V2の速度を設定するものとした。これにより、形状が上下略対称かつ歪の分布も上下略対称であり、強度も上下略対称と考えられるので、後の工程で切削加工を施す場合に、上下の区別なく同じ切削荷重で切削加工を行える。また、後の工程で焼入れ等の熱処理をする場合に、歪の分布が上下略対称なので、反りの発生を低減することができる。 (2) In formula (1), the speed of V2 is set so that -0.55≤V2/(V1+V3)≤-0.45. As a result, the shape is almost symmetrical, the strain distribution is almost symmetrical, and the strength is also almost symmetrical. can do In addition, when heat treatment such as quenching is performed in a later step, warpage can be reduced because the strain distribution is substantially symmetrical in the vertical direction.

(3)数式(1)において、V3=0とするものとした。これにより、ダイ30が固定された片押しのプレス装置を用いて加工を行うことができ、パンチ10もダイ30も両方駆動する両押しのプレス装置に比べて、簡易な設備でプレス加工を行うことができる。 (3) In formula (1), V3=0. As a result, processing can be performed using a single-pressing press device in which the die 30 is fixed, and press processing can be performed with simple equipment compared to a double-pressing press device in which both the punch 10 and the die 30 are driven. be able to.

(4)上述の数式(1)に記載の条件でV2した製造方法により製造される筒状構造体40Bは、円筒部41と円筒部41の内部を仕切る仕切板部42とを有し、筒状構造体40Bの鍛流線MFは、仕切板部42においては、径方向に沿うように形成されており、円筒部41においては、仕切板部42から続いて内側面から上端面又は下端面に沿って外側面に達するように形成されており、外側面における鍛流線MFの方向は、大部分が径方向に沿っているものとした。これにより、鍛流線MFが内部で交差せず、また、途切れることなく、筒状構造体40Bの形状に沿って形成されているので、従来の方法で製造されたもの比べて、機械的特性を向上させることができる。 (4) The cylindrical structure 40B manufactured by the manufacturing method V2 under the conditions described in the above formula (1) has the cylindrical portion 41 and the partition plate portion 42 that partitions the inside of the cylindrical portion 41, and The grain flows MF of the shaped structure 40B are formed along the radial direction in the partition plate portion 42, and in the cylindrical portion 41, continue from the partition plate portion 42 and extend from the inner surface to the upper end surface or the lower end surface. , and the direction of the grain flow lines MF on the outer surface is mostly along the radial direction. As a result, the grain flows MF are formed along the shape of the tubular structure 40B without intersecting or discontinuing inside, so that the mechanical properties are better than those manufactured by the conventional method. can be improved.

(5)上述の数式(1)、かつ、-0.55≦V2/(V1+V3)≦-0.45の条件でV2した製造方法により製造される筒状構造体40Bは筒状構造体40Bの鍛流線MFは、仕切板部42においては、径方向に沿うように形成されており、円筒部41においては、仕切板部42の板厚の中心面について上下略対称に形成されているものとした。これにより、筒状構造体40Bの形状が上下略対称かつ歪の分布も上下略対称であり、強度も上下略対称と考えられるので、後の工程で切削加工を施す場合に、上下の区別なく同じ切削荷重で切削加工を行える。また、後の工程で焼入れ等の熱処理をする場合に、歪の分布が上下対称なので、反りの発生を低減することができる。 (5) The cylindrical structure 40B manufactured by the manufacturing method V2 under the above-mentioned formula (1) and the condition of −0.55≦V2/(V1+V3)≦−0.45 is the cylindrical structure 40B. The grain flow lines MF are formed along the radial direction in the partition plate portion 42, and are formed in the cylindrical portion 41 approximately vertically symmetrical about the center plane of the plate thickness of the partition plate portion 42. and As a result, the shape of the tubular structure 40B is substantially symmetrical in the vertical direction, the strain distribution is substantially symmetrical in the vertical direction, and the strength is also considered to be substantially symmetrical in the vertical direction. Machining can be performed with the same cutting load. In addition, when heat treatment such as quenching is performed in a later step, warpage can be reduced because the strain distribution is vertically symmetrical.

以下に、図9~図14を参照して、本発明の製造方法で筒状構造体40Bを製造した実施例について説明する。 An example in which a tubular structure 40B was manufactured by the manufacturing method of the present invention will be described below with reference to FIGS. 9 to 14. FIG.

<加工条件>
直径が24mm、板厚が4.2mmのS45C(機械構造用炭素鋼)の円柱状素材40Aを供試材とし、プレス装置として、4000kNメカプレス(油圧ユニット、理研機器株式会社)を用いた。
直径17mmのダイ30を固定してダイ速度V3を0mm/sとし、直径17mmのパンチ10のパンチ速度V1を10mm/sとし、内径24mmのコンテナ20のコンテナ速度V2を0mm/sとして、予備実験として加工を行った。その結果、H1=3.30mm、H2=4.44mmの筒状構造体が得られた。H1=3.30mm、H2=4.44mmとして、コンテナ速度V2の条件式である前述の数式(1)を求めた。その結果、条件式V2=5×{log(H2/H1)/log(1.35)-1}が得られた。このV2の条件式に所望のH2/H1を代入することで、任意の場所に仕切板部42を備える筒状構造体を得ることが可能となる。
<Processing conditions>
A cylindrical material 40A of S45C (carbon steel for machine structural use) having a diameter of 24 mm and a plate thickness of 4.2 mm was used as a test material, and a 4000 kN mechanical press (hydraulic unit, Riken Kiki Co., Ltd.) was used as a press device.
The die 30 with a diameter of 17 mm was fixed, the die speed V3 was set to 0 mm/s, the punch speed V1 of the punch 10 with a diameter of 17 mm was set to 10 mm/s, and the container speed V2 of the container 20 with an inner diameter of 24 mm was set to 0 mm/s. It was processed as As a result, a tubular structure with H1 0 =3.30 mm and H2 0 =4.44 mm was obtained. With H1 0 =3.30 mm and H2 0 =4.44 mm, the conditional expression (1) for the container speed V2 was obtained. As a result, the conditional expression V2=5×{log(H2/H1)/log(1.35)−1} was obtained. By substituting the desired H2/H1 into this conditional expression of V2, it is possible to obtain a cylindrical structure having the partition plate portion 42 at an arbitrary location.

実施例1として、H2/H1=1となる筒状構造体を得るため、V2=-5mm/sの条件で加工を行った。その結果、V2=-5mm/sにおいては、H1=3.74mm、H2=3.75mmの上下略対称形状の筒状構造体が得られた。
V2=0mm/s、V2=-0.5mm/sのそれぞれの条件で得られた筒状構造体を、それぞれ中心軸を含む断面で切断して、電解エッチングを施した結果を図9に示す。
As Example 1, in order to obtain a cylindrical structure with H2/H1=1, processing was performed under the condition of V2=-5 mm/s. As a result, at V2=-5 mm/s, a cylindrical structure with H1=3.74 mm and H2=3.75 mm was obtained, which was substantially vertically symmetrical.
FIG. 9 shows the results of electroetching the tubular structures obtained under the conditions of V2=0 mm/s and V2=-0.5 mm/s, respectively, cut along the cross section containing the central axis. .

図9によれば、予備実験で得られた筒状構造体及び実施例1の筒状構造体のいずれも鍛流線は交差しておらず、途中で途切れることもなく、筒状構造体の外側面に達していることが確認された。また、実施例1においては、鍛流線は、仕切板部の板厚方向の中心線において、上下略対称となっていることが確認された。 According to FIG. 9, grain flow lines do not intersect in both the tubular structure obtained in the preliminary experiment and the tubular structure of Example 1, and are not interrupted in the middle. It was confirmed that the outer surface was reached. In addition, in Example 1, it was confirmed that the grain flows were substantially symmetrical in the vertical direction with respect to the center line in the plate thickness direction of the partition plate portion.

<強度試験>
仕切板部を有する筒状構造体は、仕上げ加工の後、各種製品に使用されるが、H1=H2となる上下対称形状を有する部品、例えば、図10(a)に示すギアや、図10(b)に示すベアリングスリーブ等の場合、変形強度においても対称性が要求される場合が多々存在する。以下、変形強度の試験として強度試験(1)及び強度試験(2)を実施して、その対称性を確認した。
<Strength test>
Cylindrical structures having partition plates are used in various products after finishing. In the case of the bearing sleeve or the like shown in (b), there are many cases where symmetry is required even in terms of deformation strength. Hereinafter, strength test (1) and strength test (2) were conducted as deformation strength tests to confirm the symmetry.

変形強度の測定を行うため試験片は、V2/V1=-0.5と、V2/V1=0の2種類の加工条件(但し、V3=0mm/s)の筒状構造体を供し、同じ上下対称の形状とするため、図11に示す寸法で切り出して作製した。V2/V1=-0.5の試験片を実施例2とし、V2/V1=0の試験片を参考例1とした。
変形強度試験は、図12(a)に示す強度試験(1)と、図12(b)に示す強度試験(2)とを行った。強度試験(1)では、押え型1及び押え型2で作製した試験片を押さえ、試験片の外周突出部を、潰し型を用いて筒状構造体の板厚方向上方から下方に向けて押し込み量1.2mmまで圧縮を行った。強度試験(2)では、押え型1及び押え型2で作製した試験片を押さえ、試験片の外周突出部を、筒状構造体の径方向外側から内側に向けて押し込み量2.0mmまで圧縮を行った。強度試験(1)及び(2)は、2種の試験片について、中心線よりも上面側と下面側の両方でそれぞれ行った。強度試験(1)の結果を図13に、強度試験(2)の結果を図14に示す。
In order to measure the deformation strength, the test pieces were provided with two types of processing conditions, V2 / V1 = -0.5 and V2 / V1 = 0 (where V3 = 0 mm / s). In order to obtain a vertically symmetrical shape, it was cut to the dimensions shown in FIG. A test piece with V2/V1=−0.5 was taken as Example 2, and a test piece with V2/V1=0 was taken as Reference Example 1.
As the deformation strength test, a strength test (1) shown in FIG. 12(a) and a strength test (2) shown in FIG. 12(b) were performed. In the strength test (1), the test piece prepared with the pressing die 1 and the pressing die 2 is pressed, and the outer peripheral protruding portion of the test piece is pressed downward in the plate thickness direction of the tubular structure using a crushing die. Compression was performed to an amount of 1.2 mm. In the strength test (2), the test piece prepared by the pressing die 1 and the pressing die 2 was pressed, and the outer peripheral protruding part of the test piece was compressed from the radial outside to the inside of the cylindrical structure to a pushing amount of 2.0 mm. did Strength tests (1) and (2) were performed on two types of test pieces on both the upper surface side and the lower surface side from the center line. The results of the strength test (1) are shown in FIG. 13, and the results of the strength test (2) are shown in FIG.

いずれの試験においても、実施例2の試験片は、変形強度にほとんど差が見られなかったが、参考例1の試験片は、上面側と下面側とで変形強度に差が生じ、特に、横面からの変形強度に大きい差が生じていた。
以上の変形強度試験によれば、鍛流線が上下非対称である参考例1では、変形強度も上下非対称となることが分かった。それに対して、形状が上下対称、かつ、鍛流線が上下略対称である実施例2では、変形強度も上下対称となることが確認された。
In any test, the test piece of Example 2 showed almost no difference in deformation strength, but the test piece of Reference Example 1 had a difference in deformation strength between the upper surface side and the lower surface side. A large difference occurred in the deformation strength from the lateral surface.
According to the deformation strength test described above, it was found that the deformation strength was also vertically asymmetrical in Reference Example 1, in which the grain flows were vertically asymmetrical. On the other hand, in Example 2, in which the shape is vertically symmetrical and the grain flow lines are substantially vertically symmetrical, it was confirmed that the deformation strength is also vertically symmetrical.

以上、本発明の筒状構造体の製造方法及び製造装置について実施形態及び実施例について説明したが、本発明は、上述した実施形態及び実施例に制限されるものではなく、適宜変更が可能である。 Although the embodiments and examples of the method and apparatus for manufacturing a tubular structure according to the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and can be modified as appropriate. be.

例えば、上述の実施形態及びでは、ダイ速度を0とする場合について説明したが、パンチとダイを両方駆動して、プレス加工を行ってもよい。 For example, in the above embodiments and the case where the die speed is set to 0, both the punch and the die may be driven to perform press working.

1 製造装置
10 上型(パンチ)
20 側方型(コンテナ)
30 下型(ダイ)
40A 円柱状素材
40B 筒状構造体
41 円筒部
42 仕切板部
MF 鍛流線
1 manufacturing device 10 upper die (punch)
20 lateral type (container)
30 lower mold (die)
40A Cylindrical material 40B Cylindrical structure 41 Cylindrical portion 42 Partition plate portion MF Grain flow

Claims (6)

円柱状素材から前後方押出し鍛造により円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体を製造する製造方法であって、
前記円柱状素材の外径と少なくとも同じ大きさの内径の円環形状を有する側方型の内側に、前記円柱状素材の外径よりも小さい所定の直径を有する円柱形状の上型及び下型を設置し、前記上型と前記下型との間に前記円柱状素材を配置して、
前記上型の加工方向の速度を所定の速度V1とし、前記側方型の加工方向に沿った移動速度をV2とし、前記下型の加工方向の速度を所定の速度V3とし、前記仕切板部の板厚中心から前記筒状構造体の上端までの所望の長さをH1及び下端までの所望の長さをH2とする場合に、前記上型と前記下型とを相対的に近づけるように移動させて前記円柱状素材を押圧すると共に、前記側方型を下記の数式(1)で表されるV2の速度で移動させる製造方法。
Figure 0007188234000006
但し、V1及びV3は下方向を正とし、V2は上方向を正とし、H10及びH20はV2=0で加工した場合のそれぞれのH1及びH2の実測値とし、H1=H2である場合を除く
A manufacturing method for manufacturing a cylindrical structure having a cylindrical portion and a partition plate portion for partitioning the interior of the cylindrical portion by front-rear extrusion forging from a cylindrical raw material,
Cylindrical upper and lower dies each having a predetermined diameter smaller than the outer diameter of the cylindrical material inside an annular side mold having an inner diameter at least as large as the outer diameter of the cylindrical material. is installed, and the cylindrical material is arranged between the upper mold and the lower mold,
The speed of the upper mold in the processing direction is set to a predetermined speed V1, the speed of movement of the side mold along the processing direction is set to V2, the speed of the lower mold in the processing direction is set to a predetermined speed V3, and the partition plate portion When the desired length from the thickness center of the cylindrical structure to the upper end of the cylindrical structure is H1 and the desired length to the lower end is H2, the upper mold and the lower mold are relatively close to each other. A manufacturing method in which the side die is moved at a speed of V2 represented by the following formula (1) while pressing the cylindrical material by moving the side die.
Figure 0007188234000006
However, V1 and V3 are positive in the downward direction, V2 is positive in the upward direction, H10 and H20 are the measured values of H1 and H2 when V2=0, and H1=H2. Except .
前記数式(1)において、-0.55≦V2/(V1+V3)≦-0.45となるように、V2の速度を設定する請求項1に記載の製造方法。
但し、V1=-V3の場合は、V2=0とする。
2. The manufacturing method according to claim 1, wherein the speed of V2 is set such that -0.55≤V2/(V1+V3)≤-0.45 in the formula (1).
However, when V1=-V3, V2=0.
前記数式(1)において、V3=0とする請求項1又は2に記載の製造方法。 3. The manufacturing method according to claim 1, wherein V3=0 in said formula (1). 円柱状素材から前後方押出し鍛造により円筒部と該円筒部の内部を仕切る仕切板部とを有する筒状構造体を製造するための製造装置であって、
前記円柱状素材の外径と少なくとも同じ大きさの内径の円環形状を有し、加工方向に沿って移動可能な側方型と、
前記側方型の内側に設置され、前記円柱状素材の外径よりも小さい所定の直径を有する円柱形状の上型及び下型と、を備え、
前記上型の加工方向の速度を所定の速度V1とし、前記側方型の加工方向に沿った移動速度をV2とし、前記下型の加工方向の速度を所定の速度V3とし、前記仕切板部の板厚中心から前記筒状構造体の上端までの所望の長さをH1及び下端までの所望の長さをH2とする場合に、前記上型と前記下型とを相対的に近づけるように移動させ、前記側方型を下記の数式(1)で表されるV2の速度で移動させるよう制御する製造装置。
Figure 0007188234000007
但し、V1及びV3は下方向を正、V2は上方向を正、H10及びH20はV2=0で加工した場合のそれぞれのH1及びH2の実測値とし、H1=H2である場合を除く
A manufacturing apparatus for manufacturing a cylindrical structure having a cylindrical portion and a partition plate portion for partitioning the interior of the cylindrical portion by front-rear extrusion forging from a cylindrical raw material,
a lateral die having an annular shape with an inner diameter at least as large as the outer diameter of the cylindrical material and movable along the processing direction;
a cylindrical upper mold and a lower mold that are installed inside the side mold and have a predetermined diameter smaller than the outer diameter of the cylindrical material;
The speed of the upper mold in the processing direction is set to a predetermined speed V1, the speed of movement of the side mold along the processing direction is set to V2, the speed of the lower mold in the processing direction is set to a predetermined speed V3, and the partition plate portion When the desired length from the thickness center of the cylindrical structure to the upper end of the cylindrical structure is H1 and the desired length to the lower end is H2, the upper mold and the lower mold are relatively close to each other. A manufacturing apparatus that controls the movement of the side die at a speed of V2 represented by the following formula (1).
Figure 0007188234000007
However, V1 and V3 are positive in the downward direction, V2 is positive in the upward direction, and H10 and H20 are measured values of H1 and H2 when V2=0, respectively , except when H1=H2 .
前記数式(1)において、-0.55≦V2/(V1+V3)≦-0.45となるように、V2の速度を設定する請求項4に記載の製造装置。
但し、V1=-V3の場合は、V2=0とする。
5. The manufacturing apparatus according to claim 4, wherein the speed of V2 is set such that -0.55≤V2/(V1+V3)≤-0.45 in the formula (1).
However, when V1=-V3, V2=0.
前記数式(1)において、V3=0とする請求項4又は5に記載の製造装置。 6. The manufacturing apparatus according to claim 4, wherein V3=0 in said formula (1).
JP2019065073A 2019-03-28 2019-03-28 Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure Active JP7188234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065073A JP7188234B2 (en) 2019-03-28 2019-03-28 Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065073A JP7188234B2 (en) 2019-03-28 2019-03-28 Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure

Publications (2)

Publication Number Publication Date
JP2020163412A JP2020163412A (en) 2020-10-08
JP7188234B2 true JP7188234B2 (en) 2022-12-13

Family

ID=72715531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065073A Active JP7188234B2 (en) 2019-03-28 2019-03-28 Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure

Country Status (1)

Country Link
JP (1) JP7188234B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007260A (en) 2004-06-24 2006-01-12 Kobe Steel Ltd Method for producing cylindrical member or cylindrical member with bottom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605382B2 (en) * 1977-01-19 1985-02-09 本田技研工業株式会社 Cold forging forming equipment
JPS605382A (en) * 1983-06-24 1985-01-11 Mitsubishi Heavy Ind Ltd Image processing system
JP3436387B2 (en) * 1993-06-25 2003-08-11 日本精工株式会社 Manufacturing method of outer ring for ball bearing
JP3366534B2 (en) * 1996-09-19 2003-01-14 山陽特殊製鋼株式会社 Warm or hot front-rear simultaneous extrusion high-speed die forging method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007260A (en) 2004-06-24 2006-01-12 Kobe Steel Ltd Method for producing cylindrical member or cylindrical member with bottom

Also Published As

Publication number Publication date
JP2020163412A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
Baek et al. Numerical study on the evolution of surface defects in wire drawing
KR101338954B1 (en) a apparatus and method of ring rolling for product with asymmetrical cross section
Hrudkina et al. Mathematical and computer simulation for the appearance of dimple defect by cold combined extrusion
Alves et al. Cold forging of gears: experimental and theoretical investigation
Paramasivam et al. Numerical simulation of cold orbital forging process for gear manufacturing
Gürün et al. Experimental examination of effects of punch angle and clearance on shearing force and estimation of shearing force using fuzzy logic
JP7188234B2 (en) Cylindrical structure, manufacturing method and manufacturing apparatus for cylindrical structure
Presz et al. Application of semi-physical modeling of interface surface roughness in design of pre-stressed microforming dies
CN103974788B (en) The manufacture method of seamless steel pipe
RU2602936C2 (en) Method of extrusion parts such as glasses and device for its implementation
Presz Scale effect in design of the pre-stressed micro-dies for microforming
RU2352417C2 (en) Pressing method of profiles and matrix for implementation of current method
Montazeri‐Pour et al. Multi‐Axial Incremental Forging and Shearing as a New Severe Plastic Deformation Processing Technique
Bartnicki Numerical analysis of rolling extrusion process of a hollow hub
RU2570268C1 (en) Method of plastic structuring of metal
RU2626253C2 (en) Method of shaping bicurved sheet parts
RU2492965C1 (en) Method of forming long-length hollow articles from powders and plasticised materials and device to this end (versions)
Piwnik et al. Experimental and FE analysis of aluminium alloy plastic flow in the forward microextrusion processes
Đukić et al. Limit values of maximal logarithmics strain in multi-stage cold forming operations
JP2009289018A (en) Method for predicting upset shape of circular forging
RU2315117C2 (en) Method of deformation treatment of materials and device for realization of this method
Jadhav et al. Assessment & Optimization of influence of some process parameters on sheet metal blanking
Saffar et al. On the effects of eccentricity in precision forging process
Tan et al. Forming box-shaped ends in circular tubes
Rosca et al. Optical study for springback prediction, thickness reduction and forces variations on single point incremental forming

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7188234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151