JP2007301604A - Process design method and forging control method in ring forging - Google Patents

Process design method and forging control method in ring forging Download PDF

Info

Publication number
JP2007301604A
JP2007301604A JP2006132873A JP2006132873A JP2007301604A JP 2007301604 A JP2007301604 A JP 2007301604A JP 2006132873 A JP2006132873 A JP 2006132873A JP 2006132873 A JP2006132873 A JP 2006132873A JP 2007301604 A JP2007301604 A JP 2007301604A
Authority
JP
Japan
Prior art keywords
forging
length
outer diameter
ring material
large ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006132873A
Other languages
Japanese (ja)
Other versions
JP4783202B2 (en
Inventor
Hideki Kakimoto
英樹 柿本
Takanori Kagawa
恭徳 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006132873A priority Critical patent/JP4783202B2/en
Publication of JP2007301604A publication Critical patent/JP2007301604A/en
Application granted granted Critical
Publication of JP4783202B2 publication Critical patent/JP4783202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a design method of a forging process, in which a right cylindrical shell such as a main body of a large-sized pressure container is effectively formed in a target shape by ring forging while drop in yield is prevented, and a forging control method using it. <P>SOLUTION: The design method of a forging process comprises: a step of setting an outer diameter D1, wall thickness T1, length L1, target rolling draft S, and rolling draft P per go-around when starting forging of a large-sized ring material; a step of determining the number of necessary go-around N; and a step of preparing a prediction formula which formulates the outer diameter D2 and the length L2 after deformation (enlarged diameter) for every go-around of the large-sized ring material and is corrected by forge data of an actual device. This design method controls the outer diameter and the length in the ring forging process of the actual device using the predicted outer diameter D2 and the length L2 per go-around. As a result, precise prediction for the outer diameter and the length of a forging finish material is possible, to thereby effectively determine material shapes or forging conditions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、リアクターなどの、円筒状の端部が口絞りされた圧力容器用大型リング部材の鍛造工程設計方法とこの工程設計方法を用いた鍛造制御方法に関する。   The present invention relates to a forging process design method for a large ring member for a pressure vessel having a cylindrical end portion squeezed, such as a reactor, and a forging control method using this process design method.

化工機器用リアクターや原子力用圧力容器などの大型圧力容器は、その本体部の直円筒状シェル(ストレートシェル)の端部に設けた口絞り部に、半球形状の鏡板が接合されて形成されている。この直円筒状シェル(ストレートシェル)の鍛造はリング鍛造方法によって行なわれる。このリング鍛造方法は、図6に模式的に平面図を示すように、所定温度に加熱されたリング状素材1に芯金2を挿入し、鍛造プレスのプレスヘッドに固定した上金敷3により芯金2との間でリング状素材1を圧下して材料を円周方向に流動させ、芯金2を一定角度回転させることにより圧下領域を移動させて、この圧下を、肉厚および外径寸法が目標寸法となるまで、リング状素材1の全周にわたって通常数周程度、圧下を繰り返すことにより所定形状に成形する逐次鍛造方法である。このようなリング鍛造装置は、例えば、特許文献1に開示されている。このリング鍛造による成形工程は拡径工程と呼ばれ、従来、この拡径工程の設計は、鍛造前後で、前記直円筒状シェルの断面積の変化がなく長手方向(軸方向)にも変化しないとして行なわれていた。
特開昭61−232033号公報
Large pressure vessels such as reactors for chemical equipment and nuclear pressure vessels are formed by joining a hemispherical end plate to the mouthpiece provided at the end of a straight cylindrical shell (straight shell) of the main body. Yes. The forging of the straight cylindrical shell (straight shell) is performed by a ring forging method. In this ring forging method, as shown schematically in a plan view in FIG. 6, a core metal 2 is inserted into a ring-shaped material 1 heated to a predetermined temperature and fixed to a press head of a forging press by a core metal 3. The ring-shaped material 1 is squeezed between the metal 2 to cause the material to flow in the circumferential direction, and the core metal 2 is rotated by a certain angle to move the squeezed region. This is a sequential forging method in which the rolling is repeatedly formed on the ring-shaped material 1 until it reaches the target dimension, and is usually formed into a predetermined shape by repeating the reduction. Such a ring forging device is disclosed in Patent Document 1, for example. This forming process by ring forging is called a diameter expansion process. Conventionally, the design of this diameter expansion process is the same before and after forging, and there is no change in the cross-sectional area of the straight cylindrical shell and no change in the longitudinal direction (axial direction). It was done as.
JP-A-61-232033

しかし、前記直円筒状シェルの形状は、外径Φ3000〜Φ6000mm、肉厚150〜500mm、長さ2500〜4000mmとその寸法範囲が幅広く、鍛造加工条件によって、拡径に伴い、直円筒状シェルの断面積が変化し、長手方向に伸縮する可能性があり、適正形状が得られないおそれがある。一般に、大型圧力容器などの鍛造製品では、鍛造工程設計は、工程設計者の経験と実機における試作の繰り返しにより行なわれているため、短期間での製品製造可否判断を行なうことができず、歩留も低下し、コストアップの原因となっていた。   However, the shape of the straight cylindrical shell has an outer diameter of Φ3000 to Φ6000 mm, a wall thickness of 150 to 500 mm, a length of 2500 to 4000 mm, and a wide range of dimensions. The cross-sectional area changes, and there is a possibility that it expands and contracts in the longitudinal direction, and there is a possibility that an appropriate shape cannot be obtained. In general, forging products such as large pressure vessels, the forging process design is carried out based on the experience of the process designer and repeated trial production on the actual machine, so it is not possible to determine whether or not the product can be manufactured in a short period of time. Yield also declined, causing cost increases.

そこで、この発明の課題は、大型圧力容器の本体部などの直円筒状シェルをリング鍛造により成形する場合に、鍛造過程での被成形材の形状予測を取り入れて、効率よく目標形状に成形し、歩留低下を防止することが可能な鍛造工程設計法方法と、それを用いた鍛造制御方法を提供することである。   Therefore, the subject of the present invention is that when a straight cylindrical shell such as a main body of a large pressure vessel is formed by ring forging, the shape of the material to be molded in the forging process is incorporated and the target shape is efficiently formed. Another object is to provide a forging process design method capable of preventing the yield reduction and a forging control method using the same.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係るリング鍛造における工程設計方法は、芯金により大型リング材の内周面を支持し、この大型リング材の外周面を金敷により加圧して大型リング材を回転させることにより圧下領域を移動させて大型リング材の全周にわたって所要の周回数だけ圧下を繰り返すことにより、所定の形状に拡径するリング鍛造における工程設計方法であって、前記大型リング材の鍛造開始時の外径D1、肉厚T1および長さL1と、目標圧下量Sと、1周回あたりの圧下量Pを設定するステップと、必要周回数Nを決定するステップと、前記大型リング材の1周回ごとの変形後の外径D2および長さL2を定式化し、この定式を実機鍛造データにより修正した予測式を用いて前記外径D2および長さL2をそれぞれ予測するステップを備えたことを特徴とする。   In the process design method in ring forging according to claim 1, the inner peripheral surface of a large ring material is supported by a core metal, the outer peripheral surface of the large ring material is pressed by an anvil, and the large ring material is rotated to thereby reduce the rolling region. Is a process design method in ring forging in which the diameter is expanded to a predetermined shape by repeating the required number of rounds over the entire circumference of the large ring material, and the outer diameter at the start of forging of the large ring material D1, thickness T1 and length L1, target reduction amount S, step of setting reduction amount P per round, step of determining required number of rounds N, and deformation of the large ring material per round The step of formulating a rear outer diameter D2 and a length L2 and predicting the outer diameter D2 and the length L2 using prediction formulas obtained by correcting this formula using actual machine forging data are provided. And butterflies.

このように、大型リング材の鍛造時に、周回ごとに、前記リング材の外径および長さを予測できるため、目標形状を得るための圧下量や周回数など鍛造条件を効率よく決定することができる。そして、予測した外径および長さを、実機リング鍛造時の周回ごとの目標寸法とすることができる。   Thus, since the outer diameter and length of the ring material can be predicted for each turn during forging of the large ring material, it is possible to efficiently determine forging conditions such as the amount of rolling and the number of turns for obtaining the target shape. it can. And the estimated outer diameter and length can be made into the target dimension for every round at the time of a real machine ring forge.

請求項2に係るリング鍛造における工程設計方法は、前記変形後の外径D2を以下の(1)式および(2)式を用いて、前記変形後の長さL2を以下の(3)式、(4)式および(5)式を用いてそれぞれ予測することを特徴とする。
D2=f(D2c)-------------------------------------(1)
D2c=T2+(T1/T2)×(D1−T1)-----------(2)
L2=L1×exp(−g(εθc)−ε)--------------(3)
εθc=ln((D2−T2)/(D1−T1))----------(4)
ε=ln(T2/T1)--------------------------------(5)
ここで、D1およびT1は、鍛造開始時(素材)の外径および肉厚を、T2は変形(拡径)後の肉厚を、εθcは円周方向のひずみ(以下、円周ひずみと記す)を、εは肉厚方向(半径方向)のひずみ(以下、肉厚ひずみと記す)をそれぞれ示し、f(D2c)およびg(εθc)は、大型リング材の材質に依存する関数である。
The process design method in the ring forging according to claim 2 uses the following expression (1) and (2) as the outer diameter D2 after deformation, and sets the length L2 after deformation as the following expression (3). , (4) and (5) are used for prediction, respectively.
D2 = f (D2c) ------------------------------- (1)
D2c = T2 + (T1 / T2) × (D1-T1) --------- (2)
L2 = L1 × exp (−g (ε θ c) −ε t ) ------------- (3)
ε θ c = ln ((D2-T2) / (D1-T1)) --------- (4)
ε t = ln (T2 / T1) -------------------------------- (5)
Here, D1 and T1 are the outer diameter and thickness at the start of forging (material), T2 is the thickness after deformation (expansion), and ε θ c is the strain in the circumferential direction (hereinafter referred to as circumferential strain). Ε t indicates the strain in the thickness direction (radial direction) (hereinafter referred to as the thickness strain), and f (D2c) and g (ε θ c) depend on the material of the large ring material Function.

前記大型リング材のリング鍛造後の形状予測を高精度に行なうためには、大型リング材の素材形状と鍛造条件(圧下量)から、鍛造形状の長手方向すなわち大型リング材の軸方向の伸縮を予測する必要がある。拡径工程内で体積一定則が成り立つと仮定すると、以下の(6)式が成立する。(6)式で、εは肉厚ひずみ、εθは円周ひずみ、εは長さ方向のひずみ(以下、長さひずみと記す)である。
ε+εθ+ε=0 ----------------(6)
(6)式の肉厚ひずみεは前記(5)式により、また、長さひずみεは、(7)式でそれぞれ表わすことができる。
ε=ln(T2/T1)--------------(5)
ε=ln(L2/L1)--------------(7)
また、円周ひずみεθを拡径前後の平均直径(D1−T1)および(D2−T2)で表すと、(8)式のように定式化される。
εθc=ln((D2−T2)/(D1−T1))-----------(8)
拡径前後の断面積が変化しないと仮定すると、拡径後の外径D2cは、上記の(2)式のように定式化される。
D2c=T2+(T1/T2)×(D1−T1)------(2)
図1は、上記(2)式で算出した拡径後の外径D2cに対して、Cr−Mo鋼等の圧力容器用の大型リング材の実機鍛造時に測定した外径D2aをプロットした結果である。図1から、算出外径D2cと実測外径D2aとは良好な相関を示し、測定した外径D2aと算出外径D2cとの関係は(9)式で表すことができる。
D2a=0.9928×D2c+44.82=f(D2c)------------(9)
したがって、拡径後(変形後)の外径D2は、(2)式で得られる算出外径D2cを用いて、(1)式に示したように、予測することが可能である。
D2=f(D2c)-------------------------------------(1)
算出外径D2cを用いて、(9)式により求めたDaをD2として、一般には(1)式により求めたD2を上記(4)式に代入すれば、円周ひずみεθcを求めることができる。
In order to predict the shape of the large ring material after ring forging with high accuracy, the longitudinal direction of the forged shape, that is, the axial direction of the large ring material, is extended from the material shape of the large ring material and the forging conditions (rolling amount). Need to predict. Assuming that the constant volume rule is established in the diameter expansion process, the following equation (6) is established. In Equation (6), ε t is a thickness strain, ε θ is a circumferential strain, and ε l is a strain in the length direction (hereinafter referred to as a length strain).
ε t + ε θ + ε l = 0 (6)
The thickness strain ε t in the equation (6) can be expressed by the above equation (5), and the length strain ε l can be expressed by the equation (7).
ε t = ln (T2 / T1) ------------- (5)
ε l = ln (L2 / L1) ------------- (7)
Further, when the circumferential strain ε θ is expressed by average diameters before and after the diameter expansion (D1-T1) and (D2-T2), it is formulated as shown in the equation (8).
ε θ c = ln ((D2-T2) / (D1-T1)) ---------- (8)
Assuming that the cross-sectional area before and after the diameter expansion does not change, the outer diameter D2c after the diameter expansion is formulated as in the above equation (2).
D2c = T2 + (T1 / T2) × (D1-T1) ----- (2)
FIG. 1 is a result of plotting the outer diameter D2a measured at the time of actual forging of a large ring material for a pressure vessel such as Cr-Mo steel against the outer diameter D2c after the diameter expansion calculated by the above equation (2). is there. From FIG. 1, the calculated outer diameter D2c and the measured outer diameter D2a show a good correlation, and the relationship between the measured outer diameter D2a and the calculated outer diameter D2c can be expressed by Equation (9).
D2a = 0.9928 × D2c + 44.82 = f (D2c) ----------- (9)
Therefore, the outer diameter D2 after diameter expansion (after deformation) can be predicted as shown in the expression (1) using the calculated outer diameter D2c obtained by the expression (2).
D2 = f (D2c) ------------------------------- (1)
Using the calculated outer diameter D2c, Da obtained by the equation (9) is set as D2, and generally when the D2 obtained by the equation (1) is substituted into the above equation (4), the circumferential strain ε θ c is obtained. Can do.

図2は、上記(5)式〜(7)式から得られる理論値の円周ひずみεθ(=−ε−ε)に対して、実機寸法測定結果と上記定式化した(8)式から得られる円周ひずみεθcをプロットした結果である。(5)式の肉厚ひずみεおよび(7)式の長さひずみεは、いずれも実測寸法から求めたものである。図2から、前記の理論円周ひずみεθと実機寸法測定結果を用いて(8)式から求めた計算円周ひずみεθcとは、円周ひずみが大きくなるに伴って差が生じてくるが、図2中に示したように、(10)式に示す2次式で近似することにより、εθとεθcとに良好な相関が認められる。
εθ=−0.2987×(εθc)+1.0702×εθc=g(εθc)
-----(10)
したがって、円周ひずみεθは、(4)式で得られる円周ひずみεθcを用いて、一般には(11)式に示すように、予測することが可能である。
εθ=g(εθc)-----------------------------------------(11)
前記円周ひずみεθcを用いて(10)式により(一般には(11)式により)予測した円周ひずみεθおよび(5)式で算出した肉厚ひずみεを(3)式に代入すると、鍛造開始時の大型リング材(素材)の長さL1を用いて、鍛造後の長さL2を前記(3)式の予測式で予測することができる。図3は、Cr−Mo鋼等の圧力容器用の大型リング材について、前記(3)式を用いて予測した変形後の長さL2と実測長さLaとを比較した結果を示したものである。同図からわかるように、予測長さL2は、実測長さLaと5%以内の精度で一致することが確認された。
FIG. 2 shows the actual machine dimension measurement result and the above formula for the theoretical circumferential strain ε θ (= −ε t −ε l ) obtained from the above formulas (5) to (7) (8). It is the result of plotting the circumferential strain ε θ c obtained from the equation. The thickness strain ε t in the equation (5) and the length strain ε l in the equation (7) are both obtained from the actually measured dimensions. From FIG. 2, the theoretical circumferential strain ε θ and the calculated circumferential strain ε θ c obtained from the equation (8) using the actual machine dimension measurement results differ as the circumferential strain increases. come, but as shown in FIG. 2, by approximating by a quadratic expression shown in equation (10), is observed a good correlation with epsilon theta and epsilon theta c.
ε θ = −0.2987 × (ε θ c) 2 + 1.0702 × ε θ c = g (ε θ c)
----- (10)
Therefore, the circumferential strain ε θ can be predicted using the circumferential strain ε θ c obtained by the equation (4), as generally shown by the equation (11).
ε θ = g (ε θ c) -------------------------- (11)
Using said circumferential strain epsilon theta c (10) by equation (generally (11) by) the thickness strain epsilon t calculated in the circumferential predicted strain epsilon theta and (5) (3) to By substituting, the length L2 after forging can be predicted by the prediction formula (3) using the length L1 of the large ring material (raw material) at the start of forging. FIG. 3 shows the result of comparison between the deformed length L2 predicted using the equation (3) and the measured length La for a large ring material for a pressure vessel such as Cr—Mo steel. is there. As can be seen from the figure, it was confirmed that the predicted length L2 coincided with the measured length La with an accuracy within 5%.

このように、実機寸法測定結果を用いて、(1)式および(11)式に示したように、変形(拡径)後の外径D2および円周ひずみεθを、実機鍛造データに基づいてf(D2c)、g(εθc)のように関数化することにより、周回ごとに変形後の長さL2を(3)式により簡便かつ精度よく予測することができる。なお、前記f(D2c)、g(εθc)は大型リング材の材質に依存する関数である。 Thus, by using the actual dimensions measurement result, based on (1) as shown in formula and (11), deform the outer diameter D2 and circumferential strain epsilon theta after (diameter), the actual forging data Thus, by making a function such as f (D2c) and g (ε θ c), the length L2 after deformation can be predicted easily and accurately by Equation (3) for each turn. Note that the f (D2c), g (ε θ c) is a function that depends on the material of the large ring material.

請求項3に係るリング鍛造における工程設計方法は、芯金により大型リング材の内周面を支持し、この大型リング材の外周面を金敷により加圧して前記大型リング材を回転させることにより圧下領域を移動させて前記大型リング材の全周にわたって所要の周回数だけ圧下を繰り返すことにより、所定の形状に拡径するリング鍛造における鍛造制御方法であって、請求項2に記載した工程設計方法を用いて前記大型リング材の1周回ごとの変形後の外径D2および長さL2を予測し、前記1周回ごとの大型リング材の、外径D2a、長さL2aおよび肉厚T2aを計測し、この計測した外径D2aおよび長さL2aと、前記予測した外径D2およびL2をそれぞれ比較し、計測した外径D2aおよび長さL2aと予測した外径D2および長さL2との差ΔDおよびΔLが、所定の範囲にないときに、圧下量を修正し、累積圧下量が、目標圧下量Sに達したときに鍛造を終了するようにしたことを特徴とする。   A process design method in ring forging according to claim 3 is a method in which the inner peripheral surface of a large ring material is supported by a core metal, the outer peripheral surface of the large ring material is pressed by an anvil and the large ring material is rotated. The process design method according to claim 2, wherein the forging control method is for ring forging in which the diameter is expanded to a predetermined shape by moving a region and repeating the reduction for a predetermined number of times over the entire circumference of the large ring material. Is used to predict the outer diameter D2 and length L2 of the large ring material after deformation for each round, and measure the outer diameter D2a, length L2a and wall thickness T2a of the large ring material for each round. The measured outer diameter D2a and length L2a are compared with the predicted outer diameter D2 and L2, respectively, and the measured outer diameter D2a and length L2a are predicted as the outer diameter D2 and length L. The difference ΔD and ΔL and is, when not in the predetermined range, to correct the pressure amount, a cumulative reduction ratio, characterized in that so as to end the forged when it reaches the target pressure amount S.

このように、上記の工程設計方法により、1周回ごとの外径D2および長さL2を予測してそれぞれ目標外径および目標長さとし、この目標外径および目標長さと実機リング鍛造における1周回ごとの実測外径および長さと比較して圧下量を調節することにより、実機リング鍛造において外径および長さを簡便かつ精度よく制御することができる。   Thus, by the above process design method, the outer diameter D2 and the length L2 for each turn are predicted and set as the target outer diameter and the target length, respectively, and the target outer diameter and the target length and each turn in the actual ring forging. By adjusting the amount of reduction compared to the actually measured outer diameter and length, the outer diameter and length can be controlled easily and accurately in actual ring forging.

この発明では、大型リング材のリング鍛造過程で、予め実機鍛造時の寸法測定結果に基づいて補正した外径の予測式および長さの予測式を用いて、周回ごとに外径および長さを予測できるようにしたので、目標形状を得るための素材形状および圧下量や周回数などの鍛造条件を効率よく決定し、歩留低下を防止することができる。また、予測した外径および長さを、実機リング鍛造時の周回ごとの目標寸法として、実機リング鍛造における1周回ごとの実測外径および長さと比較して圧下量を調節することにより、実機リング鍛造において外径および長さを簡便かつ精度よく制御することができる。   In this invention, in the ring forging process of the large ring material, the outer diameter and the length are determined for each turn using the prediction formula for the outer diameter and the prediction formula for the length, which are corrected based on the dimension measurement result at the time of actual machine forging. Since the prediction can be performed, the material shape for obtaining the target shape and the forging conditions such as the reduction amount and the number of laps can be determined efficiently, and the yield reduction can be prevented. In addition, the predicted outer diameter and length are set as target dimensions for each turn during actual ring forging, and the actual ring is adjusted by adjusting the reduction amount compared to the actually measured outer diameter and length for each turn in actual ring forging. In forging, the outer diameter and length can be easily and accurately controlled.

以下に、この発明の実施形態を添付の図4および図5に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4 and 5.

図4は、実施形態のリング鍛造における工程設計方法の流れを示したものである。まず、大型リング素材(鍛造開始時形状)の外径D1、肉厚T1、長さL1、目標圧下量S、および1周回あたりの圧下量Pを設定する(S10)。この1周回あたりの圧下量Pは、鍛造荷重などの設備的制約条件等により定められる1周回あたりの許容圧下量PAを超えないように、通常、各周回で等しく設定される。そして、必要周回数N(N=S/P)を決定する(S20)。次に、各周回i(i=1〜N)について、累積圧下量Psum(i)から変形後の肉厚T2(i)を求め、(1)式および(2)式を用いて変形後の外径D2(i)を予測し、この変形後の外径D2および肉厚T2を用いて、(3)式〜(5)式から変形後の長さL2(i)を予測する(S30)。各周回の過程で、累積圧下量Psum(i)が計算され(S40)、この各周回後の外径D2(i)および長さL2(i)の予測は、周回数がNに達するまで行なわれる(S50)。そして、累積圧下量Psum(i)(i=1〜N)が目標圧下量Sに達したかどうかを判定し(S60)、目標圧下量Sに達すると、各周回後の被成形材(大型リング材)の形状、すなわち外径D2(i)、長さL2(i)、肉厚T2(i)が出力され(S70)、鍛造工程設計の1サイクルが終了する。目標圧下量に達していない場合には、不足している圧下量(S−Psum(N))分だけさらに鍛造を継続する(S80)。このような鍛造工程設計方法により、拡径後の大型リング材の外径とともに、長手方向の変形、すなわち伸縮を予測することができる。また、各周回への圧下量Pの配分やその結果として周回数を変化させることにより、前記工程設計を最適化することも可能である。   FIG. 4 shows the flow of the process design method in the ring forging of the embodiment. First, an outer diameter D1, a wall thickness T1, a length L1, a target reduction amount S, and a reduction amount P per round are set for a large ring material (shape at the start of forging) (S10). The rolling reduction amount P per round is normally set equal in each round so as not to exceed the allowable rolling reduction PA per round determined by equipment constraints such as forging load. Then, the necessary number of rotations N (N = S / P) is determined (S20). Next, for each turn i (i = 1 to N), the thickness T2 (i) after deformation is obtained from the cumulative reduction amount Psum (i), and the deformation after the deformation is calculated using the equations (1) and (2). The outer diameter D2 (i) is predicted, and the deformed length L2 (i) is predicted from the expressions (3) to (5) using the deformed outer diameter D2 and the wall thickness T2 (S30). . In the course of each round, the cumulative reduction amount Psum (i) is calculated (S40), and the outer diameter D2 (i) and the length L2 (i) after each round are predicted until the number of rounds reaches N. (S50). Then, it is determined whether or not the cumulative reduction amount Psum (i) (i = 1 to N) has reached the target reduction amount S (S60). The shape of the ring material), that is, the outer diameter D2 (i), the length L2 (i), and the wall thickness T2 (i) are output (S70), and one cycle of the forging process design is completed. When the target reduction amount has not been reached, forging is continued for the insufficient reduction amount (S-Psum (N)) (S80). By such a forging process design method, deformation in the longitudinal direction, that is, expansion and contraction can be predicted together with the outer diameter of the large ring material after diameter expansion. It is also possible to optimize the process design by distributing the rolling amount P to each lap and changing the number of laps as a result.

図5は、上記鍛造工程設計方法を用いた実施形態の鍛造制御方法の流れを示したものである。まず、図4に示した工程設計方法の場合と同様に、鍛造開始形状(大型リング素材)の外径D1a、肉厚T1a、長さL1a、および目標圧下量S、上記鍛造設計工程で設定された1周回あたりの圧下量P(P(i))および必要周回数N(N=S/P)を設定する(S100)。次に、上記鍛造工程設計方法のステップ(S70)により出力した、各周回(i)後の外径D2(i)、長さL2(i)、肉厚T2(i)を設定する(S110)。次に、各周回(i)(i=1〜N)について、変形後の外周D2a(i)、長さL2a(i)、肉厚T2a(i)を計測する(S120)。この計測値から、まず、各周回(i)における実圧下量Pa(i)(Pa(i)=T2a(i−1)−T2a(i))を算出し(S130)、累積圧下量Pasum(i)を算出する(S140)。そして、各周回(i)後の実測外径D2a(i)、実測長さL2(i)と、上記鍛造工程設計で出力した各周回後の外径D2(i)、長さL2(i)とを比較し、この実測外径D2aおよび実測長さL2aと、各周回後の外径D2(i)および長さL2(i)との差ΔDおよびΔLが目標範囲内(工程設計値の±5%以内)に収まっているかどうかを判定する(S150)。目標範囲内に収まっていない場合、上記S100で設定した圧下量Paを修正して次周回(i+1)における圧下量P(i+1)=α×P(i)(修正係数α<1)とし(S160)、周回数Nを修正する(S170)。ここで、1周回あたりの圧下量Pは、通常、許容される最大圧下量を設定するため(S100)、修正係数αは1より小さい値となる。周回数を修正した次周回(i+1)から、図4に示したように、修正した圧下量Pおよび周回数N(S90)により工程設計を再度行ない、次周回(i+1)以降の各周回終了時の鍛造形状を再出力する(S70)。そして、次周回(i+1)以降、再出力したこの鍛造形状(外径D2および長さL2)と実測外径D2aおよび長さL2aを比較する(S150)。一方、目標範囲内に収まっている場合、周回数(i)が上記S100で設定した周回数(または修正した周回数)Nに達しているかどうかを判定し(S180)、達していない場合には鍛造を継続する。設定周回数(または修正周回数)Nに達した場合には、実圧下量(T1−T2a(N))が目標圧下量Sに到達しているかどうかを判定する(S190)。目標圧下量Sに達していない場合、不足圧下量Pau(Pau=S−Psuma(N)=T1−T2a(N))を算出し(S200)、周回数を追加して不足圧下量Pau分だけ鍛造を継続する。N周回目で目標圧下量Sに到達すると鍛造を終了する。   FIG. 5 shows the flow of the forging control method of the embodiment using the forging process design method. First, as in the case of the process design method shown in FIG. 4, the outer diameter D1a, the wall thickness T1a, the length L1a, and the target reduction amount S of the forging start shape (large ring material) are set in the forging design process. In addition, a reduction amount P (P (i)) and a necessary number N of rotations (N = S / P) are set (S100). Next, the outer diameter D2 (i), the length L2 (i), and the thickness T2 (i) after each round (i) output in step (S70) of the forging process design method are set (S110). . Next, for each round (i) (i = 1 to N), the outer circumference D2a (i), the length L2a (i), and the thickness T2a (i) after deformation are measured (S120). First, an actual reduction amount Pa (i) (Pa (i) = T2a (i-1) -T2a (i)) in each lap (i) is calculated from this measured value (S130), and the cumulative reduction amount Pasum ( i) is calculated (S140). Then, the measured outer diameter D2a (i) and measured length L2 (i) after each round (i), and the outer diameter D2 (i) and length L2 (i) after each round output in the forging process design. The difference ΔD and ΔL between the measured outer diameter D2a and the measured length L2a and the outer diameter D2 (i) and the length L2 (i) after each lap are within the target range (± It is determined whether it is within 5% (S150). If not within the target range, the reduction amount Pa set in S100 is corrected so that the reduction amount P (i + 1) = α × P (i) (correction coefficient α <1) in the next lap (i + 1) (S160). ), The number of laps N is corrected (S170). Here, the reduction amount P per round usually sets a maximum allowable reduction amount (S100), so the correction coefficient α is a value smaller than 1. From the next round (i + 1) with the corrected number of laps, as shown in FIG. 4, the process design is performed again with the corrected reduction amount P and the number of laps N (S90), and at the end of each round after the next lap (i + 1) The forging shape is output again (S70). Then, after the next round (i + 1), the forged shape (outer diameter D2 and length L2) re-outputted is compared with the actually measured outer diameter D2a and length L2a (S150). On the other hand, if it is within the target range, it is determined whether or not the number of laps (i) has reached the number of laps (or the corrected number of laps) N set in S100 (S180). Continue forging. When the set number of rotations (or the number of corrected rotations) N has been reached, it is determined whether or not the actual reduction amount (T1-T2a (N)) has reached the target reduction amount S (S190). When the target reduction amount S has not been reached, the under-reduction amount Pau (Pau = S-Psuma (N) = T1-T2a (N)) is calculated (S200), and the number of laps is added to the under-reduction amount Pau. Continue forging. Forging ends when the target reduction amount S is reached in the Nth round.

表1は、拡径開始(素材)形状が、外径D(=D1)=3900mm、肉厚T(=T1)=850mm、長さL(=L1)=2767mmのCr−Mo鋼の圧力容器用大型リング材のリング鍛造に関し、上述の鍛造工程設計方法を用いて、拡径1および拡径2終了後のリング材の外径D(=D2)、長さL(=L2)および肉厚T(=T2)を予測した結果(実施例)、ならびに拡径工程でリング材の長さが変化しないとする従来の設計手法により外径D、長さLおよび肉厚Tを予測した結果(比較例)を示したものである。表2は、上記鍛造工程設計方法を用いて鍛造制御を行なった実機リング鍛造での拡径1および拡径2終了後の外径D(=D2a)、肉厚T(=T2a)、および長さL(=L2a)の寸法測定結果を示したものである。表1および表2で、拡径1とは、1回目の加熱での拡径工程を示し、拡径2とは2回目の加熱での拡径工程を示す。   Table 1 shows a Cr-Mo steel pressure vessel in which the diameter expansion start (material) shape is an outer diameter D (= D1) = 3900 mm, a wall thickness T (= T1) = 850 mm, and a length L (= L1) = 2767 mm. With respect to ring forging of large ring materials, the outer diameter D (= D2), length L (= L2), and wall thickness of the ring material after the expansion 1 and expansion 2 are completed using the forging process design method described above. Results of predicting T (= T2) (Example) and results of predicting outer diameter D, length L, and wall thickness T by a conventional design method in which the length of the ring material does not change in the diameter expansion process ( Comparative example) is shown. Table 2 shows the outer diameter D (= D2a), the wall thickness T (= T2a), and the length after the expansion 1 and the expansion 2 in the actual ring forging in which forging control is performed using the forging process design method. The dimension measurement result of length L (= L2a) is shown. In Tables 1 and 2, the diameter expansion 1 indicates the diameter expansion process in the first heating, and the diameter expansion 2 indicates the diameter expansion process in the second heating.

Figure 2007301604
Figure 2007301604

Figure 2007301604
Figure 2007301604

表1からわかるように、実施例の鍛造工程設計方法では、リング材の長さLの変化(伸び)の予測値ΔLeは、拡径2終了後の長さの予測値(2841mm)と素材の長さ(2767mm)から、ΔLe=74mmである。表2から、上述の鍛造工程設計方法に基づいて鍛造制御を行なった実機での長さ変化(伸び)の実測値ΔLaeは、拡径2終了後の長さ(2830mm)と素材の長さ(2767mm)から、ΔLae=63mmであり、本実施例の場合、予測値と実測値とは1%以内の精度で一致していることがわかる。一方、表1からわかるように、比較例の従来の設計手法では長さLの変化は予測できない。また、表1および表2からわかるように、上述の鍛造工程設計方法に基づいて鍛造制御を行なった本実施例の場合には、拡径後の外径についても、比較例の従来の設計手法に比べて、予測値と実測値とは良好な精度で一致している。   As can be seen from Table 1, in the forging process design method of the example, the predicted value ΔLe of the change (elongation) of the length L of the ring material is the predicted value (2841 mm) of the length after diameter expansion 2 and the material From the length (2767 mm), ΔLe = 74 mm. From Table 2, the measured value ΔLae of the length change (elongation) in the actual machine for which the forging control was performed based on the above-described forging process design method is the length after the end of the diameter expansion 2 (2830 mm) and the length of the material ( 2767 mm), it can be seen that ΔLae = 63 mm, and in the case of the present example, the predicted value and the actual measurement value coincide with each other with an accuracy of 1% or less. On the other hand, as can be seen from Table 1, the change in the length L cannot be predicted by the conventional design method of the comparative example. Further, as can be seen from Tables 1 and 2, in the case of the present example in which forging control was performed based on the above-described forging process design method, the conventional design method of the comparative example was also applied to the outer diameter after the diameter expansion. Compared with, the predicted value and the actually measured value agree with good accuracy.

実施形態の鍛造工程設計方法で、算出式による拡径後の外径と実測した外径とを比較した説明図である。It is explanatory drawing which compared the outer diameter after diameter expansion by a calculation formula, and the measured outer diameter by the forge process design method of embodiment. 実施形態の鍛造工程設計方法で、算出式による拡径後の円周ひずみεθcと、理論および実測値から算出した円周ひずみεθとを比較した説明図である。In forging process design method embodiment, the circumferential strain epsilon theta c after expanded by calculation formula is an explanatory diagram comparing the circumferential strain epsilon theta was calculated from the theoretical and measured values. 実施形態の鍛造工程設計方法により予測した拡径後の大型リング材の長さL2と実測した長さL2aを比較した説明図である。It is explanatory drawing which compared length L2a of the large ring material after diameter expansion estimated by the forge process design method of embodiment, and measured length L2a. 実施形態の鍛造工程設計方法の流れを示す説明図である。It is explanatory drawing which shows the flow of the forge process design method of embodiment. 実施形態の鍛造制御方法の流れを示す説明図である。It is explanatory drawing which shows the flow of the forge control method of embodiment. リング鍛造を模式的に示す説明図(平面図)である。It is explanatory drawing (plan view) which shows ring forging typically.

符号の説明Explanation of symbols

1:リング状素材 2:芯金 3:上金敷   1: Ring-shaped material 2: Core metal 3: Upper anvil

Claims (3)

芯金により大型リング材の内周面を支持し、この大型リング材の外周面を金敷により加圧して大型リング材を回転させることにより圧下領域を移動させて大型リング材の全周にわたって所要の周回数だけ圧下を繰り返すことにより、所定の形状に拡径するリング鍛造における工程設計方法であって、前記大型リング材の鍛造開始時の外径D1、肉厚T1および長さL1と、目標圧下量Sと、1周回あたりの圧下量Pを設定するステップと、必要周回数Nを決定するステップと、前記大型リング材の1周回ごとの変形後の外径D2および長さL2を定式化し、この定式を実機鍛造データにより修正した予測式を用いて前記外径D2および長さL2をそれぞれ予測するステップを備えたことを特徴とするリング鍛造における工程設計方法。   The inner ring surface of the large ring material is supported by the core metal, and the outer peripheral surface of the large ring material is pressed by the anvil and the large ring material is rotated to move the reduction region, and the required size is obtained over the entire circumference of the large ring material. A process design method in ring forging in which the diameter is expanded to a predetermined shape by repeating the reduction for the number of turns, the outer diameter D1, the thickness T1 and the length L1 at the start of forging of the large ring material, and the target reduction A step of setting an amount S, a reduction amount P per one turn, a step of determining a required number of turns N, and a deformed outer diameter D2 and a length L2 for each turn of the large ring material, A process design method in ring forging, comprising a step of predicting the outer diameter D2 and the length L2 using a prediction formula obtained by correcting this formula using actual machine forging data. 前記変形後の外径D2を以下の(1)式および(2)式を用いて、前記変形後の長さL2を以下の(3)式、(4)式および(5)式を用いてそれぞれ予測することを特徴とする請求項1に記載のリング鍛造における工程設計方法。
D2=f(D2c)-------------------------------------(1)
D2c=T2+(T1/T2)×(D1−T1)-----------(2)
L2=L1×exp(−g(εθc)−ε)--------------(3)
εθc=ln((D2−T2)/(D1−T1))----------(4)
ε=ln(T2/T1)--------------------------------(5)
ここで、D1およびT1は、鍛造開始時(素材)の外径および肉厚を、T2は変形(拡径)後の肉厚を、εθcは円周方向のひずみを、εは肉厚方向(半径方向)のひずみをそれぞれ示し、f(D2c)およびg(εθc)は、大型リング材の材質に依存する関数である。
The deformed outer diameter D2 is calculated using the following equations (1) and (2), and the deformed length L2 is calculated using the following equations (3), (4) and (5). The process design method in the ring forging according to claim 1, wherein each is predicted.
D2 = f (D2c) ------------------------------- (1)
D2c = T2 + (T1 / T2) × (D1-T1) --------- (2)
L2 = L1 × exp (−g (ε θ c) −ε t ) ------------- (3)
ε θ c = ln ((D2-T2) / (D1-T1)) --------- (4)
ε t = ln (T2 / T1) -------------------------------- (5)
Here, D1 and T1 are the outer diameter and thickness at the start of forging (material), T2 is the thickness after deformation (expansion), ε θ c is the circumferential strain, and ε t is the wall thickness. The strain in the thickness direction (radial direction) is shown, and f (D2c) and g (ε θ c) are functions depending on the material of the large ring material.
芯金により大型リング材の内周面を支持し、この大型リング材の外周面を金敷により加圧して前記大型リング材を回転させることにより圧下領域を移動させて前記大型リング材の全周にわたって所要の周回数だけ圧下を繰り返すことにより、所定の形状に拡径するリング鍛造における鍛造制御方法であって、請求項2に記載した工程設計方法を用いて前記大型リング材の1周回ごとの変形後の外径D2および長さL2を予測し、前記1周回ごとの大型リング材の、外径D2a、長さL2aおよび肉厚T2aを計測し、この計測した外径D2aおよび長さL2aと、前記予測した外径D2およびL2をそれぞれ比較し、計測した外径D2aおよび長さL2aと予測した外径D2および長さL2との差ΔDおよびΔLが、所定の範囲にないときに、圧下量を修正し、累積圧下量が、目標圧下量Sに達したときに鍛造を終了するようにしたことを特徴とするリング鍛造における鍛造制御方法。   The inner peripheral surface of the large ring material is supported by the core metal, and the outer peripheral surface of the large ring material is pressed by the anvil and the large ring material is rotated so as to move the reduction region over the entire circumference of the large ring material. A forging control method in ring forging that expands the diameter to a predetermined shape by repeating the reduction for a required number of turns, wherein the large ring material is deformed for each turn using the process design method according to claim 2. The outer diameter D2 and the length L2 are predicted, the outer diameter D2a, the length L2a and the wall thickness T2a of the large ring material for each turn are measured, and the measured outer diameter D2a and length L2a The predicted outer diameters D2 and L2 are respectively compared, and when the differences ΔD and ΔL between the measured outer diameter D2a and length L2a and the predicted outer diameter D2 and length L2 are not within a predetermined range, A forging control method in ring forging, wherein the reduction amount is corrected, and forging is terminated when the cumulative reduction amount reaches a target reduction amount S.
JP2006132873A 2006-05-11 2006-05-11 Process design method and forging control method in ring forging Expired - Fee Related JP4783202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132873A JP4783202B2 (en) 2006-05-11 2006-05-11 Process design method and forging control method in ring forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132873A JP4783202B2 (en) 2006-05-11 2006-05-11 Process design method and forging control method in ring forging

Publications (2)

Publication Number Publication Date
JP2007301604A true JP2007301604A (en) 2007-11-22
JP4783202B2 JP4783202B2 (en) 2011-09-28

Family

ID=38835995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132873A Expired - Fee Related JP4783202B2 (en) 2006-05-11 2006-05-11 Process design method and forging control method in ring forging

Country Status (1)

Country Link
JP (1) JP4783202B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289018A (en) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd Method for predicting upset shape of circular forging
WO2017020922A1 (en) * 2015-07-31 2017-02-09 Otto Fuchs - Kommanditgesellschaft - Method for producing a contoured ring rolling product
JP7514446B2 (en) 2020-12-09 2024-07-11 大同特殊鋼株式会社 How the disc material is manufactured

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734641B (en) * 2020-11-06 2021-07-21 財團法人金屬工業研究發展中心 Method for predicting forging stage and system for designing forging using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155977A (en) * 1978-05-30 1979-12-08 Sumitomo Metal Ind Ltd Automatic controlling method for rolling force in ring rolling mill
JPS632528A (en) * 1986-06-20 1988-01-07 Kobe Steel Ltd Control method for annular material working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155977A (en) * 1978-05-30 1979-12-08 Sumitomo Metal Ind Ltd Automatic controlling method for rolling force in ring rolling mill
JPS632528A (en) * 1986-06-20 1988-01-07 Kobe Steel Ltd Control method for annular material working

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289018A (en) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd Method for predicting upset shape of circular forging
WO2017020922A1 (en) * 2015-07-31 2017-02-09 Otto Fuchs - Kommanditgesellschaft - Method for producing a contoured ring rolling product
CN108472710A (en) * 2015-07-31 2018-08-31 奥托福克斯两合公司 Method for manufacturing ring rolling product with special-shaped section
JP2018531794A (en) * 2015-07-31 2018-11-01 オットー フックス カーゲー Method for manufacturing a contoured ring rolled product
RU2678823C1 (en) * 2015-07-31 2019-02-04 Отто Фукс Коммандитгезельшафт Method for manufacturing profiled ring products
EP3328572B1 (en) 2015-07-31 2019-10-09 Otto Fuchs - Kommanditgesellschaft - Method for producing a contoured ring rolling product
CN108472710B (en) * 2015-07-31 2019-10-25 奥托福克斯两合公司 Method for manufacturing ring rolling product with special-shaped section
US10464118B2 (en) 2015-07-31 2019-11-05 Otto Fuchs Kommanditgesellschaft Method for producing a contoured ring rolling product
JP7514446B2 (en) 2020-12-09 2024-07-11 大同特殊鋼株式会社 How the disc material is manufactured

Also Published As

Publication number Publication date
JP4783202B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5751687B2 (en) Spinning molding apparatus and molding method
JP4783202B2 (en) Process design method and forging control method in ring forging
KR100769253B1 (en) Method for designing shape in ring rolling process
KR101632137B1 (en) Tube expanding method for manufacturing metal tube
EP3088776B1 (en) Poppet valve and method for manufacturing same
KR101164538B1 (en) Optimum design method for ring rolling schedule
KR20230022224A (en) Steel pipe roundness prediction model generation method, steel pipe roundness prediction method, steel pipe roundness control method, steel pipe manufacturing method, and steel pipe roundness prediction device
CN105382489A (en) Thermoforming device and process of ring-shaped part formed by titanium alloy sheet
CN109570913A (en) High temperature alloy ring rolling and bulging combined shaping method
JP5163764B2 (en) Expanded pipe manufacturing method for metal pipe
JP2019141906A (en) Manufacturing method of hot forging material
CN105290163A (en) Sizing method of cylindrical titanium alloy spun parts
JP4571571B2 (en) Mouthpiece shell manufacturing method
JP4921989B2 (en) Method for manufacturing straightened tempered workpiece
JPS6156746A (en) Expanding method of seamless steel tube
CN114618926A (en) Method for producing an internal stop in a pipe component
CN108856613B (en) Method for controlling forging size of metal ring piece
JP5940865B2 (en) Tapering forging method
CN113092253A (en) Method for measuring deformation alloy critical deformation condition
JP2009289018A (en) Method for predicting upset shape of circular forging
JP4919556B2 (en) Gear manufacturing method
JP7272588B2 (en) Steel forging device and steel manufacturing method
JPH07216456A (en) Method for quenching/cooling of tubular member and device therefor
JP2008126271A (en) Method for producing internal tooth forged product
JPH11221622A (en) Bending method in hot bender and hot bender

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4783202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees