JP2004230433A - Method for hydroforming tubular body - Google Patents

Method for hydroforming tubular body Download PDF

Info

Publication number
JP2004230433A
JP2004230433A JP2003023000A JP2003023000A JP2004230433A JP 2004230433 A JP2004230433 A JP 2004230433A JP 2003023000 A JP2003023000 A JP 2003023000A JP 2003023000 A JP2003023000 A JP 2003023000A JP 2004230433 A JP2004230433 A JP 2004230433A
Authority
JP
Japan
Prior art keywords
limit line
internal pressure
shaft
buckling
wrinkle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003023000A
Other languages
Japanese (ja)
Inventor
Junji Sugama
淳史 須釜
Masahito Otsuka
雅人 大塚
Koichi Yamazaki
浩一 山崎
Shigeru Morikawa
茂 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003023000A priority Critical patent/JP2004230433A/en
Publication of JP2004230433A publication Critical patent/JP2004230433A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing defective formation due to cracks and wrinkles by allowing loading path not to cause the appearance region of the cracks and the wrinkles when hydroforming a tubular body by the combination of the internal pressure and the forcing amount of a shaft into the tubular body. <P>SOLUTION: The limit line W of crack and the limit line S of wrinkle-buckling between the internal pressure and the forcing amount of the shaft are beforehand prepared in accordance with the material and the size of a tube stock to be worked and a shape to be formed, and the internal pressure and the forcing amount of the shaft are imparted from the beginning of the start of the working so that the loading paths (1), (2) pass through the limit line W of crack and the limit line S of wrinkle-buckling. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、自動車用サスペンションメンバー材等の製造に適用されるハイドロフォーミング方法に関する。
【0002】
【従来の技術】
近年ハイドロフォーム技術は、部品の軽量化,剛性の向上,部品数削減によるコスト削減等の観点から自動車業界において注目されており、国内メーカーでの採用も増えている。ハイドロフォーミングは、金型内に設置された管体への負荷内圧と軸押し込み量の組合せによって管体を様々な形状に成形するものである。
しかし、ハイドロフォーミングは、最終的な内圧と軸押し量が同じでも途中の負荷経路が異なると、最終的な成形品の出来映えが全く変わってくるという問題点がある。例えば、目標とする最終内圧と軸押し量が同一でも負荷経路によっては、途中で割れたり、割れないまでもしわが出たり、コーナー部形状が目標値に達しない等の不良品が発生することが多い。適切な負荷経路の設定には困難を要し、試行錯誤で設定しているのが現状である。
【0003】
一例としては、特開2002−66648号公報では、管体に内圧を負荷して昇圧した後、軸押し込みをかけ、再び昇圧する工程が紹介されている。また、特開2001−286945号公報では、管の初期座屈荷重と、成形に伴ない増加して行く材料内の内圧上昇分、材料と金型との摩擦分、材料の塑性変形分といったパンチに及ぼす抵抗分の合力を軸押し力とし、成形内圧の上昇にほぼ比例して軸押し力を負荷して行く軸押し制御方法が提案されている。
【0004】
【発明が解決しようとする課題】
上記特開2002−66648号公報で提案された方法では、最初の昇圧はシーリングを目的とした軸押込みを除き軸押込みなしの完全昇圧である。そして次の軸押込みは昇圧なしの完全軸押込みである。そのため、初期の昇圧によって成形品の板厚を大きく減少させてしまい、その後の軸押込み前に製品が割れることがある。割れないまでも、軸押込み時において軸押込み量の過剰によるしわの発生や座屈を起こしやすくなる。
また、上記特開2001−286945号公報で提案された方法では、チューブ成形時に、軸押し力は成形内圧,摩擦抵抗,塑性変形における抵抗といった数種の合力を制御しなければならないが、加工中の摩擦抵抗,塑性変形における抵抗を計測することは困難である。また、これらの抵抗力を計測するために、設備が複雑化するといった問題点が生じる。
【0005】
本発明は、このような問題を解消すべく案出されたものであり、管体への内圧と軸押し込み量の組合せ付与によって管体をハイドロフォーミングする際、負荷経路を割れやしわの発生領域を回避するように制御して、それらを原因とした成形不良の発生をなくすことを目的とする。
【0006】
【課題を解決するための手段】
本発明のハイドロフォーミング方法は、その目的を達成するため、管体を内圧と軸押し込み量の組合せ付与によってハイドロフォーミングする際、被加工素管の材質およびサイズ、ならびに成形しようとする形状に応じて、内圧と軸押込み量との間で予め割れ限界線およびしわ座屈限界線を作成し、加工開始当初から内圧と軸押込み量を前記割れ限界線およびしわ座屈限界線の間で連続的に付与することを特徴とする。
【0007】
【実施の態様】
ハイドロフォーミングは、図1に示されるような装置を使用して行われる。すなわち、下金型3にセットした円形断面の管体1にプレスにより上金型2を押し当て、軸4による押込みと液体5による昇圧を加えて成形していく。
本発明では、予め、被加工素管の材質およびサイズ、ならびに成形しようとする形状に応じて、内圧と軸押込み量との間で割れ限界線およびしわ座屈限界線を作成しておくので、まず、その作成手順について説明する。
【0008】
成形しようとする製品形状に応じた金型に、被加工素管をセットする。成形においては軸押込み量と内圧量は一定の比率で増加させていく。軸押込み量Uと内圧Pとで、Δp/Δu=G(単位はMPa/mm)とし(ただし、Δp:内圧の増分、Δu:軸押込み量の増分)、本明細書中ではこの値を“負荷経路”と称することにする。成形を進めていく段階でしわや割れが発生する。その時点の内圧値と押込み量を検出する。図2に示すように、Gを種々変えて、各Gに対応する内圧値と押込み量を網羅的に調べ、グラフ上にプロットして、それらの点をつなぐ近似線を設定する。図2中、割れが発生した×点をつなぐ線が“割れ限界線W”であり、しわ乃至座屈が発生した×点をつなぐ線が“しわ座屈限界線S”である。
【0009】
実際のハイドロフォーム加工品においては、しわ等がないばかりでなく、コーナー部が小さく成形できていることも要求される。したがって、上記2つの限界線とは別に、成形する製品に応じて目標の“コーナー部限界線R”を上記限界線設定試験の途中で、製品形状から判定し、設定する。
上記“割れ限界線W”,“しわ座屈限界線S”および“コーナー部限界線R”で囲まれる領域Pが、割れることなく、またしわや座屈を発生させることなく、しかも所望のコーナーRを有する製品を成形することが可能なハイドロフォーミングの条件となる(図3参照)。すなわち、図4に示すように、しわ座屈限界線Sを通過することがないように、図中▲1▼,▲2▼で示す負荷経路を選択・調整して上記領域Pまで内圧を高めつつ軸押込みを増加して行けば、不良品を出すことなく所望のコーナーRを有する製品がハイドロフォーミングで成形できることになる。
【0010】
【実施例】
供試材として、高周波溶接で造管されたSTAM290GA,外径63.5mm,肉厚2.0mm,長さ400mmの鋼管を使用した。金型は図5に示すような63.5mm×85mmの長方形断面形状を有するものを使用した。なお、バルジ長さは170mmである。型締め力は110tonとし、潤滑油として粘度60mm/s(40℃)のものを使用した。さらに、軸押し装置をして最大60tonのプレス装置を使用した。
そして、最終成形内圧は52.5MPa、最終両管端軸押込み量を75mmとした。
成形可能範囲は図6に示すように、事前調査により求めており、目標コーナー部を21R以内とした。
【0011】
負荷経路として、図6の(a),(b),(c)に示されるように3種類のタイプを採用してハイドロフォーミングを行った。
(a)では、成形開始直後に昇圧を行ない20MPaに達した後、内圧を一定に保持した状態で両管端に軸押込みをかけ、両管端の軸押込み量が75mmに達した時点で再び昇圧を行ない、52.5MPaに達した時点で成形を終了した。
(b)では、G=2の負荷経路で成形を開始し、両管端の軸押込み量が10mmに達すると、内圧を一定に保持した状態で両管端に軸押込みをかけ、両管端の軸押込み量が75mmに達した時点で再び昇圧を行ない、52.5MPaに達した時点で成形を終了した。
(c)では、G=2の負荷経路で成形を開始し、両管端の軸押込み量が10mmに達すると、G=0.5に負荷経路を変え、両管端の軸押込み量が75mmに達した時点で成形を終了した。
【0012】
成形試験の結果を表1に示す。
成形後の目視評価において、(a)の負荷経路を採ったものでは初期の完全昇圧時に起こった肉厚減少に起因したと思われる割れが発生しており、(b)の負荷経路を採ったものでは軸押込み量の過剰が起因したと思われる座屈が発生していた。
これに対して、(C)の負荷経路を採ったものでは、割れやしわあるいは座屈の発生状況は見られず、しかも16Rのコーナー部を有するバルジ製品が得られていた。
【0013】

Figure 2004230433
【0014】
【発明の効果】
以上に説明したように、本発明によれば、被加工素管の材質およびサイズ、ならびに成形しようとする形状に応じて、内圧と軸押込み量との間で予め割れ限界線およびしわ座屈限界線を作成し、加工開始当初から内圧と軸押込み量を前記割れ限界線およびしわ座屈限界線の間で連続的に付与している。したがって、負荷経路が前記割れ限界線およびしわ座屈限界線と交差することがないので、割れやしわあるいは座屈等を発生させることなく、すなわち不良品を出すことなくハイドロフォーミングすることが可能となる。
本発明によると、当初の割れ限界線およびしわ座屈限界線の作成に手間はかかるが、これが作成できれば、その後のハイドロフォーミング作業において不良品を出すことがなくなるので、自動車部品等大量生産品を結果的には低コストで提供できることになる。
【図面の簡単な説明】
【図1】ハイドロフォーミング方法の概略を説明する図
【図2】負荷経路Gの違いにより割れ限界線およびしわ座屈限界線の作成手順を説明する図
【図3】割れやしわあるいは座屈を発生させることなく成形可能な条件範囲を説明する図
【図4】割れやしわあるいは座屈を発生させることのない負荷経路を説明する図
【図5】実施例で用いた金型の断面形状を説明する図
【図6】実施例で採用した3つの負荷経路を説明する図
【符号の説明】
1:管体 2:上金型 3:下金型 4:押込み軸 5:液体W:割れ限界線 S:しわ座屈限界線 R:目標コーナーR限界線
P:成形可能条件範囲 G:負荷経路[0001]
[Industrial applications]
The present invention relates to a hydroforming method applied to manufacture of a suspension member for an automobile and the like.
[0002]
[Prior art]
In recent years, the hydroforming technology has been attracting attention in the automobile industry from the viewpoints of weight reduction of parts, improvement of rigidity, cost reduction by reducing the number of parts, and the like, and adoption by domestic manufacturers is increasing. The hydroforming is to form a pipe into various shapes by a combination of a load internal pressure applied to a pipe installed in a mold and an axial pushing amount.
However, the hydroforming has a problem that even if the final internal pressure and the axial pushing amount are the same, if the load path on the way is different, the final molded product looks completely different. For example, even if the target final internal pressure and the amount of axial pressing are the same, depending on the load path, defective products such as cracks in the middle, wrinkles even if they do not crack, and corner shape not reaching the target value may occur. Many. It is difficult to set an appropriate load path, and at present it is set by trial and error.
[0003]
As an example, Japanese Patent Application Laid-Open No. 2002-66648 introduces a process in which an internal pressure is applied to a pipe to increase the pressure, then the shaft is pushed in, and the pressure is increased again. In Japanese Patent Application Laid-Open No. 2001-286945, the initial buckling load of the pipe, the increase in the internal pressure in the material which increases along with the molding, the friction between the material and the mold, and the plastic deformation of the material. A shaft pressing control method has been proposed in which the resultant force of the resistance exerted on the shaft is used as the shaft pressing force, and the shaft pressing force is applied almost in proportion to the increase in the molding internal pressure.
[0004]
[Problems to be solved by the invention]
In the method proposed in Japanese Patent Application Laid-Open No. 2002-66648, the initial pressure increase is a complete pressure increase without shaft pressing except for shaft pressing for sealing. And the next shaft pushing is a complete shaft pushing without pressure increase. For this reason, the thickness of the molded product is greatly reduced by the initial pressurization, and the product may be broken before the shaft is pushed in thereafter. Even if it does not break, wrinkles and buckling are likely to occur due to an excessive amount of shaft pushing when pushing the shaft.
In the method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 2001-286945, at the time of tube forming, the axial pushing force must control several types of resultant forces such as forming internal pressure, frictional resistance, and resistance in plastic deformation. It is difficult to measure the frictional resistance and plastic deformation resistance. In addition, the measurement of these resistance forces causes a problem that the equipment becomes complicated.
[0005]
The present invention has been devised in order to solve such a problem. When hydroforming a pipe by applying a combination of an internal pressure and an axial pushing amount to the pipe, an area in which a load path cracks or wrinkles is generated. It is an object of the present invention to eliminate the occurrence of molding defects due to such control.
[0006]
[Means for Solving the Problems]
The hydroforming method of the present invention, in order to achieve the object, when hydroforming the tube body by applying a combination of internal pressure and axial pushing amount, depending on the material and size of the blank to be processed, and the shape to be molded In advance, a crack limit line and a wrinkle buckling limit line are created in advance between the internal pressure and the shaft push-in amount, and the internal pressure and the shaft push-in amount are continuously changed between the crack limit line and the wrinkle buckle limit line from the beginning of machining. It is characterized by giving.
[0007]
Embodiment
Hydroforming is performed using an apparatus as shown in FIG. That is, the upper mold 2 is pressed by a press against the tube 1 having a circular cross section set in the lower mold 3, and is pressed by the shaft 4 and pressurized by the liquid 5 to perform molding.
In the present invention, a crack limit line and a wrinkle buckling limit line are created in advance between the internal pressure and the amount of shaft pushing in accordance with the material and size of the workpiece pipe and the shape to be formed, First, the creation procedure will be described.
[0008]
The workpiece tube is set in a mold corresponding to the product shape to be molded. In molding, the amount of shaft pushing and the amount of internal pressure are increased at a fixed ratio. With the shaft pushing amount U and the internal pressure P, Δp / Δu = G (unit: MPa / mm) (where Δp: increment of internal pressure, Δu: increment of shaft pushing amount), and this value is referred to as “ It will be referred to as "load path". Wrinkles and cracks occur during the molding process. The internal pressure value and the pushing amount at that time are detected. As shown in FIG. 2, G is variously changed, the internal pressure value and the amount of indentation corresponding to each G are comprehensively examined, plotted on a graph, and an approximate line connecting those points is set. In FIG. 2, the line connecting the x points where the crack has occurred is the "crack limit line W", and the line connecting the x points where the wrinkles or buckling has occurred is the "wrinkle buckling limit line S".
[0009]
In actual hydroformed products, not only are there no wrinkles or the like, but also it is required that the corners can be formed small. Therefore, apart from the two limit lines, a target “corner limit line R” is determined and set based on the product shape during the limit line setting test according to the product to be molded.
A region P surrounded by the "crack limit line W", the "wrinkle buckling limit line S" and the "corner limit line R" is free from cracks, wrinkles and buckling, and has a desired corner. This is a condition of hydroforming that enables the formation of a product having R (see FIG. 3). That is, as shown in FIG. 4, the load paths indicated by (1) and (2) in the figure are selected and adjusted so as not to pass through the wrinkle buckling limit line S, and the internal pressure is increased to the area P. If the shaft push is increased while increasing the product, a product having a desired corner R can be formed by hydroforming without producing a defective product.
[0010]
【Example】
As a test material, a steel tube having a diameter of 63.5 mm, an outer diameter of 2.0 mm, and a length of 400 mm, which was manufactured by high frequency welding, was used. A mold having a rectangular cross section of 63.5 mm × 85 mm as shown in FIG. 5 was used. The bulge length is 170 mm. The mold clamping force was 110 tons, and a lubricating oil having a viscosity of 60 mm 2 / s (40 ° C.) was used. Further, a pressing device having a maximum of 60 tons was used as an axial pushing device.
Then, the final molding internal pressure was 52.5 MPa, and the final push-in amount of both pipe end shafts was 75 mm.
As shown in FIG. 6, the moldable range was determined by a preliminary survey, and the target corner portion was set within 21R.
[0011]
As shown in FIGS. 6 (a), (b), and (c), three types of load paths were used for the hydroforming.
In (a), the pressure is increased immediately after the start of molding and the pressure reaches 20 MPa. Then, while the internal pressure is kept constant, the shaft is pushed into both tube ends. When the shaft pushing amount at both tube ends reaches 75 mm, the shaft is pushed again. The pressure was increased and the molding was completed when the pressure reached 52.5 MPa.
In (b), the forming is started with a load path of G = 2, and when the shaft pushing amount at both pipe ends reaches 10 mm, the shaft pushing is applied to both pipe ends while maintaining the internal pressure at a constant level. When the shaft pushing amount reached 75 mm, the pressure was increased again, and when it reached 52.5 MPa, the molding was completed.
In (c), molding is started with a load path of G = 2, and when the axial pushing amount of both pipe ends reaches 10 mm, the load path is changed to G = 0.5, and the axial pushing amount of both pipe ends becomes 75 mm. Was reached when the molding reached.
[0012]
Table 1 shows the results of the molding test.
In the visual evaluation after molding, in the case of taking the load path of (a), cracks considered to be caused by the wall thickness reduction occurring at the time of the initial complete pressurization occurred, and the load path of (b) was taken. The buckling occurred in the product, which was thought to be caused by the excessive pushing amount of the shaft.
On the other hand, in the case of employing the load path of (C), no occurrence of cracks, wrinkles or buckling was observed, and a bulge product having 16R corners was obtained.
[0013]
Figure 2004230433
[0014]
【The invention's effect】
As described above, according to the present invention, the crack limit line and the wrinkle buckling limit are determined in advance between the internal pressure and the shaft pushing amount depending on the material and size of the blank to be processed and the shape to be formed. A line is created, and the internal pressure and the axial indentation amount are continuously applied between the crack limit line and the wrinkle buckling limit line from the beginning of processing. Therefore, since the load path does not intersect with the crack limit line and the wrinkle buckling limit line, it is possible to perform hydroforming without generating cracks, wrinkles or buckling, that is, without giving out defective products. Become.
According to the present invention, it takes time and effort to create the initial crack limit line and wrinkle buckling limit line, but if it can be created, no defective products will be produced in the subsequent hydroforming work, so mass-produced products such as automobile parts As a result, it can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an outline of a hydroforming method. FIG. 2 is a diagram illustrating a procedure for creating a crack limit line and a wrinkle buckling limit line depending on a difference in a load path G. FIG. 3 is a diagram illustrating cracks, wrinkles, or buckling. FIG. 4 is a diagram illustrating a condition range in which molding can be performed without occurrence of cracks. FIG. 4 is a diagram illustrating a load path that does not generate cracks, wrinkles, or buckling. FIG. 5 is a cross-sectional shape of a mold used in an embodiment. FIG. 6 illustrates three load paths employed in the embodiment.
1: Pipe body 2: Upper mold 3: Lower mold 4: Push shaft 5: Liquid W: Crack limit line S: Wrinkle buckling limit line R: Target corner R limit line P: Formable condition range G: Load path

Claims (1)

管体を内圧と軸押し込み量の組合せ付与によってハイドロフォーミングする際、被加工素管の材質およびサイズ、ならびに成形しようとする形状に応じて、内圧と軸押込み量との間で予め割れ限界線およびしわ座屈限界線を作成し、加工開始当初から内圧と軸押込み量を前記割れ限界線およびしわ座屈限界線の間で連続的に付与することを特徴とするハイドロフォーミング方法。When hydroforming the pipe body by applying a combination of the internal pressure and the axial pushing amount, the crack limit line and the internal pressure and the axial pushing amount are determined in advance depending on the material and size of the blank to be processed and the shape to be molded. A hydroforming method, wherein a wrinkle buckling limit line is created, and an internal pressure and a shaft pushing amount are continuously applied between the crack limit line and the wrinkle buckling limit line from the beginning of working.
JP2003023000A 2003-01-31 2003-01-31 Method for hydroforming tubular body Withdrawn JP2004230433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023000A JP2004230433A (en) 2003-01-31 2003-01-31 Method for hydroforming tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023000A JP2004230433A (en) 2003-01-31 2003-01-31 Method for hydroforming tubular body

Publications (1)

Publication Number Publication Date
JP2004230433A true JP2004230433A (en) 2004-08-19

Family

ID=32951929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023000A Withdrawn JP2004230433A (en) 2003-01-31 2003-01-31 Method for hydroforming tubular body

Country Status (1)

Country Link
JP (1) JP2004230433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2259265A1 (en) * 2004-11-30 2006-09-16 Valeo Termico, S.A. Tube for fluid conduction in heat exchanger has discontinuous contractions on opposing walls, and which form X-shaped silhouette in z-axis direction
WO2010002017A1 (en) 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming equipment and hydroforming method
WO2010002027A1 (en) 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming method and hydroformed component
CN103223434A (en) * 2013-04-10 2013-07-31 宁波帕沃尔精密液压机械有限公司 Device and method for pipe internal high pressure forming
WO2019210649A1 (en) * 2018-05-03 2019-11-07 哈尔滨工业大学 Metal inner high pressure forming piece dimension control method and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2259265A1 (en) * 2004-11-30 2006-09-16 Valeo Termico, S.A. Tube for fluid conduction in heat exchanger has discontinuous contractions on opposing walls, and which form X-shaped silhouette in z-axis direction
WO2010002017A1 (en) 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming equipment and hydroforming method
WO2010002027A1 (en) 2008-07-04 2010-01-07 新日本製鐵株式会社 Hydroforming method and hydroformed component
US8281630B2 (en) 2008-07-04 2012-10-09 Nippon Steel Corporation Method for hydroforming and a hydroformed product
KR101225202B1 (en) * 2008-07-04 2013-01-22 신닛테츠스미킨 카부시키카이샤 Hydroforming method and hydroformed component
US8621904B2 (en) 2008-07-04 2014-01-07 Nippon Steel Hydroforming apparatus and method for hydroforming
CN103223434A (en) * 2013-04-10 2013-07-31 宁波帕沃尔精密液压机械有限公司 Device and method for pipe internal high pressure forming
WO2019210649A1 (en) * 2018-05-03 2019-11-07 哈尔滨工业大学 Metal inner high pressure forming piece dimension control method and system
US10940520B2 (en) 2018-05-03 2021-03-09 Harbin Institute Of Technology Method and system for controlling dimensions of metal hydroformed parts

Similar Documents

Publication Publication Date Title
JP4374399B1 (en) Hydroform processing method and hydroformed product
JP4478200B2 (en) Hydroform processing method and hydroformed parts
Dewang et al. A study on sheet metal hole-flanging process
Hashemi et al. Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure
Abdelkefi et al. Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes
WO2010035883A1 (en) Method for forming deformed cross-section and formed article of quadrilateral cross-section exhibiting excellent spot weldability
JP2009050888A (en) Method of expanding pipe
JPH09504478A (en) Internal high pressure deformation of a hollow stepped shaft from cold deformable metal
JP2004230433A (en) Method for hydroforming tubular body
JP4631130B2 (en) Modified tubular product and manufacturing method thereof
JP6428790B2 (en) Manufacturing method of widened metal tube
JPH10175027A (en) Metallic tube for hydro-form
JP5157716B2 (en) Method for manufacturing universal joint yoke
JP2003285124A (en) Device and method for hydroforming
KR100481127B1 (en) Estimating testing apparatus for hydroforming of tube
JP2005262241A (en) Hydroforming method for tubular body
Hussein et al. Effect of the location of draw bead and its profile in cylindrical cup forming
JP2007075844A (en) Hydrostatic bulged product, and its hydrostatic bulging method
JP2008006448A (en) Method of bending special shaped tube and worked automotive parts
CN111954579A (en) Method for producing molded article
Dyment et al. Effect of endfeed on the strains and thickness during bending and on the subsequent hydroformability of steel tubes
JP2005205488A (en) Method for working metallic tube
Salahshoor et al. Analysis of the effects of tool and process parameters in hydroforming process
JP4805297B2 (en) Method for producing container-shaped molded body
Sresomroeng et al. Sidewall-curl prediction in U-bending process of advanced high strength steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404