JP4831570B2 - Functional cellulose material having high functional particle content and method for producing the same - Google Patents

Functional cellulose material having high functional particle content and method for producing the same Download PDF

Info

Publication number
JP4831570B2
JP4831570B2 JP2006085888A JP2006085888A JP4831570B2 JP 4831570 B2 JP4831570 B2 JP 4831570B2 JP 2006085888 A JP2006085888 A JP 2006085888A JP 2006085888 A JP2006085888 A JP 2006085888A JP 4831570 B2 JP4831570 B2 JP 4831570B2
Authority
JP
Japan
Prior art keywords
functional
pulp
kneading
cellulose material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006085888A
Other languages
Japanese (ja)
Other versions
JP2007262594A (en
Inventor
浩之 矢野
忠昭 田尻
敏夫 石田
紀繁 関
卓相 比村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Kyoto University
Original Assignee
Kimura Chemical Plants Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd, Kyoto University filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2006085888A priority Critical patent/JP4831570B2/en
Publication of JP2007262594A publication Critical patent/JP2007262594A/en
Application granted granted Critical
Publication of JP4831570B2 publication Critical patent/JP4831570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、調湿性、VOC捕捉性、脱臭性、抗菌性などの機能を有する機能性セルロース材料及びその製造方法に関する。   The present invention relates to a functional cellulose material having functions such as humidity control, VOC capture, deodorization, and antibacterial properties, and a method for producing the same.

セルロース系繊維をリファイナー、ホモジナイザー等により磨砕ないし叩解することによりセルロースミクロフィブリルを製造できることが知られている(例えば、特許文献1)。このセルロースミクロフィブリルを利用してシートを製造する技術も知られている。例えば、セルロースミクロフィブリル懸濁液を抄紙して高強度のミクロフィブリルシートを製造する方法(例えば、特許文献2)、温水を含浸したパルプシート状体を混練して混練物とし、該混練物に水を添加混合して流動性の調整された成形準備物とし、該成形準備物を成形型に投入して加圧して脱水し、乾燥して木質系基材を製造する方法(例えば、特許文献3)、パルプと脂肪族ポリエステルとを水の存在下で溶融混練処理することにより、パルプがミクロフィブリル化して樹脂成分中に分散した脂肪族ポリエステル組成物を製造する方法(例えば、特許文献4)である。ミクロフィブリルシートは軽くて強度が高く、さらには生分解性も高いためパソコン、携帯電話等の家電製品の筐体、文房具等の事務機器、スポーツ用品、輸送機器、建築材料など幅広い分野への応用が期待されている。
特公昭50−38720号公報 特開2003−201695号公報 特許第3522706号公報 特開2005−42283号公報
It is known that cellulose microfibrils can be produced by grinding or beating cellulose-based fibers with a refiner, homogenizer, or the like (for example, Patent Document 1). A technique for manufacturing a sheet using cellulose microfibrils is also known. For example, a method for producing a high-strength microfibril sheet by making paper from a cellulose microfibril suspension (for example, Patent Document 2), a pulp sheet impregnated with warm water is kneaded to obtain a kneaded product, A method for producing a woody base material by adding water and mixing to obtain a molding preparation whose flowability is adjusted, putting the molding preparation into a mold, pressurizing and dehydrating, and drying (for example, patent document) 3) A method for producing an aliphatic polyester composition in which pulp is microfibrillated and dispersed in a resin component by melt-kneading pulp and aliphatic polyester in the presence of water (for example, Patent Document 4) It is. Microfibril sheets are light, strong, and highly biodegradable, so they can be used in a wide range of fields, including housings for home appliances such as personal computers and mobile phones, office equipment such as stationery, sports equipment, transportation equipment, and building materials. Is expected.
Japanese Patent Publication No. 50-38720 JP 2003-201695 A Japanese Patent No. 3522706 JP 2005-42283 A

これらセルロースミクロフィブリルを利用したシートは、強度、成形性、生分解性の観点から開発されたものである。しかしながら、これらの実用化が近づくにつれて、他の機能を併せ持った成形物の登場が望まれるようになってきた。しかしながら、機能を発揮させることを目的として、セルロースミクロフィブリルに多量の機能性物質を配合すると強度が不足することが予測され、その強度不足を補うためにバインダー類を使用すると、機能性物質表面がバインダーにより覆われるため、機能の低下が見られる。   Sheets using these cellulose microfibrils have been developed from the viewpoints of strength, moldability, and biodegradability. However, as these commercialization approaches, the appearance of molded products having other functions has been desired. However, for the purpose of demonstrating the function, it is predicted that when a large amount of functional substance is added to cellulose microfibrils, the strength is predicted to be insufficient. When binders are used to compensate for the insufficient strength, the surface of the functional substance is Since it is covered with a binder, the function is reduced.

したがって、本発明は、強度がなるべく損なわれておらず高機能な機能性のセルロース材料、その製造方法等を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly functional cellulose material that is not impaired in strength as much as possible, a method for producing the same, and the like.

本発明者は、パルプ及び/又は前処理されたパルプと機能性粒子とを混合し、これを混練し加圧して成形することによって、パルプ及び/又は前処理されたパルプが機能性粒子を取り込みつつミクロフィブリル化され、軽くて高強度で、機能性粒子が高い割合で含有された材料を得ることができることを見出し、本発明を完成させた。   The inventor mixes pulp and / or pretreated pulp with functional particles, kneads and pressurizes them to form the pulp, and / or the pretreated pulp incorporates functional particles. The inventors have found that a material that is microfibrillated, is light, has high strength, and contains a high proportion of functional particles can be obtained, thereby completing the present invention.

すなわち、本発明は下記の製造方法を提供するものである。
項1.パルプ及び/又は前処理パルプ3〜50重量%と機能性粒子50〜97重量%を水の存在下で混練し、混練物を加圧して脱水及び成形し、成形物を乾燥することを包含する機能性セルロース材料の製造方法。
項2.混練、加圧及び成形が多軸混練押し出し機によるものである項1に記載の機能性セルロース材料の製造方法。
項3.機能性粒子の平均粒子径が2000μm以下である項1に記載の機能性セルロース材料の製造方法。
項4.機能性粒子が木粉、樹皮粉末、天然ゼオライト、合成ゼオライト、人工ゼオライト、酸化チタン、シリカゲル、活性炭、貝殻粉砕物、珪藻土、金属粉及びタンニンからなる群から選択される少なくとも1種の粒子であることを特徴とする項1〜3のいずれかに記載の機能性セルロース材料の製造方法。
項5.項1〜4のいずれかの方法により製造される機能性セルロース材料。
項6.3〜50重量%のセルロースミクロフィブリルと50〜97重量%の機能性粒子を含有し、曲げ強度が20MPa以上である機能性セルロース材料。
項7.機能性粒子としての木粉を10〜50重量%含有し、比重が0.6〜1.3g/cmである項6に記載の機能性セルロース材料。
項8.機能性粒子が木粉、樹皮粉末及びゼオライトからなる群から選択される少なくとも1種であり、建築内装材用である、項5〜7のいずれかに記載の機能性セルロース材料。
That is, the present invention provides the following production method.
Item 1. It includes kneading 3 to 50% by weight of pulp and / or pretreated pulp and 50 to 97% by weight of functional particles in the presence of water, pressurizing and kneading the kneaded product, and drying the molded product. A method for producing a functional cellulose material.
Item 2. Item 2. The method for producing a functional cellulose material according to Item 1, wherein the kneading, pressing, and molding are performed by a multiaxial kneading extruder.
Item 3. Item 2. The method for producing a functional cellulose material according to Item 1, wherein the average particle diameter of the functional particles is 2000 µm or less.
Item 4. The functional particles are at least one particle selected from the group consisting of wood powder, bark powder, natural zeolite, synthetic zeolite, artificial zeolite, titanium oxide, silica gel, activated carbon, crushed shell, diatomaceous earth, metal powder and tannin. Item 4. The method for producing a functional cellulose material according to any one of Items 1 to 3.
Item 5. The functional cellulose material manufactured by the method in any one of claim | item 1-4.
Item 6. A functional cellulose material containing 3 to 50% by weight of cellulose microfibrils and 50 to 97% by weight of functional particles and having a bending strength of 20 MPa or more.
Item 7. Item 7. The functional cellulose material according to Item 6, which contains 10 to 50% by weight of wood flour as functional particles and has a specific gravity of 0.6 to 1.3 g / cm 3 .
Item 8. Item 8. The functional cellulose material according to any one of Items 5 to 7, wherein the functional particles are at least one selected from the group consisting of wood powder, bark powder, and zeolite, and are for building interior materials.

本発明の機能性セルロース材料の製造方法は、パルプ及び/又は前処理パルプ3〜50重量%と機能性粒子50〜97重量%を水の存在下で混練し、混練物を加圧して脱水し、必要に応じて所望形状に成形し、乾燥することを包含するものである。パルプ及び/又は前処理パルプは混練によってミクロフィブリル化されるが、驚くべきことに、このミクロフィブリルは機能性粒子を多量に保持できる優れたバインダーとしての作用を有するものである。   In the method for producing a functional cellulose material of the present invention, 3 to 50% by weight of pulp and / or pretreated pulp and 50 to 97% by weight of functional particles are kneaded in the presence of water, and the kneaded product is pressurized and dehydrated. , Including forming into a desired shape and drying, if necessary. Pulp and / or pretreated pulp is microfibrillated by kneading. Surprisingly, the microfibril has an action as an excellent binder capable of retaining a large amount of functional particles.

なお、セルロースミクロフィブリルスラリーと機能性粒子とを混合して成形する方法も試みたが、セルロースミクロフィブリルのみが凝縮して固化する傾向(スラリーが固まる傾向)を有し、また脱水しにくいため脱水条件(温度、圧力など)が厳しくなる傾向となる。   In addition, the method of mixing and molding cellulose microfibril slurry and functional particles was also tried, but only cellulose microfibrils tend to condense and solidify (slurry tends to solidify), and dehydration is difficult to dehydrate. Conditions (temperature, pressure, etc.) tend to be severe.

これに対し、本発明の製造方法の方がセルロースミクロフィブリルにおける機能性粒子の分散がより均一になる点、脱水がより容易である点などにおいて有利である。そして、本発明の製造方法によって得られる成形物は、セルロースミクロフィブリルスラリーと機能性粒子とを混合して成形する方法によって得られる成形物より、密度が高く、強度(特に曲げ強度)が高く、機能性が向上したものとなる。なお、本明細書において単に強度というときは曲げ強度を意味する。曲げ強度はJISK7171に記載の三点支持中央集中荷重方式にて測定することができる。また密度はJIS Z 8807に記載のかさ比重測定方法にて測定することができる。   On the other hand, the production method of the present invention is advantageous in that the dispersion of the functional particles in the cellulose microfibril becomes more uniform and the dehydration is easier. And the molded product obtained by the production method of the present invention has a higher density and higher strength (particularly bending strength) than the molded product obtained by the method of molding by mixing cellulose microfibril slurry and functional particles, Functionality will be improved. In the present specification, the term “strength” means bending strength. The bending strength can be measured by the three-point support central concentrated load method described in JISK7171. The density can be measured by a bulk specific gravity measuring method described in JIS Z 8807.

本発明の機能性セルロース材料の形状については制限がなく所望の形状とすることができる。例えば繊維状、フィラメント状、シート状、棒状、円柱状、パイプ状、柱状、各種容器の形状、車等の輸送機の内装品の形状などが挙げられるが、これらに限定されず、用途に応じて成形すればよい。   There is no restriction | limiting about the shape of the functional cellulose material of this invention, It can be set as a desired shape. Examples include, but are not limited to, fiber shapes, filament shapes, sheet shapes, rod shapes, column shapes, pipe shapes, column shapes, shapes of various containers, shapes of interior parts of transport equipment such as cars, etc. Can be molded.

混練原料
本発明において、混練に供されるパルプとしては、クラフトパルプ、サルファイトパルプ、ソーダパルプ、炭酸ソーダパルプ、炭酸−ソーダパルプなどの化学パルプ、機械パルプ、ケミグランドパルプ、古紙から再生された再生パルプなどが使用できる。これらのパルプは1種単独で又は2種以上混合して使用することができる。これらパルプの原料としては、針葉樹チップ、広葉樹チップ、ソーダスト等の木材系セルロース原料、非木材系セルロース原料(例えば、バガス、ケナフ、ワラ、アシ、エスパルト等の一年生植物)を例示することができる。
Kneaded raw material In the present invention, the pulp used for kneading was recycled from chemical pulp such as kraft pulp, sulfite pulp, soda pulp, carbonated soda pulp, carbonated soda pulp, mechanical pulp, chemiground pulp, and waste paper Recycled pulp can be used. These pulps can be used alone or in combination of two or more. Examples of raw materials for these pulps include wood-based cellulose raw materials such as softwood chips, hardwood chips, and sawdust, and non-wood-based cellulose raw materials (for example, annual plants such as bagasse, kenaf, straw, reed, and esparto).

前処理パルプは前記のパルプにミクロフィブリル化に有利な処理を施したものである。前処理パルプを使用すると、前処理をしないパルプを使用した場合と比較して得られる成形物の強度が高くなる。この前処理としては、公知のリファイナー処理、グラインダー処理、媒体撹拌ミル処理、振動ミル処理、石臼式処理などが挙げられる。なお、パルプをリファイナー、グラインダー等で機械処理されたものをセミケミカルパルプと分類することがあるが、本発明における前処理パルプはこのセミケミカルパルプを包含する。好ましい前処理はリファイナー処理である。さらに、リファイナー処理の中でも1Passから10Pass、好ましくは5Passから8Passのリファイナー処理が好ましい。本発明においては、パルプのみであっても、前処理パルプのみであっても、パルプと前処理パルプの組合せであっても混練のための原料とすることができる。   Pretreated pulp is obtained by subjecting the above-mentioned pulp to a treatment advantageous for microfibrillation. When the pretreated pulp is used, the strength of the molded product obtained is higher than when a pulp that is not pretreated is used. Examples of the pretreatment include known refiner treatment, grinder treatment, medium stirring mill treatment, vibration mill treatment, and stone mill type treatment. In addition, although the pulp processed by refiner, grinder etc. may be classified as a semichemical pulp, the pretreated pulp in this invention includes this semichemical pulp. A preferred pretreatment is a refiner treatment. Further, among the refiner processes, a refiner process of 1 Pass to 10 Pass, preferably 5 Pass to 8 Pass is preferable. In the present invention, it can be used as a raw material for kneading whether it is only pulp, only pretreated pulp, or a combination of pulp and pretreated pulp.

なお、本明細書において、パルプ及び/又は前処理パルプをパルプ類と称することがある。   In the present specification, pulp and / or pretreated pulp may be referred to as pulps.

本発明において、混練に供される機能性粒子としては、木粉、樹皮粉末、天然ゼオライト、合成ゼオライト、人工ゼオライト、酸化チタン(好ましくは光触媒能を有するもの)、シリカゲル、活性炭、貝殻粉砕物、珪藻土、金属粉、タンニンなどの粒子が例示され、1種単独で又は2種以上組み合わせて使用することができる。好ましくは、木粉、樹皮粉末、天然ゼオライト、合成ゼオライト、人工ゼオライト、タンニン、酸化チタンである。パルプ類に機能性粒子を配合することによって、得られる材料に、脱臭、脱活性酸素、難燃性、調湿性(吸放湿性)、抗菌性、殺菌性、VOC(揮発性有機化合物(ホルムアルデヒド、トルエン、キシレン、エチルベンゼンなどの))吸着性などの機能を付与することができる。また、これらの機能性物質を適当な担体と組み合わせて粒子状とし、これを混練に供することも、本発明に包含される。機能性粒子として木粉を用いた場合には吸放湿機能を有する機能性材料が得られ、タンニンを含む樹皮粉末を用いた場合には活性酸素捕捉機能、抗酸化機能、抗菌機能、吸放湿機能を有する機能性材料が得られ、ゼオライトを用いた場合には吸放湿機能、吸着機能、難燃機能を有する機能性材料が得られ、シリカゲルを用いた場合には吸放湿性機能を有する機能性材料が得られ、活性炭を用いた場合には吸放湿機能、吸着機能を有する機能性材料が得られ、酸化チタンを用いた場合には、酸化分解機能、抗菌機能、脱臭機能を有する機能性材料が得られ、貝殻粉砕物を用いた場合には殺菌機能を有する機能性材料が得られ、珪藻土を用いた場合には吸放湿機能を有する機能性材料が得られる。
機能性粒子の平均粒子径は特に制限されないが、好ましくは0.001〜2000μm、より好ましくは0.01〜1000μmである。
In the present invention, functional particles used for kneading include wood powder, bark powder, natural zeolite, synthetic zeolite, artificial zeolite, titanium oxide (preferably one having photocatalytic activity), silica gel, activated carbon, shell pulverized material, Particles such as diatomaceous earth, metal powder, and tannin are exemplified, and can be used singly or in combination of two or more. Preferred are wood powder, bark powder, natural zeolite, synthetic zeolite, artificial zeolite, tannin, and titanium oxide. By blending functional particles with pulp, the resulting material can be deodorized, deactivated oxygen, flame retardant, humidity control (moisture absorption / release), antibacterial, bactericidal, VOC (volatile organic compounds (formaldehyde, Functions such as toluene), xylene, ethylbenzene, etc.)) adsorbability can be imparted. In addition, it is also included in the present invention that these functional substances are combined with an appropriate carrier to form particles and are used for kneading. When wood powder is used as the functional particles, a functional material having a moisture absorption / release function is obtained, and when bark powder containing tannin is used, an active oxygen scavenging function, an antioxidant function, an antibacterial function, and an absorption / release function are obtained. A functional material having a moisture function is obtained. When zeolite is used, a functional material having a moisture absorption / release function, an adsorption function, and a flame retardant function is obtained, and when silica gel is used, a moisture absorption / release function is obtained. When activated carbon is used, a functional material having moisture absorption / release functions and adsorption functions is obtained, and when titanium oxide is used, oxidative decomposition functions, antibacterial functions, and deodorizing functions are obtained. A functional material having a sterilizing function is obtained when a crushed shell is used, and a functional material having a moisture absorbing / releasing function is obtained when diatomaceous earth is used.
The average particle size of the functional particles is not particularly limited, but is preferably 0.001 to 2000 μm, more preferably 0.01 to 1000 μm.

本発明においては、前記のパルプ類と機能性粒子とを原料とし、水の存在下でこれらを混練する。パルプ類の配合量は原料の3〜50重量%、好ましくは5〜50重量%、より好ましくは10〜50重量%である。パルプ類の配合量が前記の範囲にあると、必要な強度を保持しつつ、機能性粒子を多く配合できる。また、機能性粒子の配合量は原料の50〜97重量%、好ましくは50〜95重量%、より好ましくは50〜90重量%である。機能性粒子の配合量が前記の範囲にあると、機能性粒子の機能が発揮され、強度も保持できる。   In the present invention, the above pulps and functional particles are used as raw materials, and these are kneaded in the presence of water. The compounding quantity of pulp is 3 to 50 weight% of a raw material, Preferably it is 5 to 50 weight%, More preferably, it is 10 to 50 weight%. When the blending amount of the pulp is within the above range, a large amount of functional particles can be blended while maintaining the necessary strength. Moreover, the compounding quantity of a functional particle is 50 to 97 weight% of a raw material, Preferably it is 50 to 95 weight%, More preferably, it is 50 to 90 weight%. When the compounding amount of the functional particles is within the above range, the function of the functional particles is exhibited and the strength can be maintained.

混練原料には前記のパルプ類と機能性粒子以外に添加物を、本発明の効果を損なわない範囲で添加することもできる。添加物としては着色剤、滑剤、安定剤、その他の各種添加剤などが挙げられる。   In addition to the above-described pulps and functional particles, additives can be added to the kneaded raw material within a range not impairing the effects of the present invention. Examples of additives include colorants, lubricants, stabilizers, and other various additives.

混練
前記の原料は水の存在下で混練される。混練されることによって、パルプ類は機能性粒子を取り込みつつミクロフィブリル化される。水はパルプ類を膨潤し、ミクロフィブリル化しやすくする役割を果たす。水の量は、混練に使用する手段、成形性などを考慮して適宜設定できる。例えば、原料中の固形分濃度が20〜60重量%となる量或いは水分量が40〜80重量%となる量、好ましくは30〜50重量%である。また、水に代えられる成分あるいは水に添加できる成分としては、エチレングリコール、ブチレングリコール、メチルアルコール、エチルアルコール、グリセリンなどが挙げられる。これらの使用量は、上記の水の量に準じて設定できる。水量を調節するために脱水が必要な場合には、スクリュープレス、ディスクプレス、抄上げマシン、脱水フィルターなどの機械的な手段によって脱水し、調節することができる。これらの脱水手段の中には混練機能を併せ持つものも存在する。
Kneading The raw materials are kneaded in the presence of water. By kneading, the pulps are microfibrillated while taking in functional particles. Water plays a role in swelling pulp and facilitating microfibrillation. The amount of water can be appropriately set in consideration of the means used for kneading, moldability and the like. For example, the amount of the solid content in the raw material is 20 to 60% by weight or the amount of water is 40 to 80% by weight, preferably 30 to 50% by weight. Examples of components that can be replaced with water or that can be added to water include ethylene glycol, butylene glycol, methyl alcohol, ethyl alcohol, and glycerin. These usage-amounts can be set according to the quantity of said water. When dehydration is necessary to adjust the amount of water, it can be dehydrated and adjusted by mechanical means such as a screw press, a disk press, a paper making machine, and a dewatering filter. Some of these dehydrating means also have a kneading function.

また、混練に際して加圧、剪断、圧縮などの操作を適宜加えるが、その圧力はパルプ類の量、機能性粒子の量、水の量、成形形状、混練手段などに応じて適宜設定できる。混練するための手段としては、バンバリーミキサー、スクリュープレス、ニーダー、多軸ミキサー(二軸、三軸、四軸など)、ディスパーザー等を使用することができ、同一手段を2段以上組み合わせて実施してもよく、異なる手段を2段以上組み合わせて実施してもよい。また、後の成形のための手段を備えた混練機を利用することもできる。例えば、一軸混練押し出し機、二軸混練押し出し機などの多軸混練押し出し機などである。多軸混練押し出し機を使用すると、機能性分子の分散性がよく、また得られる材料は密度及び曲げ強度の高いものとなるため好ましく、二軸混練押し出し機が特に好ましい。   In addition, operations such as pressurization, shearing, and compression are appropriately applied during kneading, and the pressure can be appropriately set according to the amount of pulp, the amount of functional particles, the amount of water, the shape of the molding, the kneading means, and the like. As a means for kneading, a Banbury mixer, screw press, kneader, multi-axis mixer (two-axis, three-axis, four-axis, etc.), disperser, etc. can be used. Alternatively, different means may be implemented in combination of two or more stages. A kneader equipped with means for subsequent molding can also be used. For example, a multi-screw kneading extruder such as a uniaxial kneading extruder and a biaxial kneading extruder. When a multiaxial kneading extruder is used, the dispersibility of the functional molecules is good, and the resulting material has a high density and bending strength, and a biaxial kneading extruder is particularly preferred.

ここで、使用される二軸混練押し出し機は汎用の熱可塑性樹脂の混合、可塑化、押し出しに使用される装置であり、二本のスクリューの回転方向は異方向、同方向回転のどちらでもよい。スクリューの噛み合いは完全噛み合い、不完全噛み合いのどちらでもよい。スクリュー長さ/スクリュー直径比は20〜135であればよい。具体的な二軸混練押し出し機としては、テクノベル製「KZW」、日本製鋼所製「TEX」、東芝機械製「TEM」、コペリオン製「ZSK」などを用いることが出来る。混練時の温度は特に制限されないが、通常10〜80℃、好ましくは20〜60℃である。   Here, the biaxial kneading extruder used is an apparatus used for mixing, plasticizing, and extruding general-purpose thermoplastic resins, and the rotation direction of the two screws may be either different direction or same direction rotation. . The engagement of the screw may be complete engagement or incomplete engagement. The screw length / screw diameter ratio may be 20 to 135. Specific examples of the biaxial kneading extruder include “KZW” manufactured by Technobel, “TEX” manufactured by Nippon Steel Works, “TEM” manufactured by Toshiba Machine, and “ZSK” manufactured by Coperion. The temperature at the time of kneading is not particularly limited, but is usually 10 to 80 ° C, preferably 20 to 60 ° C.

成形
混練及び脱水された混練物は成形される。成形に先立ち、混練物を乾燥してもよい。成形にあたっては所望の形状に適した成形法、成形機を適宜選択すればよい。特に押し出し成形、射出成形が好ましく、押し出し成形が特に好ましい。押し出し成形の手段としては、スクリュー押し出し機など公知の押し出し成型機を使用することができる。本発明では多軸混練押し出し機が好ましく、二軸混練押し出し機が特に好ましい。
The kneaded and dehydrated kneaded product is molded. Prior to molding, the kneaded product may be dried. In molding, a molding method and a molding machine suitable for a desired shape may be appropriately selected. Extrusion molding and injection molding are particularly preferable, and extrusion molding is particularly preferable. As a means for extrusion molding, a known extrusion molding machine such as a screw extruder can be used. In the present invention, a multiaxial kneading extruder is preferred, and a biaxial kneading extruder is particularly preferred.

また、成形物の乾燥は成形物中の水分を除去する目的で行われる。通常80〜110℃の温度条件で行われる。また、乾燥の際には送風や減圧してもよい。   Moreover, drying of a molded object is performed in order to remove the water | moisture content in a molded object. Usually, it is performed under a temperature condition of 80 to 110 ° C. Further, the air may be blown or depressurized during drying.

機能性セルロース材料
本発明の機能性セルロース材料は、前記の製造方法により製造されるものであり、少量のセルロースミクロフィブリルで多量の機能性粒子を保持している。このため、セルロースミクロフィブリルに由来する高強度と、機能性粒子に由来する高い機能性を併せ持つものである。
Functional cellulose material The functional cellulose material of the present invention is produced by the production method described above, and retains a large amount of functional particles with a small amount of cellulose microfibrils. For this reason, it has both high strength derived from cellulose microfibrils and high functionality derived from functional particles.

従来、セルロースミクロフィブリルが50重量%未満だと強度不足になると考えられていたが、本発明の製造方法では、セルロースミクロフィブリルが10重量%(木粉90重量%)であっても28MPa以上の強度の機能性セルロース材料が得られた。   Conventionally, it was thought that the strength was insufficient when the cellulose microfibrils were less than 50% by weight, but in the production method of the present invention, even when the cellulose microfibrils were 10% by weight (wood flour 90% by weight), the pressure was 28 MPa or more. A strong functional cellulose material was obtained.

セルロースミクロフィブリルスラリーと機能性粒子とを混合して成形して得られる材料に対して、本発明の機能性セルロース材料は、セルロースミクロフィブリルにおける機能性粒子の分散がより均一で、密度が高く、強度(特に曲げ強度)が高い。例えば、前処理パルプ10重量%、木粉90重量%を原料とし二軸混練押し出し機を使用して得られた本発明の機能性セルロース材料は密度0.78g/cm程度、曲げ強度28MPa程度であるのに対し、セルロースミクロフィブリル10重量%(固形分量)、木粉90重量%を混練して得られるセルロース材料は密度0.5g/cm程度、曲げ強度1.9MPa程度である。 In contrast to the material obtained by mixing and molding cellulose microfibril slurry and functional particles, the functional cellulose material of the present invention has a more uniform distribution of functional particles in cellulose microfibrils, a higher density, High strength (particularly bending strength). For example, the functional cellulose material of the present invention obtained by using a biaxial kneading extruder using 10% by weight of pretreated pulp and 90% by weight of wood flour as a raw material has a density of about 0.78 g / cm 3 and a bending strength of about 28 MPa. In contrast, the cellulose material obtained by kneading 10% by weight (solid content) of cellulose microfibrils and 90% by weight of wood flour has a density of about 0.5 g / cm 3 and a bending strength of about 1.9 MPa.

また、本発明の機能性セルロース材料は、3〜50重量%のセルロースミクロフィブリルと50〜97重量%の機能性粒子を含有し、曲げ強度が20MPa以上であることを特徴とする。   The functional cellulose material of the present invention contains 3 to 50% by weight of cellulose microfibrils and 50 to 97% by weight of functional particles, and has a bending strength of 20 MPa or more.

本発明の機能性セルロース材料は、含有する機能性粒子の種類に応じた機能を有し、その機能を活用できる分野で広く利用できる。例えば、建築用内装材、保存用容器、自動車等輸送機の内装材、パソコン、携帯電話等の家電製品の筐体、文房具等の事務機器、スポーツ用品、包装材などである。   The functional cellulose material of the present invention has a function corresponding to the type of functional particles contained, and can be widely used in fields where the function can be utilized. For example, building interior materials, storage containers, interior materials for transport equipment such as automobiles, housings for home appliances such as personal computers and mobile phones, office equipment such as stationery, sports equipment, and packaging materials.

本発明の製造方法によれば、高強度及び高機能の機能性セルロース材料を得ることができる。また本発明の機能性セルロース材料は機能性粒子含有量が高いため高い機能性を有し、セルロースミクロフィブリル含有量は少ないが十分な強度を有する。すなわち、相反する強度と機能性とを高い次元で両立したものである。   According to the production method of the present invention, a functional cellulose material having high strength and high function can be obtained. Further, the functional cellulose material of the present invention has high functionality because of its high functional particle content, and has a sufficient strength although the cellulose microfibril content is small. In other words, the conflicting strength and functionality are compatible at a high level.

以下、本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to an Example.

実施例等において使用した装置、材料等の設定、物性等を次に示す。
<木粉>
「セルロシンNo.100」((株)カジノ製)
「セルロシンNo.30」((株)カジノ製)

<人工ゼオライト>
「fゼオライトTypeCa」(前田建設(株)製)
陽イオン変換容量(CEC) 150〜400cmol/kg
比表面積(SSA) 50〜70m/g
メジアン径 25μm
粒度分布 1〜100μm

<二軸混練押し出し機>
「KZW15TW」((株)テクノベル製)
スクリュー直径:15mm
スクリュー長さ/スクリュー直径比:30
スクリューの噛み合い型:完全噛み合い型
スクリュー回転数:300rpm

<石臼式磨砕機>
「ピュアファインミル」((株)栗田機械製作所製)

<リファイナー(コニカルリファイナー)>
「BEATFINER」((株)サトミ製作所製)

<曲げ強度測定機(10Tonオートグラフ)>
「AG−100kNG」((株)島津製作所製)
The setting of the apparatus used in the Example etc., material, a physical property, etc. are shown below.
<Wood flour>
“Cellulosin No. 100” (manufactured by Casino Co., Ltd.)
“Cellulosin No. 30” (Casino)

<Artificial zeolite>
“F A Zeolite TypeCa” (Maeda Construction Co., Ltd.)
Cation conversion capacity (CEC) 150-400 cmol / kg
Specific surface area (SSA) 50-70 m 2 / g
Median diameter 25μm
Particle size distribution 1-100μm

<Two-screw kneading extruder>
"KZW15TW" (manufactured by Technobel)
Screw diameter: 15mm
Screw length / screw diameter ratio: 30
Screw meshing type: Complete meshing type Screw rotation speed: 300rpm

<Stone mill grinder>
"Pure Fine Mill" (manufactured by Kurita Machinery Co., Ltd.)

<Refiner (conical refiner)>
“BEATFINER” (Satomi Manufacturing Co., Ltd.)

<Bending strength measuring machine (10Ton autograph)>
"AG-100kNG" (manufactured by Shimadzu Corporation)

実施例1:二軸混練押出
パルプと機能性粒子から二軸混練により成形物を製造し、その成形物に含まれるセルロースがミクロフィブリル化していることを確認し、また、比重と曲げ強度を測定した。まず、パルプとしてトイレットパーパーを用い、これを水:パルプ=97重量%:3重量%の割合で離解した後、前処理として、コニカルリファイナーによるリファイナー処理(5Pass)を行った。このリファイナー処理物(固形分濃度3wt%)に木粉(100メッシュ)を、パルプ(乾燥重量。以下の実施例においても同じ):木粉=50重量%:50重量%の比率で混合した後、遠心分離機で固形分30重量%になるまで脱水し、これを二軸混練押し出し機に供給した。二軸混練押し出し機(1Pass)によって得られたサンプルの電子顕微鏡写真を図1に示す。
Example 1: Biaxial kneading extrusion A molded product was produced from pulp and functional particles by biaxial kneading, and it was confirmed that the cellulose contained in the molded product was microfibrillated, and the specific gravity and bending strength were measured. did. First, toilet pulp was used as the pulp, and this was disaggregated at a ratio of water: pulp = 97 wt%: 3 wt%, and then subjected to a refiner treatment (5 Pass) with a conical refiner as a pretreatment. After this refiner-treated product (solid content concentration of 3 wt%) is mixed with wood flour (100 mesh) in a ratio of pulp (dry weight, the same in the following examples): wood flour = 50 wt%: 50 wt% Then, it was dehydrated with a centrifuge until the solid content became 30% by weight, and this was supplied to a twin-screw kneading extruder. An electron micrograph of a sample obtained by a biaxial kneading extruder (1 Pass) is shown in FIG.

このサンプルに若干の水を添加しながら粘土状に均一になるまで乳鉢で混練したものを、所定形状の型に入れ、圧縮成形機で脱水成形を行った。成形できたものを105℃の乾燥機で16時間乾燥させ、成形物(200mm×200mm×板厚8mm)を得た。得られた成形物について比重及び曲げ強度の測定を行った(サンプル数は2個)。その結果、比重は1.13〜1.14g/cm(平均値1.14g/cm)、曲げ強度は82.8〜83.5MPa(平均値83.10MPa)であった(表1)。なお、比重については成形サンプルの重量を体積で除した値とした。曲げ強度測定は成形サンプルを所定の形状に加工し、10Tonオートグラフにて測定した。 What was kneaded in a mortar until it became uniform in a clay state while adding some water to this sample was put into a mold of a predetermined shape and dehydrated with a compression molding machine. The molded product was dried for 16 hours with a dryer at 105 ° C. to obtain a molded product (200 mm × 200 mm × plate thickness 8 mm). The obtained molded product was measured for specific gravity and bending strength (two samples). As a result, the specific gravity was 1.13 to 1.14 g / cm 3 (average value 1.14 g / cm 3 ), and the bending strength was 82.8 to 83.5 MPa (average value 83.10 MPa) (Table 1). . The specific gravity was a value obtained by dividing the weight of the molded sample by the volume. The bending strength was measured by processing a molded sample into a predetermined shape and measuring with a 10 Ton autograph.

実施例2:二軸混練押出
パルプ:木粉(100メッシュ)=10重量%:90重量%とした以外は実施例1と同様にして、成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は3個)。その結果、比重0.77〜0.78g/cm(平均値0.78g/cm)、曲げ強度26.6〜29.5MPa(平均値28.12MPa)であった(表1)。
Example 2: Biaxial kneading extrusion Pulp: Wood flour (100 mesh) = 10 wt%: 90 wt% A molded product was obtained in the same manner as in Example 1, and the specific gravity and bending strength of the molded product were evaluated. (The number of samples was three). As a result, the specific gravity was 0.77 to 0.78 g / cm 3 (average value 0.78 g / cm 3 ), and the bending strength was 26.6 to 29.5 MPa (average value 28.12 MPa) (Table 1).

実施例3:二軸混練押出
機能性粒子を木粉から人工ゼオライトに代えてパルプ:人工ゼオライト=50重量%:50重量%とした以外は実施例1と同様にして、成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は2個)。その結果、比重1.42〜1.47g/cm(平均値1.45g/cm)、曲げ強度60.2〜65.6MPa(平均値62.94MPa)であった(表1)。
Example 3: Biaxial kneading extrusion A molded product was obtained in the same manner as in Example 1 except that the functional particles were changed from wood flour to artificial zeolite, and pulp: artificial zeolite = 50 wt%: 50 wt%. The specific gravity and bending strength of the molded product were evaluated (two samples). As a result, the specific gravity was 1.42 to 1.47 g / cm 3 (average value 1.45 g / cm 3 ), and the bending strength was 60.2 to 65.6 MPa (average value 62.94 MPa) (Table 1).

比較例1〜6:磨砕及び手捏ね処理
トイレットペーパー(パルプ)を水:パルプ=97重量%:3重量%の割合で離解した後、リファイナー処理をせずに、石臼式磨砕機(20Pass)でミクロフィブリル化セルロースとし、機能性粒子(木粉(30メッシュ)及び人工ゼオライト)を所定の割合で添加し、手で混練した。混練物(固形分30重量%)を実施例1と同様にして成形物を得、これら成形物の比重及び曲げ強度評価を行った(サンプル数は2個)。結果を表1に示す(比重及び曲げ強度は平均値)。なお、本例では、パルプはミクロフィブリル化していた。
Comparative Examples 1 to 6: Grinding and kneading treatment Toilet paper (pulp) was disaggregated at a ratio of water: pulp = 97% by weight: 3% by weight and then subjected to a refiner treatment without a refiner treatment (20 Pass). Then, microfibrillated cellulose was added, and functional particles (wood flour (30 mesh) and artificial zeolite) were added at a predetermined ratio and kneaded by hand. Molded products (solid content: 30% by weight) were obtained in the same manner as in Example 1, and the specific gravity and bending strength of these molded products were evaluated (two samples). The results are shown in Table 1 (specific gravity and bending strength are average values). In this example, the pulp was microfibrillated.

比較例7〜8:非混練
実施例1と同様にしてリファイナー処理物を得、これに木粉(30メッシュ)を所定の割合で添加して家庭用ミキサーで混合したが、混練は行わなかった。この混合物を実施例1と同様にして成形物を得、これら成形物の比重及び曲げ強度評価を行った(サンプル数は3個(50:50)と2個(10:90))。結果を表1に示す(比重及び曲げ強度は平均値)。なお、本例では、パルプはミクロフィブリル化しない。また、パルプ:木粉=10:90のサンプルでは成形出来たが曲げ強度が非常に小さかったため、曲げ強度は測定できなかった。
Comparative Examples 7 to 8: Non-kneading A refiner-treated product was obtained in the same manner as in Example 1, and wood flour (30 mesh) was added thereto at a predetermined ratio and mixed with a household mixer, but kneading was not performed. . Molded products were obtained from this mixture in the same manner as in Example 1, and the specific gravity and bending strength of these molded products were evaluated (the number of samples was 3 (50:50) and 2 (10:90)). The results are shown in Table 1 (specific gravity and bending strength are average values). In this example, the pulp is not microfibrillated. Moreover, although it was able to shape | mold in the sample of pulp: wood flour = 10: 90, since bending strength was very small, bending strength could not be measured.

比較例9〜10:ジューサーミキシング
実施例1と同様にしてリファイナー処理物を得(パルプ固形分濃度3wt%)、これに木粉(30メッシュ)を所定の割合で添加し、調理用ジューサーで約5分間撹拌混合した。得られた混合物を実施例1と同様にして成形物を得、これら成形物の比重及び曲げ強度評価を行った(サンプル数は3個)。結果を表1に示す(比重及び曲げ強度は平均値)。なお、本例では、パルプはミクロフィブリル化しない。
Comparative Examples 9 to 10: Juicer Mixing A refiner-treated product was obtained in the same manner as in Example 1 (pulp solid content concentration 3 wt%), and wood flour (30 mesh) was added to this at a predetermined ratio, and the cooking juicer was used approximately. Stir and mix for 5 minutes. Molded products were obtained from the obtained mixture in the same manner as in Example 1, and the specific gravity and bending strength of these molded products were evaluated (the number of samples was 3). The results are shown in Table 1 (specific gravity and bending strength are average values). In this example, the pulp is not microfibrillated.

Figure 0004831570
Figure 0004831570

表1に示されるように、二軸混練押出処理を経た成形物は、パルプ分が非常に少ない量であっても曲げ強度試験において28MPa以上の非常に高い強度であった。このため、パルプ配合量を少なくできると機能性粒子を多く配合でき、高い強度と機能性粒子に由来する高い機能を兼ね備えた機能性材料とすることができる。これに対し、比較例では、強度が7.02MPa以下であることから、実施例と同じ量の機能性粒子を配合すると強度が低い材料しか得られず、反対に、強度を確保するためにパルプ分を増やすと機能性粒子が少なくなり、機能が相対的に低下した材料しか得られない。   As shown in Table 1, the molded product that had undergone the biaxial kneading extrusion treatment had a very high strength of 28 MPa or more in the bending strength test even though the pulp content was very small. For this reason, if a pulp compounding quantity can be decreased, many functional particles can be mix | blended, and it can be set as the functional material which has the high function derived from high intensity | strength and functional particles. On the other hand, in the comparative example, since the strength is 7.02 MPa or less, when the same amount of functional particles as in the example is blended, only a material having low strength can be obtained. When the content is increased, the functional particles are reduced, and only materials having a relatively lowered function can be obtained.

実施例4:
パルプとしてクラフトパルプを用い、これを水:パルプ=97重量%:3重量%の割合で離解した後、前処理として、ディスクリファイナーによるリファイナー処理(8Pass)を行った。このリファイナー処理物(固形分濃度3wt%)に木粉(100メッシュ)を添加し(パルプ:木粉=10:90)、遠心分離機で固形分30重量%になるまで脱水し、これを二軸混練押出機に供給した。二軸混練押し出し機(1Pass)によって得られたサンプルを実施例1と同様にして成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は2個)。その結果、比重0.68〜0.71g/cm(平均値0.70g/cm)、曲げ強度20.9〜23.6MPa(平均値22.2MPa)であった。
Example 4:
Kraft pulp was used as the pulp, and this was disaggregated at a ratio of water: pulp = 97 wt%: 3 wt%, and then subjected to a refiner treatment (8 Pass) with a disc refiner as a pretreatment. Wood refinement (100 mesh) is added to this refiner-treated product (solid content concentration 3 wt%) (pulp: wood flour = 10: 90) and dehydrated to a solid content of 30% by weight with a centrifuge. It supplied to the shaft kneading extruder. A sample obtained by a biaxial kneading extruder (1 Pass) was obtained in the same manner as in Example 1, and the specific gravity and bending strength of the molded product were evaluated (the number of samples was 2). As a result, the specific gravity was 0.68 to 0.71 g / cm 3 (average value 0.70 g / cm 3 ), and the bending strength was 20.9 to 23.6 MPa (average value 22.2 MPa).

実施例5:
ディスクリファイナー処理をしなかったこと以外は実施例4と同様にして成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は2個)。その結果、比重0.64〜0.65g/cm(平均値0.65g/cm)、曲げ強度11.7〜13.4MPa(平均値12.6MPa)であった。ディスクリファイナー処理(実施例4)をする方が曲げ強度の点では有利であった。
Example 5:
A molded product was obtained in the same manner as in Example 4 except that the disc refiner treatment was not performed, and the specific gravity and bending strength of the molded product were evaluated (two samples). As a result, the specific gravity was 0.64 to 0.65 g / cm 3 (average value 0.65 g / cm 3 ), and the bending strength was 11.7 to 13.4 MPa (average value 12.6 MPa). The disc refiner treatment (Example 4) was advantageous in terms of bending strength.

実施例6:
パルプとしてクラフトパルプを用い、これを水:パルプ=97重量%:3重量%の割合で離解した後、前処理として、ディスクリファイナーによるリファイナー処理(8Pass)を行った。このリファイナー処理物(固形分濃度3wt%)に人工ゼオライトを添加し(パルプ:人工ゼオライト=50:50)、遠心分離機で固形分30重量%になるまで脱水し、これを二軸混練押出機に供給した。二軸混練押し出し機(1Pass)によって得られたサンプルを実施例1と同様にして成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は3個)。その結果、比重1.39〜1.42g/cm(平均値1.41g/cm)、曲げ強度53.1〜75.1MPa(平均値65.4MPa)であった。
Example 6:
Kraft pulp was used as the pulp, and this was disaggregated at a ratio of water: pulp = 97 wt%: 3 wt%, and then subjected to a refiner treatment (8 Pass) with a disc refiner as a pretreatment. Artificial zeolite is added to this refiner-treated product (solid content concentration: 3 wt%) (pulp: artificial zeolite = 50: 50) and dehydrated with a centrifuge until the solid content reaches 30% by weight. Supplied to. A sample obtained by a biaxial kneading extruder (1 Pass) was obtained in the same manner as in Example 1, and the specific gravity and bending strength of the molded product were evaluated (the number of samples was 3). As a result, the specific gravity was 1.39 to 1.42 g / cm 3 (average value 1.41 g / cm 3 ), and the bending strength was 53.1 to 75.1 MPa (average value 65.4 MPa).

実施例7:
ディスクリファイナー処理をしなかったこと以外は実施例6と同様にして成形物を得、その成形物の比重及び曲げ強度評価を行った(サンプル数は3個)。その結果、比重1.42〜1.47g/cm(平均値1.44g/cm)、曲げ強度49.0〜65.6MPa(平均値58.3MPa)であった。ディスクリファイナー処理(実施例6)をする方が曲げ強度の点では有利であった。
Example 7:
A molded product was obtained in the same manner as in Example 6 except that the disc refiner treatment was not performed, and the specific gravity and bending strength of the molded product were evaluated (three samples). As a result, the specific gravity was 1.42 to 1.47 g / cm 3 (average value 1.44 g / cm 3 ), and the bending strength was 49.0 to 65.6 MPa (average value 58.3 MPa). The disc refiner treatment (Example 6) was advantageous in terms of bending strength.

本発明は、曲げ強度と高機能性を兼ね備えたセルロースミクロフィブリルを含有する機能性材料の分野において、有用である。   The present invention is useful in the field of functional materials containing cellulose microfibrils having both bending strength and high functionality.

実施例1で製造された本発明の機能性セルロース材料の走査型電子顕微鏡写真(5000倍)を示す。The scanning electron micrograph (5000 times) of the functional cellulose material of this invention manufactured in Example 1 is shown.

Claims (3)

パルプ及び/又は前処理パルプ3〜50重量%と機能性粒子50〜97重量%を水の存在下で混練し、混練物を加圧して脱水及び成形し、成形物を乾燥することを包含する機能性セルロース材料の製造方法であって、
前記混練、加圧及び成形が二軸混練押し出し機を用いて行われる機能性セルロース材料の製造方法
It includes kneading 3 to 50% by weight of pulp and / or pretreated pulp and 50 to 97% by weight of functional particles in the presence of water, pressurizing and kneading the kneaded product, and drying the molded product. A method for producing a functional cellulose material ,
A method for producing a functional cellulose material, wherein the kneading, pressurizing and molding are performed using a biaxial kneading extruder .
機能性粒子の平均粒子径が2000μm以下である請求項1に記載の機能性セルロース材料の製造方法。 The method for producing a functional cellulose material according to claim 1, wherein the average particle diameter of the functional particles is 2000 μm or less. 機能性粒子が木粉、樹皮粉末、天然ゼオライト、合成ゼオライト、人工ゼオライト、酸化チタン、シリカゲル、活性炭、貝殻粉砕物、珪藻土、金属粉及びタンニンからなる群から選択される少なくとも1種の粒子であることを特徴とする請求項1又は2に記載の機能性セルロース材料の製造方法。 The functional particles are at least one particle selected from the group consisting of wood powder, bark powder, natural zeolite, synthetic zeolite, artificial zeolite, titanium oxide, silica gel, activated carbon, crushed shell, diatomaceous earth, metal powder and tannin. The method for producing a functional cellulose material according to claim 1 or 2 .
JP2006085888A 2006-03-27 2006-03-27 Functional cellulose material having high functional particle content and method for producing the same Active JP4831570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085888A JP4831570B2 (en) 2006-03-27 2006-03-27 Functional cellulose material having high functional particle content and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085888A JP4831570B2 (en) 2006-03-27 2006-03-27 Functional cellulose material having high functional particle content and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007262594A JP2007262594A (en) 2007-10-11
JP4831570B2 true JP4831570B2 (en) 2011-12-07

Family

ID=38635847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085888A Active JP4831570B2 (en) 2006-03-27 2006-03-27 Functional cellulose material having high functional particle content and method for producing the same

Country Status (1)

Country Link
JP (1) JP4831570B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918667B2 (en) * 2007-12-01 2012-04-18 ケア・ルートサービス株式会社 Water-absorbing lightweight material
DK2805986T3 (en) 2009-03-30 2017-12-18 Fiberlean Tech Ltd PROCEDURE FOR THE MANUFACTURE OF NANO-FIBRILLARY CELLULOS GELS
EP3617400B1 (en) 2009-03-30 2022-09-21 FiberLean Technologies Limited Use of nanofibrillar cellulose suspensions
GB0908401D0 (en) 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
FI123289B (en) 2009-11-24 2013-01-31 Upm Kymmene Corp Process for the preparation of nanofibrillated cellulosic pulp and its use in papermaking or nanofibrillated cellulose composites
CA2782485C (en) 2009-12-01 2017-10-24 Kyoto University Cellulose nanofibers
DK2386682T3 (en) 2010-04-27 2014-06-23 Omya Int Ag Process for preparing structured materials using nano-fibrillar cellulose gels
PL2386683T3 (en) 2010-04-27 2014-08-29 Omya Int Ag Process for the production of gel-based composite materials
GB201019288D0 (en) 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
JP5975260B2 (en) * 2012-04-06 2016-08-23 丸住製紙株式会社 Grinding material made from residue of pulp and paper manufacturing process, method for producing grinding material, and molded material of grinding material
CN112094432B (en) 2015-10-14 2022-08-05 纤维精益技术有限公司 Sheet material capable of three-dimensional forming
PT3828339T (en) 2016-04-05 2024-01-02 Fiberlean Tech Ltd Paper and paperboard products
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
DK3445900T3 (en) 2016-04-22 2022-08-01 Fiberlean Tech Ltd FIBERS COMPRISING MICROFIBRILLATED CELLULOSE AND METHODS FOR MANUFACTURE OF FIBERS AND NONWOVEN MATERIALS THEREOF

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190322A (en) * 1984-03-13 1985-09-27 Matsushita Electric Works Ltd Manufacture of wooden product by extrusion molding
JPH11140800A (en) * 1997-11-12 1999-05-25 Toyo Plastic Kogyo Kk Production of molding product of reinforced pulp material
JP2001172896A (en) * 1999-12-20 2001-06-26 Sadakatsu Sunami Functional paper sheet and functional paper product using the same
JP2001336095A (en) * 2000-05-25 2001-12-07 Saburo Suzuki Wall paper made by absorption and lamination of man- made zeolite, and method for manufacturing the same
JP3522706B2 (en) * 2001-04-02 2004-04-26 ニチハ株式会社 WOOD BASE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2002327503A (en) * 2001-05-07 2002-11-15 Dantani Plywood Co Ltd Humidity conditioning building material with rugged pattern on surface, and its manufacturing method
JP2004292970A (en) * 2003-03-26 2004-10-21 Kimura Chem Plants Co Ltd Functional sheet and method for producing the same
JP4013870B2 (en) * 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 Method for producing aliphatic polyester composition

Also Published As

Publication number Publication date
JP2007262594A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4831570B2 (en) Functional cellulose material having high functional particle content and method for producing the same
Jayanth et al. A review on biodegradable polymeric materials striving towards the attainment of green environment
JP5757765B2 (en) Resin composition containing modified microfibrillated plant fiber
Fernandes et al. Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition
KR101322598B1 (en) Producting methode for Injection Composite Material Using Natural fiber particle
JP6787137B2 (en) Fine cellulose fiber-containing resin composition and its manufacturing method
JP5211571B2 (en) Method for producing thermoplastic resin composition and method for producing molded body
JP6191584B2 (en) Method for producing thermoplastic resin composition
CA3067521A1 (en) Fine cellulose fiber, production method thereof, slurry, and composite
JP4660528B2 (en) Polymer composite material manufacturing apparatus and manufacturing method thereof
Haque et al. Preparation and characterization of polypropylene composites reinforced with chemically treated coir
EP1810748B1 (en) Dewatering promoter and method for production thereof
JP6733076B2 (en) Method for producing thermoplastic resin composition
JP2013107987A (en) Cellulose-combined thermoplastic resin and molding thereof
Kuram Advances in development of green composites based on natural fibers: A review
JP2020125563A (en) Cellulose fiber dry body, cellulose fiber resin composite, and molding
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
JP2019059956A (en) Thermoplastic resin composition
CA3138848A1 (en) Cellulose fiber composite recycled resin and production method therefor
Peşman et al. The effects of CaCO3 coated wood free paper usage as filler on water absorption, mechanical and thermal properties of cellulose-high density polyethylene composites
JP2016094539A (en) Thermoplastic resin composition
WO2020138496A1 (en) Production method for lignocellulose fibers, lignocellulose fibers, and composite material
JP2010041966A (en) Method for making hydrophobic material in shape of particle, granule or compact
JP2009096875A (en) Method for producing thermoplastic resin composition, and method for producing molded article
JP6982122B2 (en) Method for manufacturing thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

R150 Certificate of patent or registration of utility model

Ref document number: 4831570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250