JP5211571B2 - Method for producing thermoplastic resin composition and method for producing molded body - Google Patents

Method for producing thermoplastic resin composition and method for producing molded body Download PDF

Info

Publication number
JP5211571B2
JP5211571B2 JP2007195163A JP2007195163A JP5211571B2 JP 5211571 B2 JP5211571 B2 JP 5211571B2 JP 2007195163 A JP2007195163 A JP 2007195163A JP 2007195163 A JP2007195163 A JP 2007195163A JP 5211571 B2 JP5211571 B2 JP 5211571B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
mixing
producing
mixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007195163A
Other languages
Japanese (ja)
Other versions
JP2009029927A (en
Inventor
正典 羽柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2007195163A priority Critical patent/JP5211571B2/en
Priority to PCT/JP2008/058502 priority patent/WO2009013925A1/en
Publication of JP2009029927A publication Critical patent/JP2009029927A/en
Application granted granted Critical
Publication of JP5211571B2 publication Critical patent/JP5211571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/95Heating or cooling systems using heated or cooled stirrers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0722Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis perpendicular with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0724Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis directly mounted on the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • B01F27/1921Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements comprising helical elements and paddles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は熱可塑性樹脂組成物の製造方法及び成形体の製造方法に関する。更に詳しくは、熱可塑性樹脂とセルロースナノファイバーとを含む熱可塑性樹脂組成物の製造方法及びこの熱可塑性樹脂組成物を用いた成形体の製造方法に関する。   The present invention relates to a method for producing a thermoplastic resin composition and a method for producing a molded body. More specifically, the present invention relates to a method for producing a thermoplastic resin composition containing a thermoplastic resin and cellulose nanofibers, and a method for producing a molded body using the thermoplastic resin composition.

近年、二酸化炭素排出量削減や環境保護等の観点から植物・動物等の生物資源を用いた材料及びその技術が注目されている。特に、石油等の鉱物資源を用いた樹脂から生物資源を用いた樹脂へと転換する試みや、鉱物資源から得られた樹脂に生物資源から得られた補強剤等を混合して鉱物資源の使用量を削減する試み等がなされている。しかし、鉱物資源から得られた樹脂は、これまでに種々の物性制御がなされて優れた特性が付与されている。一方で、生物資源から得られる樹脂、例えば、ポリ乳酸等は、耐熱性を向上させたり、結晶化速度を早くしたりして、より優れた物性が達成されつつあるものの、鉱物資源をから得られた樹脂に比べると未だ特性に劣る部分もある。
この問題に対して、樹脂に対してより高い強度を付与する観点から、下記特許文献1及び下記特許文献2に開示されるように、天然材料を混合する技術が知られている。
In recent years, materials using biological resources such as plants and animals and their technologies have attracted attention from the viewpoint of reducing carbon dioxide emissions and protecting the environment. In particular, attempts to switch from resins using mineral resources such as petroleum to resins using biological resources, and using mineral resources by mixing resins obtained from mineral resources with reinforcing agents obtained from biological resources Attempts have been made to reduce the amount. However, resins obtained from mineral resources have been imparted with excellent properties through various physical property controls. On the other hand, resins obtained from biological resources, such as polylactic acid, are improved in heat resistance and increased in crystallization speed to achieve better physical properties. Some parts are still inferior in properties compared to the obtained resin.
With respect to this problem, as disclosed in the following Patent Document 1 and Patent Document 2 below, a technique of mixing natural materials is known from the viewpoint of imparting higher strength to the resin.

特開2004−50482号公報JP 2004-50482 A 特開2006−206913号公報JP 2006-206913 A

上記特許文献1及び2は、いずれも優れた強度向上効果が得られる技術であるが、天然材料を樹脂に混入するには、樹脂と天然材料との間の大きな比重差に起因する混合の難しさがある。また、多量の天然材料を用いることで樹脂の強度を補うことができるものの、樹脂単独では優れている成形性などの特性が低下するという側面がある。このため、より少量の添加で高い特性向上効果が得られる技術や、天然材料の混合と併用できる技術が求められている。
本発明は、上記従来の技術に鑑みてなされたものであり、熱可塑性樹脂とセルロースナノファイバーとを含む熱可塑性樹脂組成物が得られる熱可塑性樹脂組成物の製造方法及びこの熱可塑性樹脂組成物を用いた成形体の製造方法を提供することを目的とする。
The above Patent Documents 1 and 2 are both techniques for obtaining an excellent strength improvement effect. However, mixing a natural material into a resin is difficult to mix due to a large specific gravity difference between the resin and the natural material. There is. Further, although the strength of the resin can be supplemented by using a large amount of natural material, there is an aspect that the properties such as moldability which are excellent with the resin alone are deteriorated. For this reason, there is a need for a technique that can achieve a high characteristic improvement effect with a smaller amount of addition, and a technique that can be used in combination with mixing of natural materials.
The present invention has been made in view of the above prior art, and a method for producing a thermoplastic resin composition from which a thermoplastic resin composition containing a thermoplastic resin and cellulose nanofibers is obtained, and the thermoplastic resin composition. It aims at providing the manufacturing method of the molded object using this.

本発明者は、樹脂とセルロースナノファイバーとの混合について検討を行った。セルロースナノファイバーは、水等の分散媒と共存された分散体としてしか解繊状態を維持できず、一度、分散媒が失われると繊維が凝集されて塊状となり、その後、分散媒を添加しても解繊状態を復元できない。更に、極めて高い水和性を有することから、通常、粘土状を呈し、固形分濃度10質量%程度の水分散体であっても高い粘性を有する。このため、固形分濃度が高い水分散体を形成することが困難であり、樹脂との混合においては多量の水分と共に混合を行うこととなり、通常の混練等の操作を行うことができない。
これに対して、本発明者は、熱可塑性樹脂と上記水分散体とを直接的に混合して、熱可塑性樹脂内にセルロースナノファイバーを分散含有できることを知見し、本発明を完成させるに至った。
This inventor examined mixing with resin and a cellulose nanofiber. Cellulose nanofibers can only maintain a defibrated state as a dispersion coexisting with a dispersion medium such as water, and once the dispersion medium is lost, the fibers are aggregated into a lump, and then the dispersion medium is added. Even the defibrated state cannot be restored. Furthermore, since it has extremely high hydration properties, it usually exhibits a clay shape, and even an aqueous dispersion having a solid content concentration of about 10% by mass has high viscosity. For this reason, it is difficult to form an aqueous dispersion having a high solid content concentration. In mixing with a resin, mixing with a large amount of water is performed, and operations such as normal kneading cannot be performed.
On the other hand, the present inventor has found that cellulose nanofibers can be dispersed and contained in the thermoplastic resin by directly mixing the thermoplastic resin and the aqueous dispersion, thereby completing the present invention. It was.

即ち、本発明は以下に示す通りである。
(1)セルロースナノファイバーの水分散体と熱可塑性樹脂とを撹拌機で混合して熱可塑性樹脂組成物を得る熱可塑性樹脂組成物の製造方法であって、
上記撹拌機は上記混合を行う混合室を備え、
上記混合により上記水分散体に含まれる水分を気化させて、上記混合室内を加圧することを特徴とする熱可塑性樹脂組成物の製造方法。
)上記熱可塑性樹脂は、生分解性樹脂である上記(1)に記載の熱可塑性樹脂組成物の製造方法。
)上記セルロースナノファイバーの水分散体及び上記熱可塑性樹脂と共に、更に、植物材料を上記撹拌機で混合する上記(1)又は)に記載の熱可塑性樹脂組成物の製造方法。
)上記植物材料は、ケナフコアである上記()に記載の熱可塑性樹脂組成物の製造方法。
)上記(1)乃至()のうちのいずれかに記載の製造方法により得られた熱可塑性樹脂組成物を押出成形又は射出成形して成形体を得ることを特徴とする成形体の製造方法。
That is, the present invention is as follows.
(1) A method for producing a thermoplastic resin composition in which an aqueous dispersion of cellulose nanofibers and a thermoplastic resin are mixed with a stirrer to obtain a thermoplastic resin composition ,
The stirrer includes a mixing chamber for performing the mixing,
A method for producing a thermoplastic resin composition, comprising vaporizing water contained in the aqueous dispersion by the mixing and pressurizing the mixing chamber.
( 2 ) The said thermoplastic resin is a manufacturing method of the thermoplastic resin composition as described in said (1) which is a biodegradable resin.
( 3 ) The method for producing a thermoplastic resin composition according to (1) or ( 2 ), wherein a plant material is further mixed with the aqueous dispersion of the cellulose nanofibers and the thermoplastic resin with the agitator.
( 4 ) The method for producing a thermoplastic resin composition according to ( 3 ), wherein the plant material is kenaf core.
( 5 ) A molded article obtained by extrusion molding or injection molding a thermoplastic resin composition obtained by the production method according to any one of (1) to ( 4 ) above. Production method.

本発明の熱可塑性樹脂組成物の製造方法によれば、セルロースナノファイバーの水分散体と熱可塑性樹脂とを直接的に混合することができる。特に1工程で混合を行うことができ量産性に優れる。また、得られた熱可塑性樹脂では、熱可塑性樹脂のみの場合に比べて強度を向上させることができ、特に曲げ物性を向上させる効果に優れる。
水分散体に含まれる水分を気化させて混合室内を加圧するので、より短時間で効率よく混合を行うことができる。
熱可塑性樹脂が生分解性樹脂である場合は、環境負荷が小さく、非鉱物資源を原料とすることができ、高い機械的強度等の実用的な特性を得ながら、鉱物資源の使用を抑制できる。
セルロースナノファイバーの水分散体及び熱可塑性樹脂と共に植物材料を撹拌機で混合する場合は、セルロースナノファイバー及び熱可塑性樹脂と、更には、熱可塑性樹脂に比べて比重が極端に小さく混合が困難な植物材料と、を1工程で混合でき量産性にとりわけ優れる。また、得られた熱可塑性樹脂では、熱可塑性樹脂のみの場合に比べて強度を向上させることができ、とりわけ曲げ物性を向上させる効果に優れる。
植物材料がケナフコアである場合は、より軽く且つ特に曲げ弾性率に優れた成形体形成できる熱可塑性樹脂組成物を得ることができる。また、ケナフは成長が極めて早い一年草であり、優れた二酸化炭素吸収性を有するため、大気中の二酸化炭素量の削減、森林資源の有効利用等に貢献できる。
本発明の成形体の製造方法によれば、セルロースナノファイバーと熱可塑性樹脂とを含有した、強度に優れた成形体を得ることができる。
According to the method for producing a thermoplastic resin composition of the present invention, an aqueous dispersion of cellulose nanofibers and a thermoplastic resin can be directly mixed. In particular, mixing can be performed in one step, and the mass productivity is excellent. Further, the obtained thermoplastic resin can improve the strength as compared with the case of using only the thermoplastic resin, and is particularly excellent in the effect of improving the bending property.
Since the pressure of the mixing chamber water is vaporized contained in the aqueous dispersion, it can be performed more quickly and efficiently mixed.
When the thermoplastic resin is a biodegradable resin, the environmental impact is small, non-mineral resources can be used as raw materials, and the use of mineral resources can be suppressed while obtaining practical properties such as high mechanical strength. .
When plant materials are mixed with an aqueous dispersion of cellulose nanofibers and a thermoplastic resin with a stirrer, the specific gravity is extremely small compared to the cellulose nanofibers and thermoplastic resins, and more difficult to mix. The plant material can be mixed in one step and is particularly excellent in mass productivity. Further, the obtained thermoplastic resin can improve the strength as compared with the case of using only the thermoplastic resin, and is particularly excellent in the effect of improving the bending property.
When the plant material is a kenaf core, it is possible to obtain a thermoplastic resin composition that can form a molded article that is lighter and particularly excellent in flexural modulus. Kenaf is an annual plant that grows very fast and has excellent carbon dioxide absorption, so it can contribute to reducing the amount of carbon dioxide in the atmosphere and effectively using forest resources.
According to the method for producing a molded article of the present invention, it is possible to obtain a molded article having excellent strength, containing cellulose nanofibers and a thermoplastic resin.

[1]熱可塑性樹脂組成物の製造方法
セルロースナノファイバーの水分散体と熱可塑性樹脂とを撹拌機で混合して熱可塑性樹脂組成物を得る熱可塑性樹脂組成物の製造方法であって、
上記撹拌機は上記混合を行う混合室を備え、
上記混合により上記水分散体に含まれる水分を気化させて、上記混合室内を加圧することを特徴とする熱可塑性樹脂組成物の製造方法
[1] A method for producing a thermoplastic resin composition A method for producing a thermoplastic resin composition in which an aqueous dispersion of cellulose nanofibers and a thermoplastic resin are mixed with a stirrer to obtain a thermoplastic resin composition ,
The stirrer includes a mixing chamber for performing the mixing,
A method for producing a thermoplastic resin composition, comprising vaporizing water contained in the aqueous dispersion by the mixing and pressurizing the mixing chamber .

上記「セルロースナノファイバー」は、セルロース及び/又はセルロースの誘導体からなる繊維であり、単繊維の直径は特に限定されないが4〜2000nmである。また、この単繊維の長さは特に限定されないが100〜1000μmである。更に、水分散体内では、この単繊維は、複数条が集合されて繊維状をなしていてもよい。また、セルロースナノファイバーは強い水和性を有し、水系媒体中で水和することで安定に分散状態(分散体の状態)を維持できる。
本発明で用いるセルロースナノファイバーとしては、単繊維の直径は20〜30nmが好ましい。また、この単繊維の長さは特に限定されないが0.1〜1000μm(より好ましくは0.1〜100μm)が好ましい。これらの範囲の単繊維のセルロースナノファイバーは本方法による混合に特に適している。
The “cellulose nanofiber” is a fiber made of cellulose and / or a derivative of cellulose, and the diameter of the single fiber is not particularly limited, but is 4 to 2000 nm. The length of the single fiber is not particularly limited, but is 100 to 1000 μm. Further, in the aqueous dispersion, the single fiber may be formed into a fibrous shape by collecting a plurality of filaments. Cellulose nanofibers have a strong hydration property and can stably maintain a dispersed state (dispersed state) by being hydrated in an aqueous medium.
As a cellulose nanofiber used by this invention, the diameter of a single fiber has preferable 20-30 nm. The length of the single fiber is not particularly limited, but is preferably 0.1 to 1000 μm (more preferably 0.1 to 100 μm). These ranges of single-fiber cellulose nanofibers are particularly suitable for mixing by the present method.

セルロースナノファイバーの水分散体には、単繊維の直径が2.0μmを超える繊維を含有してもよいが、セルロースナノファイバーの水分散体全体に対して10質量%以下(好ましくは5質量%以下)であることが好ましい。この範囲であればセルロースナノファイバーを含有させることによる補強効果をより効果的に得ることができる。   The aqueous dispersion of cellulose nanofibers may contain fibers having a diameter of a single fiber exceeding 2.0 μm, but is 10% by mass or less (preferably 5% by mass) with respect to the entire aqueous dispersion of cellulose nanofibers. Or less). If it is this range, the reinforcement effect by containing a cellulose nanofiber can be acquired more effectively.

本方法に用いるセルロースナノファイバーの種類は特に限定されず、その製法も特に限定されない。例えば、セルロースナノファイバーとしては、(1)繊維原料(パルプなど)をホモジナイザー(高圧ホモジナイザー、高圧均質化装置)でミクロフィブリル化して得られたもの、(2)繊維原料(パルプなど)を石臼式摩擦機(グラインダー、摩砕機など)でミクロフィブリル化して得られたもの、(3)繊維原料(パルプなど)をリファイナー(コニカルリファイナー、ディスクリファイナーなど)でミクロフィブリル化して得られたもの、(4)各種バクテリアによって生産されたもの(バクテリアセルロース)、等が挙げられる。更に、上記繊維原料(パルプなど)は薬品処理(リン酸エステル化処理、アセチル化、シアノエチル化など)した後に、各種ミクロフィブリル化をしたものであってもよい。これらの各種セルロースナノファイバーは1種のみを用いてもよく、2種以上を併用してもよい。   The kind of cellulose nanofiber used for this method is not specifically limited, The manufacturing method is also not specifically limited. For example, as cellulose nanofibers, (1) fiber raw materials (pulp, etc.) obtained by microfibrillation with a homogenizer (high pressure homogenizer, high pressure homogenizer), (2) fiber raw materials (pulp, etc.) Obtained by microfibrillation with a friction machine (grinder, grinder, etc.), (3) obtained by microfibrillation of a fiber raw material (pulp, etc.) with a refiner (conical refiner, disc refiner, etc.), (4 And the like produced by various bacteria (bacterial cellulose). Further, the fiber raw material (pulp or the like) may be subjected to chemical treatment (phosphate esterification treatment, acetylation, cyanoethylation, etc.) and then various microfibrillations. These various cellulose nanofibers may be used alone or in combination of two or more.

また、セルロースナノファイバーの繊維原料としては、植物由来の繊維原料、動物由来の繊維原料及び微生物由来の繊維原料のいずれを用いてもよく、これらのうちの2種以上を組み合わせて用いてもよい。植物由来の繊維原料としては、パルプ及び植物材料が挙げられる。このうちパルプとしては再生パルプ、クラフトパルプ及び機械パルプが挙げられる。これらは1種のみを用いてもよく2種以上を組み合わせて用いてもよい。更に、上記植物材料としては、後述する植物材料をそのまま適用できる。また、上記動物由来の繊維原料としては、例えば、ホヤ由来のセルロースが挙げられる。更に、微生物由来の繊維原料としては、バクテリアセルロースが挙げられる。
尚、本発明にいうセルロースナノファイバーは、その他、ミクロフィブリルセルロース、ミクロフィブリル状微細繊維、微少繊維セルロース、ミクロフィブリル化セルロース、スーパーミクロフィブリルセルロース等と称される各種微細繊維を含み、更には、これらのうちの少なくとも1種を更に微細化した繊維を含む意味である。
Moreover, as a fiber raw material of a cellulose nanofiber, any of a plant-derived fiber raw material, an animal-derived fiber raw material, and a microorganism-derived fiber raw material may be used, or two or more of these may be used in combination. . Examples of plant-derived fiber materials include pulp and plant materials. Among these, recycled pulp, kraft pulp and mechanical pulp are mentioned as pulp. These may use only 1 type and may use it in combination of 2 or more type. Furthermore, the plant material mentioned later can be applied as it is as the plant material. Examples of the animal-derived fiber raw material include cellulose derived from sea squirt. Furthermore, bacterial cellulose is mentioned as a fiber raw material derived from microorganisms.
In addition, the cellulose nanofiber referred to in the present invention includes various fine fibers referred to as microfibril cellulose, microfibril-like fine fiber, microfiber cellulose, microfibrillated cellulose, super microfibril cellulose, etc. It is meant to include fibers in which at least one of these is further refined.

上記「水分散体」は、上記セルロースナノファイバーが含有された分散体であり、分散媒として水を含有する分散体である。この分散媒は、全量が水であることが好ましいが、その一部が水と相溶性を有する他の液体(炭素数3以下の低級アルコール類等)を用いることもできる。この水分散体の固形分濃度は特に限定されないが50質量%以下(より好ましくは40質量%以下)であることが好ましい。また、1質量%以上(より好ましくは5質量%以上)であることが好ましい。   The “water dispersion” is a dispersion containing the cellulose nanofibers, and is a dispersion containing water as a dispersion medium. The total amount of this dispersion medium is preferably water, but other liquids (for example, lower alcohols having 3 or less carbon atoms) that are partially compatible with water can also be used. The solid content concentration of the aqueous dispersion is not particularly limited, but is preferably 50% by mass or less (more preferably 40% by mass or less). Moreover, it is preferable that it is 1 mass% or more (more preferably 5 mass% or more).

本方法におけるセルロースナノファイバーの配合量(固形分換算)は特に限定されないが、セルロースナノファイバーと熱可塑性樹脂との合計を100質量%とした場合に、セルロースナノファイバーは1質量%以上(より好ましくは5質量%以上、通常70質量%以下)とすることが好ましい。この範囲では、セルロースナノファイバーを熱可塑性樹脂に混合することによる強度向上効果を得ることができ、特に曲げ強度及び曲げ弾性率を効果的に向上させることができる。更に、この配合量は15質量%以上とすることが特に好ましい。15質量%以上とすることでそれ未満の配合量に対してよりも著しく高い補強効果を得ることができる。尚、本方法により得られる熱可塑性樹脂組成物内に含まれるセルロースナノファイバーの含有量は、通常、上記セルロースナノファイバーの配合量と同じである。   The blending amount of cellulose nanofibers (in terms of solid content) in this method is not particularly limited, but when the total of cellulose nanofibers and thermoplastic resin is 100% by mass, cellulose nanofibers are 1% by mass or more (more preferably). Is preferably 5% by mass or more and usually 70% by mass or less. In this range, the strength improvement effect by mixing cellulose nanofibers with a thermoplastic resin can be obtained, and in particular, the bending strength and the bending elastic modulus can be effectively improved. Further, the blending amount is particularly preferably 15% by mass or more. By setting it as 15 mass% or more, a remarkably high reinforcement effect can be acquired rather than with respect to the compounding quantity less than it. In addition, content of the cellulose nanofiber contained in the thermoplastic resin composition obtained by this method is usually the same as the blending amount of the cellulose nanofiber.

上記「熱可塑性樹脂」は、特に限定されず種々のものを用いることができる。例えば、ポリオレフィン(ポリプロピレン、ポリエチレン等)、ポリエステル樹脂{(ポリ乳酸、ポリカプロラクトン等の脂肪族ポリエステル樹脂)、(ポリエチレンテレフタレート等の芳香族ポリエチレン樹脂)}、ポリスチレン、ポリアクリル樹脂(メタアクリレート、アクリレート等)、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
これらのなかでは、ポリオレフィン及びポリエステル樹脂のうちの少なくとも一方であることが好ましい。また、上記ポリオレフィンのなかではポリプロピレンがより好ましい。
The “thermoplastic resin” is not particularly limited, and various types can be used. For example, polyolefin (polypropylene, polyethylene, etc.), polyester resin {(aliphatic polyester resin such as polylactic acid, polycaprolactone), (aromatic polyethylene resin such as polyethylene terephthalate)}, polystyrene, polyacrylic resin (methacrylate, acrylate, etc.) ), Polyamide resin, polycarbonate resin, polyacetal resin and the like. These may use only 1 type and may use 2 or more types together.
Among these, at least one of polyolefin and polyester resin is preferable. Of the above polyolefins, polypropylene is more preferred.

一方、ポリエステル樹脂のなかでは、生分解性を有するポリエステル樹脂(以下、単に「生分解性樹脂」ともいう)が好ましい。生分解性樹脂としては、(1)乳酸、リンゴ酸、グルコース酸及び3−ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体、並びに、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体、などのヒドロキシカルボン酸系脂肪族ポリエステル、(2)ポリカプロラクトン、及び、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体、などのカプロラクトン系脂肪族ポリエステル、(3)ポリブチレンサクシネート、ポリエチレンサクシネート及びポリブチレンアジペート、などの二塩基酸ポリエステル、等が挙げられる。
これらのなかでは、ポリ乳酸、乳酸と乳酸を除く他の上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、及び上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体が好ましく、特にポリ乳酸が好ましい。
これらの生分解性樹脂は1種のみを用いてもよく、2種以上を併用してもよい。
尚、上記乳酸にはL−乳酸及びD−乳酸を含むものとし、これらの乳酸は単独で用いてもよく、併用してもよい。
On the other hand, among polyester resins, polyester resins having biodegradability (hereinafter also simply referred to as “biodegradable resins”) are preferable. Biodegradable resins include (1) homopolymers of hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid and 3-hydroxybutyric acid, and co-polymerization using at least one of these hydroxycarboxylic acids Caprolactone-based aliphatic polyesters, such as hydroxycarboxylic acid-based aliphatic polyesters, (2) polycaprolactone, and copolymers of at least one of the above hydroxycarboxylic acids with caprolactone, (3) poly And dibasic acid polyesters such as butylene succinate, polyethylene succinate and polybutylene adipate.
Among these, polylactic acid, a copolymer of lactic acid and other hydroxycarboxylic acid excluding lactic acid, polycaprolactone, and a copolymer of caprolactone with at least one of the above hydroxycarboxylic acids are particularly preferable. Polylactic acid is preferred.
These biodegradable resins may be used alone or in combination of two or more.
The lactic acid includes L-lactic acid and D-lactic acid, and these lactic acids may be used alone or in combination.

本方法における熱可塑性樹脂の配合量は特に限定されないが、セルロースナノファイバーと熱可塑性樹脂との合計を100質量%とした場合に、熱可塑性樹脂は99質量%以下(より好ましくは95質量%以下、通常30質量%以上)とすることが好ましい。この範囲では、セルロースナノファイバーを熱可塑性樹脂に混合することによる強度向上効果を得ることができ、特に曲げ強度及び曲げ弾性率を効果的に向上させることができる。尚、本方法により得られる熱可塑性樹脂組成物内に含まれる熱可塑性樹脂の含有量は、通常、上記熱可塑性樹脂の配合量と同じである。   The blending amount of the thermoplastic resin in this method is not particularly limited, but when the total of the cellulose nanofibers and the thermoplastic resin is 100% by mass, the thermoplastic resin is 99% by mass or less (more preferably 95% by mass or less). And usually 30% by mass or more). In this range, the strength improvement effect by mixing cellulose nanofibers with a thermoplastic resin can be obtained, and in particular, the bending strength and the bending elastic modulus can be effectively improved. In addition, content of the thermoplastic resin contained in the thermoplastic resin composition obtained by this method is the same as the compounding quantity of the said thermoplastic resin normally.

上記「撹拌機」は、国際公開04/076044号パンフレットに記載の撹拌機であって、セルロースナノファイバーの水分散体と熱可塑性樹脂とを混合するための装置である。この撹拌機10(以下、図1及び図2参照)は、混合により水分散体に含まれる水分を気化させて、セルロースナノファイバーと熱可塑性樹脂との混合を行う混合室内を加圧できる撹拌機である。即ち、混合室11として耐圧容器を備える。   The “stirrer” is a stirrer described in International Publication No. 04/076044, and is an apparatus for mixing an aqueous dispersion of cellulose nanofibers and a thermoplastic resin. This stirrer 10 (refer to FIG. 1 and FIG. 2 below) is a stirrer capable of pressurizing a mixing chamber in which water contained in an aqueous dispersion is vaporized to mix cellulose nanofibers and a thermoplastic resin. It is. That is, a pressure vessel is provided as the mixing chamber 11.

更に、このような撹拌機10としては、材料供給室12と、該材料供給室12に連接された混合室11と、該材料供給室12と該混合室11とを貫通して回転自在に設けられた回転軸13と、該材料供給室12内の該回転軸13に配設され且つ該材料供給室12に供給された混合材料を該混合室11へ搬送するらせん状羽根14と、該混合室11内の該回転軸13に配設され且つ該混合材料を混合する混合羽根15と、を備える撹拌機が好ましい。
この撹拌機を用いることで、効率よく水分散体に含まれる水分を気化させつつ、混合室内から撹拌機外へは蒸気が排出(安全を確保する程度の蒸気の漏出はよい)されることなく混合室内に保持され、混合室内を高温高圧の状態に維持できる。その結果、熱可塑性樹脂は軟化又は溶融されると共にセルロースナノファイバーの解繊状態を維持でき、熱可塑性樹脂とセルロースナノファイバーとを上記混合羽根により混合できるものと考えられる。尚、上記混合材料とは、混合室内で混合されることとなる総ての材料を意味する。更に、上記らせん状羽根は、混合室内で発する蒸気が材料供給室側へ漏出することを防止できるらせん状羽根であることが好ましい。
Further, as such a stirrer 10, a material supply chamber 12, a mixing chamber 11 connected to the material supply chamber 12, and the material supply chamber 12 and the mixing chamber 11 are rotatably provided. The rotating shaft 13, the spiral blade 14 disposed on the rotating shaft 13 in the material supply chamber 12 and transporting the mixed material supplied to the material supply chamber 12 to the mixing chamber 11, and the mixing A stirrer provided on the rotating shaft 13 in the chamber 11 and provided with a mixing blade 15 for mixing the mixed material is preferable.
By using this stirrer, steam is efficiently discharged from the mixing chamber to the outside of the stirrer while efficiently evaporating the water contained in the water dispersion (steam leakage to ensure safety is good). It is held in the mixing chamber, and the mixing chamber can be maintained at a high temperature and high pressure. As a result, it is considered that the thermoplastic resin is softened or melted and the defibrated state of the cellulose nanofiber can be maintained, and the thermoplastic resin and the cellulose nanofiber can be mixed by the mixing blade. The mixed material means all materials to be mixed in the mixing chamber. Further, the spiral blade is preferably a spiral blade that can prevent the vapor generated in the mixing chamber from leaking to the material supply chamber side.

また、上記混合羽根15は、上記回転軸13の円周方向の一定角度間隔の部位における軸方向において対向すると共に、回転方向において互いの対向間隔が狭まるような取付け角で該回転軸13に配設された少なくとも2枚の混合羽根(15a〜15f)によって構成され、該混合羽根15の該回転軸13に対する取付け角は、該回転軸13に取り付けられる該混合羽根15の根元部から半径方向外方の先端部まで同一であることが好ましく、更には、上記混合羽根15が矩形板状をなすことが好ましい。
この構成により、混合羽根は、混合材料を混合室の内壁へ向かって押し付けるように打撃し且つ押し進めることができるものと考えられる。このため、効率よく混合室内の混合材料を発熱させることができ、水分散体に含まれる水分を気化させて、混合室内を加圧できる。また、この構成により、より効率よくセルロースナノファイバーと熱可塑性樹脂とを混合室内の適した条件下で混合できる。
In addition, the mixing blade 15 is arranged on the rotary shaft 13 at an attachment angle so as to face each other in the axial direction at a portion of the rotary shaft 13 at a constant angular interval in the circumferential direction and so that the opposing interval becomes narrow in the rotational direction. It is constituted by at least two mixing blades (15a to 15f) provided, and the mounting angle of the mixing blade 15 with respect to the rotary shaft 13 is radially outward from the root portion of the mixing blade 15 attached to the rotary shaft 13. It is preferable to be the same up to the distal end, and it is preferable that the mixing blade 15 has a rectangular plate shape.
With this configuration, it is considered that the mixing blade can be struck and pushed so as to press the mixed material toward the inner wall of the mixing chamber. For this reason, the mixed material in the mixing chamber can be efficiently heated, and the water contained in the water dispersion can be vaporized to pressurize the mixing chamber. Further, with this configuration, the cellulose nanofibers and the thermoplastic resin can be mixed more efficiently under suitable conditions in the mixing chamber.

また、上記混合室は、該混合室を構成する壁に冷却媒体を循環させることができる混合室冷却手段を備えることがより更に好ましい。この構成により、混合室内の過度な温度上昇を抑制でき、熱可塑性樹脂の分解を防止できる。
更に、上記回転軸を支持している軸受部に、混合室内と混合室外とを通気する溝を備え、該溝を介して、混合室外の空気を混合室内に吸気でき、また、混合室内で混合時に材料の剪断、摩擦及び/又は圧縮による発熱により脱水された脱水成分の排出ができることが特に好ましく、更には、該溝は螺旋状であることが好ましい。この構成により、混合室内が過度な加圧状態となることを防止して、混合室内の圧抜きを行うことができる。このため、より安全に熱可塑性樹脂組成物を製造できる。
More preferably, the mixing chamber further includes a mixing chamber cooling means that can circulate a cooling medium through the walls constituting the mixing chamber. With this configuration, an excessive temperature rise in the mixing chamber can be suppressed and decomposition of the thermoplastic resin can be prevented.
Furthermore, the bearing portion supporting the rotating shaft is provided with a groove for venting the mixing chamber and the outside of the mixing chamber, and air outside the mixing chamber can be sucked into the mixing chamber through the groove, and the mixing is performed in the mixing chamber. It is particularly preferred that sometimes dehydrated components that have been dehydrated due to heat generation due to shearing, friction and / or compression of the material can be discharged, and it is further preferred that the groove is helical. With this configuration, it is possible to prevent the mixing chamber from being excessively pressurized and perform pressure release in the mixing chamber. For this reason, a thermoplastic resin composition can be manufactured more safely.

上記「混合」は、撹拌機を用いて行うものである。この混合では、どのような現象が生じているのかは定かではないが、以下の現象を生じていることが考えられる。即ち、混合室内で混合羽根により剪断、摩擦及び/又は圧縮により各混合材料が発熱されて、上記水分散体内に含まれる水分が気化される。しかし、混合室外への蒸気の排出経路がないため(回転軸の軸受けに設けられた溝が排出経路として形成できるものの小さいために混合室内の圧力を常圧程度にまで下げるには至らない)、混合室内が加圧状態となる。これにより、通常であれば、水分散体から水が気化されると解繊状態を維持できないはずであるセルロースナノファイバーが、解繊状態を維持することができるものと考えられる。更に、混合室内の温度が熱可塑性樹脂の軟化又は溶融温度にまで昇温されると、混合室内では熱可塑性樹脂が軟化又は溶融される。これにより、熱可塑性樹脂とセルロースナノファイバーとが混合羽根により物理的に混合できるものと考えられる。更に、熱可塑性樹脂と親和性が極めて低い水が混合時に存在していても、蒸気として存在しているために、混合される熱可塑性樹脂内への侵入が少なく、セルロースナノファイバーと熱可塑性樹脂との混合を阻害しないものと考えられる。   The “mixing” is performed using a stirrer. It is not certain what kind of phenomenon occurs in this mixing, but it is considered that the following phenomenon occurs. That is, each mixed material is heated by shearing, friction and / or compression by the mixing blade in the mixing chamber, and the water contained in the water dispersion is vaporized. However, since there is no steam discharge path to the outside of the mixing chamber (the groove provided in the bearing of the rotating shaft can be formed as a discharge path, but the pressure inside the mixing chamber does not decrease to normal pressure) The mixing chamber is pressurized. Thereby, it is thought that the cellulose nanofiber which should not be able to maintain a defibrated state, if water is vaporized from an aqueous dispersion normally, can maintain a defibrated state. Further, when the temperature in the mixing chamber is raised to the softening or melting temperature of the thermoplastic resin, the thermoplastic resin is softened or melted in the mixing chamber. Thereby, it is thought that a thermoplastic resin and a cellulose nanofiber can be physically mixed with a mixing blade. Furthermore, even when water having a very low affinity with the thermoplastic resin is present at the time of mixing, since it exists as a vapor, there is little intrusion into the mixed thermoplastic resin, and cellulose nanofibers and the thermoplastic resin It is thought that it does not inhibit the mixing with.

この混合における各種条件は特に限定されるものではないが、前述の如く上記水分散体に含まれる水分を気化させて混合室内を加圧するように行うことが好ましい。
この混合時の上記混合室内の圧力は特に限定されないが、常圧(例えば、0.1013MPa)を超える圧力である。圧力の上限は特に限定されないものの100MPa以下(より好ましくは7MPa以下、更に好ましくは5MPa以下、特に好ましくは3MPa以下)であることが好ましい。また、温度は特に限定されないが、混合室外壁の温度を200℃以下(より好ましくは150℃以下、更に好ましくは120℃以下)に制御することが好ましく、更には、50℃以上(より好ましくは60℃以上、更に好ましくは80℃以上)に制御することが好ましい。また、この温度は10分以内(より好ましくは5分以内)に到達させることが好ましい。短時間で高温にすることで急激に水分を蒸散させると共に上記混合を行うことができ、セルロースナノファイバーが分散媒から解離される時間を短くして解繊状態を維持し易く、また、熱可塑性樹脂の劣化も抑制できる。更に、上記温度範囲とするのも15以内(より好ましくは10分以内)とすることが好ましい。
Various conditions in this mixing are not particularly limited, but it is preferable to carry out the pressurization in the mixing chamber by evaporating the water contained in the aqueous dispersion as described above.
The pressure in the mixing chamber at the time of mixing is not particularly limited, but is a pressure exceeding normal pressure (for example, 0.1013 MPa). Although the upper limit of the pressure is not particularly limited, it is preferably 100 MPa or less (more preferably 7 MPa or less, further preferably 5 MPa or less, particularly preferably 3 MPa or less). Further, the temperature is not particularly limited, but the temperature of the outer wall of the mixing chamber is preferably controlled to 200 ° C. or lower (more preferably 150 ° C. or lower, more preferably 120 ° C. or lower), and more preferably 50 ° C. or higher (more preferably). 60 ° C. or higher, more preferably 80 ° C. or higher). The temperature is preferably reached within 10 minutes (more preferably within 5 minutes). The temperature can be rapidly evaporated and the above mixing can be performed by raising the temperature in a short time, and the time for dissociating the cellulose nanofibers from the dispersion medium can be shortened to easily maintain the defibrated state. The deterioration of the resin can also be suppressed. Further, the temperature range is preferably within 15 (more preferably within 10 minutes).

また、上記温度の制御は、撹拌機の混合羽根の回転速度を制御することによって行うことが好ましい。より具体的には、混合羽根の先端の回転速度を5m/秒〜50m/秒となるように制御することが好ましい。この範囲に制御することで、上記水分散体内の水分の気化効率をとりわけ向上させることができ、また、セルロースナノファイバーと熱可塑性樹脂とをより強力に混合できる。
尚、混合羽根に加えて、上記温度及び圧力は前述した混合室冷却手段及び/又は回転軸冷却手段を加えて制御することができる。
Moreover, it is preferable to control the said temperature by controlling the rotational speed of the mixing blade of a stirrer. More specifically, it is preferable to control the rotation speed at the tip of the mixing blade to be 5 m / sec to 50 m / sec. By controlling within this range, the vaporization efficiency of water in the aqueous dispersion can be particularly improved, and the cellulose nanofibers and the thermoplastic resin can be mixed more strongly.
In addition to the mixing blade, the temperature and pressure can be controlled by adding the above-described mixing chamber cooling means and / or rotating shaft cooling means.

更に、この混合における終点は特に限定されないが、上記回転軸に負荷されるトルクの変化により決定できる。即ち、上記回転軸に負荷されるトルクを測定し、そのトルクが最大値となった後に混合を停止することが好ましい。これにより、分散性よくセルロースナノファイバーを熱可塑性樹脂内に混合できる。更に上記トルクの最大値となった後にトルクが低下し始めてから混合を停止させることがより好ましい。特に最大トルクに対して40%以上(とりわけ好ましくは50〜80%)のトルク範囲で混合を停止することが特に好ましい。これにより、より分散性よくセルロースナノファイバーを熱可塑性樹脂内に混合できると共に、混合室内部から混合物(熱可塑性樹脂組成物)を160℃以上の温度で取り出すことができ、混合室内に熱可塑性樹脂組成物が付着して残存されることをより効果的に防止できる。   Furthermore, although the end point in this mixing is not specifically limited, it can be determined by a change in torque applied to the rotating shaft. That is, it is preferable to measure the torque applied to the rotating shaft and stop mixing after the torque reaches the maximum value. Thereby, a cellulose nanofiber can be mixed in a thermoplastic resin with sufficient dispersibility. Furthermore, it is more preferable to stop the mixing after the torque starts to decrease after reaching the maximum value of the torque. It is particularly preferable to stop the mixing in a torque range of 40% or more (particularly preferably 50 to 80%) with respect to the maximum torque. As a result, the cellulose nanofibers can be mixed in the thermoplastic resin with better dispersibility, and the mixture (thermoplastic resin composition) can be taken out from the inside of the mixing chamber at a temperature of 160 ° C. or more. It can prevent more effectively that a composition adheres and remains.

本発明の熱可塑性樹脂組成物には、上記セルロースナノファイバーの水分散体及び熱可塑性樹脂以外の他の成分を混合できる。他の成分としては、植物材料が挙げられる。
即ち、セルロースナノファイバーの水分散体及び熱可塑性樹脂と共に、更に、植物材料を撹拌機で混合する熱可塑性樹脂組成物の製造方法とすることができる。
この植物材料としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料が挙げられる。この植物材料は1種のみを用いてもよく2種以上を併用してもよい。
In the thermoplastic resin composition of the present invention, components other than the aqueous dispersion of cellulose nanofibers and the thermoplastic resin can be mixed. Other ingredients include plant material.
That is, it can be set as the manufacturing method of the thermoplastic resin composition which mixes a vegetable material with a stirrer further with the aqueous dispersion and cellulose resin of a cellulose nanofiber.
This plant material includes kenaf, jute hemp, manila hemp, sisal hemp, husk, cocoon, cocoon, banana, pineapple, coconut, corn, sugar cane, bagasse, palm, papyrus, cocoon, esparto, saprograss, wheat, rice, bamboo, Examples include plant materials obtained from various plants such as various conifers (such as cedar and cypress), broad-leaved trees, and cotton. This plant material may use only 1 type and may use 2 or more types together.

また、上記植物材料として用いる植物体の採用部位は特に限定されず、木質部、非木質部、葉部、茎部及び根部等の植物体を構成するいずれの部位であってもよい。更に、特定の部位から得られた植物材料のみを用いてもよく2ヶ所以上の異なる部位から得られた植物材料を併用してもよい。
尚、本発明におけるケナフとは、木質茎を有する早育性の一年草であり、アオイ科に分類される植物である。学名におけるhibiscus cannabinus及びhibiscus sabdariffa等が含まれ、更に、通称名における紅麻、キュウバケナフ、洋麻、タイケナフ、メスタ、ビムリ、アンバリ麻及びボンベイ麻等が含まれる。
また、本発明におけるジュートとは、ジュート麻から得られる繊維である。このジュート麻には、黄麻(コウマ、Corchorus capsularis L.)、及び、綱麻(ツナソ)、シマツナソ並びにモロヘイヤ、を含む麻及びシナノキ科の植物を含むものとする。
Moreover, the adoption site | part of the plant body used as said plant material is not specifically limited, Any site | part which comprises plant bodies, such as a wood part, a non-wood part, a leaf part, a stem part, and a root part, may be sufficient. Furthermore, only plant material obtained from a specific part may be used, or plant materials obtained from two or more different parts may be used in combination.
In addition, the kenaf in this invention is an early-growing annual grass which has a wooden stem, and is a plant classified into the mallow family. Hibiscus cannabinus and hibiscus sabdariffa etc. under the scientific name are included, and further, red burdock, cucumber kenaf, western hemp, taykenaf, mesta, bimli, umbari and bombay hemp etc. are included under common names.
The jute in the present invention is a fiber obtained from jute hemp. This jute hemp shall include hemp and linden plants including jute (Chorus corpus capsularis L.), and hemp (Tunaso), Shimatsunaso and Morohaya.

更に、植物材料のなかでも、ケナフから得られた植物材料が好ましく、特にケナフの靭皮から得られたケナフ繊維、及び/又はケナフの木質部から得られたケナフコアを用いることが好ましい。このうち特にケナフコアを用いた場合には、ケナフ繊維を用いた場合に比べて軽量で且つより高い曲げ弾性率を得ることができる。   Furthermore, among the plant materials, plant materials obtained from kenaf are preferable, and it is particularly preferable to use kenaf fibers obtained from kenaf bast and / or kenaf core obtained from kenaf wood. Among these, in particular, when a kenaf core is used, it is lighter and can have a higher bending elastic modulus than when a kenaf fiber is used.

また、植物材料の形状は特に限定されないが、繊維状体及び粒状体が挙げられる。即ち、例えば、植物材料から取りだした植物繊維(ケナフ靭皮繊維)等の繊維状体、及び、植物材料を粉砕及び/又は破砕した粒状体(ケナフコア粉砕物など)である。但し、繊維状体である場合、その単繊維径は2μmを超え、通常、10μm以上である。
このうち繊維状体である場合、その繊維長は10mm以上とすることができる。繊維長が10mm以上であれば、得られる熱可塑性樹脂組成物を用いた成形体においてより高い強度(曲げ強度及び曲げ弾性率等)を得やすい。この繊維長は10〜150mmが好ましく、20〜100mmがより好ましく、30〜80mmが特に好ましい。更に、通常、繊維径は2μmを超えて1mm以下である。繊維径が2μmを超えて1mm以下であれば成形体で特に高い強度が得られる。この繊維径は0.01〜1mmが好ましく、0.05〜0.7mmがより好ましく、0.07〜0.5mmが特に好ましい。更には1〜10dtexであることが好ましい。また、上記範囲を外れる形態の繊維は、植物材料全体の10質量%以下に抑えることが好ましい。これにより得られる成形体の強度を高く維持できる。
一方、植物材料として粒状体(粉砕粒子状、板チップ状、不定形破砕物状などを含む)を用いる場合、その平均粒径(平均最大長さ)は7mm以下(好ましくは0.3〜5mm、より好ましくは0.5〜3mm、通常0.1mm以上)とすることが好ましい。
Moreover, although the shape of plant material is not specifically limited, A fibrous body and a granular material are mentioned. That is, for example, fibrous materials such as plant fibers (kenaf bast fibers) extracted from plant materials, and granular materials (such as kenaf core pulverized products) obtained by crushing and / or crushing plant materials. However, in the case of a fibrous body, the single fiber diameter exceeds 2 μm and is usually 10 μm or more.
Among these, when it is a fibrous body, the fiber length can be 10 mm or more. If the fiber length is 10 mm or more, it is easy to obtain higher strength (such as bending strength and bending elastic modulus) in a molded body using the obtained thermoplastic resin composition. The fiber length is preferably 10 to 150 mm, more preferably 20 to 100 mm, and particularly preferably 30 to 80 mm. Further, the fiber diameter is usually more than 2 μm and 1 mm or less. If the fiber diameter exceeds 2 μm and is 1 mm or less, particularly high strength can be obtained in the molded product. The fiber diameter is preferably 0.01 to 1 mm, more preferably 0.05 to 0.7 mm, and particularly preferably 0.07 to 0.5 mm. Furthermore, it is preferable that it is 1-10 dtex. Moreover, it is preferable to suppress the fiber of the form which remove | deviates from the said range to 10 mass% or less of the whole plant material. Thereby, the strength of the molded body obtained can be maintained high.
On the other hand, when using a granular material (including pulverized particles, plate chips, irregular crushed materials, etc.) as the plant material, the average particle size (average maximum length) is 7 mm or less (preferably 0.3 to 5 mm). , More preferably 0.5 to 3 mm, usually 0.1 mm or more).

植物材料を熱可塑性樹脂組成物に含有させる場合、用いる植物材料の量は特に限定されないが、植物材料、セルロースナノファイバー及び熱可塑性樹脂の合計を100質量%とした場合に、植物材料は30質量%以上(好ましくは50質量%以上、更には60質量%以上、通常90質量%以下)とすることが好ましい。この範囲では植物材料及びセルロースナノファイバーの含有により相乗的に優れた強度(特に曲げ強度及び曲げ弾性率)を得ることができる。   When the plant material is contained in the thermoplastic resin composition, the amount of the plant material to be used is not particularly limited. However, when the total of the plant material, the cellulose nanofiber and the thermoplastic resin is 100% by mass, the plant material is 30% by mass. % Or more (preferably 50% by mass or more, more preferably 60% by mass or more, and usually 90% by mass or less). Within this range, synergistically superior strength (particularly flexural strength and flexural modulus) can be obtained by including plant material and cellulose nanofibers.

本方法による熱可塑性樹脂組成物には、上記セルロースナノファイバー及び上記熱可塑性樹脂、並びに植物材料以外にも他の成分を含有できる。他の成分としては、熱可塑性樹脂として前記ポリエステル樹脂を用いる場合のカルボジイミド化合物が挙げられる。
カルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
The thermoplastic resin composition according to the present method can contain other components in addition to the cellulose nanofibers, the thermoplastic resin, and the plant material. As another component, the carbodiimide compound in the case of using the said polyester resin as a thermoplastic resin is mentioned.
Examples of the carbodiimide compound include dicyclohexylcarbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride. These may use only 1 type and may use 2 or more types together.

カルボジイミドの使用量は特に限定されないが、用いる前記ポリエステル樹脂(特にポリ乳酸)の全体を100質量部とした場合に0.1〜5質量部が好ましい。この範囲では、カルボジイミド化合物を用いたことによる生分解性樹脂の加水分解抑制作用をより効果的に得ることができる。更に、カルボジイミド化合物の上記量は0.1〜2質量部がより好ましく、0.5〜1.0質量部が特に好ましい。この範囲では、カルボジイミド化合物による上記加水分解抑制作用及びコスト面から鑑みてとりわけ効果的に得ることができる。   Although the usage-amount of carbodiimide is not specifically limited, 0.1-5 mass parts is preferable when the said polyester resin (especially polylactic acid) to be used is 100 mass parts. In this range, the hydrolysis-inhibiting action of the biodegradable resin due to the use of the carbodiimide compound can be obtained more effectively. Furthermore, the amount of the carbodiimide compound is more preferably 0.1 to 2 parts by mass, and particularly preferably 0.5 to 1.0 part by mass. In this range, it can be obtained particularly effectively in view of the hydrolysis-inhibiting action and cost of the carbodiimide compound.

その他、本方法では、セルロースナノファイバー、熱可塑性樹脂、植物材料及びカルボジイミド以外の更に他の成分を配合できる。更に他の成分としては、各種帯電防止剤、難燃剤、抗菌剤、着色剤等を混合することができる。これらは1種のみを用いてもよく2種以上を併用してもよい。
また、上記他の成分及び更に他の成分の混合は、(1)セルロースナノファイバーの水分散体と熱可塑性樹脂との混合の際に併せて行ってもよく、(2)セルロースナノファイバーの水分散体と熱可塑性樹脂との混合物に他の成分を混合してもよく、(3)その他の工程で混合してもよい。これらのなかでは上記(1)が製造効率の面から好ましい。
In addition, in this method, other components other than cellulose nanofiber, thermoplastic resin, plant material, and carbodiimide can be blended. Furthermore, as other components, various antistatic agents, flame retardants, antibacterial agents, colorants and the like can be mixed. These may use only 1 type and may use 2 or more types together.
Further, the mixing of the above-mentioned other components and further other components may be performed together with (1) mixing of the cellulose nanofiber aqueous dispersion and the thermoplastic resin, and (2) cellulose nanofiber water. Other components may be mixed in the mixture of the dispersion and the thermoplastic resin, or (3) they may be mixed in other steps. Among these, the above (1) is preferable from the viewpoint of production efficiency.

[2]成形体の製造方法
本発明の成形体の製造方法は、前記本発明の製造方法により得られた熱可塑性樹脂組成物を押出成形又は射出成形して成形体を得ることを特徴とする成形体の製造方法。
前記熱可塑性樹脂の製造方法により得られた熱可塑性樹脂組成物は、押出成形又は射出成形することが賦形することができる。これらの成形は、撹拌機に押出成形機又は射出成形機を接続して行うことができる。また、得られた熱可塑性樹脂組成物を冷却した後に破砕機等を用いてチップ化した後に、このチップを押出成形機又は射出成形機に投入して成形を行ってもよい。
[2] Manufacturing method of molded body The manufacturing method of the molded body of the present invention is characterized in that a molded body is obtained by extrusion molding or injection molding of the thermoplastic resin composition obtained by the manufacturing method of the present invention. Manufacturing method of a molded object.
The thermoplastic resin composition obtained by the method for producing a thermoplastic resin can be shaped by extrusion molding or injection molding. These moldings can be performed by connecting an extruder or an injection molding machine to a stirrer. Moreover, after cooling the obtained thermoplastic resin composition and chipping using a crusher etc., you may shape | mold by throwing this chip | tip into an extrusion molding machine or an injection molding machine.

本方法により得られる成形体の形状、大きさ及び厚さ等は特に限定されない。また、その用途も特に限定されない。この成形体は、例えば、自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等に用いられる。このうち自動車用品としては、自動車内装材、自動車用インストルメントパネル、自動車用外装材等が挙げられる。具体的には、ドア基材、パッケージトレー、ピラーガーニッシュ、スイッチベース、クオーターパネル、アームレストの芯材、自動車用ドアトリム、シート構造材、コンソールボックス、自動車用ダッシュボード、各種インストルメントパネル、デッキトリム、バンパー、スポイラー及びカウリング等が挙げられる。更に、例えば、建築物及び家具等の内装材、外装材及び構造材が挙げられる。即ち、ドア表装材、ドア構造材、各種家具(机、椅子、棚、箪笥など)の表装材、構造材等が挙げられる。その他、包装体、収容体(トレイ等)、保護用部材及びパーティション部材等が挙げられる。   The shape, size, thickness and the like of the molded body obtained by this method are not particularly limited. Further, its use is not particularly limited. This molded body is used for, for example, interior materials, exterior materials, and structural materials such as automobiles, railway vehicles, ships, and airplanes. Among these, examples of the automobile article include an automobile interior material, an automotive instrument panel, and an automotive exterior material. Specifically, door base material, package tray, pillar garnish, switch base, quarter panel, armrest core material, automotive door trim, seat structure material, console box, automotive dashboard, various instrument panels, deck trim, Examples include bumpers, spoilers, and cowlings. Furthermore, for example, interior materials such as buildings and furniture, exterior materials, and structural materials may be mentioned. That is, a door cover material, a door structure material, a cover material of various furniture (desk, chair, shelf, bag, etc.), a structural material, etc. are mentioned. In addition, a package, a container (such as a tray), a protective member, a partition member, and the like can be given.

尚、前記[1]に述べた熱可塑性樹脂組成物の製造方法により、熱可塑性樹脂とセルロースナノファイバーの水分散体とを混合して熱可塑性樹脂組成物(熱可塑性樹脂とセルロースナノファイバーとを含有し、植物材料を含有しない熱可塑性樹脂組成物)を得た後、この熱可塑性樹脂組成物を紡糸して繊維形状にした熱可塑性樹脂製繊維と、前記植物材料と、を混繊(エアーレイにより同時堆積させる等)してマット形状、更にはボード形状に直接成形して成形体を得ることもできる。   The thermoplastic resin composition (the thermoplastic resin and the cellulose nanofibers are mixed by mixing the thermoplastic resin and the aqueous dispersion of cellulose nanofibers by the method for producing a thermoplastic resin composition described in [1] above. A thermoplastic resin composition that does not contain plant material), and then blends the fiber made of thermoplastic resin into a fiber shape by spinning the thermoplastic resin composition and the plant material. Etc.) and can be directly molded into a mat shape or a board shape to obtain a molded body.

以下、実施例を用いて本発明を具体的に説明する。
[1]熱可塑性樹脂組成物の製造及び成形体(試験片)の製造
<実施例1>
熱可塑性樹脂であるポリ乳酸樹脂(トヨタ自動車株式会社製、品名「U’s S−12」)270gと、セルロースナノファイバーの水分散体(固形分濃度10質量%)300gと、を撹拌機(株式会社エムアンドエフ・テクノロジー製、WO2004−076044号に示された器機)の材料供給室に投入した後、混合材料(ポリ乳酸樹脂及びセルロースナノファイバーの水分散体)を混合室内で撹拌して混練した。そして、混合羽根が配設された回転軸にかかる負荷(トルク)が上昇し、最大値となってから低下し始めたところで撹拌を停止した(約150秒間混合した)。停止時には混合室内の熱可塑性樹脂組成物を構成する熱可塑性樹脂は半溶融状態であった。得られた熱可塑性樹脂組成物を撹拌機から排出し、放冷して、セルロースナノファイバーが10質量%配合された熱可塑性樹脂組成物(塊状物)を得た。
Hereinafter, the present invention will be specifically described with reference to examples.
[1] Manufacture of thermoplastic resin composition and manufacture of molded body (test piece)
<Example 1>
270 g of a polylactic acid resin (manufactured by Toyota Motor Corporation, product name “U's S-12”), which is a thermoplastic resin, and 300 g of an aqueous dispersion of cellulose nanofibers (solid content concentration 10% by mass) are mixed with a stirrer ( After being put into the material supply chamber of M & F Technology Co., Ltd. (equipment shown in WO 2004-076044), the mixed material (polylactic acid resin and aqueous dispersion of cellulose nanofibers) was stirred and kneaded in the mixing chamber. . Then, the load (torque) applied to the rotating shaft on which the mixing blades were arranged increased, and when it began to decrease after reaching the maximum value, stirring was stopped (mixed for about 150 seconds). When stopped, the thermoplastic resin constituting the thermoplastic resin composition in the mixing chamber was in a semi-molten state. The obtained thermoplastic resin composition was discharged from a stirrer and allowed to cool to obtain a thermoplastic resin composition (block) containing 10% by mass of cellulose nanofibers.

得られた熱可塑性樹脂組成物を破砕機を用いて5mm角程度に破砕して熱可塑性樹脂組成物チップを得た。得られた熱可塑性樹脂組成物チップを射出成形機(宇部興産機械株式会社製、形式「MD350S−IIIDP」)に投入し、シリンダー温度190℃、型温度50℃の条件で射出成形して厚さ4mm、幅10mm、長さ110mmの板状の試験片を得た。   The obtained thermoplastic resin composition was crushed to about 5 mm square using a crusher to obtain a thermoplastic resin composition chip. The obtained thermoplastic resin composition chip was put into an injection molding machine (model “MD350S-IIIDP” manufactured by Ube Industries Co., Ltd.), and injection molded under conditions of a cylinder temperature of 190 ° C. and a mold temperature of 50 ° C. A plate-shaped test piece having a size of 4 mm, a width of 10 mm, and a length of 110 mm was obtained.

<実施例2>
ポリ乳酸樹脂の配合量を240g、セルロースナノファイバーの水分散体(固形分濃度10質量%)の配合量を600g、とし、混合(撹拌)時間を180秒した以外は、実施例1と同様にして、セルロースナノファイバーが20質量%配合された熱可塑性樹脂組成物(塊状物)を得た。その後、上記実施例1と同様にして試験片を得た。
<Example 2>
The same procedure as in Example 1 was performed except that the blending amount of the polylactic acid resin was 240 g, the blending amount of the aqueous dispersion of cellulose nanofibers (solid content concentration: 10% by mass) was 600 g, and the mixing (stirring) time was 180 seconds. Thus, a thermoplastic resin composition (block) containing 20% by mass of cellulose nanofibers was obtained. Thereafter, a test piece was obtained in the same manner as in Example 1.

<実施例3>
ポリ乳酸樹脂(実施例1と同様)120gと、セルロースナノファイバーの水分散体(実施例1と同様)800gと、植物材料としてケナフコア粉砕物(平均粒径1.0mm)200gと、を撹拌機(実施例1と同様)の材料供給室に投入した後、混合材料(ポリ乳酸樹脂、セルロースナノファイバーの水分散体及びケナフコア粉砕物)を混合室内で実施例1と同様にして240秒間撹拌して混練し、セルロースナノファイバーが20質量%、ケナフコア粉砕物が50質量%、配合された熱可塑性樹脂組成物(塊状物)を得た。その後、上記実施例1と同様にして試験片を得た。
<Example 3>
120 g of polylactic acid resin (similar to Example 1), 800 g of an aqueous dispersion of cellulose nanofibers (similar to Example 1), and 200 g of kenaf core pulverized material (average particle size 1.0 mm) as a plant material After being put into the material supply chamber (same as in Example 1), the mixed material (polylactic acid resin, aqueous dispersion of cellulose nanofiber and kenaf core pulverized product) was stirred for 240 seconds in the mixing chamber as in Example 1. And kneaded to obtain a thermoplastic resin composition (lump) containing 20% by mass of cellulose nanofibers and 50% by mass of crushed kenaf core. Thereafter, a test piece was obtained in the same manner as in Example 1.

<比較例1>
ポリ乳酸樹脂(実施例1と同様)のみを用い、実施例1と同様にして射出成形(但し、型温度は40℃)して試験片を得た。
<Comparative Example 1>
Only a polylactic acid resin (same as in Example 1) was used, and a test piece was obtained by injection molding (however, the mold temperature was 40 ° C.) in the same manner as in Example 1.

<比較例2>
ポリ乳酸樹脂(実施例1と同様)180gとし、セルロースナノファイバーの水分散体を配合せず、ケナフコア粉砕物(実施例1と同様)420gと、を撹拌機(実施例1と同様)の材料供給室に投入した後、混合材料(ポリ乳酸樹脂及びケナフコア粉砕物)を混合室内で実施例1と同様にして130秒間撹拌して混練し、ケナフコア粉砕物が70質量%配合された熱可塑性樹脂組成物(塊状物)を得た。その後、上記実施例1と同様にして試験片を得た。
<Comparative Example 2>
180 g of polylactic acid resin (same as in Example 1), without blending an aqueous dispersion of cellulose nanofibers, 420 g of kenaf core pulverized material (same as in Example 1), and a stirrer (same as in Example 1) After feeding into the supply chamber, the mixed material (polylactic acid resin and kenaf core pulverized product) is stirred and kneaded in the mixing chamber for 130 seconds in the same manner as in Example 1, and a thermoplastic resin in which 70% by mass of the kenaf core pulverized product is blended. A composition (lump) was obtained. Thereafter, a test piece was obtained in the same manner as in Example 1.

[2]成形体(試験片)の評価
(1)曲げ強さ及び曲げ弾性率の特性評価
実施例1〜3及び比較例1〜2で得られた各試験片(厚さ4mm、幅10mm、長さ110mmの板形状)の曲げ強さ及び曲げ弾性率を測定した。この測定に際しては、各試験片を支点間距離(L)64mmとした2つの支点(曲率半径5mm)で支持しつつ、支点間中心に配置した作用点(曲率半径5mm)から速度2mm/分にて荷重の負荷を行い、JIS K7171に従って、曲げ強さ及び曲げ弾性率を算出した。
[2] Evaluation of molded body (test piece) (1) Characteristic evaluation of bending strength and flexural modulus Each test piece obtained in Examples 1 to 3 and Comparative Examples 1 to 2 (thickness 4 mm, width 10 mm, The bending strength and bending elastic modulus of the plate having a length of 110 mm were measured. In this measurement, while supporting each test piece at two fulcrums (curvature radius 5 mm) with a distance (L) between the fulcrums of 64 mm, the speed is 2 mm / min from the action point (curvature radius 5 mm) arranged at the center between the fulcrums. The bending strength and bending elastic modulus were calculated according to JIS K7171.

Figure 0005211571
Figure 0005211571

[3]実施例の効果
実施例の結果から、本方法によれば、セルロースナノファイバーの脱水と熱可塑性樹脂との混合を同時に極めて短時間で行うことができる。特に1工程でセルロースナノファイバーと熱可塑性樹脂とを混合することが、量産性に優れる。また、目視による熱可塑性樹脂組成物の不均一性は認められず、曲げ強度及び曲げ弾性率の結果からも、熱可塑性樹脂内にセルロースナノファイバーが均一に分散されていることが分かる。
[3] Effects of Examples From the results of Examples, according to this method, dehydration of cellulose nanofibers and mixing with a thermoplastic resin can be simultaneously performed in an extremely short time. In particular, mixing cellulose nanofibers and a thermoplastic resin in one step is excellent in mass productivity. Moreover, the nonuniformity of the thermoplastic resin composition by visual observation is not recognized, and it turns out that the cellulose nanofiber is uniformly disperse | distributed in a thermoplastic resin also from the result of bending strength and a bending elastic modulus.

また、表1の結果から、比較例1のポリ乳酸樹脂のみからなる試験片に比べて、実施例1のセルロースナノファイバーを添加した試験片は、セルロースナノファイバーの配合量が10質量%と少ないにも関わらず、曲げ強度において12%、曲げ弾性率において21%、と共に向上されていることが分かる。   Moreover, from the result of Table 1, compared with the test piece which consists only of the polylactic acid resin of the comparative example 1, the test piece which added the cellulose nanofiber of Example 1 has few compounding quantities of a cellulose nanofiber as 10 mass%. Nevertheless, it can be seen that the bending strength is improved by 12% and the bending elastic modulus by 21%.

同様に、比較例2と実施例3とを比べると、ケナフコア粉砕物を単独で添加する(比較例2)のに比べて、セルロースナノファイバーを併用した場合には曲げ強度及び曲げ弾性率共に向上させることができることが分かる。即ち、比較例2に対して実施例3は、曲げ強度において22%、曲げ弾性率において6%、と共に向上されていることが分かる。また、この効果は曲げ強度においてより優れていることが分かる。   Similarly, when Comparative Example 2 is compared with Example 3, both the bending strength and the elastic modulus are improved when cellulose nanofibers are used in combination, compared with the case where the kenaf core pulverized product is added alone (Comparative Example 2). You can see that That is, it can be seen that Example 3 is improved as compared with Comparative Example 2 with a bending strength of 22% and a bending elastic modulus of 6%. It can also be seen that this effect is superior in bending strength.

また、実施例1と実施例2を比べると、セルロースナノファイバーの配合量を20質量%にすることで、実施例1に対して曲げ強度は27%、曲げ弾性率は20%、と実施例1に比べても大幅な強度向上効果が認められた。特に比較例1と実施例2とを比べると、曲げ強度は43%ときわめて効果的に向上されていることが分かる。
これらの実施例1〜3及び比較例1〜2の結果から、セルロースナノファイバーを添加することで従来に比べて脆さを改善して、硬く且つ適度な柔軟性を有する成形品を得ることができることが分かる。
Further, when Example 1 and Example 2 are compared, the blending amount of cellulose nanofiber is 20% by mass, so that the bending strength is 27% and the flexural modulus is 20% with respect to Example 1. Compared to 1, a significant strength improvement effect was observed. In particular, when Comparative Example 1 is compared with Example 2, it can be seen that the bending strength is extremely effectively improved to 43%.
From the results of Examples 1 to 3 and Comparative Examples 1 and 2, by adding cellulose nanofibers, the brittleness is improved as compared to the conventional case, and a molded product having a hard and moderate flexibility can be obtained. I understand that I can do it.

本発明の熱可塑性樹脂組成物の製造方法及び成形体の製造方法は、自動車関連分野及び建築関連分野などにおいて広く利用される。特に自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等に好適であり、なかでも自動車用品としては、自動車内装材、自動車用インストルメントパネル、自動車用外装材等に好適である。具体的には、ドア基材、パッケージトレー、ピラーガーニッシュ、スイッチベース、クオーターパネル、アームレストの芯材、自動車用ドアトリム、シート構造材、コンソールボックス、自動車用ダッシュボード、各種インストルメントパネル、デッキトリム、バンパー、スポイラー及びカウリング等が挙げられる。更に、例えば、建築物及び家具等の内装材、外装材及び構造材にも好適である。具体的には、ドア表装材、ドア構造材、各種家具(机、椅子、棚、箪笥など)の表装材、構造材等が挙げられる。その他、包装体、収容体(トレイ等)、保護用部材及びパーティション部材等としても好適である。   The method for producing a thermoplastic resin composition and the method for producing a molded product of the present invention are widely used in the fields related to automobiles and fields related to construction. It is particularly suitable for interior materials, exterior materials, and structural materials for automobiles, railway vehicles, ships, airplanes, etc., and among them, it is suitable for automobile interior materials, automotive instrument panels, automotive exterior materials, etc. is there. Specifically, door base material, package tray, pillar garnish, switch base, quarter panel, armrest core material, automotive door trim, seat structure material, console box, automotive dashboard, various instrument panels, deck trim, Examples include bumpers, spoilers, and cowlings. Furthermore, it is also suitable for interior materials, exterior materials and structural materials such as buildings and furniture. Specifically, door cover materials, door structure materials, cover materials for various furniture (desks, chairs, shelves, bags, etc.), structural materials, and the like can be given. In addition, it is also suitable as a package, a container (such as a tray), a protective member, and a partition member.

撹拌機の一例を示す模式的な断面図である。It is a typical sectional view showing an example of an agitator. 撹拌機に配設された混合羽根の一例を示す模式的な側面図である。It is a typical side view which shows an example of the mixing blade | wing arrange | positioned by the stirrer.

符号の説明Explanation of symbols

10;撹拌機、11;混合室、12;材料供給室、13;回転軸、14;らせん状羽根、15及び15a〜15f;混合羽根。   DESCRIPTION OF SYMBOLS 10; Stirrer, 11; Mixing chamber, 12; Material supply chamber, 13; Rotating shaft, 14; Spiral blade, 15 and 15a-15f;

Claims (5)

セルロースナノファイバーの水分散体と熱可塑性樹脂とを撹拌機で混合して熱可塑性樹脂組成物を得る熱可塑性樹脂組成物の製造方法であって、
上記撹拌機は上記混合を行う混合室を備え、
上記混合により上記水分散体に含まれる水分を気化させて、上記混合室内を加圧することを特徴とする熱可塑性樹脂組成物の製造方法。
A method for producing a thermoplastic resin composition in which an aqueous dispersion of cellulose nanofibers and a thermoplastic resin are mixed with a stirrer to obtain a thermoplastic resin composition ,
The stirrer includes a mixing chamber for performing the mixing,
A method for producing a thermoplastic resin composition, comprising vaporizing water contained in the aqueous dispersion by the mixing and pressurizing the mixing chamber.
上記熱可塑性樹脂は、生分解性樹脂である請求項1に記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to claim 1, wherein the thermoplastic resin is a biodegradable resin. 上記セルロースナノファイバーの水分散体及び上記熱可塑性樹脂と共に、更に、植物材料を上記撹拌機で混合する請求項1又は2に記載の熱可塑性樹脂組成物の製造方法。 The manufacturing method of the thermoplastic resin composition of Claim 1 or 2 which mixes a plant material with the said stirrer further with the said aqueous dispersion of the cellulose nanofiber and the said thermoplastic resin. 上記植物材料は、ケナフコアである請求項に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 3 , wherein the plant material is kenaf core. 請求項1乃至のうちのいずれかに記載の製造方法により得られた熱可塑性樹脂組成物を押出成形又は射出成形して成形体を得ることを特徴とする成形体の製造方法。 A method for producing a molded body, characterized in that a molded body is obtained by extrusion molding or injection molding the thermoplastic resin composition obtained by the manufacturing method according to any one of claims 1 to 4 .
JP2007195163A 2007-07-26 2007-07-26 Method for producing thermoplastic resin composition and method for producing molded body Expired - Fee Related JP5211571B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007195163A JP5211571B2 (en) 2007-07-26 2007-07-26 Method for producing thermoplastic resin composition and method for producing molded body
PCT/JP2008/058502 WO2009013925A1 (en) 2007-07-26 2008-05-07 Process for production of thermoplastic resin composition and process for production of moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195163A JP5211571B2 (en) 2007-07-26 2007-07-26 Method for producing thermoplastic resin composition and method for producing molded body

Publications (2)

Publication Number Publication Date
JP2009029927A JP2009029927A (en) 2009-02-12
JP5211571B2 true JP5211571B2 (en) 2013-06-12

Family

ID=40281185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195163A Expired - Fee Related JP5211571B2 (en) 2007-07-26 2007-07-26 Method for producing thermoplastic resin composition and method for producing molded body

Country Status (2)

Country Link
JP (1) JP5211571B2 (en)
WO (1) WO2009013925A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422539B1 (en) * 2017-08-29 2018-11-14 旭化成株式会社 Method for producing cellulose-containing resin composition
JP2019044163A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-containing resin composition
JP7527434B2 (en) 2019-04-25 2024-08-02 旭化成株式会社 Cellulose fiber composition and method for producing same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106055A (en) * 2008-10-28 2010-05-13 Toray Ind Inc Functional cellulose composition and production method thereof
JP5494930B2 (en) * 2009-09-15 2014-05-21 株式会社リコー Conductive member for electrophotographic apparatus and image forming apparatus
WO2011093147A1 (en) * 2010-01-28 2011-08-04 日産化学工業株式会社 Process for production of composition that comprises both cellulose and polylactic acid
RU2012138704A (en) 2010-02-11 2014-03-20 ЭфПиИННОВЕЙШНЗ NANOCOMPOSITE BIOMATERIALS FROM NANOCRYSTALLINE CELLULOSE (NCC) AND LACTIC ACID (PMC)
JP5489788B2 (en) * 2010-03-05 2014-05-14 オリンパス株式会社 Resin structure for lens frame
JP5622412B2 (en) * 2010-03-19 2014-11-12 国立大学法人京都大学 Molding material and manufacturing method thereof
JP5557025B2 (en) * 2010-08-11 2014-07-23 株式会社リコー Toner, method for producing toner, image forming apparatus using the toner, image forming method, and process cartridge
EP2623545B1 (en) * 2010-09-29 2017-11-08 DIC Corporation Method for pulverizing cellulose, cellulose nanofiber, masterbatch and resin composition
WO2013094563A1 (en) * 2011-12-19 2013-06-27 住友ベークライト株式会社 Resin composition and method for producing same
JP5797129B2 (en) * 2012-02-14 2015-10-21 地方独立行政法人京都市産業技術研究所 Dispersion liquid containing cellulose nanofiber and resin, and resin composition
JP6317903B2 (en) * 2013-09-26 2018-04-25 株式会社白石バイオマス Rice bran film and method for producing the same
JP6243318B2 (en) * 2014-11-14 2017-12-06 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition
JP6506617B2 (en) * 2015-05-26 2019-04-24 大阪瓦斯株式会社 Kneading composition, method for producing the same, and composite
JP6534172B2 (en) * 2015-06-05 2019-06-26 日本製紙株式会社 Dry solid of cellulose nanofiber, method for producing the same, and redispersion of dry solid
CN104910422B (en) * 2015-06-29 2017-06-16 中国林业科学研究院林产化学工业研究所 One kind enhanced lactic acid composite material of high length-diameter ratio nano-cellulose and preparation method thereof
JP6982122B2 (en) * 2015-07-15 2021-12-17 大王製紙株式会社 Method for manufacturing thermoplastic resin composition
JP6570006B2 (en) * 2015-07-15 2019-09-04 日本製紙株式会社 Method for producing cellulose nanofiber dispersion and method for dispersing dried chemically modified cellulose fiber
JP7139242B2 (en) * 2016-03-30 2022-09-20 出光ファインコンポジット株式会社 Flame-retardant thermoplastic resin composition
JP6952529B2 (en) * 2017-07-28 2021-10-20 東洋レヂン株式会社 Thermoplastic composite resin, filaments for 3D printers using the resin, and methods for manufacturing them.
KR101889224B1 (en) * 2017-08-11 2018-08-17 함지연 Biogradable resin composition with excellent low temperature formability
CN108525545A (en) * 2018-04-14 2018-09-14 北京点域科技有限公司 A kind of material secondary stirring device of intelligent control for building
CN108568232B (en) * 2018-05-21 2019-05-24 惠东县新骏实业有限公司 A kind of mixing stirring device of macromolecule light conversion agent
KR102234108B1 (en) * 2018-08-08 2021-03-31 함지연 Biogradable medical complex composition with excellent solidity
JP7333510B2 (en) * 2018-11-05 2023-08-25 国立大学法人京都大学 Fiber-reinforced resin composition, method for producing the same, and molded article
US20210155171A1 (en) * 2019-11-21 2021-05-27 Tesla, Inc. Vehicle dash with recycled materials
DE102020134316A1 (en) * 2020-12-18 2022-06-23 Kulzer Gmbh Rotor shaft with worm thread for a dynamic mixer for mixing low to high viscosity components
CN112705100A (en) * 2021-01-08 2021-04-27 安顺御茶村茶业有限责任公司 Raw material mixing machine is used in matcha processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141170A (en) * 1984-07-31 1986-02-27 株式会社 日本教材製作所 Artcraft clay and manufacture thereof
JPH0959301A (en) * 1995-08-21 1997-03-04 Bio Polymer Res:Kk Method for drying fine fibrous cellulose and dried material
JP2000351113A (en) * 1999-06-10 2000-12-19 Eidai Co Ltd Method for producing woody resin composition, composition obtained by the method, and molded product of the composition
JP4204216B2 (en) * 2001-10-29 2009-01-07 旭化成株式会社 Method for producing polymer composite
ATE490021T1 (en) * 2003-02-27 2010-12-15 M & F Technology Co Ltd MIXING AND POWDERIZING DEVICE AND METHOD FOR CELLULOSE MATERIAL COATED WITH A BINDER
JP3998692B2 (en) * 2004-12-27 2007-10-31 横浜ゴム株式会社 Rubber / short fiber masterbatch, production method thereof, and pneumatic tire using the masterbatch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422539B1 (en) * 2017-08-29 2018-11-14 旭化成株式会社 Method for producing cellulose-containing resin composition
JP2019044163A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-containing resin composition
JP2019043976A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-containing resin composition
JP7527434B2 (en) 2019-04-25 2024-08-02 旭化成株式会社 Cellulose fiber composition and method for producing same

Also Published As

Publication number Publication date
WO2009013925A1 (en) 2009-01-29
JP2009029927A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5211571B2 (en) Method for producing thermoplastic resin composition and method for producing molded body
Chan et al. Composites of wood and biodegradable thermoplastics: A review
Jayanth et al. A review on biodegradable polymeric materials striving towards the attainment of green environment
JP5380816B2 (en) Method for producing thermoplastic resin composition and method for producing thermoplastic resin molded article
Huda et al. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: A comparative study
JP6681157B2 (en) Thermoplastic resin composition and method for producing thermoplastic resin composition
JP6460736B2 (en) Thermoplastic resin composition
JP6806985B2 (en) Thermoplastic resin composition
Chihaoui et al. Lignin-containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier
JP6733076B2 (en) Method for producing thermoplastic resin composition
Hubbe et al. From Nanocellulose to Wood Particles: A Review of Particle Size vs. the Properties of Plastic Composites Reinforced with Cellulose-based Entities.
FI130445B (en) Compostable wood composite material
JP2017002291A (en) Aliphatic polyester particle
JP2016094539A (en) Thermoplastic resin composition
JP2017177559A (en) Woody board and method for manufacturing the same
JP2019059956A (en) Thermoplastic resin composition
Sarasini Thermoplastic biopolymer matrices for biocomposites
Pannu et al. A review paper on biodegradable composites made from banana fibers
JP6982122B2 (en) Method for manufacturing thermoplastic resin composition
JP5314867B2 (en) Method for producing thermoplastic resin composition and method for producing molded body
JP2009096875A (en) Method for producing thermoplastic resin composition, and method for producing molded article
JP6597050B2 (en) Wood board manufacturing method
JP2010001442A (en) Thermoplastic resin composition, method for producing it, and molded product of the same
JP2009108142A (en) Thermoplastic resin composition, method for producing the same, and method for manufacturing molded product
JP2010144056A (en) Thermoplastic resin composition, method for producing the composition, molded article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees