JP2013107987A - Cellulose-combined thermoplastic resin and molding thereof - Google Patents

Cellulose-combined thermoplastic resin and molding thereof Download PDF

Info

Publication number
JP2013107987A
JP2013107987A JP2011254122A JP2011254122A JP2013107987A JP 2013107987 A JP2013107987 A JP 2013107987A JP 2011254122 A JP2011254122 A JP 2011254122A JP 2011254122 A JP2011254122 A JP 2011254122A JP 2013107987 A JP2013107987 A JP 2013107987A
Authority
JP
Japan
Prior art keywords
cellulose
thermoplastic resin
fiber
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011254122A
Other languages
Japanese (ja)
Inventor
Kazuchiyo Takaoka
和千代 高岡
Hiroshi Miyazu
博史 宮津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011254122A priority Critical patent/JP2013107987A/en
Publication of JP2013107987A publication Critical patent/JP2013107987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cellulose-combined thermoplastic resin and its molding improved in strength, elastic modulus, impact resistance and fluidity.SOLUTION: This composite thermoplastic resin includes cellulose powder and an organic fiber, where the cellulose powder is pulp pulverized to less than 200 μm in average, and the organic fiber has fiber length of 1-20 mm. The molding includes the cellulose-combined thermoplastic resin.

Description

本発明は、セルロースを含有したセルロース複合熱可塑性樹脂及びその成形体に関するものである。   The present invention relates to a cellulose composite thermoplastic resin containing cellulose and a molded body thereof.

セルロース複合熱可塑性樹脂は、強度、弾性率、耐摩耗性などの機械特性が向上すること、焼却しても残渣が残らないこと、また、セルロースの比重が一般的セラミック系の充填剤に比べて低いために、成形体の軽量化が図れることなどが利点として挙げられており、熱可塑性樹脂と同様、包装体、収容トレイ、パレット、パソコンや携帯電話の筺体、玩具、文具、自動車用部材等に利用できる。   Cellulose composite thermoplastic resin has improved mechanical properties such as strength, elastic modulus, and abrasion resistance, no residue remains even after incineration, and the specific gravity of cellulose is higher than that of general ceramic fillers. Because it is low, it has been mentioned as an advantage that the molded body can be reduced in weight, etc., as with thermoplastic resins, packaging bodies, storage trays, pallets, casings of personal computers and mobile phones, toys, stationery, automotive parts, etc. Available to:

しかし、親水性表面のセルロースと疎水性である例えばポリオレフィンなどの熱可塑性樹脂との親和性はとても低く、単に溶融混練してもセルロースの分散性が悪く、強度物性が向上しない他、流動性が悪く、成形時にセルロースが熱で焦げて異臭を発生する不具合や、射出成形の際に、ウェルドライン、フローマーク、ショートショットなどの不具合が発生することがあった。   However, the affinity between cellulose on the hydrophilic surface and a hydrophobic thermoplastic resin such as polyolefin is very low. Even if it is simply melt-kneaded, the dispersibility of the cellulose is poor and the strength properties are not improved. Inadequately, there is a problem that cellulose is burned by heat during molding to generate a strange odor, and a defect such as a weld line, a flow mark, or a short shot may occur during injection molding.

そこで、溶融オレフィン樹脂へのセルロース分散性を改良するため、オレフィン樹脂に相溶する酸変性オレフィン樹脂が提案されている(例えば、特許文献1参照)。確かにこの方法でセルロースを分散させると、分散性が向上し、強度や弾性率、また流動性等の諸物性が改善された成形体を得ることが可能である。しかし、熱可塑性樹脂に、この方法でセルロースを複合させると、硬くなり、強度や弾性率が向上するが、一方で衝撃性が低下して、破壊モードも脆性化してしまう。即ち、割れやすく脆くなり、セルロースを含有した熱可塑性樹脂の利用範囲を狭めてしまうことになっていて、大きな問題であった。   Then, in order to improve the cellulose dispersibility to molten olefin resin, the acid modified olefin resin compatible with olefin resin is proposed (for example, refer patent document 1). Certainly, when cellulose is dispersed by this method, it is possible to obtain a molded article having improved dispersibility and improved physical properties such as strength, elastic modulus and fluidity. However, when cellulose is combined with a thermoplastic resin by this method, it becomes hard and the strength and elastic modulus are improved. On the other hand, the impact property is lowered and the fracture mode becomes brittle. That is, it is fragile and brittle, and the utilization range of the thermoplastic resin containing cellulose is narrowed, which is a big problem.

セラミック系以外の充填剤を用いた、硬くても割れ難い複合材料としては、有機繊維など、アスペクト比の高い高分子系材料を複合させることが提案されている(例えば、特許文献2参照)。しかし、このような材料を熱可塑性樹脂に複合させると、硬さと衝撃性を満足させることができるが、複合させた熱可塑性樹脂の流動性が低下してしまうという問題が残された。   As a composite material that uses a filler other than a ceramic material and is hard but difficult to break, it has been proposed to combine a polymer material having a high aspect ratio such as an organic fiber (for example, see Patent Document 2). However, when such a material is combined with a thermoplastic resin, the hardness and impact properties can be satisfied, but the problem remains that the fluidity of the combined thermoplastic resin is lowered.

更にセルロース繊維と有機繊維を含有する熱可塑性樹脂組成物も提案されている(例えば、特許文献3参照)。有機繊維は長繊維をカットして短繊維化して熱可塑性樹脂と複合させるために、繊維長が一定化できるため、製造時の特性の安定化を図ることができる。しかし、パルプ由来のセルロース繊維では、繊維長をコントロールする際に、機械的或いは化学的に粉砕する過程を経るために、繊維長の分布を生じてしまうことになる。セルロース繊維の繊維長の分布が複合熱可塑性樹脂の特性に大きく影響を与えない領域では問題はないが、ポリマー繊維と同程度の繊維長になると問題で、例えば袋詰め輸送中に袋内で天地方向に繊維長の分布にむらが生じ、更に熱可塑性樹脂との混練等に当たっての揺動搬送や螺動搬送時にもむらが助長されて、安定した特性の製品ができないという問題があった。   Furthermore, a thermoplastic resin composition containing cellulose fibers and organic fibers has also been proposed (see, for example, Patent Document 3). Since the organic fiber is cut to a short fiber to make a short fiber and combined with the thermoplastic resin, the fiber length can be made constant, so that the characteristics during production can be stabilized. However, in the cellulose fiber derived from pulp, when the fiber length is controlled, a process of pulverizing mechanically or chemically is performed, and therefore, the fiber length is distributed. There is no problem in the region where the fiber length distribution of the cellulose fiber does not greatly affect the properties of the composite thermoplastic resin, but there is a problem if the fiber length is about the same as that of the polymer fiber. There is a problem in that the fiber length distribution is uneven in the direction, and the unevenness is further promoted during swinging and screwing when kneading with the thermoplastic resin, and a product with stable characteristics cannot be obtained.

特許第3032884号公報Japanese Patent No. 3032884 特開2002−121869号公報JP 2002-121869 A 特開2010−215887号公報JP 2010-215887 A

本発明の目的は、強度・弾性率及び耐衝撃性と流動性の改善されたセルロース複合熱可塑性樹脂とその成形体を提供することである。   An object of the present invention is to provide a cellulose composite thermoplastic resin having improved strength / elastic modulus, impact resistance and fluidity, and a molded product thereof.

本発明者らは、鋭意検討をした結果、下記に示す本発明により上記課題を解決できることを見出した。
[1]セルロースパウダーと有機繊維が含有されたセルロース複合熱可塑性樹脂。
[2]セルロースパウダーが平均200μmより小さく粉砕されたパルプであって、かつ有機繊維の繊維長が1mmから20mmまでである[1]記載のセルロース複合熱可塑性樹脂。
[3][1]記載のセルロース複合熱可塑性樹脂を含有してなる成形体。
As a result of intensive studies, the present inventors have found that the above-described problems can be solved by the present invention described below.
[1] A cellulose composite thermoplastic resin containing cellulose powder and organic fibers.
[2] The cellulose composite thermoplastic resin according to [1], wherein the cellulose powder is a pulp pulverized smaller than an average of 200 μm, and the fiber length of the organic fiber is from 1 mm to 20 mm.
[3] A molded article comprising the cellulose composite thermoplastic resin according to [1].

本発明のセルロース複合熱可塑性樹脂では、強度・弾性率及び耐衝撃性と流動性の改善されたセルロース複合熱可塑性樹脂とその成形体を得ることができる。   With the cellulose composite thermoplastic resin of the present invention, it is possible to obtain a cellulose composite thermoplastic resin with improved strength, elastic modulus, impact resistance and fluidity, and a molded product thereof.

本発明のセルロース複合熱可塑性樹脂とはセルロースが含有された熱可塑性樹脂を意味する。用いられるセルロースとしては、非木系、木質系材料から得られるセルロースのいずれも用いることができる。本発明で用いるセルロースは、化学パルプが好ましいが、古紙なども用いることができる。化学パルプは、その色の均質性が高いため、成形体と成したときに色相が均一となる上、成形時、マスターバッチや顔料を混合して成形体を着色しても均一な色の外観を持った成形体を得ることができる。化学パルプとは、例えば、木材(針葉樹、広葉樹)、コットンリンター、ケナフ、マニラ麻(アバカ)、サイザル麻、ジュート、サバイグラス、エスパルト草、バガス、稲わら、麦わら、葦、竹などの天然セルロースを化学的に処理したパルプ(クラフトパルプ、亜硫酸パルプなど)である。地が白い方が成形体の色の調整がしやすいことより、化学的に漂白されて色が白いクラフトパルプ(N−BKP、L−BKP等)を用いることがより好ましい。   The cellulose composite thermoplastic resin of the present invention means a thermoplastic resin containing cellulose. As the cellulose used, any of cellulose obtained from non-woody or woody materials can be used. The cellulose used in the present invention is preferably chemical pulp, but waste paper or the like can also be used. Chemical pulp has a high color homogeneity, so the hue becomes uniform when formed into a molded body, and even when the molded body is colored by mixing a masterbatch or pigment during molding, the appearance of a uniform color Can be obtained. Chemical pulp, for example, natural cellulose such as wood (conifers, hardwoods), cotton linters, kenaf, manila hemp (avaca), sisal hemp, jute, sabygrass, esparto grass, bagasse, rice straw, straw, straw, bamboo, etc. Treated pulp (kraft pulp, sulfite pulp, etc.). It is more preferable to use kraft pulp (N-BKP, L-BKP, etc.) that is chemically bleached and white in color because the whiter background is easier to adjust the color of the molded body.

得られたパルプを、乾式或いは湿式粉砕してセルロースパウダーを得ることができる。乾式粉砕とは、セルロースに機械的にシェアをかけることによって、強制的に粉砕する方法である。シェアのかけ方、粉砕方法などによってサイズの調整が可能で、平均繊維長が200μm程度以下のサイズに粉砕されたセルロースは均一な機械搬送が可能なパウダーとして扱うことができる。しかし、粉砕を押して、セルロースパウダーのサイズをより小さくしていくと、エネルギーコストが増大するために、乾式粉砕で得られる好ましいセルロースパウダーのサイズは平均粒径20μm以上である。湿式粉砕とは、酸或いはアルカリ水溶液中にパルプを浸漬させることにより、パルプの結晶性の崩れた部分を化学的に分解して粉砕する方法である。化学粉砕の場合、例えば10μmより小さな粒径のセルロースパウダーが得られるが、水系での反応であるので、濾過・洗浄・乾燥の工程が必要となり、更に、強アルカリ中などでは一部セルロースが膨潤して、濾過時に再凝集する場合などがあり、再度粉砕するプロセスも必要で、コストが嵩みあまり好ましくはない。一方、パルプを解繊させて得られるのが繊維状セルロースで、綿状の形状をしており、繊維長は約0.4mm以上のものが多い。この形態で繊維長に分布が生じていると、揺動搬送では繊維状の短いものから動きだし、螺動搬送では繊維長の長いものが圧縮されて動き難く、いずれも繊維分布にむらを生じてしまう。特に繊維長約0.7mm以上では複合熱可塑性樹脂の物性の変化、特に流動性の低下を引き起こすために、繊維長の分布に変化が生ずることは即ち、製品の安定生産を阻むことになる。   The obtained pulp can be dry or wet pulverized to obtain cellulose powder. Dry pulverization is a method of forcibly pulverizing by mechanically applying shear to cellulose. The size can be adjusted by applying the shear, the pulverization method, and the like, and the cellulose pulverized to an average fiber length of about 200 μm or less can be handled as a powder that can be uniformly transported by a machine. However, if the size of the cellulose powder is further reduced by pressing the pulverization, the energy cost increases. Therefore, the preferable size of the cellulose powder obtained by dry pulverization has an average particle size of 20 μm or more. The wet pulverization is a method in which pulp is immersed in an acid or alkaline aqueous solution to chemically decompose and pulverize a portion where the crystallinity of the pulp is broken. In the case of chemical pulverization, for example, cellulose powder having a particle size smaller than 10 μm can be obtained. However, since it is an aqueous reaction, filtration, washing and drying processes are required, and some cellulose swells in strong alkalis. In some cases, re-aggregation may occur during filtration, and a process of pulverization is also necessary, which is expensive and not preferable. On the other hand, fibrous cellulose is obtained by defibrating pulp, has a cotton-like shape, and has a fiber length of about 0.4 mm or more. If the fiber length is distributed in this form, it starts moving from the short fiber shape in the oscillating conveyance, and the long fiber length is compressed and difficult to move in the screw conveyance, both of which cause uneven fiber distribution. End up. In particular, when the fiber length is about 0.7 mm or more, the physical properties of the composite thermoplastic resin are changed, particularly the flowability is lowered. Therefore, the change in the fiber length distribution impedes stable production of the product.

本発明における有機繊維とは、カットによって短繊維化できるものであって、熱可塑性樹脂との複合過程で、繊維形状を失わない耐熱性を有し、充分な弾性率と靭性を持ち、樹脂側と密着性が高い繊維であれば特に限定されない。具体的には、ポリエステル繊維、ナイロン繊維、ビニロン繊維、アクリル繊維、レーヨン繊維などが挙げられる。特にビニロン繊維やアクリル繊維は強度物性が良好で、より好ましい。カット長については、衝撃性を改良するために1mm以上、熱可塑性樹脂との複合化時に撚れや絡みを生じない程度のサイズが必要で20mm以下が好ましく、より好ましくは3mmから12mm程度である。繊維径については好ましくは0.5dtexから5dtex、更に好ましくは1dtexから3dtexである。   The organic fiber in the present invention can be shortened by cutting, has a heat resistance that does not lose the fiber shape in the composite process with the thermoplastic resin, has sufficient elastic modulus and toughness, and has a resin side. If it is a fiber with high adhesiveness, it will not be specifically limited. Specific examples include polyester fiber, nylon fiber, vinylon fiber, acrylic fiber, and rayon fiber. In particular, vinylon fibers and acrylic fibers are more preferable because they have good strength properties. The cut length is 1 mm or more in order to improve impact properties, and a size that does not cause twisting or entanglement when combined with a thermoplastic resin is required, preferably 20 mm or less, more preferably about 3 mm to 12 mm. . The fiber diameter is preferably 0.5 dtex to 5 dtex, more preferably 1 dtex to 3 dtex.

本発明においては各種熱可塑性樹脂が用いることができるが、セルロースの耐熱性の問題から、融点190℃以下の熱可塑性樹脂を用いるのが好ましい。このような樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンからなるポリエチレン類、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、AS樹脂、ABS樹脂、アクリル樹脂、ポリアセタール、ポリエステル等を挙げることができる。好ましくはポリエチレン、ポリプロピレンなどのポリオレフィン類である。   In the present invention, various thermoplastic resins can be used, but it is preferable to use a thermoplastic resin having a melting point of 190 ° C. or lower from the viewpoint of heat resistance of cellulose. Examples of such resins include high density polyethylene, medium density polyethylene, polyethylene made of low density polyethylene, polypropylene, polyvinyl chloride, polystyrene, AS resin, ABS resin, acrylic resin, polyacetal, polyester, and the like. it can. Preferred are polyolefins such as polyethylene and polypropylene.

更に、熱可塑性樹脂として、生分解性樹脂を用いることもできる。生分解性樹脂を用いることにより、廃棄の際、成形品を土中に埋設等することにより該成形品が分解されることが期待される。生分解性樹脂としては、環境的に分解される樹脂、特に微生物の作用により分解される樹脂であれば特に制限されない。例えば、具体的には、高分子多糖類、微生物ポリエステル、脂肪族ポリエステル等が挙げられ、より具体的には、ポリ乳酸樹脂、ポリカプロラクトン樹脂、ポリブチレンサクシネートアジペート樹脂、ポリエチレンサクシネート樹脂、ポリエチレンサクシネートカーボネート樹脂、ポリブチレンサクシネート樹脂、ポリヒドロキシアルカノエート(例えば、ポリ(3−ヒドロキシ酪酸)(PHB)、ポリ(3−ヒドロキシ吉草酸)(PHV))、ラクトン樹脂、低分子量脂肪族ジカルボン酸と低分子量脂肪族ジオールから得られるポリエステル樹脂、酢酸セルロース系等の複合体、変性デンプン−変性ポリビニルアルコール複合体、その他の複合体を挙げることができる。   Furthermore, a biodegradable resin can also be used as the thermoplastic resin. By using a biodegradable resin, it is expected that the molded product is decomposed by burying the molded product in the soil or the like at the time of disposal. The biodegradable resin is not particularly limited as long as it is an environmentally decomposed resin, particularly a resin that is decomposed by the action of microorganisms. For example, specific examples include polymeric polysaccharides, microbial polyesters, aliphatic polyesters, and more specifically, polylactic acid resin, polycaprolactone resin, polybutylene succinate adipate resin, polyethylene succinate resin, polyethylene. Succinate carbonate resin, polybutylene succinate resin, polyhydroxyalkanoate (eg, poly (3-hydroxybutyric acid) (PHB), poly (3-hydroxyvaleric acid) (PHV)), lactone resin, low molecular weight aliphatic dicarboxylic acid A polyester resin obtained from an acid and a low molecular weight aliphatic diol, a composite such as cellulose acetate, a modified starch-modified polyvinyl alcohol composite, and other composites can be exemplified.

本発明に係わる熱可塑性樹脂として生分解性樹脂を用いる場合、その汎用性よりポリ乳酸樹脂を用いるのが好ましい。ポリ乳酸樹脂には、ポリ乳酸ホモポリマーの他、乳酸コポリマー及びブレンドポリマー等の乳酸系ポリマーが含まれる。乳酸系ポリマーの質量平均分子量は、一般に5万〜50万である。また、ポリ乳酸樹脂におけるL−乳酸単位とD−乳酸単位の構成モル比L/Dは、100/0〜0/100のいずれであってもよく、特に制限されない。   When a biodegradable resin is used as the thermoplastic resin according to the present invention, it is preferable to use a polylactic acid resin because of its versatility. The polylactic acid resin includes a lactic acid-based polymer such as a lactic acid copolymer and a blend polymer in addition to a polylactic acid homopolymer. The mass average molecular weight of the lactic acid polymer is generally 50,000 to 500,000. Further, the constituent molar ratio L / D of the L-lactic acid unit and the D-lactic acid unit in the polylactic acid resin may be any of 100/0 to 0/100, and is not particularly limited.

本発明のセルロース複合熱可塑性樹脂におけるセルロースパウダーの添加量は2質量%以上90質量%以下であり、好ましくは5質量%以上80質量%以下、更に好ましくは10質量%以上75質量%以下である。セルロースパウダーの添加量が少ないと強度物性の発現等の効果が出ない。また、60質量%以上ではマスターバッチとして用いられるが、セルロースパウダーの含有量が高過ぎると希釈時の再分散性に問題が生ずることなる。有機繊維の添加量は好ましくは0.2質量%から10質量%程度である。特に有機繊維の添加量の増大はセルロース複合熱可塑性樹脂の流動性を大きく変化させるので、より好ましくは0.5質量%から5質量%である。   The addition amount of the cellulose powder in the cellulose composite thermoplastic resin of the present invention is 2 to 90% by mass, preferably 5 to 80% by mass, more preferably 10 to 75% by mass. . If the added amount of cellulose powder is small, effects such as the development of strength properties will not be obtained. Moreover, although 60 mass% or more is used as a master batch, if the content of the cellulose powder is too high, a problem occurs in redispersibility during dilution. The amount of organic fiber added is preferably about 0.2 to 10% by mass. In particular, an increase in the amount of organic fiber added greatly changes the fluidity of the cellulose composite thermoplastic resin, and is more preferably 0.5% by mass to 5% by mass.

複合化する方法としては、加圧ニーダー、バンバリミキサー、ヘンシェルミキサー、二軸押出混練機などの一般的な混練機を用いることができる。特に熱可塑性樹脂がオレフィン樹脂の場合、酸変性ポリオレフィンを添加することによって、セルロースパウダー、有機繊維の分散性が大きく向上して有効である。セルロースパウダー、有機繊維、熱可塑性樹脂、酸変性ポリオレフィン以外に各種添加剤を適宜加えることができる。添加剤としては、相溶化剤、酸化防止剤、熱安定剤、滑剤、離型剤、可塑剤、紫外線吸収剤、光安定剤、顔料、染料、帯電防止剤、導電性付与剤、分散剤、造核剤、抗菌剤、防黴剤、難燃剤等の添加剤を、単独または2種類以上併せて使用することができるが、これらに限定されるわけではない。   As a method for compounding, a general kneader such as a pressure kneader, a Banbury mixer, a Henschel mixer, or a twin-screw extrusion kneader can be used. In particular, when the thermoplastic resin is an olefin resin, the dispersibility of cellulose powder and organic fibers is greatly improved by adding an acid-modified polyolefin, which is effective. Various additives other than cellulose powder, organic fiber, thermoplastic resin, and acid-modified polyolefin can be appropriately added. Additives include compatibilizers, antioxidants, heat stabilizers, lubricants, mold release agents, plasticizers, UV absorbers, light stabilizers, pigments, dyes, antistatic agents, conductivity-imparting agents, dispersants, Additives such as nucleating agents, antibacterial agents, antifungal agents, and flame retardants can be used alone or in combination of two or more, but are not limited thereto.

本発明のセルロース複合熱可塑性樹脂を用いて、各種成形方法により成形体を製造することができる。成形方法としては、一般的な成形方法を用いることができ、特に制限されない。例えば、具体的には、射出成形法、押出成形法、圧縮成形法、回転成形法、中空成形法(ブロー成形法)、T−ダイ成形法、インフレーション成形法、カレンダー成形法などを挙げることができるが、これらの方法に制限されることはない。また、成形体の形状も特に制限されず、どのような形状のものを、どのような成形方法で製造してもよい。   Using the cellulose composite thermoplastic resin of the present invention, a molded body can be produced by various molding methods. As a molding method, a general molding method can be used and is not particularly limited. Specific examples include injection molding methods, extrusion molding methods, compression molding methods, rotational molding methods, hollow molding methods (blow molding methods), T-die molding methods, inflation molding methods, and calendar molding methods. Yes, but you are not limited to these methods. Further, the shape of the molded body is not particularly limited, and any shape may be produced by any molding method.

本発明のセルロース複合熱可塑性樹脂の優れた成形性を具現するためには、射出成形法を用いて精密な形状の成形体を得ることが好ましい。本発明のセルロース複合熱可塑性樹脂は、バランスのよい優れた強度物性及び流動性を発現することができる。   In order to realize the excellent moldability of the cellulose composite thermoplastic resin of the present invention, it is preferable to obtain a molded body having a precise shape using an injection molding method. The cellulose composite thermoplastic resin of the present invention can exhibit excellent strength properties and fluidity with good balance.

次に、本発明を実施例によって、更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these at all.

(実施例1)
広葉樹の晒パルプ(LBKP)のパルプシートを粉砕機(株式会社ホーライ製BO−2572、スクリーン30mm)によって粗粉砕した後、遠心水冷式粉砕機(株式会社ティエスピー製CLGP25)を用いて、平均粒径32μm(島津製作所製SALD−3100を用いた測定値)のセルロースパウダーを得た。このセルロースパウダー20質量部、有機繊維として、ビニロン繊維(ユニチカ製1.9dtex、カット長6mm品)2質量部、熱可塑性樹脂(東ソー製ニポロンハード#4010)76質量部、酸変性ポリエチレン(三井化学製アドマーHE810)2質量部を、二軸押出混練機(株式会社テクノベル製KZW)で混練して、セルロース複合熱可塑性樹脂(E−1)を得た。
Example 1
After roughly pulverizing a pulp sheet of hardwood bleached pulp (LBKP) with a pulverizer (BO-2572 manufactured by Horai Co., Ltd., screen 30 mm), the average particle size was measured using a centrifugal water-cooled pulverizer (CLGP25 manufactured by TSP). A cellulose powder having a diameter of 32 μm (measured value using SALD-3100 manufactured by Shimadzu Corporation) was obtained. 20 parts by weight of this cellulose powder, organic fiber, 2 parts by weight of vinylon fiber (1.9 dtex made by Unitika, 6 mm cut length), 76 parts by weight of thermoplastic resin (Nipolon Hard # 4010 made by Tosoh), acid-modified polyethylene (manufactured by Mitsui Chemicals) 2 parts by mass of Admer HE810) were kneaded with a twin-screw extrusion kneader (KZW manufactured by Technobel Co., Ltd.) to obtain a cellulose composite thermoplastic resin (E-1).

(実施例2)
実施例1と同様に、以下の処方でセルロース複合熱可塑性樹脂(E−2)を得た。
セルロースパウダー(平均粒径32μm) 20質量部
ビニロン繊維(1.9dtex、6mm) 3質量部
熱可塑性樹脂(ニポロンハード#4010) 75質量部
酸変性ポリプロピレン(アドマーHE810) 2質量部
(Example 2)
Similarly to Example 1, a cellulose composite thermoplastic resin (E-2) was obtained by the following formulation.
Cellulose powder (average particle size 32 μm) 20 parts by weight Vinylon fiber (1.9 dtex, 6 mm) 3 parts by weight Thermoplastic resin (Nipolon Hard # 4010) 75 parts by weight Acid-modified polypropylene (Admer HE810) 2 parts by weight

(実施例3)
実施例1と同様に、以下の処方でセルロース複合熱可塑性樹脂(E−3)を得た。
セルロースパウダー(平均粒径32μm) 20質量部
ビニロン繊維(1.9dtex、6mm) 5質量部
熱可塑性樹脂(ニポロンハード#4010) 73質量部
酸変性ポリプロピレン(アドマーHE810) 2質量部
(Example 3)
In the same manner as in Example 1, a cellulose composite thermoplastic resin (E-3) was obtained with the following formulation.
Cellulose powder (average particle size 32 μm) 20 parts by weight Vinylon fiber (1.9 dtex, 6 mm) 5 parts by weight Thermoplastic resin (Nipolon Hard # 4010) 73 parts by weight Acid-modified polypropylene (Admer HE810) 2 parts by weight

(実施例4)
実施例1と同様に、以下の処方でセルロース複合熱可塑性樹脂(E−4)を得た。
セルロースパウダー(平均粒径32μm) 20質量部
ビニロン繊維(1.9dtex、6mm) 2質量部
熱可塑性樹脂(プライムポリマー製プライムポリプロJ3053HP)
73質量部
酸変性ポリプロピレン(三菱化学製モディックP928) 2質量部
Example 4
Similarly to Example 1, a cellulose composite thermoplastic resin (E-4) was obtained with the following formulation.
Cellulose powder (average particle size 32 μm) 20 parts by mass Vinylon fiber (1.9 dtex, 6 mm) 2 parts by mass Thermoplastic resin (Prime Polypro J3053HP made by Prime Polymer)
73 parts by mass Acid-modified polypropylene (Medic Chemical Modic P928) 2 parts by mass

(実施例5)
広葉樹の晒パルプ(LBKP)のパルプシートを粉砕機(株式会社ホーライ製BO−252、スクリーン径30mm)によって粗粉砕した後、衝撃式粉砕機(槙野産業株式会社製DD2−3.7、スクリーン径0.35mm)によって繊維の粉砕を行い、平均粒径200μmのセルロースパウダーを得た。このセルロースパウダー20質量部、有機繊維としてビニロン繊維(1.9dtex、カット長6mm品)2質量部、熱可塑性樹脂(プライムポリマー製プライムポリプロJ3053HP)76質量部、酸変性ポリプロピレン(三菱化学製モディックP928)2質量部を、二軸押出混練機(テクノベル製KZW)で混練して、セルロース複合熱可塑性樹脂(E−5)を得た。
(Example 5)
After roughly pulverizing a hardwood bleached pulp (LBKP) pulp sheet with a pulverizer (BO-252 manufactured by Horai Co., Ltd., screen diameter 30 mm), an impact pulverizer (DD2-3.7 manufactured by Kanno Sangyo Co., Ltd., screen diameter) 0.35 mm), the fibers were pulverized to obtain a cellulose powder having an average particle size of 200 μm. 20 parts by mass of this cellulose powder, 2 parts by mass of vinylon fibers (1.9 dtex, 6 mm cut length) as organic fibers, 76 parts by mass of thermoplastic resin (Prime Polypro J3053HP made by Prime Polymer), acid-modified polypropylene (Modic P928 made by Mitsubishi Chemical) 2 parts by mass were kneaded with a twin-screw extrusion kneader (Technobel KZW) to obtain a cellulose composite thermoplastic resin (E-5).

(比較例1)
実施例1と同様に、以下の処方でセルロース複合熱可塑性樹脂(R−1)を得た。
セルロースパウダー(平均粒径32μm) 20質量部
熱可塑性樹脂(ニポロンハード#4010) 78質量部
酸変性ポリエチレン(アドマーHE810) 2質量部
(Comparative Example 1)
Similarly to Example 1, a cellulose composite thermoplastic resin (R-1) was obtained according to the following formulation.
Cellulose powder (average particle size 32 μm) 20 parts by mass Thermoplastic resin (Nipolon Hard # 4010) 78 parts by mass Acid-modified polyethylene (Admer HE810) 2 parts by mass

(比較例2)
実施例1と同様に、以下の処方で複合熱可塑性樹脂(R−2)を得た。
ビニロン繊維(1.9dtex、6mm) 3質量部
熱可塑性樹脂(ニポロンハード#4010) 95質量部
酸変性ポリエチレン(アドマーHE810) 2質量部
(Comparative Example 2)
Similar to Example 1, a composite thermoplastic resin (R-2) was obtained with the following formulation.
Vinylon fiber (1.9 dtex, 6 mm) 3 parts by weight Thermoplastic resin (Nipolon Hard # 4010) 95 parts by weight Acid-modified polyethylene (Admer HE810) 2 parts by weight

(比較例3)
実施例1と同様に、以下の処方で複合熱可塑性樹脂(R−3)を得た。
ビニロン繊維(1.9dtex、6mm) 20質量部
熱可塑性樹脂(ニポロンハード#4010) 78質量部
酸変性ポリエチレン(アドマーHE810) 2質量部
(Comparative Example 3)
Similar to Example 1, a composite thermoplastic resin (R-3) was obtained according to the following formulation.
Vinylon fiber (1.9 dtex, 6 mm) 20 parts by weight Thermoplastic resin (Nipolon Hard # 4010) 78 parts by weight Acid-modified polyethylene (Admer HE810) 2 parts by weight

(比較例4)
広葉樹の晒パルプ(LBKP)のパルプシートを粉砕機(株式会社ホーライ製BO−252、スクリーン径30mm)によって粗粉砕した後、衝撃式粉砕機(ターボ工業製ターボミルT−250、スクリーン径0.8mm)で更に粉砕して、繊維長0.7mm(オプテストイクイップメント社(OpTest Equipment Inc.)製ハイレスファイバークオリティーアナライザー(HiRes Fiber Quality Analyzer)を用いて測定)の繊維状セルロースを得た。この繊維状セルロース20質量部とビニロン繊維(1.9dtex、カット長6mm品)2重量部、熱可塑性樹脂(ニポロンハード#4010)76質量部、酸変性ポリエチレン(アドマーHE810)2質量部を、二軸押出混練機(テクノベル製 KZW)で混練して、セルロース複合熱可塑性樹脂(R−4)を得た。
(Comparative Example 4)
After roughly pulverizing a pulp sheet of hardwood bleached pulp (LBKP) with a pulverizer (BO-252 manufactured by Horai Co., Ltd., screen diameter 30 mm), an impact pulverizer (Turbo Industries turbo mill T-250, screen diameter 0.8 mm) ) To obtain a fibrous cellulose having a fiber length of 0.7 mm (measured using a HiRes Fiber Quality Analyzer) manufactured by OpTest Equipment Inc. 20 parts by weight of this fibrous cellulose, 2 parts by weight of vinylon fiber (1.9 dtex, 6 mm cut length), 76 parts by weight of thermoplastic resin (Nipolon Hard # 4010), 2 parts by weight of acid-modified polyethylene (Admer HE810) are biaxial. This was kneaded with an extrusion kneader (Technobel KZW) to obtain a cellulose composite thermoplastic resin (R-4).

(比較例5)
広葉樹の晒パルプ(LBKP)のパルプシートを粉砕機(株式会社ホーライ製BO−252、スクリーン径30mm)によって粗粉砕した後、衝撃式粉砕機(ターボ工業製ターボミルT−250、スクリーン径1.5mm)で更に粉砕して、繊維長0.9mm(オプテストイクイップメント社(OpTest Equipment Inc.)製ハイレスファイバークオリティーアナライザー(HiRes Fiber Quality Analyzer)を用いて測定)の繊維状セルロースを得た。この繊維状セルロース20質量部とビニロン繊維(1.9dtex、カット長6mm品)2重量部、熱可塑性樹脂(プライムポリマー製プライムポリプロJ3053HP)76質量部、酸変性ポリプロピレン(三井化学製アドマーQE800)2質量部を、二軸押出混練機(テクノベル製KZW)で混練して、セルロース複合熱可塑性樹脂(R−5)を得た。
(Comparative Example 5)
After roughly pulverizing a hardwood bleached pulp (LBKP) pulp sheet with a pulverizer (BO-252 manufactured by Horai Co., Ltd., screen diameter 30 mm), an impact pulverizer (Turbo Industries turbo mill T-250, screen diameter 1.5 mm) ) To obtain fibrous cellulose having a fiber length of 0.9 mm (measured using a HiRes Fiber Quality Analyzer) manufactured by OpTest Equipment Inc. 20 parts by mass of this fibrous cellulose, 2 parts by weight of vinylon fiber (1.9 dtex, 6 mm cut length), 76 parts by mass of a thermoplastic resin (Prime Polymer Prime Polypro J3053HP), acid-modified polypropylene (Mitsui Chemicals Admer QE800) 2 The mass part was kneaded with a twin-screw extrusion kneader (Technobel KZW) to obtain a cellulose composite thermoplastic resin (R-5).

実施例及び比較例で得られたセルロース複合熱可塑性樹脂について、二軸混練機から吐出されるストランドの最初の部分と中間部分及び最後の部分をハンマーミルで簡易粉砕して、これをもとに射出成形体を作製して、曲げ弾性率、ノッチ付きシャルピー衝撃値、メルトフローレートを測定した。結果を表1に与えた。   For the cellulose composite thermoplastic resins obtained in the examples and comparative examples, the first part, the middle part and the last part of the strands discharged from the twin-screw kneader were simply pulverized with a hammer mill, based on this An injection-molded article was produced, and the flexural modulus, notched Charpy impact value, and melt flow rate were measured. The results are given in Table 1.

Figure 2013107987
Figure 2013107987

比較例1よりセルロースを複合させるだけでは、曲げ弾性率は向上するが、衝撃性が低下して脆性破壊モードとなり実用的ではない。比較例2は曲げ弾性率の向上が見られず複合熱可塑性材料とは言えない。比較例3では曲げ弾性率が2800MPaに到達したが複合熱可塑性樹脂は流動性が極端に悪く、一般的な射出成形体では成形性が困難である。これに対して実施例では曲げ弾性率、衝撃性が向上して、流動性も成形可能な範囲に収まっている。更に、比較例4、5では、混練時の時間分布で混練機に投入されるセルロースの繊維長にばらつきがあるために、徐々に曲げ弾性率が向上し、流動性が低下しており、製造物の安定的は生産に問題が生じたが、実施例ではこの問題は解決された。   By simply combining cellulose from Comparative Example 1, the flexural modulus is improved, but the impact property is lowered and a brittle fracture mode is obtained, which is not practical. Comparative Example 2 cannot be said to be a composite thermoplastic material because no improvement in flexural modulus was observed. In Comparative Example 3, the flexural modulus reached 2800 MPa, but the composite thermoplastic resin has extremely poor fluidity, and it is difficult to mold with a general injection molded article. On the other hand, in the examples, the flexural modulus and impact properties are improved, and the fluidity is within the moldable range. Furthermore, in Comparative Examples 4 and 5, since the fiber lengths of cellulose introduced into the kneading machine vary depending on the time distribution during kneading, the flexural modulus is gradually improved and the fluidity is lowered. Stabilization of the product caused problems in production, but this problem was solved in the examples.

本発明のセルロース含有熱可塑性樹脂及びその成形体は、包装材料、収容トレイ、パレット、保護用部材、パーティション部材等に利用可能である。また、パソコン、携帯電話の筺体、自動車用材料、建材、家具、遊具、玩具、文具等に利用できる。   The cellulose-containing thermoplastic resin and molded article thereof of the present invention can be used for packaging materials, storage trays, pallets, protective members, partition members, and the like. It can also be used for personal computers, mobile phone housings, automotive materials, building materials, furniture, play equipment, toys, stationery, and the like.

Claims (3)

セルロースパウダーと有機繊維が含有されたセルロース複合熱可塑性樹脂。   Cellulose composite thermoplastic resin containing cellulose powder and organic fibers. セルロースパウダーが200μmより小さく粉砕されたパルプであって、かつ有機繊維の繊維長が1mmから20mmまでである請求項1記載のセルロース複合熱可塑性樹脂。   The cellulose composite thermoplastic resin according to claim 1, wherein the cellulose powder is a pulp pulverized to be smaller than 200 µm, and the fiber length of the organic fiber is from 1 mm to 20 mm. 請求項1記載のセルロース複合熱可塑性樹脂を含有してなる成形体。   A molded article comprising the cellulose composite thermoplastic resin according to claim 1.
JP2011254122A 2011-11-21 2011-11-21 Cellulose-combined thermoplastic resin and molding thereof Pending JP2013107987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011254122A JP2013107987A (en) 2011-11-21 2011-11-21 Cellulose-combined thermoplastic resin and molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011254122A JP2013107987A (en) 2011-11-21 2011-11-21 Cellulose-combined thermoplastic resin and molding thereof

Publications (1)

Publication Number Publication Date
JP2013107987A true JP2013107987A (en) 2013-06-06

Family

ID=48705096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011254122A Pending JP2013107987A (en) 2011-11-21 2011-11-21 Cellulose-combined thermoplastic resin and molding thereof

Country Status (1)

Country Link
JP (1) JP2013107987A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170746A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Thermoplastic resin composition, thermoplastic resin composition production method, cellulose-reinforced resin molded product, and cellulose-reinforced resin molded product manufacturing method
WO2019066070A1 (en) * 2017-09-29 2019-04-04 古河電気工業株式会社 Moulded article
JP2019521208A (en) * 2016-06-29 2019-07-25 ボレアリス エージー Fiber reinforced polypropylene composite material
JP2019524910A (en) * 2016-08-03 2019-09-05 ボレアリス エージー Fiber reinforced polypropylene composite material
CN110283447A (en) * 2018-03-19 2019-09-27 精工爱普生株式会社 Resin component and wearable band
WO2022024918A1 (en) * 2020-07-31 2022-02-03 日本製紙株式会社 Resin material for molding and method for producing same
CN114990922A (en) * 2022-05-30 2022-09-02 浙江金励环保纸业有限公司 High-strength bamboo fiber gray paperboard and production process thereof
US11578192B2 (en) 2017-09-29 2023-02-14 Furukawa Electric Co., Ltd. Molded article
US11597817B2 (en) 2016-03-31 2023-03-07 Furukawa Electric Co., Ltd Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part
CN108779310B (en) * 2016-03-31 2024-07-19 古河电气工业株式会社 Thermoplastic resin composition, method for producing thermoplastic resin composition, cellulose-reinforced resin molded article, and method for producing cellulose-reinforced resin molded article

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466140B2 (en) 2016-03-31 2022-10-11 Furukawa Electric Co., Ltd. Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
CN108779310A (en) * 2016-03-31 2018-11-09 古河电气工业株式会社 Thermoplastic resin composition, the manufacturing method of thermoplastic resin composition, cellulose reinforced resin molded product and cellulose reinforced resin molded product manufacturing method
JPWO2017170746A1 (en) * 2016-03-31 2019-02-14 古河電気工業株式会社 Thermoplastic resin composition, method for producing thermoplastic resin composition, cellulose reinforced resin molded article, and method for producing cellulose reinforced resin molded article
CN108779310B (en) * 2016-03-31 2024-07-19 古河电气工业株式会社 Thermoplastic resin composition, method for producing thermoplastic resin composition, cellulose-reinforced resin molded article, and method for producing cellulose-reinforced resin molded article
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11597817B2 (en) 2016-03-31 2023-03-07 Furukawa Electric Co., Ltd Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
WO2017170746A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Thermoplastic resin composition, thermoplastic resin composition production method, cellulose-reinforced resin molded product, and cellulose-reinforced resin molded product manufacturing method
JP6998859B2 (en) 2016-03-31 2022-01-18 古河電気工業株式会社 Thermoplastic resin composition, manufacturing method of thermoplastic resin composition, manufacturing method of cellulose reinforced resin molded product and cellulose reinforced resin molded product
JP2019521208A (en) * 2016-06-29 2019-07-25 ボレアリス エージー Fiber reinforced polypropylene composite material
JP2019524910A (en) * 2016-08-03 2019-09-05 ボレアリス エージー Fiber reinforced polypropylene composite material
US11597818B2 (en) 2017-09-29 2023-03-07 Furukawa Electric Co., Ltd. Molded article
JP7203742B2 (en) 2017-09-29 2023-01-13 古河電気工業株式会社 Molding
US11578192B2 (en) 2017-09-29 2023-02-14 Furukawa Electric Co., Ltd. Molded article
JPWO2019066070A1 (en) * 2017-09-29 2020-09-10 古河電気工業株式会社 Molding
CN111148798A (en) * 2017-09-29 2020-05-12 古河电气工业株式会社 Molded article
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
WO2019066070A1 (en) * 2017-09-29 2019-04-04 古河電気工業株式会社 Moulded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part
CN110283447A (en) * 2018-03-19 2019-09-27 精工爱普生株式会社 Resin component and wearable band
WO2022024918A1 (en) * 2020-07-31 2022-02-03 日本製紙株式会社 Resin material for molding and method for producing same
CN114990922A (en) * 2022-05-30 2022-09-02 浙江金励环保纸业有限公司 High-strength bamboo fiber gray paperboard and production process thereof

Similar Documents

Publication Publication Date Title
JP2013107987A (en) Cellulose-combined thermoplastic resin and molding thereof
JP7305718B2 (en) Cellulose composite material containing wood pulp and process for producing same
JP5030667B2 (en) Microfibrillated cellulose composite resin and method for producing the same
JP5717643B2 (en) Composition comprising microfibrillated plant fibers
JP4013870B2 (en) Method for producing aliphatic polyester composition
JP2005105245A (en) Kenaf fiber-reinforced resin composition
Zarrinbakhsh et al. Biodegradable green composites from distiller's dried grains with solubles (DDGS) and a polyhydroxy (butyrate‐co‐valerate)(PHBV)‐based bioplastic
Shavandi et al. Keratin based thermoplastic biocomposites: a review
JP6360954B1 (en) Fiber reinforced composite material
JP2005035134A (en) Manufacturing method of resin composition
Manoj et al. Biodegradable filament for 3D printing process: a review
JP2019172752A (en) Process for producing microfibrillated cellulose-containing polypropylene resin composite
US20120295313A1 (en) Process for producing granules
JP2008024795A (en) Microfibrillated cellulose-containing resin molded product with improved strength
JP7434871B2 (en) Molding composition and molded object
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
JP2021161337A (en) Composition for molding and molding
JP2013095810A (en) Cellulose-containing thermoplastic resin and molded product thereof
WO2022270167A1 (en) Antibacterial and antiviral composite resin molded body
JP2007262649A (en) Process for production of aliphatic polyester composition, pulp to be used therein, and process for microfibrillation thereof
WO2022163117A1 (en) Composite resin molded article and method for producing same
WO2023166768A1 (en) Composite resin molded body and method for producing same
Sandoval et al. Evaluation of a hyperbranched polyester polyol as plasticizing agent for composites of recycled polystyrene and rice husk
WO2023166767A1 (en) Composite resin molded article and method for producing same
KR102130822B1 (en) A sheet product having micro powder of cellulose