JP2008024795A - Microfibrillated cellulose-containing resin molded product with improved strength - Google Patents

Microfibrillated cellulose-containing resin molded product with improved strength Download PDF

Info

Publication number
JP2008024795A
JP2008024795A JP2006197512A JP2006197512A JP2008024795A JP 2008024795 A JP2008024795 A JP 2008024795A JP 2006197512 A JP2006197512 A JP 2006197512A JP 2006197512 A JP2006197512 A JP 2006197512A JP 2008024795 A JP2008024795 A JP 2008024795A
Authority
JP
Japan
Prior art keywords
resin
microfibrillated cellulose
solvent
molded body
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006197512A
Other languages
Japanese (ja)
Other versions
JP5119432B2 (en
Inventor
Hiroyuki Yano
浩之 矢野
Atsuhiro Iwatake
淳裕 岩竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2006197512A priority Critical patent/JP5119432B2/en
Publication of JP2008024795A publication Critical patent/JP2008024795A/en
Application granted granted Critical
Publication of JP5119432B2 publication Critical patent/JP5119432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molded product which contains a microfibrillated cellulose and has an improved elastic modulus and strengths. <P>SOLUTION: The resin molded product is obtained by molding a kneaded product containing the microfibrillated cellulose and a resin, provided that the microfibrillated cellulose accounts for 4-15 wt.% of the entire molded product. The relative strength of the resin molded product against a molded product which contains no microfibrillated cellulose but is molded through the same method is ≥1.10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ミクロフィブリル化セルロースを含有し、強度に優れた樹脂成形体及びその製造方法に関する。 The present invention relates to a resin molded article containing microfibrillated cellulose and having excellent strength and a method for producing the same.

すべての植物の細胞壁は、セルロースミクロフィブリルと呼ばれる幅約4nmの高強度ナノファイバーが基本骨格となっている。ミクロフィブリル化セルロースはパルプなどの植物繊維をセルロースミクロフィブリルのレベルにまで解繊して得られる、伸びきり鎖結晶からなるナノファイバーである。また、バクテリア(主として酢酸菌)由来のミクロフィブリル化セルロースも知られており、これを利用した食品としてナタデココがよく知られている。ミクロフィブリル化セルロースは、一般的には、セルロース系繊維をリファイナー、ホモジナイザー等により磨砕ないし叩解することにより製造できることが知られている(例えば、特許文献1参照)。ミクロフィブリル化セルロースは軽くて強度が高く、さらには生分解性も高いためパソコン、携帯電話等の家電製品の筐体、文房具等の事務機器、スポーツ用品、輸送機器、建築材料など幅広い分野への応用が期待されている。   The cell walls of all plants are based on high-strength nanofibers with a width of about 4 nm called cellulose microfibrils. Microfibrillated cellulose is a nanofiber consisting of extended chain crystals obtained by defibrating plant fibers such as pulp to the level of cellulose microfibrils. Further, microfibrillated cellulose derived from bacteria (mainly acetic acid bacteria) is also known, and Nata de Coco is well known as a food utilizing this. It is known that microfibrillated cellulose can be generally produced by grinding or beating a cellulosic fiber with a refiner, a homogenizer, or the like (see, for example, Patent Document 1). Microfibrillated cellulose is light, strong, and highly biodegradable, so it can be used in a wide range of fields, including housings for home appliances such as personal computers and mobile phones, office equipment such as stationery, sports equipment, transportation equipment, and building materials. Application is expected.

このようなミクロフィブリル化セルロースの機械的特性を、既に幅広く利用されている樹脂の分野に活用することが試みられている。例えば、樹脂の物性、機能等の向上、新たな物性、機能等の付与を目的として、樹脂にミクロフィブリル化セルロースを混合、複合等することが試みられている。特に、環境負荷の観点から生分解性樹脂が注目されており、この生分解性樹脂とミクロフィブリル化セルロースを混合、複合することが試みられている。しかしながら、ミクロフィブリル化セルロースはその繊維径が多くの場合200nm以下と非常に小さいため通常のセルロース繊維と比較してはるかに凝集等がおこりやすい。このため、ミクロフィブリル化セルロースを樹脂中に分散させることが非常に困難であり、均一な複合樹脂を得ることが難しかった。これを解決するため、ポリ乳酸を含有する脂肪族ポリエステルと、一次壁及び二次壁外層を傷づけられた前処理パルプ及び/又はセルロース系繊維とを溶融混練中に繊維成分を解繊してミクロフィブリル化することによって、樹脂中にミクロフィブリル化セルロースを均一に分散させようとする技術(例えば、特許文献2参照)、ミクロフィブリル化セルロースとポリ乳酸繊維を混合し、抄紙によりシート状物を作成する技術(例えば、特許文献3参照)が知られている。しかしながら、これらの技術で得られる樹脂の成形体はもともとの樹脂の成形体よりも、弾性率は高くなることはあるが強度は低く、総じて脆いものであった。
特公昭50−38720号公報 特開2005−42283号公報 特開2003−211695号公報
Attempts have been made to utilize such mechanical properties of microfibrillated cellulose in the field of resins that are already widely used. For example, for the purpose of improving the physical properties and functions of the resin and imparting new physical properties and functions, it has been attempted to mix and composite the microfibrillated cellulose with the resin. In particular, biodegradable resins have attracted attention from the viewpoint of environmental impact, and attempts have been made to mix and combine these biodegradable resins and microfibrillated cellulose. However, since the microfibrillated cellulose has a very small fiber diameter of 200 nm or less in many cases, aggregation and the like are much more likely to occur than ordinary cellulose fibers. For this reason, it is very difficult to disperse the microfibrillated cellulose in the resin, and it is difficult to obtain a uniform composite resin. In order to solve this, the fiber component is disentangled during melt-kneading the aliphatic polyester containing polylactic acid and the pretreated pulp and / or cellulosic fibers whose primary wall and secondary wall outer layer are damaged. A technique for uniformly dispersing microfibrillated cellulose in a resin by microfibrillation (see, for example, Patent Document 2), mixing microfibrillated cellulose and polylactic acid fiber, and making a sheet by papermaking A technique to create (see, for example, Patent Document 3) is known. However, the resin molded body obtained by these techniques has a higher elastic modulus than the original resin molded body, but has a low strength and is generally brittle.
Japanese Patent Publication No. 50-38720 JP 2005-42283 A JP 2003-211695 A

したがって、本発明は、弾性率だけでなく、樹脂成形体本来の強度も大きく向上したミクロフィブリル化セルロース含有樹脂成形体の提供を目的とする。   Accordingly, an object of the present invention is to provide a microfibrillated cellulose-containing resin molded product that greatly improves not only the elastic modulus but also the original strength of the resin molded product.

本発明者は、ミクロフィブリル化セルロースと樹脂の混合においてさまざまな方法を検討したところ、ミクロフィブリル化セルロースの分散液と、樹脂の溶解液を採用することによって、ミクロフィブリル化セルロースと樹脂が均一に混合された液が得られ、この液から溶媒を除去して得られる混合物を混練することによって、塑性加工に供しうるミクロフィブリル化セルロース含有樹脂を製造できることを見出した。
さらに、本発明者は、当該製造方法により製造されたミクロフィブリル化セルロース含有生樹脂を成形することによって、優れた強度と弾性率を備えた成形体となることをも見出した。
The present inventor examined various methods for mixing microfibrillated cellulose and resin. By adopting a microfibrillated cellulose dispersion and a resin solution, the microfibrillated cellulose and the resin were uniformly distributed. It has been found that a mixed liquid is obtained, and a microfibrillated cellulose-containing resin that can be subjected to plastic working can be produced by kneading the mixture obtained by removing the solvent from the liquid.
Furthermore, this inventor also discovered that it became a molded object provided with the outstanding intensity | strength and elasticity modulus by shape | molding the microfibrillated cellulose containing raw resin manufactured by the said manufacturing method.

すなわち、本発明は下記の樹脂成形体及び製造方法にかかるものである。
項1.ミクロフィブリル化セルロース及び樹脂を含有する混練物を成形してなる樹脂成形体であって、
ミクロフィブリル化セルロースの含有量が成形体全体の4〜15重量%であり、
前記成形体の強度がミクロフィブリル化セルロースを含まないことを除いて同じ方法で成形された成形体の強度と比較した相対強度が1.10以上であることを特徴とする樹脂成形体。
項2.ミクロフィブリル化セルロースの含有量が成形体全体の5〜15重量%である項1に記載の樹脂成形体。
項3.相対強度が1.15以上である項1又は2に記載の樹脂成形体。
項4.樹脂が生分解性樹脂及び脂肪族ポリエステルからなる群から選択される少なくとも1種である項1〜3のいずれかに記載の樹脂成形体。
項5.ミクロフィブリル化セルロース分散性及び樹脂溶解性を備えた溶媒に、ミクロフィブリル化セルロースの分散及び樹脂の溶解を行い、混合した後、溶媒を除去する工程を有することを特徴とするミクロフィブリル化セルロース含有樹脂成形体の製造方法。
項6.溶媒がアセトンである項5に記載のミクロフィブリル化セルロース含有樹脂の製造方法。
項7.樹脂を溶解した溶媒とミクロフィブリル化セルロースを分散した溶媒を混合した後、溶媒を除去する工程を有することを特徴とするミクロフィブリル化セルロース含有樹脂成形体の製造方法。
項8.樹脂を溶解した溶媒の溶媒がジクロロメタンであり、ミクロフィブリル化セルロースを分散した溶媒がアセトンである項7に記載の製造方法。
項9.ミクロフィブリル化セルロース含有樹脂成形体におけるミクロフィブリル化セルロースの含有量が4〜15重量%である項5〜8のいずれかに記載の製造方法。
項10.樹脂が生分解性樹脂及び脂肪族ポリエステルからなる群から選択される少なくとも1種である項5〜9のいずれかに記載の製造方法。
項11.項5〜10のいずれかの方法によって製造されたミクロフィブリル化セルロース含有樹脂成形体。
That is, the present invention relates to the following resin molded body and manufacturing method.
Item 1. A resin molded body obtained by molding a kneaded product containing microfibrillated cellulose and a resin,
The content of microfibrillated cellulose is 4 to 15% by weight of the whole molded body,
A resin molded body having a relative strength of 1.10 or more compared to the strength of a molded body molded by the same method except that the strength of the molded body does not include microfibrillated cellulose.
Item 2. Item 2. The resin molded product according to Item 1, wherein the content of microfibrillated cellulose is 5 to 15% by weight of the entire molded product.
Item 3. Item 3. The resin molded article according to Item 1 or 2, wherein the relative strength is 1.15 or more.
Item 4. Item 4. The resin molded article according to any one of Items 1 to 3, wherein the resin is at least one selected from the group consisting of biodegradable resins and aliphatic polyesters.
Item 5. Containing microfibrillated cellulose, comprising the steps of dispersing microfibrillated cellulose and dissolving resin in a solvent having microfibrillated cellulose dispersibility and resin solubility, mixing, and then removing the solvent. Manufacturing method of resin molding.
Item 6. Item 6. The method for producing a microfibrillated cellulose-containing resin according to Item 5, wherein the solvent is acetone.
Item 7. A method for producing a microfibrillated cellulose-containing resin molded article, comprising: mixing a solvent in which a resin is dissolved and a solvent in which microfibrillated cellulose is dispersed, and then removing the solvent.
Item 8. Item 8. The production method according to Item 7, wherein the solvent in which the resin is dissolved is dichloromethane, and the solvent in which the microfibrillated cellulose is dispersed is acetone.
Item 9. Item 9. The production method according to any one of Items 5 to 8, wherein the content of microfibrillated cellulose in the microfibrillated cellulose-containing resin molded product is 4 to 15% by weight.
Item 10. Item 10. The production method according to any one of Items 5 to 9, wherein the resin is at least one selected from the group consisting of biodegradable resins and aliphatic polyesters.
Item 11. Item 11. A microfibrillated cellulose-containing resin molded article produced by the method according to any one of Items 5 to 10.

ミクロフィブリル化セルロースの製造方法は公知であり、一般的には、セルロースをリファイナー、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー等により磨砕ないし叩解することによって解繊又は微細化して製造されるが、特開2005−42283号公報に記載の方法等の公知の方法で製造することもできる。また、市販品を利用することも可能である。セルロースは、植物(例えば木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ、再生パルプ、古紙)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))等を起源とするものが知られているが、本発明ではそのいずれも使用できる。好ましくは植物、微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。   Methods for producing microfibrillated cellulose are known, and are generally produced by defibrating or refining cellulose by grinding or beating it with a refiner, high-pressure homogenizer, medium stirring mill, stone mortar, grinder or the like. It can also be produced by a known method such as the method described in JP-A-2005-42283. Commercial products can also be used. Cellulose is a plant (for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), etc. Are known, but any of them can be used in the present invention. Preferred are plant and microorganism-derived cellulose fibers, and more preferred are plant-derived cellulose fibers.

ミクロフィブリル化セルロースの繊維径は平均値が4nm〜400nmであることが好ましく、4nm〜200nmであることがより好ましく、4nm〜100nmであることがより一層好ましい。また、その繊維長は平均値が50nm〜50μmであることが好ましく、100nm〜10μmであることがより好ましい。   The average fiber diameter of the microfibrillated cellulose is preferably 4 nm to 400 nm, more preferably 4 nm to 200 nm, and even more preferably 4 nm to 100 nm. The average fiber length is preferably 50 nm to 50 μm, and more preferably 100 nm to 10 μm.

本発明において、樹脂は特に限定されるものではなく、1種単独で又は2種以上組み合わせて使用することができる。例えばポリ乳酸、塩化ビニル樹脂、酢酸ビニル樹脂、ポリスチレン、ABS樹脂、アクリル樹脂、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、フッ素樹脂、ポリアミド樹脂、アセタール樹脂、ポリカーボネート、繊維素プラスチック、ポリグリコール酸、ポリ−3−ヒドロキシブチレート、ポリ−4−ヒドロキシブチレート、ポリヒドロキシバリレートポリエチレンアジペート、ポリカプロラクトン、ポリプロピオラクトン等のポリエステル、ポリエチレングリコール等のポリエーテル、ポリグルタミン酸、ポリリジン等のポリアミド、ポリビニルアルコール、ポリウレタン等の熱可塑性樹脂;フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリイミド樹脂等の熱可塑性樹脂などを使用でき、一種単独又は二種以上組み合わせて使用できるがこれらに限定されない。好ましくは、生分解性樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、脂肪族ポリエステルである。   In the present invention, the resin is not particularly limited, and can be used alone or in combination of two or more. For example, polylactic acid, vinyl chloride resin, vinyl acetate resin, polystyrene, ABS resin, acrylic resin, polyethylene, polyethylene terephthalate, polypropylene, fluororesin, polyamide resin, acetal resin, polycarbonate, fibrous plastic, polyglycolic acid, poly-3- Hydroxybutyrate, poly-4-hydroxybutyrate, polyhydroxyvalerate polyethylene adipate, polyester such as polycaprolactone, polypropiolactone, polyether such as polyethylene glycol, polyglutamic acid, polyamide such as polylysine, polyvinyl alcohol, polyurethane, etc. Thermoplastic resin: phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin, polyureta Resin, silicone resin, etc. can be used thermoplastic resins such as polyimide resin, but are not limited to be used in combination singly or two or more. Preferred are biodegradable resins, phenol resins, epoxy resins, acrylic resins, and aliphatic polyesters.

生分解性樹脂の例としては、L−乳酸、D−乳酸、DL−乳酸、グリコール酸、リンゴ酸、ε−カプロラクトン、N−メチルピロリドン、炭酸トリメチレン、パラジオキサノン、1,5−ジオキセパン−2−オン、水酸化酪酸、水酸化吉草酸などのホモポリマー、コポリマー又はこれらポリマーの混合物が挙げられ、一種単独又は二種以上組み合わせて使用できる。好ましい生分解性樹脂は、ポリ乳酸、ポリカプロラクトンであり、より好ましいのはポリ乳酸である。   Examples of biodegradable resins include L-lactic acid, D-lactic acid, DL-lactic acid, glycolic acid, malic acid, ε-caprolactone, N-methylpyrrolidone, trimethylene carbonate, paradioxanone, 1,5-dioxepane-2 -Homopolymers such as ON, hydroxybutyric acid and valeric acid hydroxide, copolymers or mixtures of these polymers can be mentioned, and these can be used singly or in combination of two or more. Preferred biodegradable resins are polylactic acid and polycaprolactone, and more preferred is polylactic acid.

ポリ乳酸は、特に限定されないが、好ましい数平均分子量は3万以上、好ましくは10万以上である。ポリ乳酸の数平均分子量の上限は特に制限はないが、通常100万以下、好ましくは50万以下である。得られるポリ乳酸の物性から、ポリ乳酸を構成するL体とD体のモル比はL/Dは100/0〜0/100の全ての組成で使用できるが、弾性率の高いものを得る上で、L体が95モル%以上であることが好ましい。ポリ乳酸の製造法は公知であり、特に限定されるものではなく、ラクチドを経由する開環重合法、乳酸の直接重縮合法等が挙げられる。   Polylactic acid is not particularly limited, but a preferred number average molecular weight is 30,000 or more, preferably 100,000 or more. The upper limit of the number average molecular weight of polylactic acid is not particularly limited, but is usually 1,000,000 or less, preferably 500,000 or less. From the physical properties of the polylactic acid obtained, the molar ratio of L-form to D-form can be used in all compositions where L / D is 100/0 to 0/100. And it is preferable that L body is 95 mol% or more. The production method of polylactic acid is known and is not particularly limited, and examples thereof include a ring-opening polymerization method via lactide, a direct polycondensation method of lactic acid, and the like.

脂肪族ポリエステルとして好ましいのは、ポリエステル生成条件下に、(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその機能的誘導体と、必要に応じて(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体とを反応させて得られるものであり、より好ましくは、この反応をゲルマニウム触媒の存在下に行って得られるものである。
<(a)脂肪族ジオール>
(a)脂肪族ジオール(脂環族ジオールを含む)は、水酸基を2個持つ化合物であるが、その好ましい具体例は下記一般式(I)で表されるものである。
Preferred as the aliphatic polyester is (a) an aliphatic diol, (b) an aliphatic dicarboxylic acid and / or a functional derivative thereof, and (c) a bifunctional aliphatic hydroxy, if necessary, under the polyester production conditions. It is obtained by reacting a carboxylic acid and / or a derivative thereof, and more preferably obtained by carrying out this reaction in the presence of a germanium catalyst.
<(A) Aliphatic diol>
(A) Aliphatic diols (including alicyclic diols) are compounds having two hydroxyl groups, and preferred specific examples thereof are those represented by the following general formula (I).

HO−R−OH …(I)
一般式(I)中、Rは、2価の脂肪族炭化水素基であり、好ましくは炭素数2〜11、特に好ましくは炭素数2〜6の脂肪族炭化水素基である。Rは、分岐鎖を有するものであっても良く、シクロアルキレン基であっても良い。Rは、好ましくは−(CH)n−(ただし、nは2〜11の整数、好ましくは2〜6の整数を示す。)である。
HO—R 1 —OH (I)
In the general formula (I), R 1 is a divalent aliphatic hydrocarbon group, preferably an aliphatic hydrocarbon group having 2 to 11 carbon atoms, particularly preferably 2 to 6 carbon atoms. R 1 may have a branched chain or a cycloalkylene group. R 1 is preferably — (CH 2 ) n — (where n is an integer of 2 to 11, preferably an integer of 2 to 6).

(a)脂肪族ジオールは特に限定されないが、その具体例としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,6−シクロヘキサンジメタノール等が挙げられる。これらは1種を単独で用いても、2種以上の混合物として用いても良い。   (A) The aliphatic diol is not particularly limited, and specific examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1 , 4-cyclohexanediol, 1,6-cyclohexanedimethanol and the like. These may be used alone or as a mixture of two or more.

得られる脂肪族ポリエステルの物性の点からは、(a)脂肪族ジオールは、1,4−ブタンジオールであることが特に好ましい。   In view of the physical properties of the resulting aliphatic polyester, (a) the aliphatic diol is particularly preferably 1,4-butanediol.

<(b)脂肪族ジカルボン酸及び/又はその誘導体>
(b)脂肪族ジカルボン酸(脂環族ジカルボン酸を含む)及び/又はその誘導体は、下記一般式(II)で表されるもの、或いはそれらの炭素数1〜4の低級アルキルエステル又はそれらの無水物などである。
<(B) Aliphatic dicarboxylic acid and / or derivative thereof>
(B) Aliphatic dicarboxylic acids (including alicyclic dicarboxylic acids) and / or derivatives thereof are represented by the following general formula (II), or their lower alkyl esters having 1 to 4 carbon atoms or their Such as anhydrides.

HOOC−R−COOH …(II)
一般式(II)中、Rは直接結合、又は2価の脂肪族炭化水素基、好ましくは炭素数2〜11、特に好ましくは炭素数2〜6の2価の脂肪族炭化水素基である。Rは、分岐鎖を有するものであっても良く、シクロアルキレン基であっても良い。Rは好ましくは−(CH)m−(ただし、mは0又は1〜11の整数、好ましくは0又は1〜6の整数を示す。)である。
HOOC-R 2 -COOH ... (II )
In general formula (II), R 2 is a direct bond or a divalent aliphatic hydrocarbon group, preferably a divalent aliphatic hydrocarbon group having 2 to 11 carbon atoms, particularly preferably 2 to 6 carbon atoms. . R 2 may have a branched chain or a cycloalkylene group. R 2 is preferably — (CH 2 ) m — (where m represents an integer of 0 or 1 to 11, preferably 0 or an integer of 1 to 6).

脂肪族ジカルボン酸の好ましい具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、スベリン酸、ドデカン二酸等が挙げられ、その機能的誘導体としてはこれらの酸無水物が挙げられる。これらは1種を単独で用いても、2種以上の混合物として用いても良い。即ち、各群内及び/又は各群間で併用しても良い。   Preferable specific examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, suberic acid, dodecanedioic acid and the like, and functional derivatives thereof include these acid anhydrides. It is done. These may be used alone or as a mixture of two or more. That is, you may use together within each group and / or between each group.

得られる脂肪族ポリエステルの物性の点からは、(b)脂肪族ジカルボン酸及び/又はその誘導体は、コハク酸又は無水コハク酸、或はこれらとアジピン酸との混合物であることが好ましい。   From the viewpoint of the physical properties of the resulting aliphatic polyester, (b) the aliphatic dicarboxylic acid and / or its derivative is preferably succinic acid or succinic anhydride, or a mixture thereof with adipic acid.

<(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体>
(c)2官能脂肪族ヒドロキシカルボン酸(脂環族ヒドロキシカルボン酸を含む)及び/又はその誘導体の2官能脂肪族ヒドロキシカルボン酸としては、分子中に1個の水酸基と1個のカルボン酸基を有するものであれば特に限定されるものではないが、下記一般式(III)の脂肪族ヒドロキシカルボン酸単位に相当する脂肪族ヒドロキシカルボン酸が好適であり、誘導体としてはそれらの炭素数1〜4の低級アルキルエステル又はそれらの分子内エステルが好適である。
<(C) Bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof>
(C) The bifunctional aliphatic hydroxycarboxylic acid (including alicyclic hydroxycarboxylic acid) and / or the bifunctional aliphatic hydroxycarboxylic acid derivative thereof includes one hydroxyl group and one carboxylic acid group in the molecule. Is not particularly limited, but aliphatic hydroxycarboxylic acids corresponding to the aliphatic hydroxycarboxylic acid units of the following general formula (III) are suitable. 4 lower alkyl esters or their intramolecular esters are preferred.

HO−R−COOH …(III)
一般式(III)中、Rは2価の脂肪族炭化水素基、好ましくは炭素数1〜11、特に好ましくは炭素数1〜6の2価の脂肪族炭化水素基である。Rはシクロアルキレン基であっても良いが、好ましいのは鎖状炭化水素基である。なお、この「鎖状」とは、「直鎖状」であるもののみならず、「分岐鎖状」のものも包含する。
HO-R 3 -COOH ... (III )
In general formula (III), R 3 is a divalent aliphatic hydrocarbon group, preferably a C 1-11 carbon atom, particularly preferably a C 1-6 divalent aliphatic hydrocarbon group. R 3 may be a cycloalkylene group, but is preferably a chain hydrocarbon group. The “chain” includes not only “linear” but also “branched”.

(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体としては、より好ましくは、1つの炭素原子に水酸基とカルボキシル基とが結合したものであり、下記一般式(IV)で表されるものが好ましい。下記一般式(IV)で表される2官能脂肪族ヒドロキシカルボン酸、或いはその誘導体を用いた場合には、重合速度が増大するため、特に好ましい。   (C) The bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof is more preferably one in which a hydroxyl group and a carboxyl group are bonded to one carbon atom and represented by the following general formula (IV) Is preferred. The use of a bifunctional aliphatic hydroxycarboxylic acid represented by the following general formula (IV) or a derivative thereof is particularly preferable because the polymerization rate increases.

Figure 2008024795
Figure 2008024795

(一般式(IV)中、aは0又は1以上の整数、好ましくは0又は1〜10、より好ましくは0又は1〜5の整数である。)
この2官能脂肪族ヒドロキシカルボン酸の具体例としては、乳酸、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸、又はカプロラクトン等のラクトン類を開環させたものが挙げられる。これらは1種を単独で用いても、2種以上の混合物として用いても良い。なお、これらに光学異性体が存在する場合には、D体、L体、又はラセミ体のいずれでも良く、形状としては固体、液体、或いは水溶液であっても良い。特に、使用時の重合速度の増大が特に顕著で、なおかつ入手容易な乳酸及びこれらの水溶液が好ましい。乳酸は、50%、70%、90%の水溶液が一般的に市販されており、入手が容易である。しかも、乳酸を用いることにより脂肪族ポリエステルとポリ乳酸との相溶性が高められるため、樹脂として脂肪族ポリエステルとポリ乳酸を併用する場合には乳酸の使用が好ましい。
(In general formula (IV), a is 0 or an integer of 1 or more, preferably 0 or 1 to 10, more preferably 0 or an integer of 1 to 5.)
Specific examples of the bifunctional aliphatic hydroxycarboxylic acid include lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2- Examples include those obtained by ring-opening lactones such as hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, or caprolactone. These may be used alone or as a mixture of two or more. In addition, when an optical isomer exists in these, any of D-form, L-form, or a racemic form may be sufficient, and a solid, liquid, or aqueous solution may be sufficient as a shape. In particular, lactic acid and an aqueous solution thereof are particularly preferable since the increase in the polymerization rate during use is particularly remarkable and is easily available. Lactic acid is generally commercially available in 50%, 70%, and 90% aqueous solutions, and is easily available. Moreover, since the compatibility between the aliphatic polyester and polylactic acid is enhanced by using lactic acid, the use of lactic acid is preferred when the aliphatic polyester and polylactic acid are used in combination as a resin.

本発明に用いられる脂肪族ポリエステルの数平均分子量Mnは、一般に、1万以上30万以下、通常は3万以上30万以下である。   The number average molecular weight Mn of the aliphatic polyester used in the present invention is generally 10,000 to 300,000, and usually 30,000 to 300,000.

本発明の樹脂成形体は、ミクロフィブリル化セルロース及び樹脂を含有する混練物を成形してなる樹脂成形体であって、ミクロフィブリル化セルロースの含有量が成形体全体の4〜15重量%であり、前記成形体の強度がミクロフィブリル化セルロースを含まないことを除いて同じ方法で成形された成形体の強度と比較した相対強度が1.10以上であることを特徴とする。なお、強度とは、引張強度及び曲げ強度をいう。また、相対強度とは、ミクロフィブリル化セルロースを含む成形体の強度であって、ミクロフィブリル化セルロースを含まないこと除けば本発明の成形体と同じ方法で成形された成形体の強度を1としたときの強度である。したがって、相対強度の1.10とは、ミクロフィブリル化セルロースを含む成形体の強度が、ミクロフィブリル化セルロースを含まないことを除けば同じ方法で成形された成形体の強度の1.10倍であることをいう。本発明ではこの相対強度が1.10以上、好ましくは1.15以上、より好ましくは1.20以上、より一層好ましくは1.30以上である。相対強度が高いほうが好ましいため特に上限は必要ないが、通常1.60以下、好ましくは1.50以下、より好ましくは1.40以下である。   The resin molded body of the present invention is a resin molded body formed by molding a kneaded product containing microfibrillated cellulose and a resin, and the content of the microfibrillated cellulose is 4 to 15% by weight of the entire molded body. The relative strength compared with the strength of the molded body molded by the same method except that the strength of the molded body does not contain microfibrillated cellulose is 1.10 or more. The strength refers to tensile strength and bending strength. The relative strength is the strength of a molded body containing microfibrillated cellulose, and the strength of the molded body molded by the same method as the molded body of the present invention is 1 except that it does not contain microfibrillated cellulose. It is the strength when doing. Therefore, the relative strength of 1.10 is 1.10 times the strength of the molded body formed by the same method except that the strength of the molded body containing microfibrillated cellulose does not include microfibrillated cellulose. Say something. In the present invention, this relative strength is 1.10 or more, preferably 1.15 or more, more preferably 1.20 or more, and still more preferably 1.30 or more. Since a higher relative strength is preferable, an upper limit is not particularly required, but it is usually 1.60 or less, preferably 1.50 or less, more preferably 1.40 or less.

なお、強度の測定は後述の試験例1と同様の手法で行うことができる。   The strength can be measured by the same method as in Test Example 1 described later.

また、本発明の樹脂成形体において、ミクロフィブリル化セルロースの含有量は重要であり、後述の試験例ではこの含有量が成形体全体の10重量%付近で強度が最大であった。この含有量が4重量%未満又は15重量%より大きいと、相対強度がほぼ1かそれ以下となり、ミクロフィブリル化セルロースを配合したにもかかわらず強度の向上がほとんどみられないか低下する。成形体全体におけるミクロフィブリル化セルロースの好ましい含有量は5〜15重量%であり、より好ましくは5〜13重量%、より一層好ましくは6〜12重量%、さらにより一層好ましくは6〜11重量%である。   Further, in the resin molded body of the present invention, the content of microfibrillated cellulose is important, and in the test examples described later, the strength was maximum when this content was around 10% by weight of the entire molded body. When this content is less than 4% by weight or greater than 15% by weight, the relative strength becomes approximately 1 or less, and the improvement in strength is hardly observed or decreased despite the incorporation of microfibrillated cellulose. The preferred content of microfibrillated cellulose in the entire molded body is 5 to 15% by weight, more preferably 5 to 13% by weight, still more preferably 6 to 12% by weight, and even more preferably 6 to 11% by weight. It is.

本発明の樹脂成形体は、本発明のミクロフィブリル化セルロース含有樹脂成形体の製造方法によって製造できる。本発明のミクロフィブリル化セルロース含有樹脂成形体の製造方法は、ミクロフィブリル化セルロースと樹脂を混合するにあたって、ミクロフィブリル化セルロースを分散状態とし、樹脂を溶解状態とすることを特徴とする。例えば、ミクロフィブリル化セルロース分散液と樹脂溶解液とを別々に調製し、両液を混合する工程とすることもできるし、ミクロフィブリル化セルロースを分散する性質と樹脂を溶解する性質の両方の性質を備えた溶媒に、ミクロフィブリル化セルロース及び樹脂を入れて混合する工程とすることもできる。なお、前者の混合する工程を含んだ製造方法を「2液型製造方法」、後者の混合する工程を含んだ製造方法を「1液型製造方法」と称することがある。なお、両方の性質を備えた溶媒を使用してミクロフィブリル化セルロース分散液と樹脂溶解液を別々に調製し、両液を混合する工程を有する製造方法は、2液型製造方法とする。   The resin molded body of the present invention can be produced by the method for producing a microfibrillated cellulose-containing resin molded body of the present invention. The method for producing a microfibrillated cellulose-containing resin molded article of the present invention is characterized in that when the microfibrillated cellulose and the resin are mixed, the microfibrillated cellulose is in a dispersed state and the resin is in a dissolved state. For example, it is possible to prepare a microfibrillated cellulose dispersion and a resin solution separately, and to mix both solutions, or to disperse the microfibrillated cellulose and dissolve the resin. It can also be set as the process of putting and mixing microfibrillated cellulose and resin in the solvent provided with. The former manufacturing method including the mixing step may be referred to as “two-component manufacturing method”, and the latter manufacturing method including the mixing step may be referred to as “one-component manufacturing method”. In addition, let the manufacturing method which has the process of preparing a microfibril cellulose dispersion liquid and a resin solution separately using the solvent provided with both properties, and mixing both liquids to be a 2 liquid type manufacturing method.

また、ミクロフィブリル化セルロースを分散する性質を「ミクロフィブリル化セルロース分散性」、樹脂を溶解する性質を「樹脂溶解性」、両方の性質をあわせて「分散溶解性」と称することがある。   Further, the property of dispersing microfibrillated cellulose may be referred to as “microfibrillated cellulose dispersibility”, the property of dissolving a resin as “resin solubility”, and both properties may be referred to as “dispersion solubility”.

1液型製造方法は、ミクロフィブリル化セルロース分散性及び樹脂溶解性を備えた溶媒に、ミクロフィブリル化セルロースの分散及び樹脂の溶解を行い、混合した後、溶媒を除去する工程を有することを特徴とする。例えば、アセトンにミクロフィブリル化セルロースを分散させて撹拌し、ついで非晶性ポリ乳酸を溶解させて撹拌混合した後、溶媒を除去して、ミクロフィブリル化セルロースが分散した樹脂を製造する。1液型製造方法において、ミクロフィブリル化セルロースの分散と樹脂の溶解の順番は特に限定されず、上例と異なり、アセトンに樹脂を溶解して撹拌し、ついでミクロフィブリル化セルロースを分散し、撹拌混合してもよいし、樹脂とミクロフィブリル化セルロースをアセトンに同時に入れて撹拌混合してもよい。好ましい順番は、ミクロフィブリル化セルロースを分散した後、樹脂を溶解する順番である。   The one-component production method includes a step of dispersing the microfibrillated cellulose and dissolving the resin in a solvent having microfibrillated cellulose dispersibility and resin solubility, mixing the mixture, and then removing the solvent. And For example, microfibrillated cellulose is dispersed and stirred in acetone, then amorphous polylactic acid is dissolved and stirred and mixed, and then the solvent is removed to produce a resin in which microfibrillated cellulose is dispersed. In the one-component production method, the order of dispersion of the microfibrillated cellulose and dissolution of the resin is not particularly limited. Unlike the above example, the resin is dissolved in acetone and stirred, and then the microfibrillated cellulose is dispersed and stirred. The resin and the microfibrillated cellulose may be simultaneously mixed in acetone and mixed with stirring. The preferred order is the order in which the resin is dissolved after the microfibrillated cellulose is dispersed.

2液型製造方法は、樹脂を溶解した溶媒とミクロフィブリル化セルロースを分散した溶媒を混合した後、溶媒を除去する工程を有することを特徴とする。例えば、ミクロフィブリル化セルロースをアセトンに分散させた液と、結晶性ポリ乳酸をジクロロメタンに溶解した液とを用意し、次いで両液を混合して撹拌した後、溶媒を除去して、ミクロフィブリル化セルロースが分散した樹脂を製造する。したがって、ミクロフィブリル化セルロースと樹脂の混合を考慮すると、ミクロフィブリル化セルロース分散性溶媒と樹脂溶解性溶媒は互いに相溶性の良いものであることが好ましい。   The two-component production method is characterized by having a step of removing the solvent after mixing the solvent in which the resin is dissolved and the solvent in which the microfibrillated cellulose is dispersed. For example, prepare a solution in which microfibrillated cellulose is dispersed in acetone and a solution in which crystalline polylactic acid is dissolved in dichloromethane, then mix and stir the two solutions, then remove the solvent and microfibrillate. A resin in which cellulose is dispersed is produced. Therefore, considering the mixing of the microfibrillated cellulose and the resin, it is preferable that the microfibrillated cellulose dispersible solvent and the resin-soluble solvent are compatible with each other.

以下、1液型製造方法と2液型製造方法に共通の事項について説明する。ミクロフィブリル化セルロース含有樹脂成形体の製造方法において、ミクロフィブリル化セルロースの使用量は、ミクロフィブリル化セルロース含有樹脂成形体におけるミクロフィブリル化セルロース含有量が4〜15重量%、好ましくは5〜15重量%、より好ましくは5〜13重量%、より一層好ましくは6〜12重量%、さらにより一層好ましくは6〜11重量%となるように調整する。樹脂の使用量は成形体からミクロフィブリル化セルロースを除いた残量とするか、他の添加剤を使用する場合は成形体からミクロフィブリル化セルロースと添加剤とを除いた残量とすればよい。また、樹脂使用重量に対するミクロフィブリル化セルロースの使用重量は5〜15重量%が好ましく、5〜13重量%がより好ましく、6〜12重量%がより一層好ましい。上記の範囲にあると、得られる成形物が強度に優れたものとなる。   Hereinafter, items common to the one-component manufacturing method and the two-component manufacturing method will be described. In the method for producing a microfibrillated cellulose-containing resin molded product, the amount of microfibrillated cellulose used is 4 to 15% by weight, preferably 5 to 15% by weight of the microfibrillated cellulose in the microfibrillated cellulose-containing resin molded product. %, More preferably 5 to 13% by weight, even more preferably 6 to 12% by weight, and even more preferably 6 to 11% by weight. The amount of resin used may be the remaining amount obtained by removing the microfibrillated cellulose from the molded body, or when other additives are used, it may be the remaining amount obtained by removing the microfibrillated cellulose and the additive from the molded body. . Further, the use weight of the microfibrillated cellulose relative to the use weight of the resin is preferably 5 to 15% by weight, more preferably 5 to 13% by weight, and still more preferably 6 to 12% by weight. When it exists in said range, the molded article obtained will become the thing excellent in intensity | strength.

分解溶解性を備えた溶媒は、使用する樹脂によって異なるが、例えばアセトン、ジクロロメタン、シクロヘキサン、クロロホルム、酢酸エチル等であり、好ましくはアセトン、ジクロロメタン、シクロヘキサンであり、より好ましくはアセトン、ジクロロメタンである。なお、分解溶解性を備えた溶媒は、当然のことながら、ミクロフィブリル化セルロース分散性を備えた溶媒及び樹脂溶解性を備えた溶媒としても利用できる。   The solvent having decomposition solubility varies depending on the resin to be used, and is, for example, acetone, dichloromethane, cyclohexane, chloroform, ethyl acetate, etc., preferably acetone, dichloromethane, cyclohexane, more preferably acetone, dichloromethane. The solvent having decomposition solubility can be used as a solvent having microfibrillated cellulose dispersibility and a solvent having resin solubility.

ミクロフィブリル化セルロース分散性を備えた溶媒は、上記の分散溶解性溶媒に加え、例えば、メタノール、エタノール、ブタノール等である。好ましくは、上記の分散溶解性溶媒に加え、メタノール、エタノールであり、より好ましくはメタノールである。   The solvent having microfibrillated cellulose dispersibility is, for example, methanol, ethanol, butanol or the like in addition to the above-mentioned dispersion-soluble solvent. Preferably, in addition to the dispersion-soluble solvent, methanol and ethanol are used, and methanol is more preferable.

樹脂溶解性を備えた溶媒は使用する樹脂に応じて適宜選択すればよく、上記の分散溶解性溶媒に加え、樹脂溶解性として知られる溶媒を使用することができる。   A solvent having resin solubility may be appropriately selected according to the resin to be used, and a solvent known as resin solubility can be used in addition to the above-mentioned dispersion-soluble solvent.

特に、樹脂として非晶性ポリ乳酸を使用する場合、分散溶解性溶媒としてはアセトン、ジクロロメタンが好ましく、ミクロフィブリル化セルロース分散性溶媒としてはアセトンが好ましく、樹脂溶解性溶媒としてはジクロロメタン等の非晶性ポリ乳酸溶解性を備えた溶媒が好ましい。また、樹脂として結晶性ポリ乳酸を使用する場合、ミクロフィブリル化セルロース分散性溶媒としてはアセトンが好ましく、樹脂溶解性溶媒としてはジクロロメタンの結晶性ポリ乳酸溶解性を備えた溶媒が好ましい。   In particular, when amorphous polylactic acid is used as the resin, acetone and dichloromethane are preferred as the dispersion-soluble solvent, acetone is preferred as the microfibrillated cellulose dispersion solvent, and amorphous such as dichloromethane as the resin-soluble solvent. Solvents having soluble polylactic acid solubility are preferred. When crystalline polylactic acid is used as the resin, acetone is preferable as the microfibrillated cellulose dispersible solvent, and a solvent having crystalline polylactic acid solubility of dichloromethane is preferable as the resin-soluble solvent.

各々の溶媒は同種の分散性、溶解性を備えるものであれば2種以上を併用することもできる。溶媒の使用量は、ミクロフィブリル化セルロースの分散、樹脂の溶解、ミクロフィブリル化セルロースと樹脂の混合、溶媒の除去等を考慮し、適宜設定すればよい。なお、混合工程において2種以上の溶媒を使用する場合、溶媒は互いに相溶性であることが、混合の均一性の観点からは望ましい。   Each solvent can be used in combination of two or more as long as it has the same dispersibility and solubility. The amount of the solvent used may be appropriately set in consideration of dispersion of the microfibrillated cellulose, dissolution of the resin, mixing of the microfibrillated cellulose and the resin, removal of the solvent, and the like. In addition, when using 2 or more types of solvent in a mixing process, it is desirable from a viewpoint of the uniformity of mixing that a solvent is mutually compatible.

上記溶媒を使用してミクロフィブリル化セルロースが樹脂に均一に分散するまで混合されるが、混合温度は通常0〜40℃、好ましくは0〜30℃、混合時間は通常1分〜24時間、好ましくは3分〜12時間である。   The above solvent is used to mix until the microfibrillated cellulose is uniformly dispersed in the resin. The mixing temperature is usually 0 to 40 ° C., preferably 0 to 30 ° C., and the mixing time is usually 1 minute to 24 hours, preferably Is 3 minutes to 12 hours.

混合工程で調製された混合液は、溶媒除去工程にて溶媒が除去される。溶媒の除去は、その効率を考慮し、減圧条件で行うことが好ましい。また、溶媒除去温度は溶媒の沸点、減圧条件等を考慮して適宜選択することができる。溶媒除去工程では、前述の密度差によってミクロフィブリル化セルロースがやや沈降しやすいことを考慮し、なるべく短時間で工程を終わらせることが好ましい。このため、混合液を薄く広範囲に広げ短時間で溶媒を除去する方法が有利である。また、溶媒量が少ないと混合液がゲル状となり、撹拌後の密度ムラが生じにくくなるため好ましい。   The solvent is removed from the mixed solution prepared in the mixing step in the solvent removing step. The removal of the solvent is preferably performed under reduced pressure conditions in consideration of its efficiency. The solvent removal temperature can be appropriately selected in consideration of the boiling point of the solvent, reduced pressure conditions, and the like. In the solvent removal step, it is preferable to finish the step in as short a time as possible considering that the microfibrillated cellulose is slightly settled due to the above-described density difference. For this reason, the method of spreading a liquid mixture thinly and widely and removing a solvent in a short time is advantageous. Moreover, when there is little solvent amount, since a liquid mixture becomes a gel form and it becomes difficult to produce the density nonuniformity after stirring, it is preferable.

溶媒除去工程で溶媒が除去されると、ミクロフィブリル化セルロースが分散した固形の樹脂が得られる。この混合物を混練することなく成形材料として使用することも可能であるが、混練して得られる混練物を成形材料として使用する方が得られる成形物の弾性率及び強度が高い。混練工程は樹脂を混練する分野で使用されている方法を利用することができる。例えば、単軸、二軸又は多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザーなどを使用できる。混練温度は樹脂によって異なるが、樹脂のガラス転移点以上溶融点以下であり、通常80〜220℃、好ましくは100〜200℃、混練時間は通常1分〜3時間、好ましくは5分〜30分である。   When the solvent is removed in the solvent removal step, a solid resin in which microfibrillated cellulose is dispersed is obtained. Although it is possible to use this mixture as a molding material without kneading, the elastic modulus and strength of the molded product obtained by using the kneaded material obtained by kneading as the molding material are high. For the kneading step, a method used in the field of kneading a resin can be used. For example, a uniaxial, biaxial or multiaxial kneader, mixing roll, kneader, roll mill, Banbury mixer, screw press, disperser, etc. can be used. Although the kneading temperature varies depending on the resin, it is not lower than the glass transition point and not higher than the melting point of the resin, and is usually 80 to 220 ° C., preferably 100 to 200 ° C. It is.

混練により得られる混練物はミクロフィブリル化セルロースが分散した樹脂である。この樹脂はミクロフィブリル化セルロースを含有するにもかかわらず、成形加工性に優れている。この樹脂を成形することによって、元々の樹脂の強度よりも増強された樹脂成形体を得ることができる。この成形工程において使用される成形方法は、公知の樹脂の成形方法を適用することができる。成形の条件は当業者が適宜に設定することができる。この成形工程によって製造された成形体は、前述のように元々の樹脂の強度が増強されている。このため、樹脂が利用されていた用途に使用できるだけでなく、樹脂の強度不足により使用を見合わされていた用途にも使用しうる。本発明の成形体は、例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等として使用できる。   The kneaded product obtained by kneading is a resin in which microfibrillated cellulose is dispersed. This resin is excellent in moldability despite containing microfibrillated cellulose. By molding this resin, it is possible to obtain a resin molded body having a strength higher than that of the original resin. As the molding method used in this molding step, a known resin molding method can be applied. The molding conditions can be appropriately set by those skilled in the art. As described above, the strength of the original resin is enhanced in the molded body produced by this molding process. For this reason, it can be used not only for applications where the resin has been used, but also for applications where use has been postponed due to insufficient strength of the resin. The molded body of the present invention includes, for example, interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, airplanes, etc .; Parts, etc .: Mobile communication equipment such as mobile phones, structural materials, internal parts, etc .; Portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc., structural materials, internal parts, etc .; Materials: Can be used as office equipment such as stationery.

本発明では可塑剤の添加によって成形性が向上するため、可塑剤を添加することが好ましい。可塑剤の添加時期は可塑剤を樹脂に均一に混合出来る工程であればいつでもよいが、ミクロフィブリル化セルロース分散液や樹脂溶解液への添加や混練工程が好ましい。また、可塑剤の好ましい添加量は樹脂使用重量に対し0.1〜10重量%である。可塑剤は樹脂の分野で一般に使用されているものを使用できる。例えば、フタル酸ジ(2−エチルヘキシル)、フタル酸ジブチル、フタル酸ジノニル等のフタル酸エステル、アジピン酸ジ(2−エチルヘキシル)、アジピン酸ジブチル等のアジピン酸エステル、セバシン酸ジ(2−エチルヘキシル)、セバシン酸ジブチル等のセバシン酸エステル、アセチルクエン酸トリブチル、クエン酸トリエチル等のクエン酸エステル、リン酸トリフェニル、リン酸トリクレシル等のリン酸系可塑剤、ジエチレングリコールモノレート等の脂肪酸系可塑剤、エポキシ化大豆油等のエポキシ誘導体などが使用できる。好ましくは生分解性の可塑剤である。   In the present invention, since the moldability is improved by adding a plasticizer, it is preferable to add a plasticizer. The plasticizer may be added at any time as long as the plasticizer can be uniformly mixed with the resin, but is preferably added to the microfibrillated cellulose dispersion or resin solution or kneaded. Moreover, the preferable addition amount of a plasticizer is 0.1 to 10 weight% with respect to the resin use weight. As the plasticizer, those generally used in the field of resins can be used. For example, di (2-ethylhexyl) phthalate, phthalate such as dibutyl phthalate and dinonyl phthalate, adipate such as di (2-ethylhexyl) adipate and dibutyl adipate, di (2-ethylhexyl) sebacate , Sebacic acid esters such as dibutyl sebacate, citrate esters such as tributyl acetylcitrate and triethyl citrate, phosphate plasticizers such as triphenyl phosphate and tricresyl phosphate, fatty acid plasticizers such as diethylene glycol monolate, Epoxy derivatives such as epoxidized soybean oil can be used. A biodegradable plasticizer is preferred.

また、本発明では、可塑剤の他に、酸化防止剤、着色料、紫外線吸収剤、滑剤、難燃剤、発泡剤、充填剤等の樹脂の分野で使用されている添加剤であれば広く使用することができる。   In the present invention, in addition to plasticizers, additives that are used in the field of resins such as antioxidants, colorants, UV absorbers, lubricants, flame retardants, foaming agents, fillers, etc. are widely used. can do.

従来、ミクロフィブリル化セルロースを含有する樹脂は元々の樹脂の成形加工性を低下させ、その成形体の強度も元々の樹脂の成形体を大きく超えるものではなかった。しかし、本発明のミクロフィブリル化セルロース含有樹脂の製造方法によれば、ミクロフィブリル化セルロースを含有するにも関わらず成形加工性に優れた樹脂が得られ、この樹脂を成形した成形体は、元々の樹脂の成形体より優れた弾性率及び強度を有する。   Conventionally, a resin containing microfibrillated cellulose deteriorates the molding processability of the original resin, and the strength of the molded body does not greatly exceed the original molded body of the resin. However, according to the method for producing a microfibrillated cellulose-containing resin of the present invention, a resin excellent in molding processability can be obtained despite containing the microfibrillated cellulose. It has an elastic modulus and strength superior to those of the resin molded product.

以下、本発明を実施例等により詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. demonstrate this invention in detail, this invention is not limited to these.

実施例1
・ミクロフィブリル化セルロース(以下、MFCと称することがある):セリッシュKY100G(ダイセル化学社製)
・漂白済み針葉樹クラフトパルプ:NBKP
・非晶性ポリ乳酸:LACEA H-280(三井化学社製、Tg56℃)
<MFCと非晶性ポリ乳酸の分散混合(1液型製造方法)>
アセトン500gにMFCを1重量%添加し均一に分散するまで撹拌した。これに非晶性ポリ乳酸を95g添加し、ポリ乳酸が溶解して均一なゲル状になるまで十分に撹拌した。次いで、70℃減圧下でアセトンを除去し、MFCを5重量%含有する混合物を得た。
Example 1
Microfibrillated cellulose (hereinafter sometimes referred to as MFC): Serisch KY100G (manufactured by Daicel Chemical Industries)
-Bleached softwood kraft pulp: NBKP
Amorphous polylactic acid: LACEA H-280 (Mitsui Chemicals, Tg 56 ° C)
<Dispersion and mixing of MFC and amorphous polylactic acid (one-component production method)>
1% by weight of MFC was added to 500 g of acetone and stirred until it was uniformly dispersed. To this, 95 g of amorphous polylactic acid was added and stirred sufficiently until the polylactic acid dissolved and became a uniform gel. Subsequently, acetone was removed under reduced pressure at 70 ° C. to obtain a mixture containing 5% by weight of MFC.

得られたMFC分散ポリ乳酸を混練機(ブラベンダー、Labo Plastmill、東洋精機社製)に投入し40rpm、140℃で12分間500回混練した。混練物の光学顕微鏡写真を図1に示す。   The obtained MFC-dispersed polylactic acid was put into a kneader (Brabender, Labo Plastmill, manufactured by Toyo Seiki Co., Ltd.) and kneaded 500 times at 40 rpm and 140 ° C. for 12 minutes. An optical micrograph of the kneaded product is shown in FIG.

得られた混練物をスペーサーを用いて厚さ0.3mmのシートに成形した。すなわち、スペーサーを用いて、先ず初めに混練物を160℃で0.5MPaで5分間圧締し、次いで1MPaで5分間圧締し、次いで90℃で1時間加熱処理を行い、シートを作成した。得られたシートを5mm×40mm×0.3mmのサイズにカットしてサンプルとした。   The obtained kneaded material was molded into a sheet having a thickness of 0.3 mm using a spacer. That is, using a spacer, the kneaded material was first pressed at 160 ° C. at 0.5 MPa for 5 minutes, then pressed at 1 MPa for 5 minutes, and then heat-treated at 90 ° C. for 1 hour to prepare a sheet. . The obtained sheet was cut into a size of 5 mm × 40 mm × 0.3 mm to obtain a sample.

比較例1(溶融混練)
MFCを水に1重量%添加した分散水300gを用意し、混練機中で溶融した非晶性ポリ乳酸57gにこの分散水を、20℃で添加し、実施例1と同じ条件で混練及び成形してサンプルを作成した。混練物の光学顕微鏡写真を図1に示す。
Comparative Example 1 (melt kneading)
Prepare 300 g of dispersed water with 1% by weight of MFC added to water, add this dispersed water at 57 ° C. to 57 g of amorphous polylactic acid melted in a kneader, and knead and mold under the same conditions as in Example 1. And made a sample. An optical micrograph of the kneaded product is shown in FIG.

比較例2(非晶性ポリ乳酸)
混練機中で溶融したポリ乳酸60gを実施例1と同じ条件で混練及び成形してサンプルを作成した。
Comparative Example 2 (Amorphous polylactic acid)
A sample was prepared by kneading and molding 60 g of polylactic acid melted in a kneader under the same conditions as in Example 1.

試験例1
実施例及び比較例で作成したサンプルのヤング率及び引張強度を測定した。測定には万能試験機(Instron3365、インストロン社製)を使用した。サンプルのつかみしろは両サイド10mmずつとし、グリップ間はおよそ20mmとした。サンプルの数は各々の試験において6個とした。引張速度は1mm/分、測定温度は20℃であった。結果を図2と表1に示す。
Test example 1
The Young's modulus and tensile strength of the samples prepared in Examples and Comparative Examples were measured. A universal testing machine (Instron 3365, manufactured by Instron) was used for the measurement. The margin of the sample was 10 mm on each side, and the gap between the grips was about 20 mm. The number of samples was 6 in each test. The tensile speed was 1 mm / min and the measurement temperature was 20 ° C. The results are shown in FIG.

Figure 2008024795
Figure 2008024795

実施例1の成形体は引張強度、ヤング率ともに、元々の樹脂であるポリ乳酸より大きく向上している。これに対し、溶融混練によりミクロフィブリル化セルロースを混合した比較例1の成形体は弾性率は元々の樹脂であるポリ乳酸より1割程度向上しているが、強度は1割以上低下している。また、図1に示すように、比較例1の混練物において凝集体が認められるのに対し、実施例1の混練物では凝集体は認められずきれいに分散していることから、溶融混練では破壊の基点となる凝集体が原因となって強度低下が生じていることがわかる。これに対して、分散混練法ではミクロフィブリル化セルロースがきれいに分散し、強度の向上の寄与していることがわかる。   The molded body of Example 1 has a greater improvement in both tensile strength and Young's modulus than polylactic acid, which is the original resin. In contrast, the molded article of Comparative Example 1 in which microfibrillated cellulose was mixed by melt kneading had an elastic modulus improved by about 10% compared to the original resin polylactic acid, but the strength was reduced by more than 10%. . In addition, as shown in FIG. 1, aggregates are observed in the kneaded material of Comparative Example 1, whereas aggregates are not recognized in the kneaded material of Example 1, and are neatly dispersed. It can be seen that the strength is reduced due to the agglomerates serving as the base point of the above. In contrast, in the dispersion kneading method, it can be seen that the microfibrillated cellulose is finely dispersed and contributes to the improvement of the strength.

試験例2
非晶性ポリ乳酸に対するMFCの添加量を3重量%、5重量%、10重量%、15重量%、20重量%とし、実施例1と同様にしてサンプルを作成した。得られたサンプルと比較例2のサンプルを使用して、試験例1と同様にしてヤング率及び引張強度を測定した。結果を図3と表2に示す。
Test example 2
Samples were prepared in the same manner as in Example 1, except that the amount of MFC added to the amorphous polylactic acid was 3 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt%. Using the obtained sample and the sample of Comparative Example 2, Young's modulus and tensile strength were measured in the same manner as in Test Example 1. The results are shown in FIG.

Figure 2008024795
Figure 2008024795

実施例2
・MFC:セリッシュKY100G(ダイセル化学工業製)
・漂白済み針葉樹クラフトパルプ:NBKP(大昭和製紙(株)製)
・結晶性ポリ乳酸:LACEA H-100(三井化学社製、Tg60℃)
Example 2
・ MFC: Serisch KY100G (manufactured by Daicel Chemical Industries)
-Bleached softwood kraft pulp: NBKP (manufactured by Daishowa Paper Co., Ltd.)
Crystalline polylactic acid: LACEA H-100 (Mitsui Chemicals, Tg 60 ° C.)

<MFCと結晶性ポリ乳酸の分散混合(2液型製造方法)>
MFCをアセトンに浸漬し、MFCが含有する水分をアセトンに置換した後、MFCを濾取し、さらにジクロロメタン浸漬し、アセトンをジクロロメタンに置換した。このMFCをジクロロメタン300gに1重量%添加し均一に分散するまで撹拌した。一方で、200gのジクロロメタンに結晶性ポリ乳酸を57g添加し、ポリ乳酸が溶解して均一なゲル状になるまで十分に撹拌した。次いでMFCをジクロロメタンに分散させた液と、結晶性ポリ乳酸をジクロロメタンに溶解した液と混合して十分撹拌した後、60℃減圧下でジクロロメタンを除去し、MFCを5重量%含有する混合物を得た。
<Dispersion mixing of MFC and crystalline polylactic acid (two-component manufacturing method)>
MFC was immersed in acetone, and water contained in MFC was replaced with acetone. Then, MFC was collected by filtration, and further immersed in dichloromethane to replace acetone with dichloromethane. 1% by weight of this MFC was added to 300 g of dichloromethane and stirred until it was uniformly dispersed. On the other hand, 57 g of crystalline polylactic acid was added to 200 g of dichloromethane, and the mixture was sufficiently stirred until the polylactic acid dissolved and became a uniform gel. Next, a mixture of MFC dispersed in dichloromethane and a solution of crystalline polylactic acid dissolved in dichloromethane were mixed and sufficiently stirred, and then dichloromethane was removed under reduced pressure at 60 ° C. to obtain a mixture containing 5% by weight of MFC. It was.

得られたMFC分散ポリ乳酸を混練機(ブラベンダー、Labo Plastmill、東洋精機社製)に投入し50rpm、160℃で10分間500回混練した。得られた混練物をスペーサーを用いて厚さ0.3mmのシートに成形した。すなわち、スペーサーを用いて、先ず初めに混練物を190℃で0.5MPaで5分間圧締し、次いで1MPaで5分間圧締し、次いで100℃で1時間加熱処理を行い、シートを作成した。得られたシートを5mm×40mm×0.3mmのサイズにカットしてサンプルとした。   The obtained MFC-dispersed polylactic acid was put into a kneader (Brabender, Labo Plastmill, manufactured by Toyo Seiki Co., Ltd.) and kneaded 500 times at 50 rpm and 160 ° C. for 10 minutes. The obtained kneaded material was molded into a sheet having a thickness of 0.3 mm using a spacer. That is, using a spacer, the kneaded material was first pressed at 190 ° C. at 0.5 MPa for 5 minutes, then pressed at 1 MPa for 5 minutes, and then heat-treated at 100 ° C. for 1 hour to prepare a sheet. . The obtained sheet was cut into a size of 5 mm × 40 mm × 0.3 mm to obtain a sample.

比較例3(結晶性ポリ乳酸)
溶融した結晶性ポリ乳酸を比較例2と同じ条件で混練及び成形してサンプルを作成した。
Comparative Example 3 (Crystalline polylactic acid)
A sample was prepared by kneading and molding molten crystalline polylactic acid under the same conditions as in Comparative Example 2.

試験例3
実施例2及び比較例3で作成したサンプルのヤング率及び引張強度を測定した。測定には万能試験機(Instron3365、インストロン社製)を使用した。サンプルのつかみしろは両サイド10mmずつとし、グリップ間はおよそ20mmとした。サンプルの数は各々の試験において6個とした。引張速度は1mm/分、測定温度は20℃であった。結果を表3に示す。実施例2の成形体は引張強度、ヤング率ともに、元々の樹脂であるポリ乳酸より向上している。
Test example 3
The Young's modulus and tensile strength of the samples prepared in Example 2 and Comparative Example 3 were measured. A universal testing machine (Instron 3365, manufactured by Instron) was used for the measurement. The margin of the sample was 10 mm on each side, and the gap between the grips was about 20 mm. The number of samples was 6 in each test. The tensile speed was 1 mm / min and the measurement temperature was 20 ° C. The results are shown in Table 3. The molded product of Example 2 is improved in both tensile strength and Young's modulus compared to the original resin, polylactic acid.

Figure 2008024795
Figure 2008024795

本発明のミクロフィブリル化セルロース含有樹脂成形体は強度に優れる。本発明のミクロフィブリル化セルロース含有樹脂は加工性に優れる。本発明のミクロフィブリル化セルロース含有樹脂の製造方法は、ミクロフィブリル化セルロースの分散性に優れ、該製造方法により得られる樹脂は加工性に優れ、該樹脂の成形体は強度に優れる。   The microfibrillated cellulose-containing resin molded product of the present invention is excellent in strength. The microfibrillated cellulose-containing resin of the present invention is excellent in processability. The method for producing a microfibrillated cellulose-containing resin of the present invention is excellent in dispersibility of microfibrillated cellulose, the resin obtained by the production method is excellent in processability, and the molded article of the resin is excellent in strength.

実施例1及び比較例1の混練物の光学顕微鏡写真を示す。上段が実施例1の混練物の写真、下段が比較例1の混練物の写真である。比較例1の混練物において凝集体(色が濃い部分)が認められるのに対し、実施例1の混練物では凝集体は認められずきれいに分散していた。The optical microscope photograph of the kneaded material of Example 1 and Comparative Example 1 is shown. The upper row is a photograph of the kneaded material of Example 1, and the lower row is a photograph of the kneaded material of Comparative Example 1. In the kneaded material of Comparative Example 1, aggregates (darker portions) were observed, whereas in the kneaded material of Example 1, no aggregates were observed and the particles were neatly dispersed. 試験例1の結果を表すグラフである。縦軸は応力(MPa)、横軸はひずみを示す。6 is a graph showing the results of Test Example 1. The vertical axis represents stress (MPa), and the horizontal axis represents strain. 試験例2の結果を表すグラフである。縦軸は応力(MPa)、横軸はひずみを示す。なお、20%のグラフは5%のグラフトほぼ同じ傾きであり、5%のグラフトと重複している。10 is a graph showing the results of Test Example 2. The vertical axis represents stress (MPa), and the horizontal axis represents strain. The 20% graph has almost the same slope as the 5% graft and overlaps with the 5% graft.

Claims (11)

ミクロフィブリル化セルロース及び樹脂を含有する混練物を成形してなる樹脂成形体であって、
ミクロフィブリル化セルロースの含有量が成形体全体の4〜15重量%であり、
前記成形体の強度がミクロフィブリル化セルロースを含まないことを除いて同じ方法で成形された成形体の強度と比較した相対強度が1.10以上であることを特徴とする樹脂成形体。
A resin molded body obtained by molding a kneaded product containing microfibrillated cellulose and a resin,
The content of microfibrillated cellulose is 4 to 15% by weight of the whole molded body,
A resin molded body having a relative strength of 1.10 or more compared to the strength of a molded body molded by the same method except that the strength of the molded body does not include microfibrillated cellulose.
ミクロフィブリル化セルロースの含有量が成形体全体の5〜15重量%である請求項1に記載の樹脂成形体。 The resin molded body according to claim 1, wherein the content of microfibrillated cellulose is 5 to 15% by weight of the entire molded body. 相対強度が1.15以上である請求項1又は2に記載の樹脂成形体。 The resin molding according to claim 1 or 2, wherein the relative strength is 1.15 or more. 樹脂が生分解性樹脂及び脂肪族ポリエステルからなる群から選択される少なくとも1種である請求項1〜3のいずれかに記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 3, wherein the resin is at least one selected from the group consisting of biodegradable resins and aliphatic polyesters. ミクロフィブリル化セルロース分散性及び樹脂溶解性を備えた溶媒に、ミクロフィブリル化セルロースの分散及び樹脂の溶解を行い、混合した後、溶媒を除去する工程を有することを特徴とするミクロフィブリル化セルロース含有樹脂成形体の製造方法。 Containing microfibrillated cellulose, comprising the steps of dispersing microfibrillated cellulose and dissolving resin in a solvent having microfibrillated cellulose dispersibility and resin solubility, mixing, and then removing the solvent. Manufacturing method of resin molding. 溶媒がアセトンである請求項5に記載のミクロフィブリル化セルロース含有樹脂の製造方法。 The method for producing a microfibrillated cellulose-containing resin according to claim 5, wherein the solvent is acetone. 樹脂を溶解した溶媒とミクロフィブリル化セルロースを分散した溶媒を混合した後、溶媒を除去する工程を有することを特徴とするミクロフィブリル化セルロース含有樹脂成形体の製造方法。 A method for producing a microfibrillated cellulose-containing resin molded article, comprising: mixing a solvent in which a resin is dissolved and a solvent in which microfibrillated cellulose is dispersed, and then removing the solvent. 樹脂を溶解した溶媒の溶媒がジクロロメタンであり、ミクロフィブリル化セルロースを分散した溶媒がアセトンである請求項7に記載の製造方法。 The production method according to claim 7, wherein the solvent in which the resin is dissolved is dichloromethane, and the solvent in which the microfibrillated cellulose is dispersed is acetone. ミクロフィブリル化セルロース含有樹脂成形体におけるミクロフィブリル化セルロースの含有量が4〜15重量%である請求項5〜8のいずれかに記載の製造方法。 The production method according to any one of claims 5 to 8, wherein the content of the microfibrillated cellulose in the microfibrillated cellulose-containing resin molded product is 4 to 15% by weight. 樹脂が生分解性樹脂及び脂肪族ポリエステルからなる群から選択される少なくとも1種である請求項5〜9のいずれかに記載の製造方法。 The production method according to claim 5, wherein the resin is at least one selected from the group consisting of biodegradable resins and aliphatic polyesters. 請求項5〜10のいずれかの方法によって製造されたミクロフィブリル化セルロース含有樹脂成形体。 The microfibrillated cellulose containing resin molding manufactured by the method in any one of Claims 5-10.
JP2006197512A 2006-07-19 2006-07-19 Microfibrillated cellulose-containing resin molding with improved strength Active JP5119432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197512A JP5119432B2 (en) 2006-07-19 2006-07-19 Microfibrillated cellulose-containing resin molding with improved strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197512A JP5119432B2 (en) 2006-07-19 2006-07-19 Microfibrillated cellulose-containing resin molding with improved strength

Publications (2)

Publication Number Publication Date
JP2008024795A true JP2008024795A (en) 2008-02-07
JP5119432B2 JP5119432B2 (en) 2013-01-16

Family

ID=39115774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197512A Active JP5119432B2 (en) 2006-07-19 2006-07-19 Microfibrillated cellulose-containing resin molding with improved strength

Country Status (1)

Country Link
JP (1) JP5119432B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286061A (en) * 2008-05-30 2009-12-10 Kagoshima Univ Method for manufacturing thermoplastic resin
WO2010013502A1 (en) * 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP2010031093A (en) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd Manufacturing method of microfibrilized cellulose/elastomer/resin composite material and manufacturing method of molded article
JP2010186124A (en) * 2009-02-13 2010-08-26 Konica Minolta Opto Inc Optical film, and polarizing plate and display device using the optical film
JP2010265357A (en) * 2009-05-13 2010-11-25 Konica Minolta Holdings Inc Method for producing cellulose fiber-containing resin material
JP2011006598A (en) * 2009-06-26 2011-01-13 Konica Minolta Holdings Inc Method for producing cellulose fiber dispersion and resin molded product using the same
JPWO2011093147A1 (en) * 2010-01-28 2013-05-30 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
JP2015086377A (en) * 2013-09-25 2015-05-07 トクラス株式会社 Modified fibrillated cellulose, fibrillated cellulose-containing resin product and method for producing them
WO2016063914A1 (en) * 2014-10-21 2016-04-28 古河電気工業株式会社 Polyolefin resin composition, molded article, and outer panel for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640623B2 (en) 2016-03-18 2020-02-05 国立大学法人京都大学 Masterbatch containing acylated modified microfibrillated plant fibers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168648A (en) * 1974-12-10 1976-06-14 Showa Electric Wire & Cable Co Jutenzaino bunsanhoho
JPS612755A (en) * 1984-06-04 1986-01-08 ポリサー リミテツド Method of mixing fiber into organic polymer
JPS61204228A (en) * 1985-03-08 1986-09-10 Mitsubishi Chem Ind Ltd Production of electrically-conductive carbon black-containing thermoplastic resin composition
JPH08193168A (en) * 1995-01-19 1996-07-30 Mitsui Toatsu Chem Inc Biodegradable resin composition
JPH11241027A (en) * 1998-02-26 1999-09-07 Sony Corp Polymeric composite material and its production
JP2004359939A (en) * 2003-05-15 2004-12-24 Dainichiseika Color & Chem Mfg Co Ltd Biodegradable resin composition and its molded article
JP2005042283A (en) * 2003-07-08 2005-02-17 Kansai Tlo Kk Method for producing aliphatic polyester composition, pulp used for the same, and cellulosic fiber, and method for microfibrillating the same
JP2007238812A (en) * 2006-03-09 2007-09-20 Hiroshima Pref Gov Polylactic acid-microfibrillated cellulose composite material and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168648A (en) * 1974-12-10 1976-06-14 Showa Electric Wire & Cable Co Jutenzaino bunsanhoho
JPS612755A (en) * 1984-06-04 1986-01-08 ポリサー リミテツド Method of mixing fiber into organic polymer
JPS61204228A (en) * 1985-03-08 1986-09-10 Mitsubishi Chem Ind Ltd Production of electrically-conductive carbon black-containing thermoplastic resin composition
JPH08193168A (en) * 1995-01-19 1996-07-30 Mitsui Toatsu Chem Inc Biodegradable resin composition
JPH11241027A (en) * 1998-02-26 1999-09-07 Sony Corp Polymeric composite material and its production
JP2004359939A (en) * 2003-05-15 2004-12-24 Dainichiseika Color & Chem Mfg Co Ltd Biodegradable resin composition and its molded article
JP2005042283A (en) * 2003-07-08 2005-02-17 Kansai Tlo Kk Method for producing aliphatic polyester composition, pulp used for the same, and cellulosic fiber, and method for microfibrillating the same
JP2007238812A (en) * 2006-03-09 2007-09-20 Hiroshima Pref Gov Polylactic acid-microfibrillated cellulose composite material and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286061A (en) * 2008-05-30 2009-12-10 Kagoshima Univ Method for manufacturing thermoplastic resin
JP2010031093A (en) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd Manufacturing method of microfibrilized cellulose/elastomer/resin composite material and manufacturing method of molded article
KR101415099B1 (en) 2008-07-31 2014-07-08 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JPWO2010013502A1 (en) * 2008-07-31 2012-01-05 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP5531295B2 (en) * 2008-07-31 2014-06-25 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
WO2010013502A1 (en) * 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
US8877841B2 (en) 2008-07-31 2014-11-04 Kyoto University Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP2010186124A (en) * 2009-02-13 2010-08-26 Konica Minolta Opto Inc Optical film, and polarizing plate and display device using the optical film
JP2010265357A (en) * 2009-05-13 2010-11-25 Konica Minolta Holdings Inc Method for producing cellulose fiber-containing resin material
JP2011006598A (en) * 2009-06-26 2011-01-13 Konica Minolta Holdings Inc Method for producing cellulose fiber dispersion and resin molded product using the same
JPWO2011093147A1 (en) * 2010-01-28 2013-05-30 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
JP5660333B2 (en) * 2010-01-28 2015-01-28 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
JP2015086377A (en) * 2013-09-25 2015-05-07 トクラス株式会社 Modified fibrillated cellulose, fibrillated cellulose-containing resin product and method for producing them
WO2016063914A1 (en) * 2014-10-21 2016-04-28 古河電気工業株式会社 Polyolefin resin composition, molded article, and outer panel for vehicle
US11485841B2 (en) 2014-10-21 2022-11-01 Furukawa Electric Co., Ltd. Polyolefin resin composition, molded article, and outer panel for a vehicle

Also Published As

Publication number Publication date
JP5119432B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5119432B2 (en) Microfibrillated cellulose-containing resin molding with improved strength
JP4013870B2 (en) Method for producing aliphatic polyester composition
TWI537286B (en) The cellulose nano fiber and the manufacturing method of the same,the composition of the masterbatch,the composition of the resin,and the molded article
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
JP5267580B2 (en) Kenaf fiber reinforced resin composition
JP5030667B2 (en) Microfibrillated cellulose composite resin and method for producing the same
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
JP5207246B2 (en) Microfibrillated cellulose having cellulose type II crystal structure and molded article containing the microfibrillated cellulose
US20150011685A1 (en) Polyester resin composition
JP6016317B2 (en) Method for producing resin composition and method for producing molded body
JP6580471B2 (en) Polylactic acid composition, method for producing the same, and composite
JPWO2007040243A1 (en) Biodegradable resin composition, method for producing the same, and molded article using the same
IT201700022439A1 (en) POLYMER COMPOSITION FOR HIGHLY UNINTENDABLE FILM
JP2013107987A (en) Cellulose-combined thermoplastic resin and molding thereof
Shahdan et al. Strategies for strengthening toughened poly (lactic acid) blend via natural reinforcement with enhanced biodegradability: A review
JP7434871B2 (en) Molding composition and molded object
JP4127316B2 (en) Method for producing aliphatic polyester composition and method for microfibrillation of pulp used therefor
JP2019034987A (en) Aliphatic polyester resin composition and molded body
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
JP7496192B2 (en) Composition, molded article, and method for producing same
JP7190710B2 (en) Polylactic acid composite resin
JP7248988B2 (en) Cellulose composite resin
JP2023000328A (en) Modified cellulose and resin composition
WO2024048402A1 (en) Resin composition containing biodegradable resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150