JPH08193168A - Biodegradable resin composition - Google Patents

Biodegradable resin composition

Info

Publication number
JPH08193168A
JPH08193168A JP623495A JP623495A JPH08193168A JP H08193168 A JPH08193168 A JP H08193168A JP 623495 A JP623495 A JP 623495A JP 623495 A JP623495 A JP 623495A JP H08193168 A JPH08193168 A JP H08193168A
Authority
JP
Japan
Prior art keywords
biodegradable
film
biodegradable plastic
polymer composition
ascidian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP623495A
Other languages
Japanese (ja)
Other versions
JP3423094B2 (en
Inventor
Makoto Sukegawa
誠 助川
Hiroaki Tamaya
玉谷  弘明
Teruhiro Yamaguchi
彰宏 山口
Fumitaka Horii
文敬 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP00623495A priority Critical patent/JP3423094B2/en
Publication of JPH08193168A publication Critical patent/JPH08193168A/en
Application granted granted Critical
Publication of JP3423094B2 publication Critical patent/JP3423094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE: To improve the mechanical strengths and biodegradability of a biodegradable plastic by compounding it with hoya cellulose fibers. CONSTITUTION: A husk of hoya is cut to 5-20mm, ground, and microfibrillated to give hoya cellulose fibers having diameters of 0.1μm or lower. A biodegradable plastic selected from among polylactic acid, a lactic acid-hydroxycarboxylic acid copolymer, etc., is compounded with 5-60wt.% hoya cellulose fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性プラスチック
とホヤセルロース繊維を含む崩壊性または生分解性ポリ
マー組成物、及びそれからなる成形物またはフィルムに
関するものである。これらは、優れた機械的強度を有す
る崩壊性または生分解性プラスチック成形物またはフィ
ルムとして、種々の用途に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disintegratable or biodegradable polymer composition containing a biodegradable plastic and ascidian cellulose fiber, and a molded product or film comprising the same. These are useful for various applications as a disintegratable or biodegradable plastic molded product or film having excellent mechanical strength.

【0002】[0002]

【従来の技術】プラスチック廃棄物問題が深刻化してい
る中で、崩壊性プラスチックや生分解性のプラスチック
が開発され、廃棄物問題の解決策として注目されてい
る。崩壊性プラスチックとしては、従来の非分解性プラ
スチックに生分解性を有するでん粉を混入したものがあ
る。また、特開平4−182112号公報に記載されて
いる脂肪族ポリエステル樹脂をマトリックスとして熱可
塑性樹脂を混合する技術が提案されている。また、生分
解性プラスチックとしては、脂肪族ポリエステル等が提
案されているが、従来の非分解性のプラスチックと比較
してその機械的強度が十分でないため、その成形物は肉
厚になり、微生物により分解するのに要する時間が長い
等の問題がある。それらの問題を解決するため、これら
の生分解性プラスチックに、充填剤として、炭酸カルシ
ウムや含水珪酸マグネシウムを混合する方法(特開平5
−70696号公報)が提案されている。一方、天然の
ポリマーとして有用であると考えられるセルロースは、
その成形性の悪さから、成形物として実用化が困難であ
る。そのため、セルロース誘導体を用いたり、植物繊維
を加水分解して得られた分解物を用いたフィルムが提案
されている(特開平3−231927号公報)。充填剤
としては、ポリオレフィン系樹脂に木材パルプや繊維化
されたセルロースを主体とする植物繊維(特開昭60−
158236号公報)を混合する方法が知られている。
また、生分解性樹脂に、でんぷん、植物体粉末、セルロ
ース繊維等の天然高分子物質を混合する方法(特開平5
−320524号公報)や、グリコールと脂肪族二塩基
酸類から合成された脂肪族ポリエステルにセルロース系
有機充填剤を配合する方法(特開平6−172624号
公報)が提案されている。しかしながら、いずれも十分
な機械的強度と生分解性を有する成形物等は得られてい
ない。
2. Description of the Related Art While the problem of plastic waste is becoming more serious, collapsible plastics and biodegradable plastics have been developed and are attracting attention as a solution to the waste problem. As the disintegrating plastic, there is a conventional non-degradable plastic mixed with starch having biodegradability. Further, a technique has been proposed in which a thermoplastic resin is mixed with an aliphatic polyester resin as a matrix, which is described in JP-A-4-182112. Further, as the biodegradable plastic, aliphatic polyester and the like have been proposed, but since the mechanical strength thereof is not sufficient as compared with the conventional non-degradable plastic, the molded product becomes thick and the microbial Therefore, there is a problem that the time required for decomposition is long. In order to solve these problems, a method of mixing these biodegradable plastics with calcium carbonate or hydrous magnesium silicate as a filler (Japanese Patent Application Laid-Open No. HEI 5)
-70696 gazette) is proposed. On the other hand, cellulose, which is considered to be useful as a natural polymer,
Due to its poor moldability, it is difficult to put it into practical use as a molded product. Therefore, a film using a cellulose derivative or a decomposed product obtained by hydrolyzing plant fiber has been proposed (JP-A-3-231927). As the filler, a plant fiber mainly composed of wood pulp or fibrous cellulose in a polyolefin resin (JP-A-60-
No. 158236) is known.
In addition, a method of mixing a biodegradable resin with a natural polymer substance such as starch, plant powder, and cellulose fiber (Japanese Patent Application Laid-Open No. Hei 5)
No. 320205), and a method of blending a cellulosic organic filler with an aliphatic polyester synthesized from glycol and an aliphatic dibasic acid (JP-A-6-172624). However, none of them has obtained a molded product having sufficient mechanical strength and biodegradability.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、十分
な機械的強度を持ち、かつ使用後に廃棄する際、微生物
により速やかに崩壊または分解する、生分解性プラスチ
ック組成物及びそれからなる成形物及びフィルムを提供
することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a biodegradable plastic composition having a sufficient mechanical strength and rapidly disintegrated or decomposed by microorganisms when it is discarded after use, and a molded article comprising the same. And to provide a film.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、ホヤセルロース繊
維を混合することにより前記課題を解決できることを見
いだし、本発明を完成するに至った。即ち、本発明は、
生分解性プラスチックとホヤセルロース繊維を含む崩壊
性または生分解性ポリマー組成物、及び該組成物からな
る成形物及びフィルムである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by mixing ascidian cellulose fiber, and the present invention is completed. I arrived. That is, the present invention
Disintegratable or biodegradable polymer compositions containing biodegradable plastics and ascidian fibers, and molded articles and films comprising the compositions.

【0005】本発明に係る生分解性プラスチック組成
物、及び成形物及びフィルムは、生分解性プラスチック
とホヤセルロース繊維を含むことを特徴とする。ホヤセ
ルロース繊維は、木材パルプ等から得られるセルロース
繊維に比べ、ヤング率が大きいため、高い剛性を有す
る。生分解性プラスチック中にホヤセルロースを、重量
比で5〜60%、より好ましくは、10〜50%含有さ
せることにより、引張強度、曲げ弾性率等が向上し、十
分な機械的強度を持つ成形物及びフィルムを得ることが
できる。
The biodegradable plastic composition, the molded product and the film according to the present invention are characterized by containing a biodegradable plastic and ascidian cellulose fiber. Ascidian cellulose fiber has a higher Young's modulus than cellulose fiber obtained from wood pulp or the like, and thus has high rigidity. Molding having sufficient mechanical strength by increasing the tensile strength, flexural modulus, etc. by containing ascidian cellulose in the biodegradable plastic in a weight ratio of 5 to 60%, more preferably 10 to 50%. Objects and films can be obtained.

【0006】本発明に係るホヤセルロース繊維は、ホヤ
の外被をカッター等で切断し5〜20mm程度の大きさ
にした後、ミキサー等の装置を用いて粉砕し、ビータ等
を用いてミクロフィブリル化することにより、直径0.
1μm以下の微細繊維として得られる。タンパク質、脂
肪等を除去するためアルカリや有機溶媒で処理して用い
られることもある。これらの技術は、特開平5−300
586号公報に開示されている。
The ascidian cellulose fiber according to the present invention is obtained by cutting the outer cover of the ascidian with a cutter or the like to a size of about 5 to 20 mm, crushing it with a device such as a mixer, and then using a beater or the like to obtain microfibrils. By converting the diameter to 0.
Obtained as fine fibers of 1 μm or less. It may be used after being treated with an alkali or an organic solvent in order to remove proteins, fats and the like. These techniques are disclosed in JP-A-5-300.
It is disclosed in Japanese Patent No. 586.

【0007】また、本発明に係る生分解性プラスチック
としては、ポリ乳酸、ポリグリコール酸、ポリ−3−ヒ
ドロキシブチレート、ポリ−4−ヒドロキシブチレー
ト、ポリヒドロキシバリレート、ポリエチレンアジペー
ト、ポリカプロラクトン、ポリプロピオラクトン等のポ
リエステル、ポリエチレングリコール等のポリエーテ
ル、ポリグルタミン酸、ポリリジン等のポリアミド、ポ
リビニルアルコール、ポリウレタン等を用いることがで
きる。また、これらの生分解性プラスチックは一種で
も、二種類以上のポリマーのブレンドであってもよい。
また、これらの生分解性プラスチックは二種類以上のコ
ポリマーであってもよい。ポリヒドロキシカルボン酸が
好ましく、ポリ乳酸または乳酸とヒドロキシカルボン酸
のコポリマーがより好ましい。しかしながら、本発明に
係る生分解性プラスチック成形物の主体となる生分解性
プラスチックは特に限定されるものではない。
The biodegradable plastics according to the present invention include polylactic acid, polyglycolic acid, poly-3-hydroxybutyrate, poly-4-hydroxybutyrate, polyhydroxyvalerate, polyethylene adipate, polycaprolactone, Polyester such as polypropiolactone, polyether such as polyethylene glycol, polyamide such as polyglutamic acid and polylysine, polyvinyl alcohol, polyurethane and the like can be used. Further, these biodegradable plastics may be one kind or a blend of two or more kinds of polymers.
Further, these biodegradable plastics may be a copolymer of two or more kinds. Polyhydroxycarboxylic acid is preferable, and polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid is more preferable. However, the biodegradable plastic which is the main component of the biodegradable plastic molding according to the present invention is not particularly limited.

【0008】本発明に係わる成形物またはフィルムは、
各種の改質材を用いて混合、混練させたものでも良い。
また、本発明に係わる成形物またはフィルムの製造は、
公知の混練技術は全て適用できるが、ホヤセルロース繊
維の特徴を十分に発揮させるために繊維の分散が良好な
方法が好ましい。分解性プラスチックとホヤセルロース
繊維を混合機で均一にして、射出成形、圧縮成形、シー
ト成形、押出成形等し、さらに延伸加工することにより
成形物またはフィルムを製造することができる。
The molded article or film according to the present invention is
It may be mixed and kneaded with various modifiers.
Further, the production of the molded product or film according to the present invention,
All known kneading techniques can be applied, but a method in which the fibers are well dispersed is preferable in order to fully exhibit the characteristics of the ascidian cellulose fibers. A degradable plastic and ascidian cellulose fibers are made uniform by a mixer, injection molded, compression molded, sheet molded, extruded, etc., and further stretched to produce a molded product or film.

【0009】[0009]

【実施例】以下に実施例を示すが、本発明はこれに限定
されるものではない。実施例で用いたホヤセルロース繊
維は以下のようにして得た。ホヤの外被をカッター等で
切断して5〜20mm程度の大きさにする。この切断片
をホモジナイザーを用いて10分間粉砕する。次に還流
装置により0.25NのNaOH水溶液中で100℃に
おいて6時間処理しタンパク質を除去した。その後、
0.25Nの塩酸で中和してから蒸留水で洗浄した。ソ
ックスレー抽出器を使用し、エーテルとエタノールの混
合溶液(体積比 1:1)中で2時間、70℃で加熱処
理した。更に高圧ホモジナイザーにより500kgf/
cm2の圧力で30回フィブリル化処理を行った。得ら
れたセルロース質繊維はミクロフィブリル状態まで叩解
されており、繊維径が0.1μm、繊維長が800μm
であった。
EXAMPLES Examples will be shown below, but the present invention is not limited to these examples. The sea squirt cellulose fibers used in the examples were obtained as follows. The outer cover of the squirt is cut with a cutter or the like to have a size of about 5 to 20 mm. The cut pieces are ground for 10 minutes using a homogenizer. Next, the protein was removed by treatment in a 0.25 N NaOH aqueous solution at 100 ° C. for 6 hours using a reflux apparatus. afterwards,
It was neutralized with 0.25N hydrochloric acid and washed with distilled water. Using a Soxhlet extractor, heat treatment was carried out at 70 ° C. for 2 hours in a mixed solution of ether and ethanol (volume ratio 1: 1). With a high pressure homogenizer, 500 kgf /
Fibrillation treatment was performed 30 times at a pressure of cm 2 . The obtained cellulosic fibers have been beaten to a microfibril state and have a fiber diameter of 0.1 μm and a fiber length of 800 μm.
Met.

【0010】実施例1 L−ラクタイド100部およびオクタン酸第一スズ0.
01部と、ラウリルアルコール0.03部を、攪拌器を
備えた肉厚の円筒型ステンレス製重合容器へ封入し、真
空で2時間脱気した後窒素ガスで置換した。この混合物
を窒素雰囲気下攪拌しつつ200℃で3時間加熱した。
温度をそのまま保ちながら、排気管およびガラス製容器
を介して真空ポンプにより徐々に脱気し反応容器内を3
mmHgまで減圧にした。脱気開始から1時間後、モノ
マーや低分子量揮発分の留出がなくなったので、容器内
を窒素置換し、容器下部からモノマーを紐状に抜き出し
てペレット化し、ポリ−L−乳酸を得た。このようにし
て得たポリ−L−乳酸(重量平均分子量10万)90部
とホヤセルロース繊維10部をリボンブレンダーで混合
後、2軸押出機シリンダー温度170〜210℃の条件
にてペレット化した。該ペレットを80℃のオーブンで
熱処理し、押出機のシリンダー温度160〜200℃の
条件にて溶融し、押出機先端のTダイから厚み0.10
mmのフィルムを得た。同様に、ホヤ繊維が20及び4
0部のフィルムを得た。
Example 1 100 parts of L-lactide and stannous octoate 0.
01 parts and 0.03 parts of lauryl alcohol were sealed in a thick cylindrical polymerization vessel made of stainless steel equipped with a stirrer, deaerated under vacuum for 2 hours, and then replaced with nitrogen gas. The mixture was heated at 200 ° C. for 3 hours with stirring under a nitrogen atmosphere.
While keeping the temperature as it is, gradually degas by a vacuum pump through the exhaust pipe and the glass container, and the inside of the reaction container is cooled to 3
The pressure was reduced to mmHg. After 1 hour from the start of degassing, the distillation of the monomer and low-molecular-weight volatile matter disappeared, so the inside of the container was replaced with nitrogen, and the monomer was extracted from the lower part of the container in a string shape and pelletized to obtain poly-L-lactic acid . 90 parts of the poly-L-lactic acid (weight average molecular weight of 100,000) thus obtained and 10 parts of ascidian cellulose fiber were mixed with a ribbon blender and then pelletized under the conditions of a twin-screw extruder cylinder temperature of 170 to 210 ° C. . The pellets were heat-treated in an oven at 80 ° C., melted under the conditions of an extruder cylinder temperature of 160 to 200 ° C., and a thickness of 0.10 was obtained from the T die at the tip of the extruder.
A film of mm was obtained. Similarly, squirt fibers are 20 and 4
0 part of film was obtained.

【0011】実施例2 実施例1に記載のポリ−L−乳酸70部とポリカプロラ
クトン(ユニオンカーバイド製:商品名;TONE,P
−787)30部のブレンドポリマーを用い、実施例1
と同様に、ホヤセルロース繊維を混合してフィルムを得
た。
Example 2 70 parts of poly-L-lactic acid described in Example 1 and polycaprolactone (manufactured by Union Carbide: trade name; TONE, P
-787) Example 1 using 30 parts of blended polymer
In the same manner as above, ascidian fibers were mixed to obtain a film.

【0012】実施例3 ポリ−3−ヒドロキシブチレート−ポリ−3−ヒドロキ
シバリレート共重合体(ゼネカ(株)製、商品名;バイ
オポール,S−30)80部とホヤ繊維20部をリボン
ブレンダーで混合後、2軸押出機シリンダー温度150
〜170℃の条件にてペレット化した。更に、押出機の
シリンダー温度150〜160℃の条件にて溶融し、押
出機先端のTダイから厚み0.10mmのフィルムを得
た。
Example 3 Poly-3-hydroxybutyrate-poly-3-hydroxyvalerate copolymer (manufactured by Zeneca Corporation, trade name; Biopol, S-30) 80 parts and squirt fiber 20 parts were ribbons. After mixing with a blender, twin screw extruder cylinder temperature 150
Pelletization was carried out under the condition of 170 ° C. Further, the extruder was melted under the condition of a cylinder temperature of 150 to 160 ° C., and a film having a thickness of 0.10 mm was obtained from the T die at the tip of the extruder.

【0013】比較例1 実施例1記載のポリ−L−乳酸を、2軸押出機シリンダ
ー温度170〜210℃の条件にてペレット化した。該
ペレットを80℃のオーブンで熱処理し、押出機のシリ
ンダー温度160〜200℃の条件にて溶融し、押出機
先端のTダイから厚み0.10mmのフィルムを得た。
Comparative Example 1 The poly-L-lactic acid described in Example 1 was pelletized under the conditions of a twin screw extruder cylinder temperature of 170 to 210 ° C. The pellets were heat-treated in an oven at 80 ° C., melted under the conditions of an extruder cylinder temperature of 160 to 200 ° C., and a film having a thickness of 0.10 mm was obtained from a T die at the tip of the extruder.

【0014】比較例2 実施例1記載のポリ−L−乳酸70部と実施例2記載の
ポリカプロラクトン30部のブレンドポリマーを用い、
比較例1と同様に、フィルムを得た。
Comparative Example 2 Using a blend polymer of 70 parts of poly-L-lactic acid described in Example 1 and 30 parts of polycaprolactone described in Example 2,
A film was obtained in the same manner as in Comparative Example 1.

【0015】比較例3 実施例3記載のポリ−3−ヒドロキシブチレート−ポリ
−3−ヒドロキシバリレート共重合体を、2軸押出機シ
リンダー温度150〜170℃の条件にてペレット化し
た。更に、押出機のシリンダー温度150〜160℃の
条件にて溶融し、押出機先端のTダイから厚み0.10
mmのフィルムを得た。
Comparative Example 3 The poly-3-hydroxybutyrate-poly-3-hydroxyvalerate copolymer described in Example 3 was pelletized under the conditions of a twin-screw extruder cylinder temperature of 150 to 170 ° C. Further, it is melted under the condition that the cylinder temperature of the extruder is 150 to 160 ° C.
A film of mm was obtained.

【0016】比較例4 実施例1記載のポリ−L−乳酸80部と木材パルプ20
部をリボンブレンダーで混合後、実施例1と同様に、フ
ィルムを得た。 実施例1−3、比較例1−4で得られたこれらのフィル
ムから試験片を作成して、引張強度、土壌分解性を調べ
た。フィルムサンプルの引張強度は、JIS規格K−6
732に準じて測定した。分解性試験は2×5cmの試
験片を採取し、該試験片を温度35℃、水分30%の土
壌中に埋設して分解試験を行い、重量の減少率を求め
た。これらの結果を第1表(表1)、第2表(表2)に
示す。
Comparative Example 4 80 parts of poly-L-lactic acid described in Example 1 and 20 wood pulps
After mixing the parts with a ribbon blender, a film was obtained in the same manner as in Example 1. Test pieces were prepared from these films obtained in Example 1-3 and Comparative Example 1-4, and the tensile strength and soil degradability were investigated. The tensile strength of the film sample is JIS K-6.
It measured according to 732. In the decomposability test, a 2 × 5 cm test piece was sampled, and the test piece was embedded in soil at a temperature of 35 ° C. and a water content of 30% to perform a decomposition test to determine the weight reduction rate. The results are shown in Table 1 (Table 1) and Table 2 (Table 2).

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】実施例4 ポリ−L−乳酸90部とホヤ繊維10部をリボンブレン
ダーで混合後、2軸押出機シリンダー温度170〜21
0℃の条件にてペレット化した。該ペレットを80℃の
オーブンで熱処理し、(株)日本製鋼所JSW−75射
出成形機を用い、シリンダー温度160〜200℃の条
件にて溶融し、設定温度20℃の金型に充填し、厚さ1
mm、深さ30mm、底面75×100mmの成形物を
得た。成形物から採取した30×90mmの試験片の曲
げ弾性率は、17000kg/cm2 であった。また、
温度35℃、水分30%の土壌中に埋設して分解試験を
行ったところ、3カ月で21%の重量減少率を示した。
Example 4 90 parts of poly-L-lactic acid and 10 parts of ascidian fiber were mixed in a ribbon blender, and then the temperature of the twin-screw extruder was 170 to 21.
Pelletization was performed at 0 ° C. The pellets were heat-treated in an oven at 80 ° C, melted under the conditions of a cylinder temperature of 160 to 200 ° C using a Japan Steel Works JSW-75 injection molding machine, and filled in a mold at a set temperature of 20 ° C. Thickness 1
mm, depth 30 mm, and bottom surface 75 × 100 mm were obtained. The flexural modulus of the 30 × 90 mm test piece collected from the molded product was 17,000 kg / cm 2 . Also,
When it was buried in soil at a temperature of 35 ° C. and a water content of 30% and a decomposition test was performed, a weight loss rate of 21% was shown in 3 months.

【0020】[0020]

【発明の効果】本発明の、生分解性プラスチックとホヤ
セルロース繊維を含む成形物またはフィルムは、十分な
機械的強度と、崩壊性あるいは生分解性速度を持ち、容
器、ボトル、シート、フィルム、積層品、包装材料等の
用途に用いることができる。特に、ショッピングバッ
グ、ゴミ袋、農業用フィルム、化粧品容器、洗剤容器、
漂白剤容器、保冷箱、クッション材、食品包装材料等の
用途に好適である。また、本発明による成形物またはフ
ィルムは、その優れた機械的強度により、肉薄、軽量化
することが可能である。
Industrial Applicability The molded article or film containing the biodegradable plastic and the ascidian cellulose fiber of the present invention has sufficient mechanical strength and disintegration or biodegradability, and has a container, a bottle, a sheet, a film, It can be used for applications such as laminated products and packaging materials. In particular, shopping bags, garbage bags, agricultural films, cosmetic containers, detergent containers,
It is suitable for applications such as bleach containers, cold storage boxes, cushioning materials, and food packaging materials. Further, the molded product or film according to the present invention can be made thin and lightweight due to its excellent mechanical strength.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 生分解性プラスチックとホヤセルロース
繊維を含む崩壊性または生分解性ポリマー組成物。
1. A disintegratable or biodegradable polymer composition comprising a biodegradable plastic and ascidian fibers.
【請求項2】 ホヤセルロース繊維を、重量比で5〜6
0%含むことを特徴とする請求項1記載のポリマー組成
物。
2. Ascidian cellulose fiber in a weight ratio of 5 to 6
The polymer composition according to claim 1, wherein the polymer composition contains 0%.
【請求項3】 生分解性プラスチックがポリヒドロキシ
カルボン酸である請求項1記載のポリマー組成物。
3. The polymer composition according to claim 1, wherein the biodegradable plastic is polyhydroxycarboxylic acid.
【請求項4】 生分解性プラスチックがポリ乳酸または
乳酸とヒドロキシカルボン酸のコポリマーである請求項
3記載のポリマー組成物。
4. The polymer composition according to claim 3, wherein the biodegradable plastic is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid.
【請求項5】 請求項1〜4記載のポリマー組成物から
なる崩壊性または生分解性プラスチック成形物。
5. A disintegratable or biodegradable plastic molded product comprising the polymer composition according to any one of claims 1 to 4.
【請求項6】 請求項1〜4記載のポリマー組成物から
なる崩壊性または生分解性フィルム。
6. A disintegratable or biodegradable film comprising the polymer composition according to claim 1.
JP00623495A 1995-01-19 1995-01-19 Biodegradable polymer composition Expired - Fee Related JP3423094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00623495A JP3423094B2 (en) 1995-01-19 1995-01-19 Biodegradable polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00623495A JP3423094B2 (en) 1995-01-19 1995-01-19 Biodegradable polymer composition

Publications (2)

Publication Number Publication Date
JPH08193168A true JPH08193168A (en) 1996-07-30
JP3423094B2 JP3423094B2 (en) 2003-07-07

Family

ID=11632835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00623495A Expired - Fee Related JP3423094B2 (en) 1995-01-19 1995-01-19 Biodegradable polymer composition

Country Status (1)

Country Link
JP (1) JP3423094B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202690A (en) * 1997-01-27 1998-08-04 Nissha Printing Co Ltd Insert film, insert molded product and its manufacture
JPH10316739A (en) * 1997-05-16 1998-12-02 Kanebo Ltd Refuse sack
JP2002121396A (en) * 2000-10-13 2002-04-23 Yayoi Chemical Industry Co Ltd Filler for resin and article using the same
EP1400328A1 (en) * 2002-09-18 2004-03-24 Araco Corporation Fiber board and its producing method
WO2005003450A1 (en) * 2003-07-08 2005-01-13 Kansai Technology Licensing Organization Co., Ltd. Process for production of aliphatic polyester composition, pulp and cellulosic fiber to be used therein, and process for microfibrillation thereof
JP2006089643A (en) * 2004-09-24 2006-04-06 Mitsubishi Plastics Ind Ltd Resin composition and molded body thereof
JP2007138106A (en) * 2005-11-22 2007-06-07 Unitika Ltd Resin composition
JP2008024795A (en) * 2006-07-19 2008-02-07 Kyoto Univ Microfibrillated cellulose-containing resin molded product with improved strength
US7378149B2 (en) 2001-12-26 2008-05-27 Kansai Technology Licensing Organization Co, Ltd. High strength material using cellulose microfibrils
JP2008150492A (en) * 2006-12-18 2008-07-03 Daicel Polymer Ltd Resin composition
WO2014034071A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Thermoplastic resin composition and molded article
JP2018511309A (en) * 2015-03-12 2018-04-26 タイムプラスト インターナショナル,エルエルシー Composition for plastic degradation
KR101877703B1 (en) * 2018-01-24 2018-07-12 충남대학교산학협력단 Manufacturing method of eco-friendly food packaging films using sea squirt shell protein and polylactic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243128B2 (en) 2009-12-11 2016-01-26 Kao Corporation Composite material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202690A (en) * 1997-01-27 1998-08-04 Nissha Printing Co Ltd Insert film, insert molded product and its manufacture
JPH10316739A (en) * 1997-05-16 1998-12-02 Kanebo Ltd Refuse sack
JP2002121396A (en) * 2000-10-13 2002-04-23 Yayoi Chemical Industry Co Ltd Filler for resin and article using the same
US7378149B2 (en) 2001-12-26 2008-05-27 Kansai Technology Licensing Organization Co, Ltd. High strength material using cellulose microfibrils
EP1400328A1 (en) * 2002-09-18 2004-03-24 Araco Corporation Fiber board and its producing method
US7416779B2 (en) 2002-09-18 2008-08-26 Toyota Auto Body Co. Ltd. Fiber board and its producing method
WO2005003450A1 (en) * 2003-07-08 2005-01-13 Kansai Technology Licensing Organization Co., Ltd. Process for production of aliphatic polyester composition, pulp and cellulosic fiber to be used therein, and process for microfibrillation thereof
JP2006089643A (en) * 2004-09-24 2006-04-06 Mitsubishi Plastics Ind Ltd Resin composition and molded body thereof
JP2007138106A (en) * 2005-11-22 2007-06-07 Unitika Ltd Resin composition
JP2008024795A (en) * 2006-07-19 2008-02-07 Kyoto Univ Microfibrillated cellulose-containing resin molded product with improved strength
JP2008150492A (en) * 2006-12-18 2008-07-03 Daicel Polymer Ltd Resin composition
WO2014034071A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Thermoplastic resin composition and molded article
JP5527489B1 (en) * 2012-08-31 2014-06-18 東レ株式会社 Thermoplastic resin composition and molded article
JP2018511309A (en) * 2015-03-12 2018-04-26 タイムプラスト インターナショナル,エルエルシー Composition for plastic degradation
KR101877703B1 (en) * 2018-01-24 2018-07-12 충남대학교산학협력단 Manufacturing method of eco-friendly food packaging films using sea squirt shell protein and polylactic acid

Also Published As

Publication number Publication date
JP3423094B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JP3423094B2 (en) Biodegradable polymer composition
JP3037431B2 (en) Degradable polymer composition
US6150438A (en) Composite resin composition
US5883199A (en) Polyactic acid-based blends
US5763513A (en) L-lactic acid polymer composition, molded product and film
Yu et al. Polymer blends and composites from renewable resources
JP3436368B2 (en) Melt-stable lactide polymer film and method for producing the same
JP5759611B2 (en) Blend of polylactide and water-soluble polymer
JP2725870B2 (en) Degradable lactide thermoplastic
Cinelli et al. Biocomposites based on polyhydroxyalkanoates and natural fibres from renewable byproducts
JPH06504799A (en) Packaging thermoplastics from lactic acid
US9085677B2 (en) Bioplastics
WO2005085346A1 (en) Biodegradable polyester resin composition, process for producing the same, and foam and molding obtained therefrom
JP2006525136A (en) Molded or extruded articles comprising a polyhydroxyalkanoate copolymer and a thermoplastic polymer that is environmentally degradable
CA2641924A1 (en) Environmentally degradable polymeric composition and process for obtaining an environmentally degradable polymeric composition
MXPA06004977A (en) Starch-vegetable oil graft copolymers and their biofiber composites, and a process for their manufacture.
CN113897040A (en) Preparation method of degradable food packaging material with high mechanical strength
Seggiani et al. Development of fibres-reinforced biodegradable composites
Jeziorska et al. Characteristics of biodegradable polylactide/thermoplastic starch/nanosilica composites: effects of plasticizer and nanosilica functionality
CN111410822A (en) PBAT/P L A starch-based completely biodegradable material and preparation method thereof
US20240018314A1 (en) Tea Fiber/PHBV/PBAT Ternary Composite and Preparation Method and Application Thereof
JP3933315B2 (en) Composite resin composition
KR101143965B1 (en) Decomposing resin pellet, its manufacture method and a product using it thereof
Hoque et al. Agro-based green biocomposites for packaging applications
Rigotti Polymer composites for sustainable 3D printing materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees