WO2014034071A1 - Thermoplastic resin composition and molded article - Google Patents

Thermoplastic resin composition and molded article Download PDF

Info

Publication number
WO2014034071A1
WO2014034071A1 PCT/JP2013/004998 JP2013004998W WO2014034071A1 WO 2014034071 A1 WO2014034071 A1 WO 2014034071A1 JP 2013004998 W JP2013004998 W JP 2013004998W WO 2014034071 A1 WO2014034071 A1 WO 2014034071A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polylactic acid
weight
thermoplastic resin
parts
Prior art date
Application number
PCT/JP2013/004998
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 大輔
陽介 尾上
熊澤 貞紀
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013541100A priority Critical patent/JP5527489B1/en
Publication of WO2014034071A1 publication Critical patent/WO2014034071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a thermoplastic resin composition.
  • polylactic acid resin is attracting attention as a biopolymer because lactic acid, which is a monomer of polylactic acid resin, is produced at low cost by fermentation using microorganisms.
  • the melting point of polylactic acid resin is as high as about 170 ° C.
  • Polylactic acid resins are expected as biopolymers that can be melt-molded.
  • Patent Document 1 Japanese Patent Document 1
  • the resin composition of Patent Document 1 is a resin composition containing a resin, a cellulosic fiber, and a dispersant having a hydroxyl value of 30 mgKOH / g or more, and can satisfactorily disperse the cellulosic fiber.
  • the resin composition is excellent in mechanical strength, impact strength, and moldability.
  • Patent Document 1 does not have any specific examples regarding polylactic acid resin and biodegradability.
  • the polylactic acid resin composition of Patent Document 2 is a polylactic acid resin composition containing a polylactic acid resin, natural fibers, and a coupling agent, and has excellent mechanical strength, heat resistance, moldability, and hue of a molded product. It is a polylactic acid resin composition.
  • the resin composition of Patent Document 2 has a certain degree of improvement in mechanical strength, heat resistance, moldability, and hue of the molded product, but the effect is not sufficient.
  • Patent Document 2 has no specific disclosure about the biodegradability of the polylactic acid resin composition.
  • the resin composition of Patent Document 2 is highly compatible with the balance of properties such as biodegradability, extrusion processability, injection moldability, surface smoothness, rigidity, impact resistance, and heat resistance of molded products. There was a problem that it was difficult.
  • the resin composition of Patent Document 3 includes a crystallization accelerator, a thermoplastic resin other than a polylactic acid resin, a filler other than a natural organic filler, and a stabilizer for a polylactic acid resin and a natural organic filler.
  • a resin composition comprising at least one selected from a mold release agent and a carboxyl group-reactive end-blocking agent.
  • the resin composition of Patent Document 3 is a resin composition having a certain degree of moldability, mechanical properties, and heat resistance, but its effect is not sufficient. Further, the resin composition of Patent Document 3 has problems that extrudability, coloring during molding, and odor deteriorate.
  • the resin composition of Patent Document 4 is a natural fiber reinforced polylactic acid resin composition containing natural fibers surface-treated with a first polylactic acid resin and a second polylactic acid resin, and the second polylactic acid resin is a first polylactic acid resin. It is a natural fiber reinforced polylactic acid resin composition containing an isomer different from the lactic acid resin.
  • the resin composition of patent document 4 is a resin composition which has a certain amount of hydrolysis resistance, mechanical strength, and heat resistance, the effect is not enough. Further, the resin composition of Patent Document 4 has a problem that extrudability, coloration during molding, and odor deteriorate.
  • the resin composition of Patent Document 5 is a vegetable resin composition containing polylactic acid, a thermoplastic resin, and a polymer type compatibilizing agent having alkyl methacrylate as a monomer component.
  • the resin composition of Patent Document 5 is a resin composition having a certain degree of impact resistance and heat resistance, its effect is not sufficient. Further, the resin composition of Patent Document 5 has a problem that it is difficult to achieve a balance between biodegradability, rigidity, impact resistance, and heat resistance.
  • the composition of Patent Document 6 is a lactic acid polymer composition containing a lactic acid polymer, a fibrous (needle-like) filler, and an impact modifier. Although the composition of patent document 6 has a certain amount of heat resistance and impact resistance, the effect is not enough. Moreover, the composition of patent document 6 had the subject which extrusion molding processability, the coloring at the time of a shaping
  • the method for producing a resin composition of Patent Document 7 is a resin composition in which a polylactic acid resin and a naturally-derived organic filler are melt-kneaded using a melt-kneading apparatus under specific resin temperature, residence time, and shear rate conditions. It is a manufacturing method of a thing. Although the resin composition having a certain degree of heat resistance, appearance, and color tone can be produced by the production method of Patent Document 7, the effect is not sufficient. Further, the resin composition of Patent Document 7 has a problem that it is inferior in the balance of extrusion processability, injection moldability, biodegradability, mechanical properties, and the like.
  • the extrusion processability and injection moldability are excellent, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, impact resistance, and heat resistance are balanced.
  • the resin composition that is excellent and excellent in coloration and odor, there are many requests for materials that can be used practically without problems, and further improvements have been demanded.
  • the present invention which is difficult in the above-described prior art, is excellent in extrusion processability and injection moldability, excellent in surface smoothness of molded products, and balanced in biodegradability, rigidity, impact resistance, and heat resistance. It is an object of the present invention to provide a resin composition that is excellent in color and has reduced coloring and odor and a molded product comprising the same.
  • the present invention employs the following means in order to solve such problems.
  • thermoplastic resin composition obtained by blending 1 to 100 parts by weight of cellulose fiber to 100 parts by weight of a polylactic acid resin, wherein (A) in the thermoplastic resin composition The carboxyl terminal amount of the polylactic acid resin is in the range of 10 eq / t to 100 eq / t, (B) the average fiber diameter of the cellulose fibers is in the range of 0.1 ⁇ m to 15 ⁇ m, and the average fiber length is 200 ⁇ m to 800 ⁇ m. A thermoplastic resin composition that is within the range.
  • thermoplastic resin composition as described in (1) above, wherein the amount of residual metal catalyst contained in (A) the polylactic acid resin is in the range of 1 ppm to 500 ppm.
  • thermoplastic resin composition according to the above (1) or (2), wherein the maximum height (Ry) of the surface roughness of the extruded product made of the thermoplastic resin composition is 600 ⁇ m or less. , A thermoplastic resin composition.
  • thermoplastic resin composition according to any one of (1) to (3) above, further comprising (A) a weight average molecular weight of 1,000,000 to 100 parts by weight of the polylactic acid resin.
  • a thermoplastic resin composition obtained by blending 0.1 to 20 parts by weight of (C) acrylic resin that is 7.5 million.
  • thermoplastic resin composition according to any one of (1) to (4) above, wherein (B) the bulk density of the cellulose fiber before blending is from 30 kg / m 3 to 200 kg / m A thermoplastic resin composition within the range of 3 .
  • thermoplastic resin composition according to any one of (1) to (5) above, further comprising (D) a crystal nucleating agent for 100 parts by weight of the polylactic acid resin.
  • a thermoplastic resin composition comprising 0.1 to 20 parts by weight.
  • thermoplastic resin composition according to any one of (1) to (6) above, further comprising (E) 1 plasticizer per 100 parts by weight of the polylactic acid resin.
  • a thermoplastic resin composition comprising 20 parts by weight.
  • thermoplastic resin composition according to any one of (1) to (7) above.
  • the extrusion processability and the injection moldability are excellent, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, impact resistance, and heat resistance are balanced, and the coloring and odor are further improved. Can be provided.
  • the (A) polylactic acid resin refers to a polymer mainly composed of L-lactic acid and / or D-lactic acid, but may contain other copolymer components other than lactic acid.
  • Examples of structural units of other copolymer components include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones.
  • constituent unit of the copolymer component include (i) oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, fumaric acid, cyclohexanedicarboxylic acid, Polycarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid, (ii) ethylene glycol, propylene Glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedim
  • a polylactic acid stereocomplex as the (A) polylactic acid resin in terms of moldability and heat resistance.
  • a method for forming a polylactic acid stereocomplex include melt-kneading, solid-phase kneading, or solution mixing of poly-L-lactic acid having 90% or more of L-form and poly-D-lactic acid having 90% or more of D-form. The method of mixing using the method of can be mentioned.
  • the poly-L-lactic acid L form is preferably 95%, more preferably 98% or more.
  • the D-form of poly-D-lactic acid is preferably 95%, more preferably 98% or more from the viewpoint of heat resistance.
  • a method of forming a block copolymer from a poly-L-lactic acid segment and a poly-D-lactic acid segment can also be mentioned. From the viewpoint that a polylactic acid stereocomplex can be easily formed, a method of forming a block copolymer comprising a poly-L-lactic acid segment and a poly-D-lactic acid segment is preferred.
  • a polylactic acid stereocomplex may be used alone, or a polylactic acid stereocomplex and poly-L-lactic acid or poly-D-lactic acid may be used in combination.
  • the molecular weight and molecular weight distribution of the polylactic acid resin are not particularly limited as long as they can be substantially molded.
  • the weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more, further preferably 100,000 or more, and particularly preferably 200,000 from the viewpoint that the phase structure can be easily controlled and the impact resistance is improved. That is good.
  • the upper limit of the weight average molecular weight of the polylactic acid resin is not particularly limited, but is preferably 800,000 or less, more preferably 600,000 or less, and still more preferably 400,000 or less.
  • the weight average molecular weight of (A) polylactic acid resin refers to polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC, “Water Model 510” manufactured by Waters) using hexafluoroisopropanol as a solvent. It is a weight average molecular weight in terms of conversion.
  • the melting point of the polylactic acid resin is not particularly limited, but is preferably 120 ° C. or higher, and more preferably 150 ° C. or higher.
  • a method for producing the (A) polylactic acid resin a known polymerization method can be used.
  • A) As a manufacturing method of polylactic acid resin the direct polymerization method from lactic acid, the ring-opening polymerization method via lactide, etc. can be used, for example.
  • a catalyst can be used for the polymerization of (A) polylactic acid resin.
  • a metal catalyst or a non-metal catalyst may be used, but a metal catalyst is preferable.
  • the amount of the residual metal catalyst contained in the polylactic acid resin (A) in the resin composition is represented by the content of the metal contained in the metal catalyst added during the polymerization.
  • a metal catalyst well-known metal catalysts, such as a tin compound, a titanium compound, a lead compound, a zinc compound, a cobalt compound, an iron compound, a lithium compound, can be used.
  • the amount of carboxyl terminal of (A) polylactic acid resin in the resin composition to be described later is controlled by controlling the amount of residual catalyst of (A) polylactic acid resin.
  • a resin composition having excellent physical properties and having a higher biodegradation rate than (A) a polylactic acid resin alone can be produced.
  • the amount of the residual metal catalyst of the (A) polylactic acid resin is preferably 1 ppm or more, more preferably 5 ppm or more, and more preferably 10 ppm or more from the viewpoint that biodegradability and mechanical properties of the molded product are improved. More preferred is 10 ppm or more.
  • the residual metal catalyst amount of (A) polylactic acid resin is preferably 500 ppm or less, more preferably 400 ppm or less, further preferably 300 ppm or less, and particularly preferably 100 ppm. .
  • the amount of the residual metal catalyst is in the range of 1 ppm to 500 ppm, it is preferable in terms of improving biodegradability and mechanical properties of the molded product.
  • (A) the amount of the residual metal catalyst of the polylactic acid resin was determined by (A) heat-decomposing the polylactic acid resin with nitric acid and sulfuric acid and then heating and dissolving with dilute nitric acid. CID-AP ").
  • the (A) carboxyl terminal amount of the polylactic acid resin means the carboxyl terminal amount of the (A) polylactic acid resin before melt kneading.
  • the carboxyl terminal amount of (A) polylactic acid resin is such that the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition to be described later is within the range of 10 eq / t to 100 eq / t. If so, there is no particular limitation.
  • the carboxyl terminal amount of (A) polylactic acid resin in a thermoplastic resin composition 15 eq / t or more is especially preferable.
  • 50 eq / t or less is preferable, as for the carboxyl terminal amount of (A) polylactic acid resin in a thermoplastic resin composition, 40 eq / t or less is more preferable, and 30 eq / t or less is especially preferable.
  • examples of the (B) cellulose fiber include natural cellulose fiber, regenerated cellulose fiber, purified cellulose fiber, and semi-synthetic cellulose fiber.
  • Natural cellulose fibers include seed hair fibers such as cotton, kapok, acund, blue bacyclomon, green hemp, flax, rush, icy, Indian hemp, eneda, jute, ramie, and kenaf (marine).
  • Plant fibers made of bast fibers such as sisal hemp, hemp, panga, bontenka, manila hemp, palm fiber, roselle and the like.
  • Examples of regenerated cellulose fibers include rayon, “polynosic”, “cupra”, and nitrocellulose.
  • Examples of the purified cellulose fiber include “Tencel” and “Lyocell”.
  • Semi-synthetic cellulose fibers include (i) organic acid esters such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate, (ii) cellulose nitrate, and cellulose sulfate. , Inorganic acid esters such as cellulose phosphate, (iii) mixed acid esters such as cellulose nitrate acetate, (iv) hydroxyalkyl cellulose, carboxyalkyl cellulose, alkyl cellulose and the like.
  • the average fiber diameter of the cellulose fibers is 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the average fiber diameter of (B) cellulose fiber is 15 micrometers or less, 14 micrometers or less are more preferable, and 13 micrometers or less are especially preferable.
  • the average fiber diameter is larger than 15 ⁇ m, the extrusion processability, the balance of mechanical properties, and the supply property at the time of melt kneading deteriorate.
  • the average fiber length of the cellulose fibers is 200 ⁇ m or more, more preferably 300 ⁇ m or more, and particularly preferably 400 ⁇ m or more.
  • the average fiber length of a cellulose fiber is 800 micrometers or less, 600 micrometers or less are more preferable, and 500 micrometers or less are especially preferable.
  • the average fiber length is larger than 800 ⁇ m, the extrusion processability and the supply property at the time of melt kneading are not preferable.
  • the average fiber length of the (B) cellulose fiber is an average fiber length measured using “MorFI Fiber Analyzer” manufactured by Techpap.
  • the average fiber diameter of the cellulose fiber is determined by measuring using a “Vibrodyn Fiber Fiber Analyzer” manufactured by Lenzing Technique Instruments Co., Ltd., and determining the titer based on the density. The fiber diameter.
  • “titer” is a measure of the thickness of the fiber.
  • thermoplastic resin composition (B) The average fiber length and average fiber diameter of the cellulose fibers are not changed even in the thermoplastic resin composition.
  • the thermoplastic resin composition is dissolved in a good solvent (such as chloroform), (A) the polylactic acid resin and (B) the cellulose fiber are separated, and the dried (B) average fiber length and average fiber diameter of the cellulose fiber are determined. By measuring on the said conditions, it can confirm that there is no change also in a thermoplastic resin composition.
  • the (B) cellulose fiber is preferably a purified cellulose fiber from the viewpoint that the bulk density and fiber length are controllable and from the viewpoint that the odor and coloring of the melt-kneaded resin composition are reduced.
  • the bulk density of the previous (B) cellulosic fibers to be blended is preferably 30kg / m 3 or more, more preferably 40 kg / m 3 or more, more preferably 50 kg / m 3 or more, 70 kg / m 3 or more is particularly preferable, and 100 kg / m 3 or more is most preferable.
  • the bulk density of the previous (B) cellulosic fibers to be blended is preferably from 200 kg / m 3 or less, more preferably 150 kg / m 3 or less, more preferably 140 kg / m 3 or less.
  • the bulk density of the (B) cellulose fiber is a value measured using a “Powder Tester” manufactured by Hosokawa Micron Corporation in a 23 ° C., 50% RH (RelativeRHumidity) environment.
  • the blending amount of (B) cellulose fiber is 1 part by weight or more, more preferably 5 parts by weight or more, and particularly preferably 10 parts by weight or more. Moreover, the compounding quantity of (B) cellulose fiber is 100 weight part or less, 95 weight part or less is more preferable, and 90 weight part or less is especially preferable.
  • the blending amount is 1 part by weight or more, the mechanical properties of the molded product are improved. Further, when the blending amount is 100 parts by weight or less, the fuzz of the strands during melt-kneading is reduced, and deterioration of extrusion processability due to strand breakage can be prevented.
  • the crystallinity of the (B) cellulose fiber is preferably 50% or more, more preferably 55% or more, and most preferably 60% or more in terms of excellent injection moldability, rigidity, and heat resistance. It is.
  • the crystallinity referred to here is cellulose I-type crystallinity calculated by the Segal method from the diffraction intensity value by the X-ray diffraction method.
  • the degree of crystallinity is derived from the following calculation formula (1).
  • “RINT2000 / PC” manufactured by Rigaku Corporation is used as the X-ray diffraction apparatus used for the X-ray diffraction method.
  • the dispersion state of the (B) cellulose fiber in the resin composition is not particularly limited, but the (B) cellulose fiber in the resin composition is improved in terms of improved extrusion processability and mechanical properties.
  • (C) a molecular chain of the acrylic resin, which will be described later, is physically entangled moderately.
  • the maximum height (Ry) of the surface roughness of an extruded product made of a thermoplastic resin composition is 600 ⁇ m in that it is excellent in extrusion processability, injection moldability, and surface appearance of the molded product. Or less, more preferably 550 ⁇ m or less, and most preferably 500 ⁇ m or less.
  • Ry refers to an extruded product having a diameter of 3 mm and a length of 10 mm of an extruded strand having a surface of 5 mm, using a surface roughness measuring machine “SV-2100” manufactured by Mitutoyo Corporation, and JIS B 0601 (1994). ), A cutoff value ( ⁇ c): a maximum height (Ry) measured at 0.8 mm.
  • (C) Acrylic resin In the embodiment of the present invention, it is preferable to blend (C) an acrylic resin in terms of excellent extrusion processability, injection moldability, surface appearance of a molded product, and mechanical properties.
  • the weight average molecular weight of the acrylic resin is preferably 1 million or more, more preferably 2 million or more, and most preferably 3 million or more.
  • the weight average molecular weight of the (C) acrylic resin is preferably 7.5 million or less, more preferably 6 million or less, and most preferably 5 million or less.
  • weight average molecular weight of (C) acrylic resin is in the range of 1,000,000 to 7.5 million, physical entanglement between (B) cellulose fibers and (C) acrylic resin molecular chains will increase, and extrusion molding will occur. This is preferable in terms of improving workability, injection moldability, surface appearance of molded products, and mechanical properties.
  • the weight average molecular weight of the (C) acrylic resin here is polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC, “Water Model 510” manufactured by Waters) using hexafluoroisopropanol as a solvent. It is a weight average molecular weight in terms of conversion.
  • PMMA polymethyl methacrylate
  • the (C) acrylic resin is a polymer of alkyl (meth) acrylate and / or a copolymer of alkyl (meth) acrylate.
  • alkyl (meth) acrylate examples include methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate, Aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, butanediol diacrylate, diacryl Acid nonanediol, polyethylene glycol diacrylate, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, methacrylic acid, methacrylate Ethyl phosphate, buty
  • a copolymer obtained by copolymerizing an alkyl (meth) acrylate and other vinyl monomers can be used as the (C) acrylic resin.
  • Other vinyl monomers include aromatic vinyl monomers such as ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, o-ethyl styrene, p-ethyl styrene, pt-butyl styrene.
  • Vinyl cyanide monomers such as acrylonitrile, methacrylonitrile, ethacrylonitrile, glycidyl itaconate, allyl glycidyl ether, styrene-p-glycidyl ether, p-glycidyl styrene, maleic anhydride, maleic acid monoethyl ester N-substituted maleimides such as itaconic acid, itaconic anhydride, glutaric anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, acrylamide, methacrylamide, N-methylacrylamide, Butoxymethyl Kurylamide, N-propylmethacrylamide, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, p-aminostyrene,
  • a copolymer containing a cyclic structural unit such as a lactone ring, maleic anhydride, glutaric anhydride or the like in the main chain can be used as the (C) acrylic resin.
  • the acrylic resin used in the embodiment of the present invention contains a methyl methacrylate component unit as a main component.
  • the acrylic resin is preferably a polymethyl methacrylate resin containing 70% or more of a methyl methacrylate component unit, more preferably a polymethyl methacrylate resin containing 80% or more, and more preferably 90%.
  • the blending amount of the (C) acrylic resin is 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, with respect to 100 parts by weight of the (A) polylactic acid resin. More preferably, it is 1 part by weight or more. Moreover, the compounding quantity of (C) acrylic resin is 20 parts weight or less with respect to 100 weight part of (A) polylactic acid resin, More preferably, it is 15 parts weight or less, More preferably, it is 10 parts weight or less. . (C) If the blending amount of the acrylic resin is 0.1 to 20 parts by weight, it is preferable in terms of improving the balance of extrusion processability, injection moldability, surface appearance of the molded product, and mechanical properties.
  • the glass transition temperature of the (C) acrylic resin is preferably 60 ° C or higher, more preferably 70 ° C or higher, further preferably 80 ° C or higher, particularly preferably 90 ° C or higher, and 100 ° C or higher. Most preferred.
  • the upper limit of the glass transition temperature of acrylic resin is not specifically limited, 150 degreeC or less is preferable at the point of extrusion moldability and injection moldability.
  • the glass transition temperature here is a value of the glass transition temperature measured by “DSC-7” manufactured by Perkin Elmer as a differential scanning calorimeter (DSC), and the specific heat capacity change in the glass transition temperature region is a half value. Temperature.
  • (C) what is marketed as an acrylic resin, for example, Metablene P series manufactured by Mitsubishi Rayon Co., PARALOID K series manufactured by Dow Chemical Co., and Kaneace PA series manufactured by Kaneka Co., Ltd. Etc.
  • the (D) crystal nucleating agent means one or more crystal nucleating agents selected from an inorganic crystal nucleating agent and an organic crystal nucleating agent.
  • the inorganic crystal nucleating agent examples include talc, kaolinite, montmorillonite, mica, synthetic mica, clay, zeolite, silica, graphite, carbon black, zinc oxide, magnesium oxide, calcium oxide, Examples thereof include titanium oxide, calcium sulfide, boron nitride, magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, neodymium oxide, and metal salts of phenylphosphonate. These inorganic crystal nucleating agents may be used alone or in combination of two or more.
  • Talc kaolinite, montmorillonite, mica and synthetic mica are preferred in that the effect of improving heat resistance is great, and talc is more preferred in terms of moldability.
  • These inorganic crystal nucleating agents are preferably modified with an organic substance in order to improve dispersibility in the resin composition.
  • organic crystal nucleating agent examples include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, Potassium terephthalate, calcium oxalate, sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium octacosanoate, calcium octacosanoate, sodium stearate, potassium stearate, lithium stearate, calcium stearate , Magnesium stearate, barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, salicylic acid Organic carboxylic acid metal salts such as sodium, zinc salicylate, aluminum dibenzoate, potassium dibenzoate, lithium dibenzoate, sodium ⁇ -naphthalate and sodium cyclohexanecarboxylate, organic carboxylic acid metal salts such as sodium,
  • organic crystal nucleating agents can be used alone or in combination of two or more. From the viewpoint that the effect of improving injection moldability and heat resistance is great, organic carboxylic acid metal salts and carboxylic acid amides are preferred.
  • the average particle diameter of the (D) crystal nucleating agent used as a raw material is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, and 0.1 ⁇ m or more. More preferably.
  • the average particle diameter of the (D) crystal nucleating agent is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle diameter of the (D) crystal nucleating agent is a numerical value of D50 measured by “SALD-2000J” manufactured by Shimadzu Corporation.
  • the dispersibility of the (D) crystal nucleating agent in the resin composition it is preferable in terms of moldability, impact resistance and heat resistance to improve the dispersibility of the (D) crystal nucleating agent in the resin composition. Moreover, since the dispersibility of the (D) crystal nucleating agent in the resin composition can be improved as the average particle size of the (D) crystal nucleating agent is smaller, the injection moldability, impact resistance, and heat resistance are improved. More preferable in terms.
  • the blending amount of the (D) crystal nucleating agent is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more, based on 100 parts by weight of the (A) polylactic acid resin. .5 parts by weight or more is particularly preferable. Further, the blending amount of the (D) crystal nucleating agent is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less with respect to 100 parts by weight of the (A) polylactic acid resin. When the blending amount is in the range of 0.1 to 20 parts by weight, it is preferable from the viewpoint of improving mechanical properties such as injection moldability, bending elastic modulus and heat resistance.
  • the (E) plasticizer includes a polyester plasticizer, a glycerin plasticizer, a polycarboxylic acid ester plasticizer, a polyalkylene glycol plasticizer, an epoxy plasticizer, and a castor oil plasticizer.
  • An agent etc. can be mentioned.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3-butanediol, And polyesters composed of diol components such as 1,4-butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acid such as polycaprolactone. These polyester plasticizers may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, glycerin monoacetomonomontanate or glycerin.
  • a triacetate etc. can be mentioned.
  • the glycerin plasticizer may be one to which an alkylene oxide unit such as ethylene oxide or propylene oxide is added, such as polyoxyethylene glycerin triacetate.
  • glycerin plasticizer examples include diglycerin palmitic acid ester, diglycerin stearic acid ester, diglycerin oleic acid ester, decaglycerin palmitic acid ester, decaglycerin stearic acid ester, decaglycerin oleic acid ester and the like.
  • a glycerin fatty acid ester is mentioned.
  • the polyvalent carboxylic acid plasticizer includes phthalate esters such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, and butyl benzyl phthalate.
  • Succinic acid esters such as tributyl trimellitic acid, trioctyl trimellitic acid, trihexyl trimellitic acid, trihexyl trimellitic acid, isodecyl succinate, triethylene glycol monomethyl ether succinate, benzyl methyl diglycol succinate, adipic acid Diisodecyl, adipic acid n-octyl-n-decyl ester, adipic acid diethylene glycol monomethyl ether ester, adipic acid methyl diglycol butyl diglycol ester, adipic acid Adipic acid esters such as benzyl methyl diglycol ester and benzylbutyl diglycol adipate, azelaic acid esters such as di-2-ethylhexyl azelate, sebacic acid esters such as dibutyl sebacate and di-2-ethylhexyl sebacate, etc. Can be mentioned
  • the polyalkylene glycol plasticizer includes polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols. And polyalkylene glycols such as propylene oxide addition polymers of bisphenols and tetrahydrofuran addition polymers of bisphenols or end-capping compounds such as terminal epoxy-modified compounds or terminal ether-modified compounds thereof.
  • the plasticizer is preferably polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer from the viewpoint of heat resistance.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but in addition, mainly bisphenol A and epichlorohydrin are used as raw materials. Such so-called epoxy resins can also be mentioned.
  • the castor oil plasticizer may be any castor oil and derivatives thereof, such as castor oil, dehydrated castor oil, castor oil, castor oil fatty acid, dehydrated castor oil fatty acid, Ricinoleic acid, ricinoleic acid, 12-hydroxystearic acid, sebacic acid, undecylenic acid, heptyl acid, castor oil fatty acid condensate, castor oil fatty acid ester, methyl ricinolate, ethyl ricinolate, isopropyl ricinolate, butyl ricinolate, ethylene glycol Monolysylate, propylene glycol monolysylate, trimethylolpropane monolysylate, sorbitan monolysylate, castor oil fatty acid polyethylene glycol ester, castor oil ethylene oxide adduct, castor oil-based polyol, castor oil-based toll , And the like Lumpur or castor oil diol.
  • plasticizers include neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, polyoxyethylene diacetate, polyoxyethylene di (2-ethylhexanoate), poly Polyol esters such as oxypropylene monolaurate, polyoxypropylene monostearate, polyoxyethylene dibenzoate, polyoxypropylene dibenzoate, aliphatic carboxylic acid esters such as butyl oleate, triethyl acetylcitrate, tributyl acetylcitrate, Oxyacid esters such as ethoxycarbonylmethyldibutyl citrate, di-2-ethylhexyl citrate, methyl acetylricinoleate or butyl acetylricinoleate, large Oil, soybean oil fatty acid, soybean oil fatty acid ester, epoxidized soybean oil, rapeseed
  • the plasticizer (E) may be one kind or a combination of two or more kinds, but it may contain two or more kinds in terms of moldability, transparency and heat resistance.
  • at least one is a polyalkylene glycol plasticizer.
  • two or more polyalkylene glycol plasticizers can be used in combination.
  • the amount of the plasticizer (E) is preferably 1 part by weight or more with respect to 100 parts by weight of the polylactic acid resin (A) in terms of injection moldability, heat resistance and impact resistance. 2 parts by weight or more is more preferable, and 3 parts by weight or more is particularly preferable.
  • the blending amount of the plasticizer (E) is preferably 20 parts by weight or less and 100 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin (A) in terms of injection moldability, heat resistance and impact resistance. More preferably, it is more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less. When the blending amount is in the range of 1 to 20 parts by weight, it is preferable from the viewpoint of improving mechanical properties such as injection moldability, bending elastic modulus and heat resistance.
  • thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin is appropriately blended as necessary.
  • thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin include, for example, polypropylene resin, polyethylene resin, ethylene / ⁇ -olefin copolymer.
  • thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin may be used alone or in combination of two or more.
  • thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin when included, the blending amount of (F) thermoplastic resin is (A) polylactic acid resin 100.
  • the amount is preferably 1 part by weight or more, more preferably 2 parts by weight or more, most preferably 3 parts by weight or more, preferably 200 parts by weight or less, more preferably 150 parts by weight or less, most preferably 100 parts by weight. Less than parts by weight.
  • a filler different from an inorganic crystal nucleating agent among (B) cellulose fiber and (D) crystal nucleating agent within a range not impairing the object of the present invention Glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber, glass flake, glass bead, ceramic fiber, ceramic bead, asbestos, wollastonite, sericite, bentonite, dolomite, fine silicate, feldspar powder, potassium titanate, Shirasu balloon, aluminum silicate, silicon oxide, gypsum, novaculite, dosonite or clay, catalyst deactivators (hindered phenol compounds, thioether compounds, vitamin compounds, triazole compounds, polyamine compounds, hydrazine) Derivative compounds, phosphorus compounds, etc.), UV absorption Agents (resorcinol, salicylate, benzotriazole, benzophenone, etc.), heat stabilizers (hin
  • the blending amount of the other additives is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and most preferably 0.1 parts by weight with respect to 100 parts by weight of the (A) polylactic acid resin.
  • the amount is preferably 100 parts by weight or less, more preferably 80 parts by weight or less, and most preferably 50 parts by weight or less.
  • thermoplastic resin composition a method of uniformly melting and kneading using a single screw extruder or a twin screw extruder, a method of volatilizing a solvent after mixing in a solution, or the like.
  • the method of removing can be preferably used, but a method of uniformly melting and kneading using a single screw extruder or a twin screw extruder is more preferable, and a method of uniformly melting and kneading using a twin screw extruder is particularly preferable. preferable.
  • examples of the type of the twin screw extruder include a different direction type and a same direction type with respect to the rotational direction of the twin screw.
  • the meshing of the biaxial screw there are a meshing type and a non-meshing type.
  • the type of the twin screw extruder the same direction type and the meshing type are preferable.
  • examples of the screw used include a single screw, a double screw, and a triple screw, but a double screw is preferable.
  • a weight type feeder as a method of supplying the raw material.
  • the weight type feeder include a screw type, a vibration type, and a belt type, and a screw type weight feeder is preferable.
  • the short axis and the biaxial are mentioned as the screw of a screw type weight feeder, both can be used.
  • a polylactic acid resin is supplied from a main feeder installed at the root of an extruder, and (B) a cellulose fiber is supplied from a side feeder.
  • a polylactic acid resin is supplied from a main feeder installed at the root of an extruder
  • a cellulose fiber is supplied from a side feeder.
  • a weight type raw material feeder with an agitator.
  • a screw type weight feeder is taken as an example of the raw material feeder.
  • the screw-type weight feeder is provided with a hopper that accumulates raw materials at the upper part of the screw of the weight feeder, and normally the raw material is pushed out from the hopper by its own weight and supplied to the screw.
  • the (B) cellulose fiber is bulky, there arises a problem that it is bridged (poor supply) in the hopper and cannot be quantitatively supplied from the screw. For this reason, it is preferable to use a rotary blade for stirring the raw material inside the feeder, that is, a weight type raw material feeder with an agitator.
  • L / D (L: extruder screw length, D: extruder screw diameter) of the twin screw extruder is preferably 10 or more, more preferably 20 or more, and further preferably 30 or more, 90 or less is preferable, 80 or less is more preferable, and 70 or less is more preferable.
  • the resin temperature immediately after ejection of the thermoplastic resin composition is a value measured with an infrared radiation thermometer.
  • the resin temperature immediately after ejection of the thermoplastic resin composition is preferably 180 ° C. or higher, more preferably 185 ° C. or higher, further preferably 190 ° C. or higher, particularly preferably 195 ° C. or higher, and most preferably 200 ° C. or higher.
  • the resin temperature immediately after ejection of the thermoplastic resin composition is preferably 260 ° C. or less, more preferably 255 ° C. or less, further preferably 250 ° C. or less, particularly preferably 245 ° C. or less, and most preferably 240 ° C. or less.
  • the infrared radiation thermometer is a thermometer that measures the temperature of an object by measuring the intensity of infrared light or visible light emitted from the object, and a commonly used one can be used.
  • the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition is the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition after melt-kneading.
  • the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 10 eq / t or more, more preferably 15 eq / t or more, and further preferably 20 eq / t or more. Further, the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 100 eq / t or less, more preferably 80 eq / t or less, further preferably 60 eq / t or less, and particularly preferably 40 eq / t or less. preferable.
  • the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 10 eq / t to 100 eq / t
  • (A) the residual catalyst amount of the polylactic acid resin, (A) before melt kneading There is a method of controlling the carboxyl end amount of the polylactic acid resin, (B) the type of cellulose fiber, the blending amount, and the like.
  • (i) (A) a polylactic acid resin having a carboxyl terminal amount in the range of 5 eq / t to 50 eq / t and a residual catalyst amount in the range of 1 ppm to 500 ppm is used.
  • the carboxyl terminal of (A) polylactic acid resin and the hydroxyl terminal of (B) cellulose fiber react moderately, and the carboxyl terminal amount of (A) polylactic acid resin in a resin composition is 10 eq / t-100 eq / t, not only excellent mechanical properties such as strength but also (A) the biodegradation rate can be made faster than that of the polylactic acid resin alone, and further, coloring and odor can be suppressed.
  • the resin composition of the embodiment of the present invention can be formed into a molded product by a known molding method.
  • a known molding method injection molding, extrusion molding, press molding, blow molding and the like are preferable.
  • By processing into various molded products such as injection molded products, extrusion molded products, press molded products, and blow molded products, it can be used effectively.
  • the molded product can be used as a sheet, a film, a fiber, or the like.
  • the mold temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher from the viewpoint of moldability and heat resistance. 160 ° C. or lower, preferably 130 ° C. or lower, more preferably 110 ° C. or lower.
  • Molded articles formed from the resin composition of the embodiment of the present invention include automobile parts (interior / exterior parts, etc.), electrical / electronic parts (various housings, gears, gears, etc.), building members, civil engineering members, agricultural materials, It can be used for various purposes such as daily necessities.
  • the molded product is an air flow meter, an air pump, a thermostat housing, an engine mount, an ignition hobbin, an ignition case, a clutch bobbin, a sensor housing, an idle speed control valve, a vacuum switching valve, an ECU housing, a vacuum pump case, an inhibitor switch.
  • Molded products include notebook computer housings and internal parts, CRT display housings and internal parts, printer housings and internal parts, mobile terminal housings and internal parts such as mobile phones, mobile personal computers, and handheld mobiles, and recording media (CDs, DVDs). , PD, FDD, etc.) drive housings and internal parts, copier housings and internal parts, facsimile housings and internal parts, parabolic antennas, and other electric / electronic parts.
  • molded products include VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, video cameras, audio equipment parts such as audio / laser discs (registered trademark) / compact discs, and lighting parts.
  • Molded products include housings and internal parts for electronic musical instruments, home game machines, portable game machines, various gears, various cases, sensors, LEP lamps, connectors, sockets, resistors, relay cases, motor cases, switches , Capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed wiring boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystals, FDD carriages, Electric / electronic parts such as FDD chassis, motor brush holder, transformer member, coil bobbin, sash door, blind curtain parts, piping joint, curtain liner, blind parts, gas meter parts, water meter parts, water heater parts, Roof panels, insulation walls, adjusters, plastic bundles, ceiling fishing gear, stairs, doors, floors and other building components, fishing line, fishing nets, seaweed aquaculture nets, fishing bait bags and other marine products, vegetation nets
  • thermoplastic resin composition according to the embodiment of the present invention is a method defined in JIS K6953, and is controlled at 58 ° C. as a seeding source of Yawata Bussan Co., Ltd.
  • a biodegradability test is performed under composting conditions using the number “YK-3”, and the degree of biodegradation is calculated from the measured carbon dioxide generation amount.
  • a 100 ⁇ m-thick press film formed with the thermoplastic resin composition of the embodiment of the present invention was weighed 10 g of a sample having a 5 mm square size, and the biodegradability measured in the biodegradability test was 30 days. It is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more. The upper limit of the degree of biodegradation is 100%.
  • Tin octylate was added as a catalyst, and ring-opening polymerization of lactide was performed to obtain (A-1) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 160,000, and a melting point of 170 ° C. .
  • the obtained polylactic acid resin (A-1) was decomposed by heating with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm.
  • Tin octylate was added as a catalyst, and ring-opening polymerization of lactide was performed to obtain (A-5) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 200,000, and a melting point of 165 ° C. .
  • the obtained (A-5) polylactic acid resin was thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm.
  • Tin octylate was added as a catalyst and ring-opening polymerization of lactide was performed to obtain (A-6) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 120,000, and a melting point of 170 ° C. .
  • the obtained polylactic acid resin (A-6) was thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm.
  • A Polylactic acid resin
  • GPC gel permeation chromatography
  • PMMA weight average molecular weight
  • (A) The amount of the residual metal catalyst in the polylactic acid resin was determined by (A) heat-decomposing the polylactic acid resin with nitric acid and sulfuric acid and then heating and dissolving with dilute nitric acid. AP ").
  • the bulk density of the (B) cellulose fiber is a value measured under a 23 ° C., 50% RH environment using a “powder tester” manufactured by Hosokawa Micron.
  • the average fiber length of a cellulose fiber is an average fiber length measured using "MorFI Fiber Analyzer” manufactured by Techpap.
  • the average fiber diameter of the cellulose fibers is determined by measuring using a “Vibrodyn Fiber Analyzer” manufactured by Lenzing Technique Instruments Co., Ltd., and determining the titer. Based on the density, this average titer is converted into a diameter. The fiber diameter.
  • D Crystal nucleating agent
  • D-1-1 Inorganic crystal nucleating agent
  • D-1-1 Talc (average particle size 4 ⁇ m, P-6 made by Nippon Talc)
  • D-2-1 Organic crystal nucleating agent
  • Zinc phenylphosphonate Nisan Chemical "Eco Promote"
  • E Plasticizer
  • E-1 Polyalkylene glycol plasticizer
  • E-1-1 Polyethylene glycol / polypropylene glycol copolymer
  • E-2 Polyvalent carboxylic acid plasticizer
  • E-2-1 Adipic acid benzylmethyl diglycol ester
  • (A) Polylactic acid resin, as required (C) Acrylic resin, (D) Crystal nucleating agent, (E) Plasticizer is supplied from the main feeder of the extruder, and (B) Cellulose fiber is supplied from the side feeder. Supplied. A melted thermoplastic resin composition strand was drawn from the extruder discharge port, and the strand state was evaluated in three stages according to the following criteria, and used as an index of extrusion processability.
  • Extrusion processability (Discharge port meander state)
  • melt kneading was carried out, and the state of the mean at the discharge port of the extruder was evaluated in three stages according to the following criteria, and used as an index for extrusion processability.
  • “Meani” as used herein refers to a material in which a deteriorated resin, a part of an additive, an oxide / decomposed product thereof, or the like adheres to the air release surface of the strand discharge port.
  • the extruding processability is more excellent as the discharge port has no mean.
  • B Exhaust port somewhat present
  • C Discharge port mean considerably present.
  • thermoplastic resin composition (A) Carboxyl terminal amount of polylactic acid resin in thermoplastic resin composition
  • (A) polylactic acid resin content in the obtained thermoplastic resin composition is 1 g
  • thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries) to obtain a 3.2 mm thick molded product. It was. The shortest time for obtaining a solidified molded product without deformation was measured as the molding cycle time. The shorter the molding cycle time, the better the injection moldability.
  • thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries, Ltd.) A molded product with a thickness of 3.2 mm was obtained. By visually observing the surface appearance of the molded product, it was classified as follows. The surface appearance is better as the cellulose fiber is not raised. A: Cellulose fiber is not raised B: Cellulose fiber is slightly raised C: Cellulose fiber is raised slightly
  • a heavy-weight material feeder with an agitator was supplied from a side feeder installed at a position of 40% of the barrel total length, with the uppermost stream of the barrel total length being 0% and the most downstream being 100%.
  • thermoplastic resin composition strand was drawn from the discharge port of the extruder, and a pellet-shaped thermoplastic resin composition was obtained by a strand cutter.
  • the obtained thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries, Ltd.) to obtain a molded product for evaluation.
  • Tables 1 to 8 show the results of various evaluations using the obtained molded products.
  • Example 4 Evaluation was carried out in the same manner as in Example 1 except that the position of the side feeder was changed to 80% of the total length of the barrel with the most upstream of the total length of the barrel of the extruder being 0% and the most downstream of 100%.
  • Example 5 Evaluation was carried out in the same manner as in Example 1 except that the installation position of the side feeder was changed to 20% of the total barrel length.
  • thermoplastic resin composition formed by blending 1 to 100 parts by weight of (B) cellulose fiber to 100 parts by weight of (A) polylactic acid resin.
  • A) the amount of carboxyl terminals of the polylactic acid resin in the composition is in the range of 10 eq / t to 100 eq / t
  • B) the average fiber diameter of the cellulose fibers is in the range of 0.1 ⁇ m to 15 ⁇ m, and the average
  • the fiber length is in the range of 200 ⁇ m to 800 ⁇ m
  • the extrusion processability and injection moldability are excellent, and the surface smoothness of the molded product is excellent, as compared with Comparative Examples 1 to 10 outside the range.
  • biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent, and further, coloring and odor are reduced.
  • a specific amount of cellulose fiber having a specific average fiber diameter and average fiber length is blended to obtain extrusion processability and injection moldability.
  • the surface smoothness of the molded product is excellent, biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent, and coloring and odor are reduced.
  • the residual catalyst amount of the polylactic acid resin is within the range of 1 ppm to 500 ppm, so that the balance of biodegradability, mechanical properties such as bending elastic modulus and impact strength is achieved. It can be seen that coloration and odor are excellent.
  • Examples 17 to 26 by blending a specific amount of (C) acrylic resin having a specific weight average molecular weight, the extrusion processability and injection moldability are further improved, and the surface smoothness of the molded product is excellent. In addition, the biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent.

Abstract

Provided is a resin composition which has excellent extrusion molding processability and injection moldability; a molded article of which has superior surface smoothness; has biodegradability, rigidity, impact resistance and heat resistance that are superbly balanced; and in which discoloration and odor are reduced. This thermoplastic resin composition comprises 1-100 parts by weight of cellulose fiber (B) with respect to 100 parts by weight of a polylactic resin (A), wherein a carboxyl terminal amount of the polylactic resin (A) in the thermoplastic resin composition is in the range of 10-100 eq/t and an average fiber diameter of the cellulose fiber (B) is in the range of 0.1-15 μm and an average fiber length of the cellulose fiber (B) is in the range of 200-800 μm.

Description

熱可塑性樹脂組成物および成形品Thermoplastic resin composition and molded article
 東レ株式会社による日本特許出願、特願2012-191601号の開示内容、特願2013-37098号の開示内容、特願2013-37099号の開示内容、および特願2013-93477号の開示内容は、参考のために、この明細書に組み込まれる。 Japanese Patent Application by Toray Industries, Inc., Japanese Patent Application No. 2012-191601, Japanese Patent Application No. 2013-37098, Japanese Patent Application No. 2013-37099, Japanese Patent Application No. 2013-93477, This document is incorporated herein for reference.
 本発明は、熱可塑性樹脂組成物に関するものである。 The present invention relates to a thermoplastic resin composition.
 近年、石油等の化石燃料の枯渇の問題がクローズアップされている。特に、プラスチック材料としては、ポリ乳酸樹脂のモノマーである乳酸が微生物を利用した発酵法により安価に製造されるため、バイオポリマーとしてポリ乳酸樹脂が注目されている。ポリ乳酸樹脂の融点がおよそ170℃と高い。また、ポリ乳酸樹脂は、溶融成形可能なバイオポリマーとして期待されている。 In recent years, the problem of exhaustion of fossil fuels such as oil has been highlighted. In particular, as a plastic material, polylactic acid resin is attracting attention as a biopolymer because lactic acid, which is a monomer of polylactic acid resin, is produced at low cost by fermentation using microorganisms. The melting point of polylactic acid resin is as high as about 170 ° C. Polylactic acid resins are expected as biopolymers that can be melt-molded.
 一方、地球環境保護の観点から、木粉、紙粉、竹粉、ケナフなどの天然由来の有機材料を樹脂の充填剤として使用する試みが数多くなされている(例えば、特許文献1)。 On the other hand, from the viewpoint of protecting the global environment, many attempts have been made to use natural organic materials such as wood powder, paper powder, bamboo powder, and kenaf as resin fillers (for example, Patent Document 1).
特開2012-102324号公報JP 2012-102324 A 特開2008-150599号公報JP 2008-150599 A 特開2005-002174号公報JP 2005-002174 A 特開2010-121131号公報JP 2010-121131 A 国際公開第2006/097979号International Publication No. 2006/097979 特開2005-220171号公報Japanese Patent Laid-Open No. 2005-220171 特開2005-035134号公報Japanese Patent Laid-Open No. 2005-035134
 特許文献1の樹脂組成物は、樹脂と、セルロース系繊維と、水酸基価が30mgKOH/g以上である分散剤とを含有する樹脂組成物であって、セルロース系繊維を良好に分散することができ、かつ機械的強度、衝撃強度、成形性に優れた樹脂組成物である。しかしながら、特許文献1には、ポリ乳酸樹脂および生分解性に関する具体的例示は一切無い。また、特許文献1の樹脂組成物には、押出成形加工性、射出成形性、成形品の表面平滑性、剛性、耐衝撃性、耐熱性等の特性バランスを高度に両立させることは困難であるという課題があった。 The resin composition of Patent Document 1 is a resin composition containing a resin, a cellulosic fiber, and a dispersant having a hydroxyl value of 30 mgKOH / g or more, and can satisfactorily disperse the cellulosic fiber. In addition, the resin composition is excellent in mechanical strength, impact strength, and moldability. However, Patent Document 1 does not have any specific examples regarding polylactic acid resin and biodegradability. Moreover, it is difficult for the resin composition of Patent Document 1 to have a high balance of properties such as extrusion processability, injection moldability, surface smoothness of molded products, rigidity, impact resistance, and heat resistance. There was a problem.
 特許文献2のポリ乳酸樹脂組成物は、ポリ乳酸樹脂、天然繊維、カップリング剤を含有するポリ乳酸樹脂組成物であって、機械的強度、耐熱性、成形性、成形品の色相に優れたポリ乳酸樹脂組成物である。特許文献2の樹脂組成物は、機械的強度、耐熱性、成形性、成形品の色相についてはある程度の改良効果を有するものの、その効果は十分ではない。さらに、特許文献2には、ポリ乳酸樹脂組成物の生分解性については一切具体的な開示はない。また、特許文献2の樹脂組成物には、生分解性、押出成形加工性、射出成形性、成形品の表面平滑性、剛性、耐衝撃性、耐熱性等の特性バランスを高度に両立させることは困難であるという課題があった。 The polylactic acid resin composition of Patent Document 2 is a polylactic acid resin composition containing a polylactic acid resin, natural fibers, and a coupling agent, and has excellent mechanical strength, heat resistance, moldability, and hue of a molded product. It is a polylactic acid resin composition. The resin composition of Patent Document 2 has a certain degree of improvement in mechanical strength, heat resistance, moldability, and hue of the molded product, but the effect is not sufficient. Furthermore, Patent Document 2 has no specific disclosure about the biodegradability of the polylactic acid resin composition. In addition, the resin composition of Patent Document 2 is highly compatible with the balance of properties such as biodegradability, extrusion processability, injection moldability, surface smoothness, rigidity, impact resistance, and heat resistance of molded products. There was a problem that it was difficult.
 特許文献3の樹脂組成物は、ポリ乳酸樹脂および天然由来の有機充填剤に対して、結晶化促進剤、ポリ乳酸樹脂以外の熱可塑性樹脂、天然由来の有機充填剤以外の充填剤、安定剤、離型剤、カルボキシル基反応性末端封鎖剤から選ばれる少なくとも1種を配合してなる樹脂組成物である。特許文献3の樹脂組成物は、ある程度の成形性、機械特性、耐熱性を有する樹脂組成物であるものの、その効果は十分ではない。また、特許文献3の樹脂組成物には、押出成形加工性、成形加工時の着色、および臭気が悪化するという課題があった。 The resin composition of Patent Document 3 includes a crystallization accelerator, a thermoplastic resin other than a polylactic acid resin, a filler other than a natural organic filler, and a stabilizer for a polylactic acid resin and a natural organic filler. , A resin composition comprising at least one selected from a mold release agent and a carboxyl group-reactive end-blocking agent. The resin composition of Patent Document 3 is a resin composition having a certain degree of moldability, mechanical properties, and heat resistance, but its effect is not sufficient. Further, the resin composition of Patent Document 3 has problems that extrudability, coloring during molding, and odor deteriorate.
 特許文献4の樹脂組成物は、第1ポリ乳酸樹脂および第2ポリ乳酸樹脂で表面処理された天然繊維を含む天然繊維強化ポリ乳酸樹脂組成物であって、第2ポリ乳酸樹脂は第1ポリ乳酸樹脂と異なる異性体を含む天然繊維強化ポリ乳酸樹脂組成物である。特許文献4の樹脂組成物は、ある程度の耐加水分解性、機械的強度、耐熱性を有する樹脂組成物であるものの、その効果は十分ではない。また、特許文献4の樹脂組成物には、押出成形加工性、成形加工時の着色および臭気が悪化するという課題があった。 The resin composition of Patent Document 4 is a natural fiber reinforced polylactic acid resin composition containing natural fibers surface-treated with a first polylactic acid resin and a second polylactic acid resin, and the second polylactic acid resin is a first polylactic acid resin. It is a natural fiber reinforced polylactic acid resin composition containing an isomer different from the lactic acid resin. Although the resin composition of patent document 4 is a resin composition which has a certain amount of hydrolysis resistance, mechanical strength, and heat resistance, the effect is not enough. Further, the resin composition of Patent Document 4 has a problem that extrudability, coloration during molding, and odor deteriorate.
 特許文献5の樹脂組成物は、ポリ乳酸と、熱可塑性樹脂と、アルキルメタクリレートをモノマー成分とする高分子型相溶化剤とを含む植物性樹脂組成物である。特許文献5の樹脂組成物は、ある程度の耐衝撃性、耐熱性を有する樹脂組成物であるものの、その効果は十分ではない。また、特許文献5の樹脂組成物には、生分解性、剛性、耐衝撃性、および耐熱性のバランスの両立が困難であるという課題があった。 The resin composition of Patent Document 5 is a vegetable resin composition containing polylactic acid, a thermoplastic resin, and a polymer type compatibilizing agent having alkyl methacrylate as a monomer component. Although the resin composition of Patent Document 5 is a resin composition having a certain degree of impact resistance and heat resistance, its effect is not sufficient. Further, the resin composition of Patent Document 5 has a problem that it is difficult to achieve a balance between biodegradability, rigidity, impact resistance, and heat resistance.
 特許文献6の組成物は、乳酸系ポリマーと、繊維状(針状)フィラーと、衝撃改良剤とを含有する乳酸系ポリマー組成物である。特許文献6の組成物は、ある程度の耐熱性と耐衝撃性を有するものの、その効果は十分ではない。また、特許文献6の組成物には、押出成形加工性、成形加工時の着色、および臭気が悪化する課題があった。さらに、特許文献6の組成物には、生分解性、剛性、耐衝撃性、および耐熱性のバランス両立は困難であるという課題があった。 The composition of Patent Document 6 is a lactic acid polymer composition containing a lactic acid polymer, a fibrous (needle-like) filler, and an impact modifier. Although the composition of patent document 6 has a certain amount of heat resistance and impact resistance, the effect is not enough. Moreover, the composition of patent document 6 had the subject which extrusion molding processability, the coloring at the time of a shaping | molding process, and an odor deteriorate. Furthermore, the composition of Patent Document 6 has a problem that it is difficult to achieve a balance between biodegradability, rigidity, impact resistance, and heat resistance.
 特許文献7の樹脂組成物の製造方法は、ポリ乳酸樹脂と天然由来の有機充填剤とを、溶融混練装置を用いて、特定の樹脂温度、滞留時間、せん断速度条件下で溶融混練する樹脂組成物の製造方法である。特許文献7の製造方法により、ある程度の耐熱性、外観、色調を有する樹脂組成物を製造できるものの、その効果は十分ではない。また、特許文献7の樹脂組成物には、押出成形加工性、射出成形性、生分解性、および機械特性等のバランスに劣るという課題があった。 The method for producing a resin composition of Patent Document 7 is a resin composition in which a polylactic acid resin and a naturally-derived organic filler are melt-kneaded using a melt-kneading apparatus under specific resin temperature, residence time, and shear rate conditions. It is a manufacturing method of a thing. Although the resin composition having a certain degree of heat resistance, appearance, and color tone can be produced by the production method of Patent Document 7, the effect is not sufficient. Further, the resin composition of Patent Document 7 has a problem that it is inferior in the balance of extrusion processability, injection moldability, biodegradability, mechanical properties, and the like.
 以上のように、いずれの方法を用いても、押出成形加工性および射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減された樹脂組成物を得ることは非常に困難であるが、実用的に問題なく使用できる材料への要望は多く、さらなる改良が求められていた。 As described above, whichever method is used, the extrusion processability and injection moldability are excellent, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, impact resistance, and heat resistance are balanced. Although it is very difficult to obtain a resin composition that is excellent and excellent in coloration and odor, there are many requests for materials that can be used practically without problems, and further improvements have been demanded.
 本発明は、上述した先行技術において困難であった、押出成形加工性および射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減された樹脂組成物およびそれからなる成形品を提供することを課題とする。 The present invention, which is difficult in the above-described prior art, is excellent in extrusion processability and injection moldability, excellent in surface smoothness of molded products, and balanced in biodegradability, rigidity, impact resistance, and heat resistance. It is an object of the present invention to provide a resin composition that is excellent in color and has reduced coloring and odor and a molded product comprising the same.
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。 The present invention employs the following means in order to solve such problems.
(1)(A)ポリ乳酸樹脂100重量部に対して、(B)セルロース繊維1~100重量部を配合してなる熱可塑性樹脂組成物であって、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が、10eq/t~100eq/tの範囲内であり、(B)セルロース繊維の平均繊維径が0.1μm~15μmの範囲内、かつ平均繊維長が200μm~800μmの範囲内である、熱可塑性樹脂組成物。 (1) (A) A thermoplastic resin composition obtained by blending 1 to 100 parts by weight of cellulose fiber to 100 parts by weight of a polylactic acid resin, wherein (A) in the thermoplastic resin composition The carboxyl terminal amount of the polylactic acid resin is in the range of 10 eq / t to 100 eq / t, (B) the average fiber diameter of the cellulose fibers is in the range of 0.1 μm to 15 μm, and the average fiber length is 200 μm to 800 μm. A thermoplastic resin composition that is within the range.
(2)上記(1)項記載の熱可塑性樹脂組成物であって、(A)ポリ乳酸樹脂に含まれる残存金属触媒量が、1ppm~500ppmの範囲内である、熱可塑性樹脂組成物。 (2) The thermoplastic resin composition as described in (1) above, wherein the amount of residual metal catalyst contained in (A) the polylactic acid resin is in the range of 1 ppm to 500 ppm.
(3)上記(1)または(2)に記載の熱可塑性樹脂組成物であって、熱可塑性樹脂組成物からなる押出成形品の表面粗さの最大高さ(Ry)が、600μm以下である、熱可塑性樹脂組成物。 (3) The thermoplastic resin composition according to the above (1) or (2), wherein the maximum height (Ry) of the surface roughness of the extruded product made of the thermoplastic resin composition is 600 μm or less. , A thermoplastic resin composition.
(4)上記(1)~(3)のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、重量平均分子量が100万~750万である(C)アクリル系樹脂0.1~20重量部を配合してなる、熱可塑性樹脂組成物。 (4) The thermoplastic resin composition according to any one of (1) to (3) above, further comprising (A) a weight average molecular weight of 1,000,000 to 100 parts by weight of the polylactic acid resin. A thermoplastic resin composition obtained by blending 0.1 to 20 parts by weight of (C) acrylic resin that is 7.5 million.
(5)上記(1)~(4)のいずれか1項に記載の熱可塑性樹脂組成物であって、配合する前の(B)セルロース繊維の嵩密度が、30kg/m3~200kg/m3の範囲内である、熱可塑性樹脂組成物。 (5) The thermoplastic resin composition according to any one of (1) to (4) above, wherein (B) the bulk density of the cellulose fiber before blending is from 30 kg / m 3 to 200 kg / m A thermoplastic resin composition within the range of 3 .
(6)上記(1)~(5)のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、(D)結晶核剤を0.1~20重量部配合してなる、熱可塑性樹脂組成物。 (6) The thermoplastic resin composition according to any one of (1) to (5) above, further comprising (D) a crystal nucleating agent for 100 parts by weight of the polylactic acid resin. A thermoplastic resin composition comprising 0.1 to 20 parts by weight.
(7)上記(1)~(6)のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、(E)可塑剤を1~20重量部配合してなる、熱可塑性樹脂組成物。 (7) The thermoplastic resin composition according to any one of (1) to (6) above, further comprising (E) 1 plasticizer per 100 parts by weight of the polylactic acid resin. A thermoplastic resin composition comprising 20 parts by weight.
(8)上記(1)~(7)のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。 (8) A molded article comprising the thermoplastic resin composition according to any one of (1) to (7) above.
 本発明によれば、押出成形加工性および射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減された熱可塑性樹脂組成物を提供することができる。 According to the present invention, the extrusion processability and the injection moldability are excellent, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, impact resistance, and heat resistance are balanced, and the coloring and odor are further improved. Can be provided.
 [(A)ポリ乳酸樹脂]
 本発明の実施形態において、(A)ポリ乳酸樹脂とは、L-乳酸および/またはD-乳酸を主たる構成成分とするポリマーをいうが、乳酸以外の他の共重合成分を含んでいてもよい。他の共重合成分の構成単位としては、例えば、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられる。他の共重合成分の構成単位としては、具体的に、(i)シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、フマル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、アントラセンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類、(ii)エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノールA、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどの多価アルコール類、(iii)グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸類、および(iv)グリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンなどのラクトン類などが挙げられる。このような共重合成分の構成単位は、全単量体の構成単位を100モル%としたときに、通常0~30モル%の含有量とするのが好ましく、0~10モル%であることがさらに好ましい。
[(A) Polylactic acid resin]
In the embodiment of the present invention, the (A) polylactic acid resin refers to a polymer mainly composed of L-lactic acid and / or D-lactic acid, but may contain other copolymer components other than lactic acid. . Examples of structural units of other copolymer components include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones. Specific examples of the constituent unit of the copolymer component include (i) oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, fumaric acid, cyclohexanedicarboxylic acid, Polycarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid, (ii) ethylene glycol, propylene Glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentaerythritol, bisphenol A, bisphenol Aromatic polyhydric alcohols obtained by addition reaction of tylene oxide, polyhydric alcohols such as diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, (iii) glycolic acid, 3-hydroxybutyric acid, 4-hydroxy Hydroxycarboxylic acids such as butyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid, and (iv) glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- Alternatively, lactones such as γ-butyrolactone, pivalolactone, and δ-valerolactone can be used. The content of the copolymer component is preferably 0 to 30 mol%, preferably 0 to 10 mol%, based on 100 mol% of all monomers. Is more preferable.
 本発明の実施形態において、成形性、耐熱性の点で、乳酸成分の光学純度が高い(A)ポリ乳酸樹脂を用いることが好ましい。すなわち、(A)ポリ乳酸樹脂の総乳酸成分のうち、L体が80%以上含まれるかまたはD体が80%以上含まれることが好ましく、L体が90%以上含まれるかまたはD体が90%以上含まれることがさらに好ましく、L体が95%以上含まれるかまたはD体が95%以上含まれることが特に好ましく、L体が98%以上含まれるかまたはD体が98%以上含まれることが最も好ましい。また、L体またはD体の含有量の上限は通常100%以下である。 In the embodiment of the present invention, it is preferable to use (A) a polylactic acid resin in which the optical purity of the lactic acid component is high in terms of moldability and heat resistance. That is, (A) Of the total lactic acid component of the polylactic acid resin, it is preferable that the L-form is contained in 80% or more, or the D-form is contained in 80% or more, and the L-form is contained in 90% or more or More preferably 90% or more, more preferably 95% or more of L isomer or 95% or more of D isomer, 98% or more of L isomer or 98% or more of D isomer Most preferably. Moreover, the upper limit of the content of L-form or D-form is usually 100% or less.
 本発明の実施形態において、(A)ポリ乳酸樹脂としては、成形性、耐熱性の点で、ポリ乳酸ステレオコンプレックスを用いることが好ましい。ポリ乳酸ステレオコンプレックスを形成させる方法としては、例えば、L体が90%以上のポリ-L-乳酸と、D体が90%以上のポリ-D-乳酸を溶融混練、固相混練または溶液混合などの手法を用いて混合する方法を挙げることができる。なお、耐熱性の点で、ポリ-L-乳酸のL体は、95%が好ましく、98%以上がより好ましい。あわせて、耐熱性の点で、ポリ-D-乳酸のD体は、95%が好ましく、98%以上がより好ましい。 In the embodiment of the present invention, it is preferable to use a polylactic acid stereocomplex as the (A) polylactic acid resin in terms of moldability and heat resistance. Examples of a method for forming a polylactic acid stereocomplex include melt-kneading, solid-phase kneading, or solution mixing of poly-L-lactic acid having 90% or more of L-form and poly-D-lactic acid having 90% or more of D-form. The method of mixing using the method of can be mentioned. In terms of heat resistance, the poly-L-lactic acid L form is preferably 95%, more preferably 98% or more. In addition, the D-form of poly-D-lactic acid is preferably 95%, more preferably 98% or more from the viewpoint of heat resistance.
 また、ポリ乳酸ステレオコンプレックスを形成させる別の方法として、ポリ-L-乳酸セグメントおよびポリ-D-乳酸セグメントからブロック共重合体を形成させる方法も挙げることができる。ポリ乳酸ステレオコンプレックスを容易に形成させることができるという点から、ポリ-L-乳酸セグメントおよびポリ-D-乳酸セグメントからなるブロック共重合体を形成させる方法が好ましい。また、(A)ポリ乳酸樹脂としてとしてポリ乳酸ステレオコンプレックスを単独で用いてもよいが、ポリ乳酸ステレオコンプレックスとポリ-L-乳酸またはポリ-D-乳酸とを併用して用いてもよい。 As another method for forming a polylactic acid stereocomplex, a method of forming a block copolymer from a poly-L-lactic acid segment and a poly-D-lactic acid segment can also be mentioned. From the viewpoint that a polylactic acid stereocomplex can be easily formed, a method of forming a block copolymer comprising a poly-L-lactic acid segment and a poly-D-lactic acid segment is preferred. In addition, as the (A) polylactic acid resin, a polylactic acid stereocomplex may be used alone, or a polylactic acid stereocomplex and poly-L-lactic acid or poly-D-lactic acid may be used in combination.
 本発明の実施形態において、(A)ポリ乳酸樹脂の分子量や分子量分布は、実質的に成形加工が可能であれば、特に限定されるものではない。相構造を制御しやすくなり、かつ耐衝撃性が向上するという点から、重量平均分子量としては、好ましくは1万以上、より好ましくは5万以上、さらに好ましくは10万以上、特に好ましくは20万以上であるのがよい。(A)ポリ乳酸樹脂の重量平均分子量の上限は特に制限されないが、好ましくは80万以下、より好ましくは60万以下、さらに好ましくは40万以下であることが望ましい。ここでいう(A)ポリ乳酸樹脂の重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用い、ゲルパーミエーションクロマトグラフィー(GPC、Waters社製「Water Model510」)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。 In the embodiment of the present invention, (A) the molecular weight and molecular weight distribution of the polylactic acid resin are not particularly limited as long as they can be substantially molded. The weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more, further preferably 100,000 or more, and particularly preferably 200,000 from the viewpoint that the phase structure can be easily controlled and the impact resistance is improved. That is good. (A) The upper limit of the weight average molecular weight of the polylactic acid resin is not particularly limited, but is preferably 800,000 or less, more preferably 600,000 or less, and still more preferably 400,000 or less. Here, the weight average molecular weight of (A) polylactic acid resin refers to polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC, “Water Model 510” manufactured by Waters) using hexafluoroisopropanol as a solvent. It is a weight average molecular weight in terms of conversion.
 本発明の実施形態において、(A)ポリ乳酸樹脂の融点については、特に限定されるものではないが、120℃以上であることが好ましく、150℃以上であることがさらに好ましい。 In the embodiment of the present invention, (A) the melting point of the polylactic acid resin is not particularly limited, but is preferably 120 ° C. or higher, and more preferably 150 ° C. or higher.
 本発明の実施形態において、(A)ポリ乳酸樹脂の製造方法としては、公知の重合方法を用いることができる。(A)ポリ乳酸樹脂の製造方法としては、例えば、乳酸からの直接重合法やラクチドを介する開環重合法などを用いることができる。 In the embodiment of the present invention, as a method for producing the (A) polylactic acid resin, a known polymerization method can be used. (A) As a manufacturing method of polylactic acid resin, the direct polymerization method from lactic acid, the ring-opening polymerization method via lactide, etc. can be used, for example.
 本発明の実施形態において、(A)ポリ乳酸樹脂の重合には、触媒を用いることができる。触媒としては、金属触媒、非金属触媒のいずれを用いてもよいが、金属触媒が好ましい。 In the embodiment of the present invention, a catalyst can be used for the polymerization of (A) polylactic acid resin. As the catalyst, either a metal catalyst or a non-metal catalyst may be used, but a metal catalyst is preferable.
 本発明の実施形態において、金属触媒を用いる場合、樹脂組成物中の(A)ポリ乳酸樹脂に含まれる残存金属触媒量は、重合時に添加された金属触媒に含まれる金属の含有量で表す。金属触媒としては、錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物などの公知の金属触媒を用いることができる。 In the embodiment of the present invention, when a metal catalyst is used, the amount of the residual metal catalyst contained in the polylactic acid resin (A) in the resin composition is represented by the content of the metal contained in the metal catalyst added during the polymerization. As a metal catalyst, well-known metal catalysts, such as a tin compound, a titanium compound, a lead compound, a zinc compound, a cobalt compound, an iron compound, a lithium compound, can be used.
 本発明の実施形態において、(A)ポリ乳酸樹脂の残存触媒量を制御することにより、後述する樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が制御されるため、強度などの機械物性に優れ、(A)ポリ乳酸樹脂単体よりも生分解速度の高い樹脂組成物を生成することができる。 In the embodiment of the present invention, the amount of carboxyl terminal of (A) polylactic acid resin in the resin composition to be described later is controlled by controlling the amount of residual catalyst of (A) polylactic acid resin. A resin composition having excellent physical properties and having a higher biodegradation rate than (A) a polylactic acid resin alone can be produced.
 本発明の実施形態において、生分解性や成形品の機械特性が向上するという点から、(A)ポリ乳酸樹脂の残存金属触媒量は、1ppm以上が好ましく、5ppm以上がより好ましく、10ppm以上がさらに好ましく、10ppm以上が特に好ましい。生分解性や成形品の機械特性が向上するという点から、(A)ポリ乳酸樹脂の残存金属触媒量は、500ppm以下が好ましく、400ppm以下がより好ましく、300ppm以下がさらに好ましく、100ppmが特に好ましい。残存金属触媒量が1ppm~500ppmの範囲内である場合、生分解性や成形品の機械特性が向上するという点で好ましい。ここで(A)ポリ乳酸樹脂の残存金属触媒量は、(A)ポリ乳酸樹脂を硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)により定量した値である。 In the embodiment of the present invention, the amount of the residual metal catalyst of the (A) polylactic acid resin is preferably 1 ppm or more, more preferably 5 ppm or more, and more preferably 10 ppm or more from the viewpoint that biodegradability and mechanical properties of the molded product are improved. More preferred is 10 ppm or more. In view of improving biodegradability and mechanical properties of the molded product, the residual metal catalyst amount of (A) polylactic acid resin is preferably 500 ppm or less, more preferably 400 ppm or less, further preferably 300 ppm or less, and particularly preferably 100 ppm. . When the amount of the residual metal catalyst is in the range of 1 ppm to 500 ppm, it is preferable in terms of improving biodegradability and mechanical properties of the molded product. Here, (A) the amount of the residual metal catalyst of the polylactic acid resin was determined by (A) heat-decomposing the polylactic acid resin with nitric acid and sulfuric acid and then heating and dissolving with dilute nitric acid. CID-AP ").
 [(A)ポリ乳酸樹脂のカルボキシル末端量]
 本発明の実施形態において、(A)ポリ乳酸樹脂のカルボキシル末端量とは、溶融混練前の(A)ポリ乳酸樹脂のカルボキシル末端量を意味する。(A)ポリ乳酸樹脂のカルボキシル末端量の測定方法は、(A)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLで溶解した後、0.05mol/Lエタノール性水酸化カリウムで滴定して測定する方法である。
[(A) Amount of carboxyl terminal of polylactic acid resin]
In the embodiment of the present invention, the (A) carboxyl terminal amount of the polylactic acid resin means the carboxyl terminal amount of the (A) polylactic acid resin before melt kneading. (A) The method for measuring the carboxyl end amount of a polylactic acid resin is that 1 g of (A) polylactic acid resin is sampled and dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and then 0.05 mol / L ethanol. This is a method of measuring by titration with basic potassium hydroxide.
 本発明の実施形態において、(A)ポリ乳酸樹脂のカルボキシル末端量は、後述する熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が、10eq/t~100eq/tの範囲内であれば、特に制限はない。熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量は、15eq/t以上が特に好ましい。また、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量は、50eq/t以下が好ましく、40eq/t以下がより好ましく、30eq/t以下が特に好ましい。(A)ポリ乳酸樹脂のカルボキシル末端量を10eq/t~100eq/tの範囲内とすることで、(A)ポリ乳酸樹脂のカルボキシル末端と(B)セルロース繊維の水酸基末端とが適度に反応することにより、押出成形加工性、射出成形性、強度、剛性、耐衝撃性、耐熱性などの機械物性が向上する。 In the embodiment of the present invention, the carboxyl terminal amount of (A) polylactic acid resin is such that the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition to be described later is within the range of 10 eq / t to 100 eq / t. If so, there is no particular limitation. As for the carboxyl terminal amount of (A) polylactic acid resin in a thermoplastic resin composition, 15 eq / t or more is especially preferable. Moreover, 50 eq / t or less is preferable, as for the carboxyl terminal amount of (A) polylactic acid resin in a thermoplastic resin composition, 40 eq / t or less is more preferable, and 30 eq / t or less is especially preferable. (A) By making the carboxyl terminal amount of the polylactic acid resin within the range of 10 eq / t to 100 eq / t, (A) the carboxyl terminal of the polylactic acid resin and (B) the hydroxyl terminal of the cellulose fiber react appropriately. As a result, mechanical properties such as extrusion processability, injection moldability, strength, rigidity, impact resistance, and heat resistance are improved.
 [(B)セルロース繊維]
 本発明の実施形態において、(B)セルロース繊維としては、天然セルロース繊維、再生セルロース繊維、精製セルロース繊維、半合成セルロース繊維などが挙げられる。天然セルロース繊維としては、綿、カポック、アクンドなどの種子毛繊維、青色バシクロモン、青麻、亜麻、イグサ、いちび、インド麻、えにしだ、黄麻(ジュート)、苧麻(ラミー)、ケナフ(洋麻)、サイザル麻、大麻(ヘンプ)、パンガ、ぼんてんか、マニラ麻、ヤシ繊維、ローゼルなどの靱皮繊維からなる植物繊維などが挙げられる。再生セルロース繊維としては、レーヨン、“ポリノジック”、“キュプラ”、ニトロセルロースなどが挙げられる。精製セルロース繊維としては、“テンセル”、“リヨセル”などが挙げられる。半合成セルロース繊維としては、(i)セルロースアセテート(酢酸セルロース)、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどの有機酸エステル、(ii)硝酸セルロース、硫酸セルロース、リン酸セルロースなどの無機酸エステル、(iii)硝酸酢酸セルロースなどの混酸エステル、(iv)ヒドロキシアルキルセルロース、カルボキシアルキルセルロース、アルキルセルロースなどが挙げられる。
[(B) Cellulose fiber]
In the embodiment of the present invention, examples of the (B) cellulose fiber include natural cellulose fiber, regenerated cellulose fiber, purified cellulose fiber, and semi-synthetic cellulose fiber. Natural cellulose fibers include seed hair fibers such as cotton, kapok, acund, blue bacyclomon, green hemp, flax, rush, icy, Indian hemp, eneda, jute, ramie, and kenaf (marine). Plant fibers made of bast fibers such as sisal hemp, hemp, panga, bontenka, manila hemp, palm fiber, roselle and the like. Examples of regenerated cellulose fibers include rayon, “polynosic”, “cupra”, and nitrocellulose. Examples of the purified cellulose fiber include “Tencel” and “Lyocell”. Semi-synthetic cellulose fibers include (i) organic acid esters such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate, (ii) cellulose nitrate, and cellulose sulfate. , Inorganic acid esters such as cellulose phosphate, (iii) mixed acid esters such as cellulose nitrate acetate, (iv) hydroxyalkyl cellulose, carboxyalkyl cellulose, alkyl cellulose and the like.
 本発明の実施形態において、(B)セルロース繊維の平均繊維径は、0.1μm以上であり、1μm以上がより好ましく、5μm以上が特に好ましい。平均繊維径が0.1μmより小さい場合は、成形品の機械特性が悪化する。また、(B)セルロース繊維の平均繊維径は、15μm以下であり、14μm以下がより好ましく、13μm以下が特に好ましい。平均繊維径が15μmより大きい場合は、押出成形加工性、機械特性のバランスおよび溶融混練時の供給性が悪化する。平均繊維径を0.1~15μmの範囲とすることにより、成形品の曲げ弾性率や耐熱性などの機械特性および押出成形加工性が均衝して優れる。 In the embodiment of the present invention, (B) the average fiber diameter of the cellulose fibers is 0.1 μm or more, more preferably 1 μm or more, and particularly preferably 5 μm or more. When the average fiber diameter is smaller than 0.1 μm, the mechanical properties of the molded product are deteriorated. Moreover, the average fiber diameter of (B) cellulose fiber is 15 micrometers or less, 14 micrometers or less are more preferable, and 13 micrometers or less are especially preferable. When the average fiber diameter is larger than 15 μm, the extrusion processability, the balance of mechanical properties, and the supply property at the time of melt kneading deteriorate. By setting the average fiber diameter in the range of 0.1 to 15 μm, mechanical properties such as bending elastic modulus and heat resistance of the molded product and extrusion processability are balanced and excellent.
 本発明の実施形態において、(B)セルロース繊維の平均繊維長は、200μm以上であり、300μm以上がより好ましく、400μm以上が特に好ましい。平均繊維長が200μmより小さい場合は、成形品の機械特性が悪化するという点で好ましくない。また、(B)セルロース繊維の平均繊維長は、800μm以下であり、600μm以下がより好ましく、500μm以下が特に好ましい。平均繊維長が800μmより大きい場合は、押出成形加工性および溶融混練時の供給性が悪化するという点で好ましくない。平均繊維長を200~800μmの範囲とすることにより、成形品の曲げ弾性率や耐熱性などの機械特性および押出成形加工性が均衝して優れる。 In the embodiment of the present invention, (B) the average fiber length of the cellulose fibers is 200 μm or more, more preferably 300 μm or more, and particularly preferably 400 μm or more. When the average fiber length is smaller than 200 μm, it is not preferable in that the mechanical properties of the molded product are deteriorated. Moreover, (B) The average fiber length of a cellulose fiber is 800 micrometers or less, 600 micrometers or less are more preferable, and 500 micrometers or less are especially preferable. When the average fiber length is larger than 800 μm, the extrusion processability and the supply property at the time of melt kneading are not preferable. By setting the average fiber length in the range of 200 to 800 μm, mechanical properties such as flexural modulus and heat resistance of the molded product and extrusion processability are balanced and excellent.
 ここで、(B)セルロース繊維の平均繊維長は、Techpap社製「MorFI Fiber Analyzer」を用いて測定した平均繊維長である。また、(B)セルロース繊維の平均繊維径は、レンチング・テクニック・インスツルメント社製「Vibrodyn Fiber Analyzer」を用いて測定してタイターを決定し、密度に基づいてこのタイターを径へ変換した平均繊維径である。なお、本実施形態において、「タイター」とは、繊維の太さの尺度である。 Here, the average fiber length of the (B) cellulose fiber is an average fiber length measured using “MorFI Fiber Analyzer” manufactured by Techpap. In addition, (B) the average fiber diameter of the cellulose fiber is determined by measuring using a “Vibrodyn Fiber Fiber Analyzer” manufactured by Lenzing Technique Instruments Co., Ltd., and determining the titer based on the density. The fiber diameter. In the present embodiment, “titer” is a measure of the thickness of the fiber.
 (B)セルロース繊維の平均繊維長や平均繊維径は、熱可塑性樹脂組成物中でも変化はない。熱可塑性樹脂組成物を良溶媒(例えばクロロホルム等)に溶解させ、(A)ポリ乳酸樹脂と(B)セルロース繊維を分離し、乾燥させた(B)セルロース繊維の平均繊維長や平均繊維径を上記条件で測定することにより、熱可塑性樹脂組成物中でも変化がないことを確認することができる。 (B) The average fiber length and average fiber diameter of the cellulose fibers are not changed even in the thermoplastic resin composition. The thermoplastic resin composition is dissolved in a good solvent (such as chloroform), (A) the polylactic acid resin and (B) the cellulose fiber are separated, and the dried (B) average fiber length and average fiber diameter of the cellulose fiber are determined. By measuring on the said conditions, it can confirm that there is no change also in a thermoplastic resin composition.
 本発明の実施形態において、嵩密度や繊維長が制御可能であるという観点、溶融混練した樹脂組成物の臭気や着色が低減されるという観点から、(B)セルロース繊維は、精製セルロース繊維が好ましい。 In the embodiment of the present invention, the (B) cellulose fiber is preferably a purified cellulose fiber from the viewpoint that the bulk density and fiber length are controllable and from the viewpoint that the odor and coloring of the melt-kneaded resin composition are reduced. .
 本発明の実施形態において、配合する前の(B)セルロース繊維の嵩密度としては、30kg/m3以上が好ましく、40kg/m3以上がより好ましく、50kg/m3以上がさらに好ましく、70kg/m3以上が特に好ましく、100kg/m3以上が最も好ましい。また、配合する前の(B)セルロース繊維の嵩密度は、200kg/m3以下が好ましく、150kg/m3以下がより好ましく、140kg/m3以下がさらに好ましい。嵩密度が30kg/m3~200kg/m3の範囲内である場合、溶融混練時の供給性に問題なく、溶融混練後の樹脂組成物中における(B)セルロース繊維の分散性が向上し、射出成形性や機械特性が向上するという点で好ましい。 In an embodiment of the present invention, the bulk density of the previous (B) cellulosic fibers to be blended is preferably 30kg / m 3 or more, more preferably 40 kg / m 3 or more, more preferably 50 kg / m 3 or more, 70 kg / m 3 or more is particularly preferable, and 100 kg / m 3 or more is most preferable. The bulk density of the previous (B) cellulosic fibers to be blended is preferably from 200 kg / m 3 or less, more preferably 150 kg / m 3 or less, more preferably 140 kg / m 3 or less. When the bulk density is in the range of 30 kg / m 3 to 200 kg / m 3 , there is no problem in the supply property at the time of melt kneading, and the dispersibility of (B) cellulose fibers in the resin composition after melt kneading is improved. It is preferable in terms of improving injection moldability and mechanical properties.
 ここで、(B)セルロース繊維の嵩密度は、ホソカワミクロン社製“パウダーテスター”を用いて、23℃、50%RH(Relative Humidity)環境下で測定した値である。 Here, the bulk density of the (B) cellulose fiber is a value measured using a “Powder Tester” manufactured by Hosokawa Micron Corporation in a 23 ° C., 50% RH (RelativeRHumidity) environment.
 本発明の実施形態において、(B)セルロース繊維の配合量は、1重量部以上であり、5重量部以上がより好ましく、10重量部以上が特に好ましい。また、(B)セルロース繊維の配合量は、100重量部以下であり、95重量部以下がより好ましく、90重量部以下が特に好ましい。配合量が1重量部以上とすることにより、成形品の機械特性が向上する。また、配合量が100重量部以下とすることにより、溶融混練時のストランドの毛羽立ちが小さくなり、ストランド切れによる押出成形加工性の悪化を防止できる。 In the embodiment of the present invention, the blending amount of (B) cellulose fiber is 1 part by weight or more, more preferably 5 parts by weight or more, and particularly preferably 10 parts by weight or more. Moreover, the compounding quantity of (B) cellulose fiber is 100 weight part or less, 95 weight part or less is more preferable, and 90 weight part or less is especially preferable. When the blending amount is 1 part by weight or more, the mechanical properties of the molded product are improved. Further, when the blending amount is 100 parts by weight or less, the fuzz of the strands during melt-kneading is reduced, and deterioration of extrusion processability due to strand breakage can be prevented.
 本発明の実施形態において、射出成形性、剛性、耐熱性が優れるという点で、(B)セルロース繊維の結晶化度は50%以上が好ましく、より好ましくは55%以上、最も好ましくは60%以上である。ここでいう結晶化度とは、X線回折法による回折強度値からSegal法により算出したセルロースI型結晶化度である。結晶化度は、下記計算式(1)により導き出される。なお、X線回折法に使用するX線回折装置は、株式会社リガク社製「RINT2000/PC」が用いられる。 In the embodiment of the present invention, the crystallinity of the (B) cellulose fiber is preferably 50% or more, more preferably 55% or more, and most preferably 60% or more in terms of excellent injection moldability, rigidity, and heat resistance. It is. The crystallinity referred to here is cellulose I-type crystallinity calculated by the Segal method from the diffraction intensity value by the X-ray diffraction method. The degree of crystallinity is derived from the following calculation formula (1). In addition, “RINT2000 / PC” manufactured by Rigaku Corporation is used as the X-ray diffraction apparatus used for the X-ray diffraction method.
 セルロースI型結晶化度(%)={(I22.6-I18.5)/I22.6}×100 (1)
(式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は,アモルファス部(回折角2θ=18.5°)の回折強度を示す)
Cellulose type I crystallinity (%) = {(I22.6−I18.5) /I22.6} × 100 (1)
(Where I22.6 is the diffraction intensity of the lattice plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I18.5 is the amorphous portion (diffraction angle 2θ = 18.5 °). Shows diffraction intensity)
 本発明の実施形態において、樹脂組成物中の(B)セルロース繊維の分散状態は、特に限定されないが、押出成形加工性および機械特性が向上する点で、樹脂組成物中の(B)セルロース繊維が後述する(C)アクリル系樹脂の分子鎖と物理的に適度に絡み合っていることが好ましい。 In the embodiment of the present invention, the dispersion state of the (B) cellulose fiber in the resin composition is not particularly limited, but the (B) cellulose fiber in the resin composition is improved in terms of improved extrusion processability and mechanical properties. However, it is preferable that (C) a molecular chain of the acrylic resin, which will be described later, is physically entangled moderately.
 [熱可塑性樹脂組成物からなる押出成形品の表面粗さの最大高さ(Ry)]
 本発明の実施形態の熱可塑性樹脂組成物からなる押出成形品の表面粗さの最大高さ(Ry)は、押出成形加工性、射出成形性、成形品の表面外観に優れるという点で、600μm以下であることが好ましく、より好ましくは550μm以下、最も好ましくは500μm以下である。ここでいうRyとは、押出成形品として、直径3mm、長さ10mmの押出ストランドの表面5mmを、株式会社ミツトヨ社製表面粗さ測定機「SV-2100」を使用し、JIS B 0601(1994)に準拠して、カットオフ値(λc):0.8mmで測定した最大高さ(Ry)である。
[Maximum height (Ry) of surface roughness of an extruded product made of a thermoplastic resin composition]
The maximum height (Ry) of the surface roughness of the extrusion molded product comprising the thermoplastic resin composition of the embodiment of the present invention is 600 μm in that it is excellent in extrusion processability, injection moldability, and surface appearance of the molded product. Or less, more preferably 550 μm or less, and most preferably 500 μm or less. As used herein, Ry refers to an extruded product having a diameter of 3 mm and a length of 10 mm of an extruded strand having a surface of 5 mm, using a surface roughness measuring machine “SV-2100” manufactured by Mitutoyo Corporation, and JIS B 0601 (1994). ), A cutoff value (λc): a maximum height (Ry) measured at 0.8 mm.
 [(C)アクリル系樹脂]
 本発明の実施形態において、押出成形加工性、射出成形性、成形品の表面外観、機械特性が優れるという点で、(C)アクリル系樹脂を配合することが好ましい。(C)アクリル系樹脂の重量平均分子量は、100万以上が好ましく、より好ましくは200万以上、最も好ましくは300万以上である。また、(C)アクリル系樹脂の重量平均分子量は、750万以下が好ましく、より好ましくは600万以下、最も好ましくは500万以下である。(C)アクリル系樹脂の重量平均分子量が、100万~750万の範囲内であれば、(B)セルロース繊維と(C)アクリル系樹脂の分子鎖の物理的な絡み合いが大きくなり、押出成形加工性や射出成形性、成形品の表面外観、機械特性が向上するという点で好ましい。
[(C) Acrylic resin]
In the embodiment of the present invention, it is preferable to blend (C) an acrylic resin in terms of excellent extrusion processability, injection moldability, surface appearance of a molded product, and mechanical properties. (C) The weight average molecular weight of the acrylic resin is preferably 1 million or more, more preferably 2 million or more, and most preferably 3 million or more. The weight average molecular weight of the (C) acrylic resin is preferably 7.5 million or less, more preferably 6 million or less, and most preferably 5 million or less. If the weight average molecular weight of (C) acrylic resin is in the range of 1,000,000 to 7.5 million, physical entanglement between (B) cellulose fibers and (C) acrylic resin molecular chains will increase, and extrusion molding will occur. This is preferable in terms of improving workability, injection moldability, surface appearance of molded products, and mechanical properties.
 ここでいう(C)アクリル系樹脂の重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC、Waters社製「Water Model510」)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。 The weight average molecular weight of the (C) acrylic resin here is polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC, “Water Model 510” manufactured by Waters) using hexafluoroisopropanol as a solvent. It is a weight average molecular weight in terms of conversion.
 本発明の実施形態において、(C)アクリル系樹脂とは、(メタ)アクリル酸アルキルの重合体及び/又は(メタ)アクリル酸アルキルの共重合体である。 In the embodiment of the present invention, the (C) acrylic resin is a polymer of alkyl (meth) acrylate and / or a copolymer of alkyl (meth) acrylate.
 (メタ)アクリル酸アルキルとしては、メタクリル酸メチル、アクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸ジシクロペンテニルオキシエチル、アクリル酸ジシクロペンタニル、ジアクリル酸ブタンジオール、ジアクリル酸ノナンジオール、ジアクリル酸ポリエチレングリコール、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、メタクリル酸、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸ジシクロペンテニルオキシエチル、メタクリル酸ジシクロペンタニル、メタクリル酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、メタクリル酸ベンジル、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル酸ポリエチレングリコールなどが挙げられ、これら(メタ)アクリル酸アルキルの1種又は2種以上を用いることができる。 Examples of alkyl (meth) acrylate include methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate, Aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, butanediol diacrylate, diacryl Acid nonanediol, polyethylene glycol diacrylate, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, methacrylic acid, methacrylate Ethyl phosphate, butyl methacrylate, cyclohexyl methacrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxy methacrylate Propyl, glycidyl methacrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, pentamethylpiperidyl methacrylate, tetramethylpiperidyl methacrylate, benzyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, di Examples include polyethylene glycol methacrylate, and one or more of these alkyl (meth) acrylates can be used.
 また、(メタ)アクリル酸アルキルとその他のビニル系単量体を共重合させた共重合体を、(C)アクリル系樹脂として用いることもできる。その他のビニル系単量体としては、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレン、p-t-ブチルスチレンなどの芳香族ビニル系単量体、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどのシアン化ビニル系単量体、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン-p-グリシジルエーテル、p-グリシジルスチレン、マレイン酸無水物、マレイン酸モノエチルエステル、イタコン酸、イタコン酸無水物、グルタル酸無水物、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミドなどのN-置換マレイミド、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、ブトキシメチルアクリルアミド、N-プロピルメタクリルアミド、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、p-アミノスチレン、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリン、2-スチリル-オキサゾリンなどが挙げられる。これらのビニル系単量体は、単独または2種以上を用いることができる。 Also, a copolymer obtained by copolymerizing an alkyl (meth) acrylate and other vinyl monomers can be used as the (C) acrylic resin. Other vinyl monomers include aromatic vinyl monomers such as α-methyl styrene, o-methyl styrene, p-methyl styrene, o-ethyl styrene, p-ethyl styrene, pt-butyl styrene. , Vinyl cyanide monomers such as acrylonitrile, methacrylonitrile, ethacrylonitrile, glycidyl itaconate, allyl glycidyl ether, styrene-p-glycidyl ether, p-glycidyl styrene, maleic anhydride, maleic acid monoethyl ester N-substituted maleimides such as itaconic acid, itaconic anhydride, glutaric anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, acrylamide, methacrylamide, N-methylacrylamide, Butoxymethyl Kurylamide, N-propylmethacrylamide, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, p-aminostyrene, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acryloyl -Oxazoline, 2-styryl-oxazoline and the like. These vinyl monomers can be used alone or in combination of two or more.
 また、ラクトン環、マレイン酸無水物、グルタル酸無水物などの環構造単位を主鎖に含有する共重合体を、(C)アクリル系樹脂として用いることができる。 Also, a copolymer containing a cyclic structural unit such as a lactone ring, maleic anhydride, glutaric anhydride or the like in the main chain can be used as the (C) acrylic resin.
 本発明の実施形態で用いられる(C)アクリル系樹脂としては、メタクリル酸メチル成分単位を主成分とする。(C)アクリル系樹脂は、好ましくはメタクリル酸メチル成分単位を70%以上含むポリメタクリル酸メチル系樹脂であり、より好ましくは80%以上含むポリメタクリル酸メチル系樹脂であり、さらに好ましくは90%以上含むポリメタクリル酸メチル系樹脂であり、最も好ましくはポリメタクリル酸メチルである。 (C) The acrylic resin used in the embodiment of the present invention contains a methyl methacrylate component unit as a main component. (C) The acrylic resin is preferably a polymethyl methacrylate resin containing 70% or more of a methyl methacrylate component unit, more preferably a polymethyl methacrylate resin containing 80% or more, and more preferably 90%. A polymethyl methacrylate-based resin including the above, most preferably polymethyl methacrylate.
 本発明の実施形態において、(C)アクリル系樹脂の配合量は、(A)ポリ乳酸樹脂100重量部に対して、0.1重量部以上であり、より好ましくは0.5重量部以上、さらに好ましくは1重量部以上である。また、(C)アクリル系樹脂の配合量は、(A)ポリ乳酸樹脂100重量部に対して、20重量部以下であり、より好ましくは15重量部以下、さらに好ましくは10重量部以下である。(C)アクリル系樹脂の配合量が0.1~20重量部であれば、押出成形加工性、射出成形性、成形品の表面外観、機械特性のバランスが向上するという点で好ましい。 In the embodiment of the present invention, the blending amount of the (C) acrylic resin is 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, with respect to 100 parts by weight of the (A) polylactic acid resin. More preferably, it is 1 part by weight or more. Moreover, the compounding quantity of (C) acrylic resin is 20 parts weight or less with respect to 100 weight part of (A) polylactic acid resin, More preferably, it is 15 parts weight or less, More preferably, it is 10 parts weight or less. . (C) If the blending amount of the acrylic resin is 0.1 to 20 parts by weight, it is preferable in terms of improving the balance of extrusion processability, injection moldability, surface appearance of the molded product, and mechanical properties.
 本発明の実施形態において、(C)アクリル系樹脂のガラス転移温度は、60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましく、100℃以上が最も好ましい。(C)アクリル系樹脂のガラス転移温度の上限は、特に限定されないが、押出成形性および射出成形性の点で、150℃以下が好ましい。ここでいうガラス転移温度は、示差走査型熱量計(DSC)としてパーキンエルマー社製「DSC-7」で測定したガラス転移温度の値であり、ガラス転移温度領域における比熱容量変化が半分の値となる温度である。 In the embodiment of the present invention, the glass transition temperature of the (C) acrylic resin is preferably 60 ° C or higher, more preferably 70 ° C or higher, further preferably 80 ° C or higher, particularly preferably 90 ° C or higher, and 100 ° C or higher. Most preferred. (C) Although the upper limit of the glass transition temperature of acrylic resin is not specifically limited, 150 degreeC or less is preferable at the point of extrusion moldability and injection moldability. The glass transition temperature here is a value of the glass transition temperature measured by “DSC-7” manufactured by Perkin Elmer as a differential scanning calorimeter (DSC), and the specific heat capacity change in the glass transition temperature region is a half value. Temperature.
 本発明の実施形態において、(C)アクリル系樹脂として市販されているものとしては、例えば、三菱レイヨン社製メタブレンPシリーズや、ダウ・ケミカル社製のPARALOID Kシリーズや、カネカ社製カネエースPAシリーズなどが挙げられる。 In the embodiment of the present invention, as (C) what is marketed as an acrylic resin, for example, Metablene P series manufactured by Mitsubishi Rayon Co., PARALOID K series manufactured by Dow Chemical Co., and Kaneace PA series manufactured by Kaneka Co., Ltd. Etc.
 [(D)結晶核剤]
 本発明の実施形態において、(D)結晶核剤とは、無機系結晶核剤および有機系結晶核剤から選ばれる1種以上の結晶核剤をいう。
[(D) Crystal nucleating agent]
In the embodiment of the present invention, the (D) crystal nucleating agent means one or more crystal nucleating agents selected from an inorganic crystal nucleating agent and an organic crystal nucleating agent.
 本発明の実施形態において、無機系結晶核剤の具体例としては、タルク、カオリナイト、モンモリロナイト、マイカ、合成マイカ、クレイ、ゼオライト、シリカ、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、硫化カルシウム、窒化ホウ素、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネートの金属塩などが挙げられる。これらの無機系結晶核剤は、1種でもよく、2種以上を併用してもよい。耐熱性を向上させる効果が大きいという点で、タルク、カオリナイト、モンモリロナイト、マイカおよび合成マイカが好ましく、成形性の点で、タルクがより好ましい。これらの無機系結晶核剤は、樹脂組成物中での分散性を向上させるために、有機物で修飾されていることが好ましい。 In the embodiment of the present invention, specific examples of the inorganic crystal nucleating agent include talc, kaolinite, montmorillonite, mica, synthetic mica, clay, zeolite, silica, graphite, carbon black, zinc oxide, magnesium oxide, calcium oxide, Examples thereof include titanium oxide, calcium sulfide, boron nitride, magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, neodymium oxide, and metal salts of phenylphosphonate. These inorganic crystal nucleating agents may be used alone or in combination of two or more. Talc, kaolinite, montmorillonite, mica and synthetic mica are preferred in that the effect of improving heat resistance is great, and talc is more preferred in terms of moldability. These inorganic crystal nucleating agents are preferably modified with an organic substance in order to improve dispersibility in the resin composition.
 本発明の実施形態において、有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβ-ナフタレート、ナトリウムシクロヘキサンカルボキシレートなどの有機カルボン酸金属塩、p-トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウムなどの有機スルホン酸塩、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t-ブチルアミド)などのカルボン酸アミド、エチレン-アクリル酸またはメタクリル酸コポリマーのナトリウム塩、スチレン-無水マレイン酸コポリマーのナトリウム塩などのカルボキシル基を有する重合体のナトリウム塩またはカリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、ナトリウム-2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)フォスフェートなどのリン化合物金属塩および2,2-メチルビス(4,6-ジ-t-ブチルフェニル)ナトリウムなどが挙げられる。これらの有機系結晶核剤は、単独ないし2種以上用いることができる。射出成形性、耐熱性を向上させる効果が大きいという観点から、有機カルボン酸金属塩およびカルボン酸アミドが好ましい。 In the embodiment of the present invention, specific examples of the organic crystal nucleating agent include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, Potassium terephthalate, calcium oxalate, sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium octacosanoate, calcium octacosanoate, sodium stearate, potassium stearate, lithium stearate, calcium stearate , Magnesium stearate, barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, salicylic acid Organic carboxylic acid metal salts such as sodium, zinc salicylate, aluminum dibenzoate, potassium dibenzoate, lithium dibenzoate, sodium β-naphthalate and sodium cyclohexanecarboxylate, organic sulfonic acids such as sodium p-toluenesulfonate and sodium sulfoisophthalate Salt, ethylene bis stearamide, ethylene bis laurate amide, palmitic amide, hydroxy stearic amide, erucic amide, trimesic acid tris (t-butylamide) and other carboxylic acid amides, ethylene-acrylic acid or methacrylic acid copolymer Sodium salt or potassium salt of a polymer having a carboxyl group such as sodium salt, sodium salt of styrene-maleic anhydride copolymer (so-called iono) ), Benzylidene sorbitol and derivatives thereof, phosphorus compound metal salts such as sodium-2,2′-methylenebis (4,6-di-t-butylphenyl) phosphate, and 2,2-methylbis (4,6-di-). t-butylphenyl) sodium and the like. These organic crystal nucleating agents can be used alone or in combination of two or more. From the viewpoint that the effect of improving injection moldability and heat resistance is great, organic carboxylic acid metal salts and carboxylic acid amides are preferred.
 本発明の実施形態において、原料として用いられる(D)結晶核剤の平均粒径は、0.001μm以上であることが好ましく、0.01μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。また、(D)結晶核剤の平均粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。ここで、(D)結晶核剤の平均粒径は、島津製作所社製「SALD-2000J」で測定したD50の数値である。 In the embodiment of the present invention, the average particle diameter of the (D) crystal nucleating agent used as a raw material is preferably 0.001 μm or more, more preferably 0.01 μm or more, and 0.1 μm or more. More preferably. In addition, the average particle diameter of the (D) crystal nucleating agent is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. Here, the average particle diameter of the (D) crystal nucleating agent is a numerical value of D50 measured by “SALD-2000J” manufactured by Shimadzu Corporation.
 本発明の実施形態において、樹脂組成物中での(D)結晶核剤の分散性を向上させることが、成形性、耐衝撃性および耐熱性の点で好ましい。また、(D)結晶核剤の平均粒径が小さいほど、樹脂組成物中での(D)結晶核剤の分散性を向上させることができるため、射出成形性、耐衝撃性および耐熱性の点でさらに好ましい。 In the embodiment of the present invention, it is preferable in terms of moldability, impact resistance and heat resistance to improve the dispersibility of the (D) crystal nucleating agent in the resin composition. Moreover, since the dispersibility of the (D) crystal nucleating agent in the resin composition can be improved as the average particle size of the (D) crystal nucleating agent is smaller, the injection moldability, impact resistance, and heat resistance are improved. More preferable in terms.
 本発明の実施形態において、(D)結晶核剤の配合量は、(A)ポリ乳酸樹脂100重量部に対し、0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上が特に好ましい。また、(D)結晶核剤の配合量は、(A)ポリ乳酸樹脂100重量部に対し、20重量部以下が好ましく、15重量部以下がより好ましく、10重量部以下が特に好ましい。配合量が0.1~20重量部の範囲内である場合、射出成形性や曲げ弾性率や耐熱性等の機械特性が向上するという点で好ましい。 In the embodiment of the present invention, the blending amount of the (D) crystal nucleating agent is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more, based on 100 parts by weight of the (A) polylactic acid resin. .5 parts by weight or more is particularly preferable. Further, the blending amount of the (D) crystal nucleating agent is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less with respect to 100 parts by weight of the (A) polylactic acid resin. When the blending amount is in the range of 0.1 to 20 parts by weight, it is preferable from the viewpoint of improving mechanical properties such as injection moldability, bending elastic modulus and heat resistance.
 [(E)可塑剤]
 本発明の実施形態において、(E)可塑剤としては、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、エポキシ系可塑剤、ヒマシ油系可塑剤などを挙げることができる。
[(E) Plasticizer]
In the embodiment of the present invention, the (E) plasticizer includes a polyester plasticizer, a glycerin plasticizer, a polycarboxylic acid ester plasticizer, a polyalkylene glycol plasticizer, an epoxy plasticizer, and a castor oil plasticizer. An agent etc. can be mentioned.
 本発明の実施形態において、ポリエステル系可塑剤としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分とからなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステルなどを挙げることができる。これらのポリエステル系可塑剤は、単官能カルボン酸もしくは単官能アルコールで末端封鎖されていてもよく、エポキシ化合物などで末端封鎖されていてもよい。 In the embodiment of the present invention, examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3-butanediol, And polyesters composed of diol components such as 1,4-butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acid such as polycaprolactone. These polyester plasticizers may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
 本発明の実施形態において、グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノモンタネートまたはグリセリントリアセテートなどを挙げることができる。グリセリン系可塑剤は、ポリオキシエチレングリセリントリアセテートなどのようにエチレンオキシドまたはプロピレンオキシドなどのアルキレンオキシド単位を付加されているものでもよい。また、グリセリン系可塑剤の具体例としては、ジグリセリンパルミチン酸エステル、ジグリセリンステアリン酸エステル、ジグリセリンオレイン酸エステル、デカグリセリンパルミチン酸エステル、デカグリセリンステアリン酸エステル、デカグリセリンオレイン酸エステルなどのポリグリセリン脂肪酸エステルが挙げられる。 In the embodiment of the present invention, specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, glycerin monoacetomonomontanate or glycerin. A triacetate etc. can be mentioned. The glycerin plasticizer may be one to which an alkylene oxide unit such as ethylene oxide or propylene oxide is added, such as polyoxyethylene glycerin triacetate. Specific examples of the glycerin plasticizer include diglycerin palmitic acid ester, diglycerin stearic acid ester, diglycerin oleic acid ester, decaglycerin palmitic acid ester, decaglycerin stearic acid ester, decaglycerin oleic acid ester and the like. A glycerin fatty acid ester is mentioned.
 本発明の実施形態において、多価カルボン酸系可塑剤としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、コハク酸イソデシル、コハク酸トリエチレングリコールモノメチルエーテルエステル、コハク酸ベンジルメチルジグリコールエステルなどのコハク酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシルエステル、アジピン酸ジエチレングリコールモノメチルエーテルエステル、アジピン酸メチルジグリコールブチルジグリコールエステル、アジピン酸ベンジルメチルジグリコールエステル、アジピン酸ベンジルブチルジグリコールエステルなどのアジピン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、セバシン酸ジ-2-エチルヘキシルなどのセバシン酸エステルなどを挙げることができる。 In the embodiment of the present invention, the polyvalent carboxylic acid plasticizer includes phthalate esters such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, and butyl benzyl phthalate. , Succinic acid esters such as tributyl trimellitic acid, trioctyl trimellitic acid, trihexyl trimellitic acid, trihexyl trimellitic acid, isodecyl succinate, triethylene glycol monomethyl ether succinate, benzyl methyl diglycol succinate, adipic acid Diisodecyl, adipic acid n-octyl-n-decyl ester, adipic acid diethylene glycol monomethyl ether ester, adipic acid methyl diglycol butyl diglycol ester, adipic acid Adipic acid esters such as benzyl methyl diglycol ester and benzylbutyl diglycol adipate, azelaic acid esters such as di-2-ethylhexyl azelate, sebacic acid esters such as dibutyl sebacate and di-2-ethylhexyl sebacate, etc. Can be mentioned.
 本発明の実施形態において、ポリアルキレングリコール系可塑剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキシド/プロピレンオキシド)ブロックおよび/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールまたはそれらの末端エポキシ変性化合物または末端エーテル変性化合物などの末端封鎖化合物などを挙げることができる。(E)可塑剤としては、耐熱性の点で、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキシド/プロピレンオキシド)ブロックおよび/またはランダム共重合体が好ましい。 In the embodiment of the present invention, the polyalkylene glycol plasticizer includes polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols. And polyalkylene glycols such as propylene oxide addition polymers of bisphenols and tetrahydrofuran addition polymers of bisphenols or end-capping compounds such as terminal epoxy-modified compounds or terminal ether-modified compounds thereof. (E) The plasticizer is preferably polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer from the viewpoint of heat resistance.
 本発明の実施形態において、エポキシ系可塑剤としては、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も挙げることができる。 In the embodiment of the present invention, the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but in addition, mainly bisphenol A and epichlorohydrin are used as raw materials. Such so-called epoxy resins can also be mentioned.
 本発明の実施形態において、ヒマシ油系可塑剤としては、ヒマシ油およびその誘導体であれば、いずれでもよく、例えば、ヒマシ油、脱水ヒマシ油、ヒマシ硬化油、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、リシノール酸、リシノレイン酸、12-ヒドロキシステアリン酸、セバシン酸、ウンデシレン酸、ヘプチル酸、ヒマシ油脂肪酸縮合物、ヒマシ油脂肪酸エステル、メチルリシノレート、エチルリシノレート、イソプロピルリシノレート、ブチルリシノレート、エチレングリコールモノリシレート、プロピレングリコールモノリシレート、トリメチロールプロパンモノリシレート、ソルビタンモノリシレート、ヒマシ油脂肪酸ポリエチレングリコールエステル、ヒマシ油エチレンオキシド付加物、ヒマシ油系ポリオール、ヒマシ油系トルオールまたはヒマシ油系ジオールなどを挙げることができる。(E)可塑剤としては、透明性の点で、ヒマシ油脂肪酸エステル、メチルリシノレート、エチルリシノレート、イソプロピルリシノレート、ブチルリシノレート、エチレングリコールモノリシレート、プロピレングリコールモノリシレート、トリメチロールプロパンモノリシレート、ソルビタンモノリシレート、ヒマシ油脂肪酸ポリエチレングリコールエステル、ヒマシ油エチレンオキシド付加物、ヒマシ油系ポリオール、ヒマシ油系トルオールまたはヒマシ油系ジオールが好ましい。 In the embodiment of the present invention, the castor oil plasticizer may be any castor oil and derivatives thereof, such as castor oil, dehydrated castor oil, castor oil, castor oil fatty acid, dehydrated castor oil fatty acid, Ricinoleic acid, ricinoleic acid, 12-hydroxystearic acid, sebacic acid, undecylenic acid, heptyl acid, castor oil fatty acid condensate, castor oil fatty acid ester, methyl ricinolate, ethyl ricinolate, isopropyl ricinolate, butyl ricinolate, ethylene glycol Monolysylate, propylene glycol monolysylate, trimethylolpropane monolysylate, sorbitan monolysylate, castor oil fatty acid polyethylene glycol ester, castor oil ethylene oxide adduct, castor oil-based polyol, castor oil-based toll , And the like Lumpur or castor oil diol. (E) As a plasticizer, castor oil fatty acid ester, methyl ricinolate, ethyl ricinolate, isopropyl ricinolate, butyl ricinolate, ethylene glycol monoricylate, propylene glycol monoricylate, trimethylolpropane are used in terms of transparency. Monolithic acid, sorbitan monoricylate, castor oil fatty acid polyethylene glycol ester, castor oil ethylene oxide adduct, castor oil-based polyol, castor oil-based toluol or castor oil-based diol are preferred.
 また、その他の可塑剤としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレート、ポリオキシエチレンジアセテート、ポリオキシエチレンジ(2-エチルヘキサノエート)、ポリオキシプロピレンモノラウレート、ポリオキシプロピレンモノステアレート、ポリオキシエチレンジベンゾエート、ポリオキシプロピレンジベンゾエートなどのポリオールエステル、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、クエン酸エトキシカルボニルメチルジブチル、クエン酸ジ-2-エチルヘキシル、アセチルリシノール酸メチルまたはアセチルリシノール酸ブチルなどのオキシ酸エステル、大豆油、大豆油脂肪酸、大豆油脂肪酸エステル、エポキシ化大豆油、菜種油、菜種油脂肪酸、菜種油脂肪酸エステル、エポキシ化菜種油、亜麻仁油、亜麻仁油脂肪酸、亜麻仁油脂肪酸エステル、エポキシ化亜麻仁油、ヤシ油またはヤシ油脂肪酸などの植物油系化合物、ペンタエリスリトール、ソルビトール、ポリアクリル酸エステル、シリコーンオイルまたはパラフィン類などを挙げることができる。 Other plasticizers include neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, polyoxyethylene diacetate, polyoxyethylene di (2-ethylhexanoate), poly Polyol esters such as oxypropylene monolaurate, polyoxypropylene monostearate, polyoxyethylene dibenzoate, polyoxypropylene dibenzoate, aliphatic carboxylic acid esters such as butyl oleate, triethyl acetylcitrate, tributyl acetylcitrate, Oxyacid esters such as ethoxycarbonylmethyldibutyl citrate, di-2-ethylhexyl citrate, methyl acetylricinoleate or butyl acetylricinoleate, large Oil, soybean oil fatty acid, soybean oil fatty acid ester, epoxidized soybean oil, rapeseed oil, rapeseed oil fatty acid, rapeseed oil fatty acid ester, epoxidized rapeseed oil, linseed oil, linseed oil fatty acid, linseed oil fatty acid ester, epoxidized linseed oil, coconut oil or palm Examples include vegetable oil-based compounds such as oil fatty acid, pentaerythritol, sorbitol, polyacrylic acid ester, silicone oil or paraffins.
 本発明の実施形態において、(E)可塑剤は、1種でもよく、2種以上を併用してもよいが、成形性、透明性および耐熱性の点で、2種以上を含むものであることが好ましく、少なくとも1種がポリアルキレングリコール系可塑剤であることがより好ましい。なお、(E)可塑剤として、ポリアルキレングリコール系可塑剤を2種以上併用することもできる。 In the embodiment of the present invention, the plasticizer (E) may be one kind or a combination of two or more kinds, but it may contain two or more kinds in terms of moldability, transparency and heat resistance. Preferably, at least one is a polyalkylene glycol plasticizer. In addition, as the plasticizer (E), two or more polyalkylene glycol plasticizers can be used in combination.
 本発明の実施形態において、(E)可塑剤の配合量は、射出成形性、耐熱性および耐衝撃性の点で、(A)ポリ乳酸樹脂100重量部に対し、1重量部以上が好ましく、2重量部以上がより好ましく、3重量部以上が特に好ましい。また、(E)可塑剤の配合量は、射出成形性、耐熱性および耐衝撃性の点で、(A)ポリ乳酸樹脂100重量部に対し、20重量部以下が好ましく、18重量部以下がより好ましく、15重量部以下がさらに好ましく、10重量部以下が特に好ましい。配合量が1~20重量部の範囲内である場合、射出成形性や曲げ弾性率や耐熱性等の機械特性が向上するという点で好ましい。 In the embodiment of the present invention, the amount of the plasticizer (E) is preferably 1 part by weight or more with respect to 100 parts by weight of the polylactic acid resin (A) in terms of injection moldability, heat resistance and impact resistance. 2 parts by weight or more is more preferable, and 3 parts by weight or more is particularly preferable. The blending amount of the plasticizer (E) is preferably 20 parts by weight or less and 100 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin (A) in terms of injection moldability, heat resistance and impact resistance. More preferably, it is more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less. When the blending amount is in the range of 1 to 20 parts by weight, it is preferable from the viewpoint of improving mechanical properties such as injection moldability, bending elastic modulus and heat resistance.
[(F)(A)ポリ乳酸樹脂および(C)アクリル系樹脂以外の熱可塑性樹脂]
本発明の実施形態において、(F)(A)ポリ乳酸樹脂および(C)アクリル系樹脂以外の熱可塑性樹脂を必要に応じて適宜配合することも好ましい。
[(F) (A) Polylactic acid resin and (C) Thermoplastic resin other than acrylic resin]
In the embodiment of the present invention, it is also preferable that a thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin is appropriately blended as necessary.
 本発明の実施形態において、(F)(A)ポリ乳酸樹脂および(C)アクリル系樹脂以外の熱可塑性樹脂の具体例としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン/α-オレフィン共重合体(“/”は共重合を示す。)等のオレフィン系樹脂、ポリスチレン樹脂、スチレン/アクリロニトリル共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、(メタ)アクリル酸メチル/スチレン共重合体などのスチレン系樹脂、ポリビニルアルコール系樹脂、ポリ乳酸系樹脂以外のポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリフェニレンオキシド樹脂、変性ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリオキシメチレン樹脂、フェノキシ樹脂、フェノール樹脂などが挙げられる。なお、(F)(A)ポリ乳酸樹脂および(C)アクリル系樹脂以外の熱可塑性樹脂は、一種のみでもよく、二種以上を併用して用いることもできる。 In the embodiment of the present invention, specific examples of the thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin include, for example, polypropylene resin, polyethylene resin, ethylene / α-olefin copolymer. ("/" Indicates copolymerization) such as olefin resin, polystyrene resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene / styrene copolymer (ABS resin), methyl (meth) acrylate / styrene copolymer Styrene resins such as coalescence, polyvinyl alcohol resins, polyester resins other than polylactic acid resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, modified polyphenylene oxide resins, polyphenylene sulfide resins, polyoxymethylene resins, phenoxy resins , Feno Etc. Le resins. In addition, the thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin may be used alone or in combination of two or more.
 本発明の実施形態において、(F)(A)ポリ乳酸樹脂および(C)アクリル系樹脂以外の熱可塑性樹脂を含む場合、(F)熱可塑性樹脂の配合量は、(A)ポリ乳酸樹脂100重量部に対して、1重量部以上が好ましく、より好ましくは2重量部以上、最も好ましくは3重量部以上であり、200重量部以下が好ましく、より好ましくは150重量部以下、最も好ましくは100重量部以下である。 In the embodiment of the present invention, when a thermoplastic resin other than (F) (A) polylactic acid resin and (C) acrylic resin is included, the blending amount of (F) thermoplastic resin is (A) polylactic acid resin 100. The amount is preferably 1 part by weight or more, more preferably 2 parts by weight or more, most preferably 3 parts by weight or more, preferably 200 parts by weight or less, more preferably 150 parts by weight or less, most preferably 100 parts by weight. Less than parts by weight.
 [その他の添加剤]
 本発明の実施形態において、本発明の目的を損なわない範囲で、通常の添加剤として、例えば、(B)セルロース繊維や(D)結晶核剤のうちの無機結晶核剤とは異なる充填剤(ガラス繊維、炭素繊維、金属繊維、天然繊維、有機繊維、ガラスフレーク、ガラスビーズ、セラミックスファイバー、セラミックビーズ、アスベスト、ワラステナイト、セリサイト、ベントナイト、ドロマイト、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトまたは白土など)、触媒失活剤(ヒンダードフェノール系化合物、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物など)、紫外線吸収剤(レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、熱安定剤(ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、滑剤、離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(ニグロシンなど)および顔料(硫化カドミウム、フタロシアニンなど)を含む着色剤、着色防止剤(亜リン酸塩、次亜リン酸塩など)、シランカップリング剤(エポキシシランカップリング剤、アミノシランカップリング剤、(メタ)アクリルシランカップリング剤、イソシアネートシランカップリング剤など)、難燃剤(赤燐、燐酸エステル、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化アルミニウム、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩、シリコン化合物など)、導電剤あるいは着色剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、帯電防止剤、エポキシ化合物(グリシジルエーテル化合物、グリシジルエステル化合物、グリシジル化合物をグラフトまたは共重合した高分子化合物など)、酸無水物化合物(無水マレイン酸、無水コハク酸、酸無水物をグラフトまたは共重合した高分子化合物など)、カルボジイミド化合物(N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、2,6,2’,6’-テトライソプロピルジフェニルカルボジイミド、ポリカルボジイミドなど)を1種または2種以上を添加することができる。
[Other additives]
In the embodiment of the present invention, as a normal additive, for example, a filler different from an inorganic crystal nucleating agent among (B) cellulose fiber and (D) crystal nucleating agent within a range not impairing the object of the present invention ( Glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber, glass flake, glass bead, ceramic fiber, ceramic bead, asbestos, wollastonite, sericite, bentonite, dolomite, fine silicate, feldspar powder, potassium titanate, Shirasu balloon, aluminum silicate, silicon oxide, gypsum, novaculite, dosonite or clay, catalyst deactivators (hindered phenol compounds, thioether compounds, vitamin compounds, triazole compounds, polyamine compounds, hydrazine) Derivative compounds, phosphorus compounds, etc.), UV absorption Agents (resorcinol, salicylate, benzotriazole, benzophenone, etc.), heat stabilizers (hindered phenol, hydroquinone, phosphites and their substitutes, etc.), lubricants, mold release agents (montanic acid and its salts, esters, Colorants including half esters, stearyl alcohol, stearamide and polyethylene wax), dyes (such as nigrosine) and pigments (such as cadmium sulfide, phthalocyanine), anti-coloring agents (such as phosphites and hypophosphites), silanes Coupling agent (epoxy silane coupling agent, amino silane coupling agent, (meth) acryl silane coupling agent, isocyanate silane coupling agent, etc.), flame retardant (red phosphorus, phosphate ester, brominated polystyrene, brominated polyphenylene ester) Tellurium, brominated polycarbonate, aluminum hydroxide, magnesium hydroxide, melamine and cyanuric acid or salts thereof, silicon compounds, etc.), conductive agent or colorant (carbon black, etc.), slidability improver (graphite, fluororesin, etc.) , Antistatic agents, epoxy compounds (glycidyl ether compounds, glycidyl ester compounds, polymer compounds obtained by grafting or copolymerizing glycidyl compounds), acid anhydride compounds (maleic anhydride, succinic anhydride, acid anhydrides grafted or co-polymerized) Polymerized polymer compound), carbodiimide compound (N, N′-di-2,6-diisopropylphenylcarbodiimide, 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide, polycarbodiimide, etc.) Add more seeds Can do.
 上記その他の添加剤の配合量は、(A)ポリ乳酸樹脂100重量部に対して、0.01重量部以上が好ましく、より好ましくは0.05重量部以上、最も好ましくは0.1重量部以上であり、100重量部以下が好ましく、より好ましくは80重量部以下、最も好ましくは50重量部以下である。 The blending amount of the other additives is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and most preferably 0.1 parts by weight with respect to 100 parts by weight of the (A) polylactic acid resin. The amount is preferably 100 parts by weight or less, more preferably 80 parts by weight or less, and most preferably 50 parts by weight or less.
 [製造方法]
 本発明の実施形態において、熱可塑性樹脂組成物の製造方法としては、単軸押出機または二軸押出機などを用いて、均一に溶融混練する方法や、溶液中で混合した後に溶媒を揮発させ除去する方法などが好ましく使用できるが、単軸押出機または二軸押出機などを用いて、均一に溶融混練する方法がより好ましく、二軸押出機を用いて、均一に溶融混練する方法が特に好ましい。
[Production method]
In the embodiment of the present invention, as a method for producing the thermoplastic resin composition, a method of uniformly melting and kneading using a single screw extruder or a twin screw extruder, a method of volatilizing a solvent after mixing in a solution, or the like. The method of removing can be preferably used, but a method of uniformly melting and kneading using a single screw extruder or a twin screw extruder is more preferable, and a method of uniformly melting and kneading using a twin screw extruder is particularly preferable. preferable.
 本発明の実施形態において、二軸押出機の形式としては、二軸のスクリューの回転方向について、異方向型と、同方向型とが挙げられる。また、二軸のスクリューの噛合について、噛合型と、非噛合型が挙げられる。二軸押出機の形式としては、同方向型かつ噛合型が好ましい。また、使用されるスクリューとしては、1条ネジ、2条ネジ、3条ネジなどが挙げられるが、2条ネジが好ましい。 In the embodiment of the present invention, examples of the type of the twin screw extruder include a different direction type and a same direction type with respect to the rotational direction of the twin screw. In addition, regarding the meshing of the biaxial screw, there are a meshing type and a non-meshing type. As the type of the twin screw extruder, the same direction type and the meshing type are preferable. Further, examples of the screw used include a single screw, a double screw, and a triple screw, but a double screw is preferable.
 本発明の実施形態において、原料を供給する方法としては、重量式フィーダーを用いることが好ましい。重量式フィーダーとしては、スクリュー式、振動式、ベルト式などが挙げられ、スクリュー式重量フィーダーが好ましい。また、スクリュー式重量フィーダーのスクリューは、短軸、二軸が挙げられるが、いずれも使用することができる。 In the embodiment of the present invention, it is preferable to use a weight type feeder as a method of supplying the raw material. Examples of the weight type feeder include a screw type, a vibration type, and a belt type, and a screw type weight feeder is preferable. Moreover, although the short axis and the biaxial are mentioned as the screw of a screw type weight feeder, both can be used.
 本発明の実施形態において、重量式フィーダーを用い、(A)ポリ乳酸樹脂を押出機根元に設置されたメインフィーダーから供給し、(B)セルロース繊維をサイドフィーダーから供給する。必要に応じて、(C)アクリル系樹脂、(D)結晶核剤、(E)可塑剤、(F)熱可塑性樹脂およびその他の添加剤を供給する場合は、メインフィーダー、もしくはサイドフィーダーのいずれかから供給する。 In an embodiment of the present invention, using a weight type feeder, (A) a polylactic acid resin is supplied from a main feeder installed at the root of an extruder, and (B) a cellulose fiber is supplied from a side feeder. When supplying (C) acrylic resin, (D) crystal nucleating agent, (E) plasticizer, (F) thermoplastic resin and other additives as required, either main feeder or side feeder Supplied from
 なお、(B)セルロース繊維をサイドフィーダーに供給する方法としては、アジテーター付きの重量式原料フィーダーを用いて供給することが好ましい。原料フィーダーとしてスクリュー式重量フィーダーを例に挙げる。スクリュー式重量フィーダーは、重量フィーダーのスクリュー上部に原料を溜めるホッパーが設置されており、通常であればホッパーから原料が自重でスクリューに押し出され供給される仕組みとなっている。しかし、(B)セルロース繊維は嵩高いため、ホッパー内でブリッジ(供給不良)し、スクリューから定量的に供給できない問題が生じる。そのため、フィーダー内部に原料を撹拌するための回転羽、すなわちアジテーター付きの重量式原料フィーダーを用いることが好ましい。 In addition, as a method of supplying the (B) cellulose fiber to the side feeder, it is preferable to supply using a weight type raw material feeder with an agitator. A screw type weight feeder is taken as an example of the raw material feeder. The screw-type weight feeder is provided with a hopper that accumulates raw materials at the upper part of the screw of the weight feeder, and normally the raw material is pushed out from the hopper by its own weight and supplied to the screw. However, since the (B) cellulose fiber is bulky, there arises a problem that it is bridged (poor supply) in the hopper and cannot be quantitatively supplied from the screw. For this reason, it is preferable to use a rotary blade for stirring the raw material inside the feeder, that is, a weight type raw material feeder with an agitator.
 本発明の実施形態において、二軸押出機のL/D(L:押出機スクリュー長さ、D:押出機スクリュー直径)は、10以上が好ましく、20以上がより好ましく、30以上がさらに好ましく、90以下が好ましく、80以下がより好ましく、70以下がさらに好ましい。 In an embodiment of the present invention, L / D (L: extruder screw length, D: extruder screw diameter) of the twin screw extruder is preferably 10 or more, more preferably 20 or more, and further preferably 30 or more, 90 or less is preferable, 80 or less is more preferable, and 70 or less is more preferable.
 本発明の実施形態において、熱可塑性樹脂組成物の吐出直後の樹脂温度は、赤外線放射温度計にて測定した値とする。熱可塑性樹脂組成物の吐出直後の樹脂温度は、180℃以上が好ましく、185℃以上がより好ましく、190℃以上がさらに好ましく、195℃以上が特に好ましく、200℃以上が最も好ましい。熱可塑性樹脂組成物の吐出直後の樹脂温度は、260℃以下が好ましく、255℃以下がより好ましく、250℃以下がさらに好ましく、245℃以下が特に好ましく、240℃以下が最も好ましい。なお、赤外線放射温度計とは、物体から放射される赤外線や可視光線の強度を測定して、物体の温度を測定する温度計であり、一般的に使用されているものを用いることができる。 In the embodiment of the present invention, the resin temperature immediately after ejection of the thermoplastic resin composition is a value measured with an infrared radiation thermometer. The resin temperature immediately after ejection of the thermoplastic resin composition is preferably 180 ° C. or higher, more preferably 185 ° C. or higher, further preferably 190 ° C. or higher, particularly preferably 195 ° C. or higher, and most preferably 200 ° C. or higher. The resin temperature immediately after ejection of the thermoplastic resin composition is preferably 260 ° C. or less, more preferably 255 ° C. or less, further preferably 250 ° C. or less, particularly preferably 245 ° C. or less, and most preferably 240 ° C. or less. The infrared radiation thermometer is a thermometer that measures the temperature of an object by measuring the intensity of infrared light or visible light emitted from the object, and a commonly used one can be used.
 [熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量]
 本発明の実施形態において、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量とは、溶融混練後の熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量である。測定方法は、樹脂組成物中の(A)ポリ乳酸樹脂含有量が1gとなるよう樹脂組成物を秤量し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定して測定する方法である。
[(A) carboxyl end amount of polylactic acid resin in thermoplastic resin composition]
In the embodiment of the present invention, the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition is the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition after melt-kneading. . The measurement method is as follows. The resin composition is weighed so that the content of (A) polylactic acid resin in the resin composition is 1 g, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, 0.05 mol This is a method of titration with / L ethanolic potassium hydroxide.
 本発明の実施形態において、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量は、10eq/t以上であり、15eq/t以上がより好ましく、20eq/t以上がさらに好ましい。また、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量は、100eq/t以下であり、80eq/t以下がより好ましく、60eq/t以下がさらに好ましく、40eq/t以下が特に好ましい。カルボキシル末端量が10eq/t未満であると、生分解性に劣る課題があり、100eq/t超であると(A)ポリ乳酸樹脂のカルボキシル末端と(B)セルロース繊維の水酸基末端との反応が不十分であることから、機械特性の低下や着色および臭気の悪化が起こるという課題がある。 In the embodiment of the present invention, the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 10 eq / t or more, more preferably 15 eq / t or more, and further preferably 20 eq / t or more. Further, the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 100 eq / t or less, more preferably 80 eq / t or less, further preferably 60 eq / t or less, and particularly preferably 40 eq / t or less. preferable. When the carboxyl terminal amount is less than 10 eq / t, there is a problem inferior in biodegradability, and when it exceeds 100 eq / t, the reaction between the carboxyl terminal of (A) polylactic acid resin and the hydroxyl terminal of (B) cellulose fiber occurs. Since it is inadequate, there exists a subject that the deterioration of a mechanical characteristic, coloring, and deterioration of an odor occur.
 熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量を、10eq/t~100eq/tとする方法には、(A)ポリ乳酸樹脂の残存触媒量、溶融混練前の(A)ポリ乳酸樹脂のカルボキシル末端量、(B)セルロース繊維の種類、配合量などを制御する方法がある。好ましくは、(i)(A)ポリ乳酸樹脂として、カルボキシル末端量が5eq/t~50eq/t、残存触媒量が1ppm~500ppmの範囲内のものを用い、(B)セルロース繊維として、平均繊維径が0.1μm~15μmの範囲内、かつ平均繊維長が200μm~800μmの範囲内であるものを用いて、(ii)二軸押出機にて、(A)ポリ乳酸樹脂を押出機のメインフィーダーから供給し、(B)セルロース繊維をサイドフィーダーから供給し、溶融混練する。このようにすることにより、(A)ポリ乳酸樹脂のカルボキシル末端と(B)セルロース繊維の水酸基末端とが適度に反応し、樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が10eq/t~100eq/tとなり、強度などの機械物性に優れるだけでなく、(A)ポリ乳酸樹脂単体よりも生分解速度を早めることができ、さらに着色および臭気を抑制できる。 In the method in which the carboxyl terminal amount of the (A) polylactic acid resin in the thermoplastic resin composition is 10 eq / t to 100 eq / t, (A) the residual catalyst amount of the polylactic acid resin, (A) before melt kneading There is a method of controlling the carboxyl end amount of the polylactic acid resin, (B) the type of cellulose fiber, the blending amount, and the like. Preferably, (i) (A) a polylactic acid resin having a carboxyl terminal amount in the range of 5 eq / t to 50 eq / t and a residual catalyst amount in the range of 1 ppm to 500 ppm is used. (Ii) using a screw having a diameter in the range of 0.1 μm to 15 μm and an average fiber length in the range of 200 μm to 800 μm. It supplies from a feeder, (B) Cellulose fiber is supplied from a side feeder, and it melt-kneads. By doing in this way, the carboxyl terminal of (A) polylactic acid resin and the hydroxyl terminal of (B) cellulose fiber react moderately, and the carboxyl terminal amount of (A) polylactic acid resin in a resin composition is 10 eq / t-100 eq / t, not only excellent mechanical properties such as strength but also (A) the biodegradation rate can be made faster than that of the polylactic acid resin alone, and further, coloring and odor can be suppressed.
 [成形品および用途]
 本発明の実施形態の樹脂組成物は、公知の成形法により、成形品とすることができる。成形法としては、射出成形、押出成形、プレス成形、ブロー成形などが好ましい。射出成形品、押出成形品、プレス成形品およびブロー成形品など各種成形品に加工することにより、有用に利用することができる。成形品は、シート、フィルム、繊維などとして利用することができる。
[Molded products and applications]
The resin composition of the embodiment of the present invention can be formed into a molded product by a known molding method. As the molding method, injection molding, extrusion molding, press molding, blow molding and the like are preferable. By processing into various molded products such as injection molded products, extrusion molded products, press molded products, and blow molded products, it can be used effectively. The molded product can be used as a sheet, a film, a fiber, or the like.
 本発明の実施形態において、成形法として射出成形を選択する場合、金型温度は、成形性および耐熱性の点から、30℃以上が好ましく、50℃以上がより好ましく、70℃以上がさらに好ましく、160℃以下が好ましく、130℃以下がより好ましく、110℃以下がさらに好ましい。 In the embodiment of the present invention, when injection molding is selected as the molding method, the mold temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher from the viewpoint of moldability and heat resistance. 160 ° C. or lower, preferably 130 ° C. or lower, more preferably 110 ° C. or lower.
 本発明の実施形態の樹脂組成物から形成される成形品は、自動車部品(内装・外装部品など)、電気・電子部品(各種ハウジング、歯車、ギアなど)、建築部材、土木部材、農業資材、日用品など様々な用途に利用することができる。成形品は、具体的には、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECUハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジング、スペアタイヤカバー、ドアトリムなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクターなど自動車用コネクターに代表される自動車部品を挙げることができる。また、成形品は、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングおよび内部部品、コピー機のハウジングおよび内部部品、ファクシミリのハウジングおよび内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。さらに、成形品は、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品、などに代表される家庭・事務電気製品部品を挙げることができる。また、成形品は、電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、モーターケース、スイッチ、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り糸、漁網、海藻養殖網、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠、シェールガス掘削用途(減粘剤、pH調整剤、逸泥防止剤、掘削ツールなど)などの土木関連部材、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、植生保護用不織布、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農業用塩ビフィルムの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、紙おむつ、生理用品包材、綿棒、おしぼり、便座ふきなどの衛生用品、医療用不織布(縫合部補強材、癒着防止膜、人工器官補修材)、創傷被覆材、キズテープ包帯、貼符材基布、手術用縫合糸、骨折補強材、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品などの包装用フィルム、トレー、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品などのラッピングフィルムなどの容器・包装、天然繊維複合、ポロシャツ、Tシャツ、インナー、ユニホーム、セーター、靴下、ネクタイなどの各種衣料、カーテン、イス貼り地、カーペット、テーブルクロス、布団地、壁紙、ふろしきなどのインテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、紙、皮革、不織布などのホットメルトバインダー、磁性体、硫化亜鉛、電極材料など粉体のバインダー、光学素子、導電性エンボステープ、ICトレー、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、水切りネット、ボディタオル、ハンドタオル、お茶パック、排水溝フィルター、クリアファイル、コート剤、接着剤、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用である。 Molded articles formed from the resin composition of the embodiment of the present invention include automobile parts (interior / exterior parts, etc.), electrical / electronic parts (various housings, gears, gears, etc.), building members, civil engineering members, agricultural materials, It can be used for various purposes such as daily necessities. Specifically, the molded product is an air flow meter, an air pump, a thermostat housing, an engine mount, an ignition hobbin, an ignition case, a clutch bobbin, a sensor housing, an idle speed control valve, a vacuum switching valve, an ECU housing, a vacuum pump case, an inhibitor switch. , Rotation sensor, acceleration sensor, distributor cap, coil base, actuator case for ABS, top and bottom of radiator tank, cooling fan, fan shroud, engine cover, cylinder head cover, oil cap, oil pan, oil filter, fuel cap, Fuel strainer, distributor cap, vapor canister Automotive underhood parts such as uzing, air cleaner housing, timing belt cover, brake booster parts, various cases, various tubes, various tanks, various hoses, various clips, various valves, various pipes, torque control lever, safety belt parts, Car interior parts such as register blade, washer lever, window regulator handle, window regulator handle knob, passing light lever, sun visor bracket, various motor housings, spare tire cover, door trim, roof rail, fender, garnish, bumper, door mirror stay , Spoiler, hood louver, wheel cover, wheel cap, grill apron cover frame, lamp reflector, Pubezeru, automotive exterior parts such as door handles, wire harness connector, mention may be made of SMJ connector, PCB connector, auto parts represented in the automotive connector, such as door grommet connector. Molded products include notebook computer housings and internal parts, CRT display housings and internal parts, printer housings and internal parts, mobile terminal housings and internal parts such as mobile phones, mobile personal computers, and handheld mobiles, and recording media (CDs, DVDs). , PD, FDD, etc.) drive housings and internal parts, copier housings and internal parts, facsimile housings and internal parts, parabolic antennas, and other electric / electronic parts. In addition, molded products include VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, video cameras, audio equipment parts such as audio / laser discs (registered trademark) / compact discs, and lighting parts. Home and office electrical product parts represented by refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and the like. Molded products include housings and internal parts for electronic musical instruments, home game machines, portable game machines, various gears, various cases, sensors, LEP lamps, connectors, sockets, resistors, relay cases, motor cases, switches , Capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed wiring boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystals, FDD carriages, Electric / electronic parts such as FDD chassis, motor brush holder, transformer member, coil bobbin, sash door, blind curtain parts, piping joint, curtain liner, blind parts, gas meter parts, water meter parts, water heater parts, Roof panels, insulation walls, adjusters, plastic bundles, ceiling fishing gear, stairs, doors, floors and other building components, fishing line, fishing nets, seaweed aquaculture nets, fishing bait bags and other marine products, vegetation nets, vegetation mats, grass bags , Grass protection net, curing sheet, slope protection sheet, fly ash holding sheet, drain sheet, water retention sheet, sludge / sludge dewatering bag, concrete formwork, shale gas drilling application (thinning agent, pH adjuster, prevention of mud loss) Civil engineering-related parts such as agents, drilling tools, etc., gears, screws, springs, bearings, levers, key stems, cams, ratchets, rollers, water supply parts, toy parts, fans, tegs, pipes, cleaning jigs, motor parts, Mechanical parts such as microscopes, binoculars, cameras, watches, multi-films, tunnel films, bird protection sheets, vegetation protection nonwoven fabrics, seedling pots, vegetation piles, seed strings Loops, germination sheets, house lining sheets, agricultural PVC film stoppers, slow-release fertilizers, root-proof sheets, horticultural nets, insect nets, juvenile tree nets, printed laminates, fertilizer bags, sample bags, sandbags, Agricultural materials such as animal protection nets, incentive straps, windproof nets, sanitary products such as disposable diapers, sanitary wrapping materials, cotton swabs, towels, and toilet seat wipes, medical non-woven fabrics (stitching reinforcements, adhesion prevention films, prosthetic repair materials ), Wound dressings, wound tape bandages, sticker base fabrics, surgical sutures, fracture reinforcements, medical films and other medical supplies, calendars, stationery, clothing, food packaging films, trays, blisters, knives , Forks, spoons, tubes, plastic cans, pouches, containers, tanks, baskets and other containers, tableware, hot fill containers, microwave cooking containers, cosmetic containers, racks , Foam buffer, paper lami, shampoo bottle, beverage bottle, cup, candy packaging, shrink label, lid material, window envelope, fruit basket, hand tape, easy peel packaging, egg pack, HDD packaging, compost Bags, recording media packaging, shopping bags, containers and packaging such as wrapping films for electrical and electronic parts, natural fiber composites, polo shirts, T-shirts, inners, uniforms, sweaters, socks, ties, and other clothing, curtains, and chairs Ground, carpet, table cloth, cloth mat, wallpaper, furoshiki interior goods, carrier tape, print lamination, thermal stencil printing film, release film, porous film, container bag, credit card, cash card, ID card, IC card, paper, leather, non-woven fabric Hot melt binder, magnetic material, zinc sulfide, electrode binder such as powder, optical element, conductive embossed tape, IC tray, golf tee, garbage bag, plastic bag, various nets, toothbrush, stationery, drainer net, body Towel, hand towel, tea pack, drainage filter, clear file, coat agent, adhesive, bag, chair, table, cooler box, kumade, hose reel, planter, hose nozzle, dining table, desk surface, furniture panel, kitchen It is useful as a cabinet, pen cap, gas lighter, etc.
 [生分解性評価]
 本発明の実施形態の熱可塑性樹脂組成物の生分解性の評価方法は、JIS K6953で規定された方法であって、58℃に制御された、植種源として八幡物産株式会社の植種源番号「YK-3」を使用したコンポスト条件下にて生分解性試験を行い、測定した二酸化炭素発生量より生分解度を算出する方法である。
[Biodegradability evaluation]
The method for evaluating the biodegradability of the thermoplastic resin composition according to the embodiment of the present invention is a method defined in JIS K6953, and is controlled at 58 ° C. as a seeding source of Yawata Bussan Co., Ltd. In this method, a biodegradability test is performed under composting conditions using the number “YK-3”, and the degree of biodegradation is calculated from the measured carbon dioxide generation amount.
 本発明の実施形態の熱可塑性樹脂組成物で形成された100μm厚プレスフィルムを、5mm四方のサイズに揃えたサンプル10gを秤量し、上記生分解性試験で測定した生分解度は、30日で40%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。生分解度の上限は、100%である。 A 100 μm-thick press film formed with the thermoplastic resin composition of the embodiment of the present invention was weighed 10 g of a sample having a 5 mm square size, and the biodegradability measured in the biodegradability test was 30 days. It is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more. The upper limit of the degree of biodegradation is 100%.
 以下、実施例により本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described by way of examples.
 実施例および比較例は、下記材料を表に示す配合で用いたが、これらは本発明の実施形態を限定するものではない。 In Examples and Comparative Examples, the following materials were used in the formulations shown in the table, but these do not limit the embodiments of the present invention.
 [参考例1]
 触媒としてオクチル酸錫を添加し、ラクチドの開環重合を行い、D体量1.2%、重量平均分子量(PMMA換算)16万、融点170℃の(A-1)ポリ乳酸樹脂を得た。得られた(A-1)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は10ppmであった。また、(A-1)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は20eq/tであった。
[Reference Example 1]
Tin octylate was added as a catalyst, and ring-opening polymerization of lactide was performed to obtain (A-1) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 160,000, and a melting point of 170 ° C. . The obtained polylactic acid resin (A-1) was decomposed by heating with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm. In addition, 1 g of (A-1) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 20 eq / t.
 [参考例2]
 (A-1)ポリ乳酸樹脂について、溶媒洗浄により触媒を除去し、(A-2)ポリ乳酸樹脂を得た。得られた(A-2)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は0.1ppmであった。また、(A-2)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は20eq/tであった。
[Reference Example 2]
For (A-1) polylactic acid resin, the catalyst was removed by solvent washing to obtain (A-2) polylactic acid resin. The obtained polylactic acid resin (A-2) was decomposed by heating with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 0.1 ppm. In addition, 1 g of (A-2) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 20 eq / t.
 [参考例3]
 (A-1)ポリ乳酸樹脂を重合後、異なる量の触媒を追添加し、(A-3)ポリ乳酸樹脂および(A-4)ポリ乳酸樹脂を得た。得られた(A-3)ポリ乳酸樹脂および(A-4)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は300ppmおよび30,000ppmであった。また、(A-3)ポリ乳酸樹脂および(A-4)ポリ乳酸樹脂をそれぞれ1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量はいずれも20eq/tであった。
[Reference Example 3]
(A-1) After polymerizing the polylactic acid resin, different amounts of catalyst were additionally added to obtain (A-3) polylactic acid resin and (A-4) polylactic acid resin. The obtained (A-3) polylactic acid resin and (A-4) polylactic acid resin were thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and plasma emission analyzer (manufactured by Nippon Jarrell Ash Co., Ltd.) When quantified by “CID-AP”), the tin content was 300 ppm and 30,000 ppm. Also, 1 g each of (A-3) polylactic acid resin and (A-4) polylactic acid resin was sampled and dissolved in 50 mL of a mixed solution of o-cresol: chloroform = 2: 1, and 0.05 mol / L ethanolic property was obtained. When titrated with potassium hydroxide, the carboxyl end amounts were all 20 eq / t.
 [参考例4]
 触媒としてオクチル酸錫を添加し、ラクチドの開環重合を行い、D体量1.2%、重量平均分子量(PMMA換算)20万、融点165℃の(A-5)ポリ乳酸樹脂を得た。得られた(A-5)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は10ppmであった。また、(A-5)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は15eq/tであった。
[Reference Example 4]
Tin octylate was added as a catalyst, and ring-opening polymerization of lactide was performed to obtain (A-5) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 200,000, and a melting point of 165 ° C. . The obtained (A-5) polylactic acid resin was thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm. Further, 1 g of (A-5) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 15 eq / t.
 [参考例5]
 触媒としてオクチル酸錫を添加し、ラクチドの開環重合を行い、D体量1.2%、重量平均分子量(PMMA換算)12万、融点170℃の(A-6)ポリ乳酸樹脂を得た。得られた(A-6)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は10ppmであった。また、(A-6)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は40eq/tであった。
[Reference Example 5]
Tin octylate was added as a catalyst and ring-opening polymerization of lactide was performed to obtain (A-6) polylactic acid resin having a D-form amount of 1.2%, a weight average molecular weight (converted to PMMA) of 120,000, and a melting point of 170 ° C. . The obtained polylactic acid resin (A-6) was thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 10 ppm. In addition, 1 g of (A-6) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 40 eq / t.
 [参考例6]
 (A-1)ポリ乳酸樹脂を重合後、カルボキシル末端封鎖剤として異なる量のポリカルボジイミド化合物を添加し、(A-7)ポリ乳酸および(A-8)ポリ乳酸を得た。得られた(A-7)ポリ乳酸樹脂および(A-8)ポリ乳酸について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量はいずれも0.1ppmであった。また、(A-7)ポリ乳酸樹脂および(A-8)ポリ乳酸樹脂をそれぞれ1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は0eq/tおよび10eq/tであった。
[Reference Example 6]
(A-1) After polymerizing the polylactic acid resin, different amounts of polycarbodiimide compounds were added as carboxyl end-capping agents to obtain (A-7) polylactic acid and (A-8) polylactic acid. The obtained (A-7) polylactic acid resin and (A-8) polylactic acid were decomposed by heating with nitric acid and sulfuric acid, and then heated and dissolved with dilute nitric acid. A plasma emission analyzer (“CID” manufactured by Nippon Jarrell Ash, Inc.) -AP ")), the tin content was 0.1 ppm. In addition, 1 g each of (A-7) polylactic acid resin and (A-8) polylactic acid resin was sampled and dissolved in 50 mL of a mixed solution of o-cresol: chloroform = 2: 1, and 0.05 mol / L ethanolic property was obtained. When titrated with potassium hydroxide, the carboxyl end amounts were 0 eq / t and 10 eq / t.
 [参考例7]
 (A-6)ポリ乳酸樹脂について、恒温恒湿槽にて加水分解処理し、(A-9)ポリ乳酸樹脂を得た。得られた(A-9)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は10ppmであった。また、(A-9)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は60eq/tであった。
[Reference Example 7]
(A-6) Polylactic acid resin was hydrolyzed in a constant temperature and humidity chamber to obtain (A-9) polylactic acid resin. The obtained polylactic acid resin (A-9) was decomposed by heating with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Japan Jarrell Ash). As a result, the tin content was 10 ppm. Further, 1 g of (A-9) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 60 eq / t.
 [参考例8]
 (A-1)ポリ乳酸樹脂を重合後、触媒を追添加し、その後、恒温恒湿槽にて加水分解処理し、(A-10)ポリ乳酸樹脂を得た。得られた(A-10)ポリ乳酸樹脂について、硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)にて定量を行ったところ、錫含有量は30000ppmであった。また、(A-10)ポリ乳酸樹脂を1g採取し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解し、0.05mol/Lエタノール性水酸化カリウムで滴定したところ、カルボキシル末端量は60eq/tであった。
[Reference Example 8]
(A-1) After polymerizing the polylactic acid resin, a catalyst was additionally added, and then hydrolyzed in a constant temperature and humidity chamber to obtain (A-10) polylactic acid resin. The obtained (A-10) polylactic acid resin was thermally decomposed with nitric acid and sulfuric acid, heated and dissolved with dilute nitric acid, and quantified with a plasma emission analyzer (“CID-AP” manufactured by Nippon Jarrell Ash). As a result, the tin content was 30000 ppm. Further, 1 g of (A-10) polylactic acid resin was sampled, dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1, and titrated with 0.05 mol / L ethanolic potassium hydroxide. The amount was 60 eq / t.
 (A)ポリ乳酸樹脂
 (A)ポリ乳酸樹脂の重量平均分子量は、溶媒としてヘキサフルオロイソプロパノールを用い、ゲルパーミエーションクロマトグラフィー(GPC、Waters社製「Water Model510」)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。
(A) Polylactic acid resin (A) The weight average molecular weight of polylactic acid resin was measured by gel permeation chromatography (GPC, “Water Model 510” manufactured by Waters) using hexafluoroisopropanol as a solvent. PMMA) weight average molecular weight.
 (A)ポリ乳酸樹脂の残存金属触媒量は、(A)ポリ乳酸樹脂を硝酸および硫酸で加熱分解後、希硝酸で加温溶解し、プラズマ発光分析機(日本ジャーレルアッシュ社製「CID-AP」)により定量した値である。
(A-1)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:10ppm、カルボキシル末端量:20eq/t)
(A-2)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:0.1ppm、カルボキシル末端量:20eq/t)
(A-3)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:300ppm、カルボキシル末端量:20eq/t)
(A-4)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:30,000ppm、カルボキシル末端量:20eq/t)
(A-5)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)20万、融点165℃、残存触媒量:10ppm、カルボキシル末端量:15eq/t)
(A-6)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)12万、融点170℃、残存触媒量:10ppm、カルボキシル末端量:40eq/t)
(A-7)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:10ppm、カルボキシル末端量:0eq/t)
(A-8)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)16万、融点170℃、残存触媒量:10ppm、カルボキシル末端量:10eq/t)
(A-9)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)9万、融点170℃、残存触媒量:10ppm、カルボキシル末端量:60eq/t)
(A-10)ポリ乳酸樹脂(D体1.2%、重量平均分子量(PMMA換算)9万、融点170℃、残存触媒量:30000ppm、カルボキシル末端量:60eq/t)
(A) The amount of the residual metal catalyst in the polylactic acid resin was determined by (A) heat-decomposing the polylactic acid resin with nitric acid and sulfuric acid and then heating and dissolving with dilute nitric acid. AP ").
(A-1) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 10 ppm, carboxyl terminal amount: 20 eq / t)
(A-2) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 0.1 ppm, carboxyl terminal amount: 20 eq / t)
(A-3) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 300 ppm, carboxyl terminal amount: 20 eq / t)
(A-4) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 30,000 ppm, carboxyl end amount: 20 eq / t)
(A-5) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 200,000, melting point 165 ° C., residual catalyst amount: 10 ppm, carboxyl end amount: 15 eq / t)
(A-6) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 120,000, melting point 170 ° C., residual catalyst amount: 10 ppm, carboxyl terminal amount: 40 eq / t)
(A-7) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 10 ppm, carboxyl terminal amount: 0 eq / t)
(A-8) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 160,000, melting point 170 ° C., residual catalyst amount: 10 ppm, carboxyl terminal amount: 10 eq / t)
(A-9) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 90,000, melting point 170 ° C., residual catalyst amount: 10 ppm, carboxyl terminal amount: 60 eq / t)
(A-10) Polylactic acid resin (D-form 1.2%, weight average molecular weight (PMMA conversion) 90,000, melting point 170 ° C., residual catalyst amount: 30000 ppm, carboxyl terminal amount: 60 eq / t)
 (B)セルロース繊維
 (B)セルロース繊維の嵩密度は、ホソカワミクロン社製“パウダーテスター”を用いて、23℃、50%RH環境下で測定した値である。
(B) Cellulose fiber The bulk density of the (B) cellulose fiber is a value measured under a 23 ° C., 50% RH environment using a “powder tester” manufactured by Hosokawa Micron.
 (B)セルロース繊維の平均繊維長は、Techpap社製「MorFI Fiber Analyzer」を用いて測定した平均繊維長である。また、(B)セルロース繊維の平均繊維径は、レンチング・テクニック・インスツルメント社製「Vibrodyn Fiber Analyzer」を用いて測定してタイターを決定し、密度に基づいてこのタイターを径へ変換した平均繊維径である。
(B-1)精製セルロース繊維
(B-1-1)精製セルロース繊維(“テンセル”、嵩密度:135kg/m3、平均繊維長:400μm、平均繊維径:10μm)
(B-1-2)精製セルロース繊維(“テンセル”、嵩密度:90kg/m3、平均繊維長:480μm、平均繊維径:10μm)
(B-1-3)精製セルロース繊維(“テンセル”、嵩密度:55kg/m3、平均繊維長:490μm、平均繊維径:10μm)
(B-1-4)精製セルロース繊維(“テンセル”、嵩密度:40kg/m3、平均繊維長:750μm、平均繊維径:10μm)
(B-1-5)精製セルロース繊維(“テンセル”、嵩密度:25kg/m3、平均繊維長:1000μm、平均繊維径:10μm)
(B-1-6)精製セルロース繊維("テンセル"、嵩密度:210kg/m3、平均繊維長:100μm、平均繊維径:10μm)
(B-1-7)精製セルロース繊維("テンセル"、嵩密度:135kg/m3、平均繊維長:400μm、平均繊維径:10μm、結晶化度:50%)
(B-1-8)精製セルロース繊維("テンセル"、嵩密度:135kg/m3、平均繊維長:400μm、平均繊維径:10μm、結晶化度:30%)
(B-2)天然セルロース繊維
(B-2-1)天然セルロース繊維(ケナフ繊維、平均繊維長:750μm、平均繊維径:20μm、嵩密度:100kg/m3
(B-2-2)天然セルロース繊維(竹繊維、平均繊維長:3000μm、平均繊維径:150μm、嵩密度:10kg/m3
(B) The average fiber length of a cellulose fiber is an average fiber length measured using "MorFI Fiber Analyzer" manufactured by Techpap. In addition, (B) the average fiber diameter of the cellulose fibers is determined by measuring using a “Vibrodyn Fiber Analyzer” manufactured by Lenzing Technique Instruments Co., Ltd., and determining the titer. Based on the density, this average titer is converted into a diameter. The fiber diameter.
(B-1) Purified cellulose fiber (B-1-1) Purified cellulose fiber (“Tencel”, bulk density: 135 kg / m 3 , average fiber length: 400 μm, average fiber diameter: 10 μm)
(B-1-2) Purified cellulose fiber (“Tencel”, bulk density: 90 kg / m 3 , average fiber length: 480 μm, average fiber diameter: 10 μm)
(B-1-3) Purified cellulose fiber (“Tencel”, bulk density: 55 kg / m 3 , average fiber length: 490 μm, average fiber diameter: 10 μm)
(B-1-4) Purified cellulose fiber (“Tencel”, bulk density: 40 kg / m 3 , average fiber length: 750 μm, average fiber diameter: 10 μm)
(B-1-5) Purified cellulose fiber (“Tencel”, bulk density: 25 kg / m 3 , average fiber length: 1000 μm, average fiber diameter: 10 μm)
(B-1-6) Purified cellulose fiber (“Tencel”, bulk density: 210 kg / m 3 , average fiber length: 100 μm, average fiber diameter: 10 μm)
(B-1-7) Purified cellulose fiber (“Tencel”, bulk density: 135 kg / m 3, average fiber length: 400 μm, average fiber diameter: 10 μm, crystallinity: 50%)
(B-1-8) Purified cellulose fiber (“Tencel”, bulk density: 135 kg / m 3, average fiber length: 400 μm, average fiber diameter: 10 μm, crystallinity: 30%)
(B-2) Natural cellulose fiber (B-2-1) Natural cellulose fiber (kenaf fiber, average fiber length: 750 μm, average fiber diameter: 20 μm, bulk density: 100 kg / m 3 )
(B-2-2) Natural cellulose fiber (bamboo fiber, average fiber length: 3000 μm, average fiber diameter: 150 μm, bulk density: 10 kg / m 3 )
 (C)アクリル系樹脂
(C-1)アクリル系樹脂(三菱レイヨン社製、メタブレンP-531A、重量平均分子量:450万)
(C-2)アクリル系樹脂(三菱レイヨン社製、メタブレンP-530A、重量平均分子量:310万)
(C-3)アクリル系樹脂(カネカ社製、カネエースPA-20、重量平均分子量:100万)
(C-4)アクリル系樹脂(三菱レイヨン社製、アクリペットVH-001、重量平均分子量:10万)
(C-5)アクリル系樹脂(カネカ社製、カネエースPA-10、重量平均分子量:80万)
(C-6)アクリル系樹脂(カネカ社製、カネエースPA-60、重量平均分子量:800万)
(C) Acrylic resin (C-1) Acrylic resin (Mitsubrene P-531A, manufactured by Mitsubishi Rayon Co., Ltd., weight average molecular weight: 4.5 million)
(C-2) Acrylic resin (Mitsubrene P-530A, manufactured by Mitsubishi Rayon Co., Ltd., weight average molecular weight: 3.1 million)
(C-3) Acrylic resin (manufactured by Kaneka Corporation, Kane Ace PA-20, weight average molecular weight: 1 million)
(C-4) Acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., Acrypet VH-001, weight average molecular weight: 100,000)
(C-5) Acrylic resin (Kaneka Corporation, Kane Ace PA-10, weight average molecular weight: 800,000)
(C-6) Acrylic resin (manufactured by Kaneka Corporation, Kane Ace PA-60, weight average molecular weight: 8 million)
 (D)結晶核剤
(D-1)無機系結晶核剤
(D-1-1)タルク(平均粒径4μm、日本タルク製P-6)
(D-2)有機系結晶核剤
(D-2-1)フェニルホスホン酸亜鉛(日産化学製“エコプロモート”)
(D) Crystal nucleating agent (D-1) Inorganic crystal nucleating agent (D-1-1) Talc (average particle size 4 μm, P-6 made by Nippon Talc)
(D-2) Organic crystal nucleating agent (D-2-1) Zinc phenylphosphonate (Nissan Chemical "Eco Promote")
 (E)可塑剤
(E-1)ポリアルキレングリコール系可塑剤
(E-1-1)ポリエチレングリコール/ポリプロピレングリコール共重合体(アデカ製“プルロニック”F68)
(E-2)多価カルボン酸系可塑剤
(E-2-1)アジピン酸ベンジルメチルジグリコールエステル(大八化学工業製“DAIFATTY”-101)
(E) Plasticizer (E-1) Polyalkylene glycol plasticizer (E-1-1) Polyethylene glycol / polypropylene glycol copolymer (Adeka "Pluronic" F68)
(E-2) Polyvalent carboxylic acid plasticizer (E-2-1) Adipic acid benzylmethyl diglycol ester ("Daifatty" -101, manufactured by Daihachi Chemical Industry)
 また、本発明の実施形態で用いた測定方法および判定方法を以下に示す。 The measurement method and determination method used in the embodiment of the present invention are shown below.
 (1)押出成形加工性(ストランド状態)
 表1~表8に示すように原料を配合し、30mm径、L/D=45の二軸押出機(日本製鋼所製TEX-30α)を用い、シリンダー設定温度190℃の条件で溶融混練を行った。(A)ポリ乳酸樹脂、必要に応じて(C)アクリル系樹脂、(D)結晶核剤、(E)可塑剤は、押出機のメインフィーダーから供給し、(B)セルロース繊維はサイドフィーダーから供給した。押出機吐出口から溶融した熱可塑性樹脂組成物のストランドを引き、ストランド状態を下記基準により3段階で評価し、押出成形加工性の指標とした。ストランドの毛羽立ちが無いほど、また、ストランドの切れが無いほど、押出成形加工性に優れている。
A:ストランド毛羽立ち無し/ストランド切れ無し
B:ストランド毛羽立ち有り/ストランド切れ無し
C:ストランド毛羽立ち有り/ストランド切れ有り。
(1) Extrusion processability (strand state)
As shown in Tables 1 to 8, the raw materials were blended and melt kneaded using a 30 mm diameter, L / D = 45 twin screw extruder (TEX-30α manufactured by Nippon Steel) at a cylinder setting temperature of 190 ° C. went. (A) Polylactic acid resin, as required (C) Acrylic resin, (D) Crystal nucleating agent, (E) Plasticizer is supplied from the main feeder of the extruder, and (B) Cellulose fiber is supplied from the side feeder. Supplied. A melted thermoplastic resin composition strand was drawn from the extruder discharge port, and the strand state was evaluated in three stages according to the following criteria, and used as an index of extrusion processability. The more the strands are not fuzzed and the more the strands are not cut, the better the extrusion processability is.
A: No strand fuzz / no strand break B: Strand fuzz present / no strand cut C: Strand fuzz present / strand cut present
 (2)押出成形加工性(吐出口メヤニ状態)
 上記(1)項と同様にして、溶融混練を実施し、押出機吐出口でのメヤニ状態を下記基準により3段階で評価し、押出成形加工性の指標とした。ここでいう「メヤニ」とは、ストランド吐出口の大気開放面に、樹脂の劣化物や添加剤の一部あるいはその酸化物・分解物等が付着したものを表す。吐出口にメヤニが無いほど、押出成形加工性に優れている。
A:吐出口メヤニ無し
B:吐出口メヤニやや有り
C:吐出口メヤニかなり有り。
(2) Extrusion processability (Discharge port meander state)
In the same manner as in the above item (1), melt kneading was carried out, and the state of the mean at the discharge port of the extruder was evaluated in three stages according to the following criteria, and used as an index for extrusion processability. “Meani” as used herein refers to a material in which a deteriorated resin, a part of an additive, an oxide / decomposed product thereof, or the like adheres to the air release surface of the strand discharge port. The extruding processability is more excellent as the discharge port has no mean.
A: No discharge port mean B: Exhaust port somewhat present C: Discharge port mean considerably present.
 (3)熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量
 得られた熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂含有量が1gとなるよう樹脂組成物を秤量し、o-クレゾール:クロロホルム=2:1の混合液50mLにて溶解した溶液を、0.05mol/Lエタノール性水酸化カリウムで滴定した。
(3) (A) Carboxyl terminal amount of polylactic acid resin in thermoplastic resin composition Weigh resin composition so that (A) polylactic acid resin content in the obtained thermoplastic resin composition is 1 g, The solution dissolved in 50 mL of a mixture of o-cresol: chloroform = 2: 1 was titrated with 0.05 mol / L ethanolic potassium hydroxide.
 (4)押出成形品の表面平滑性(表面粗さの最大高さ)
 上記(1)項と同様にして、溶融混練を実施し、吐出口から吐出されたストランドを水の入った冷却バスで冷却し、押出成形品として、直径3mm、長さ10mmの押出ストランドを得た。その押出ストランドの表面5mmを、株式会社ミツトヨ社製表面粗さ測定機「SV-2100」を使用し、JIS B 0601(1994)に準拠して、カットオフ値(λc):0.8mmで最大高さ(Ry)を測定した。最大高さ(Ry)の値が小さいほど、押出成形品の表面平滑性に優れている。
(4) Surface smoothness of extruded product (maximum height of surface roughness)
In the same manner as in the above item (1), melt kneading is carried out, and the strand discharged from the discharge port is cooled by a cooling bath containing water to obtain an extruded strand having a diameter of 3 mm and a length of 10 mm as an extruded product. It was. Using a surface roughness measuring machine “SV-2100” manufactured by Mitutoyo Co., Ltd., the surface of the extruded strand is 5 mm in accordance with JIS B 0601 (1994), and the cutoff value (λc) is 0.8 mm. Height (Ry) was measured. The smaller the value of the maximum height (Ry), the better the surface smoothness of the extruded product.
 (5)射出成形性(成形サイクル時間)
 得られた熱可塑性樹脂組成物を、射出成形機(住友重機械工業製SG75H-MIV)を用い、シリンダー温度190℃、金型温度90℃で射出成形を行い、3.2mm厚成形品を得た。変形のない固化した成形品が得られる最短の時間を成形サイクル時間として計測した。成形サイクル時間が短いほど射出成形性に優れている。
(5) Injection moldability (molding cycle time)
The obtained thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries) to obtain a 3.2 mm thick molded product. It was. The shortest time for obtaining a solidified molded product without deformation was measured as the molding cycle time. The shorter the molding cycle time, the better the injection moldability.
 (6)射出成形品表面外観
 得られた熱可塑性樹脂組成物を、射出成形機(住友重機械工業製SG75H-MIV)を用い、シリンダー温度190℃、金型温度90℃で射出成形を行い、3.2mm厚成形品を得た。その成形品の表面外観を目視で観察することにより、下記の通り分類した。セルロース繊維の浮き出しが無いほど、表面外観に優れている。
A:セルロース繊維の浮き出し無し
B:セルロース繊維の浮き出しややあり
C:セルロース繊維の浮き出しかなりあり
(6) Injection molded product surface appearance The obtained thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries, Ltd.) A molded product with a thickness of 3.2 mm was obtained. By visually observing the surface appearance of the molded product, it was classified as follows. The surface appearance is better as the cellulose fiber is not raised.
A: Cellulose fiber is not raised B: Cellulose fiber is slightly raised C: Cellulose fiber is raised slightly
 (7)耐熱性(荷重たわみ温度)
 ASTM  D648に従って、3.2mm厚の成形品の荷重たわみ温度(荷重1.82MPa)を測定した。荷重たわみ温度が高いほど、耐熱性に優れている。
(7) Heat resistance (deflection temperature under load)
In accordance with ASTM D648, the deflection temperature under load (load 1.82 MPa) of a molded product having a thickness of 3.2 mm was measured. The higher the deflection temperature under load, the better the heat resistance.
 (8)剛性(曲げ弾性率)
 ASTM  D638に従って、3.2mm厚の成形品の曲げ弾性率を測定した。曲げ弾性率が高いほど、剛性に優れている。
(8) Rigidity (flexural modulus)
According to ASTM D638, the flexural modulus of a molded product having a thickness of 3.2 mm was measured. The higher the flexural modulus, the better the rigidity.
 (9)耐衝撃性(アイゾッド衝撃強度)
 ASTM D256に従って、3.2mm厚のノッチ付き成形品のアイゾッド衝撃強度を測定した。
(9) Impact resistance (Izod impact strength)
In accordance with ASTM D256, the Izod impact strength of the 3.2 mm thick notched molded product was measured.
 (10)生分解性
 得られた熱可塑性樹脂組成物の100μm厚プレスフィルムを作成した後、そのフィルムを5mm四方のサイズに揃えたサンプル10gを秤量し、JIS K6953に準拠して、植種源として八幡物産株式会社の植種源番号「YK-3」を使用したコンポストにおいて、58℃の条件下にて生分解性試験を行った。30日経過後に測定した二酸化炭素発生量より、生分解度を算出し、生分解度を、以下の基準により3段階で評価した。生分解度が高いほど、生分解性に優れている。
A:60%以上、B:40%以上、60%未満、C:40%未満。
(10) Biodegradability After preparing a 100 μm thick press film of the obtained thermoplastic resin composition, 10 g of a sample having a 5 mm square size was weighed and seeded according to JIS K6953. The biodegradability test was conducted under the condition of 58 ° C. in compost using the planting source number “YK-3” of Yawata Bussan Co., Ltd. The biodegradation degree was calculated from the amount of carbon dioxide generated after 30 days, and the biodegradation degree was evaluated in three stages according to the following criteria. The higher the degree of biodegradation, the better the biodegradability.
A: 60% or more, B: 40% or more, less than 60%, C: less than 40%.
 (11)臭気
 得られた熱可塑性樹脂組成物10gをガラスフラスコ内で100℃、1h加熱後に臭気を確認し、以下の基準により4段階で評価した。
AA:臭わない、A:わずかに臭う、B:やや臭う、C:かなり臭う。
(11) Odor 10 g of the obtained thermoplastic resin composition was heated in a glass flask at 100 ° C. for 1 h, and then the odor was confirmed and evaluated in four stages according to the following criteria.
AA: It does not smell, A: It smells slightly, B: It smells a little, C: It smells considerably.
 (12)着色
 得られた熱可塑性樹脂組成物を成形して得た3.2mm厚成形品の着色を目視にて観察し、以下の基準により4段階で評価した。
AA:白色、A:黄色、B:やや茶色、C:茶色。
(12) Coloring The coloring of a 3.2 mm thick molded product obtained by molding the obtained thermoplastic resin composition was visually observed and evaluated in four stages according to the following criteria.
AA: white, A: yellow, B: slightly brown, C: brown.
 [実施例1~3、6~29、比較例1~10]
 表1~表8に示すように原料を配合し、30mm径、L/D=45の二軸押出機(日本製鋼所製TEX-30α)を用い、シリンダー設定温度190℃の条件で溶融混練を行った。(A)ポリ乳酸樹脂、必要に応じて(C)アクリル系樹脂、(D)結晶核剤、(E)可塑剤は、押出機のメインフィーダーから供給し、(B)セルロース繊維は、押出機のバレル全長の最上流を0%、最下流を100%としてバレル全長の40%の位置に設置したサイドフィーダーからアジテーター付きの重量式原料フィーダーを用いて供給した。押出機吐出口から溶融した熱可塑性樹脂組成物のストランドを引き、ストランドカッターによりペレット状の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物を、射出成形機(住友重機械工業製SG75H-MIV)を用い、シリンダー温度190℃、金型温度90℃で射出成形を行い、評価用の成形品を得た。得られた成形品を用いて、各種評価を行った結果を表1~表8に示す。
[Examples 1 to 3, 6 to 29, Comparative Examples 1 to 10]
As shown in Tables 1 to 8, the raw materials were blended and melt kneaded using a 30 mm diameter, L / D = 45 twin screw extruder (TEX-30α manufactured by Nippon Steel) at a cylinder setting temperature of 190 ° C. went. (A) Polylactic acid resin, (C) Acrylic resin, (D) Crystal nucleating agent, (E) Plasticizer are supplied from the main feeder of the extruder, and (B) Cellulose fiber is an extruder. A heavy-weight material feeder with an agitator was supplied from a side feeder installed at a position of 40% of the barrel total length, with the uppermost stream of the barrel total length being 0% and the most downstream being 100%. A melted thermoplastic resin composition strand was drawn from the discharge port of the extruder, and a pellet-shaped thermoplastic resin composition was obtained by a strand cutter. The obtained thermoplastic resin composition was injection molded at a cylinder temperature of 190 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries, Ltd.) to obtain a molded product for evaluation. . Tables 1 to 8 show the results of various evaluations using the obtained molded products.
 [実施例4]
 サイドフィーダーの設置位置を、押出機のバレル全長の最上流を0%、最下流を100%としてバレル全長の80%に変更した以外は、実施例1と同様に評価を実施した。
[Example 4]
Evaluation was carried out in the same manner as in Example 1 except that the position of the side feeder was changed to 80% of the total length of the barrel with the most upstream of the total length of the barrel of the extruder being 0% and the most downstream of 100%.
 [実施例5]
 サイドフィーダーの設置位置を、バレル全長の20%に変更した以外は、実施例1と同様に評価を実施した。
[Example 5]
Evaluation was carried out in the same manner as in Example 1 except that the installation position of the side feeder was changed to 20% of the total barrel length.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~表8の結果から、(A)ポリ乳酸樹脂100重量部に対して、(B)セルロース繊維1~100重量部を配合して形成される熱可塑性樹脂組成物であり、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が、10eq/t~100eq/tの範囲内であり、(B)セルロース繊維の平均繊維径が0.1μm~15μmの範囲内、かつ平均繊維長が200μm~800μmの範囲内である実施例1~29では、その範囲外である比較例1~10より、押出成形加工性、射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減されていることがわかる。 From the results of Tables 1 to 8, it is a thermoplastic resin composition formed by blending 1 to 100 parts by weight of (B) cellulose fiber to 100 parts by weight of (A) polylactic acid resin. (A) the amount of carboxyl terminals of the polylactic acid resin in the composition is in the range of 10 eq / t to 100 eq / t, and (B) the average fiber diameter of the cellulose fibers is in the range of 0.1 μm to 15 μm, and the average In Examples 1 to 29 in which the fiber length is in the range of 200 μm to 800 μm, the extrusion processability and injection moldability are excellent, and the surface smoothness of the molded product is excellent, as compared with Comparative Examples 1 to 10 outside the range. In addition, it can be seen that biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent, and further, coloring and odor are reduced.
 より具体的には、実施例1~10および比較例1~7の比較より、特定の平均繊維径・平均繊維長を有するセルロース繊維を特定量配合することにより、押出成形加工性、射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減されていることがわかる。また、実施例1~10および比較例8~10の比較より、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量を特定の範囲内に制御することにより、押出成形加工性、射出成形性に優れるとともに、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れ、さらに着色および臭気が低減されていることがわかる。 More specifically, from the comparison of Examples 1 to 10 and Comparative Examples 1 to 7, a specific amount of cellulose fiber having a specific average fiber diameter and average fiber length is blended to obtain extrusion processability and injection moldability. In addition, the surface smoothness of the molded product is excellent, biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent, and coloring and odor are reduced. Further, from the comparison of Examples 1 to 10 and Comparative Examples 8 to 10, by controlling the carboxyl terminal amount of (A) polylactic acid resin in the thermoplastic resin composition within a specific range, extrusion processability, It can be seen that the injection moldability is excellent, the surface smoothness of the molded article is excellent, the biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent, and coloring and odor are reduced.
 また、実施例11~16より、(A)ポリ乳酸樹脂の残存触媒量が、1ppm~500ppmの範囲内とすることで、生分解性や、曲げ弾性率や衝撃強度などの機械特性のバランスに優れ、着色および臭気が低減されていることがわかる。 Further, from Examples 11 to 16, (A) the residual catalyst amount of the polylactic acid resin is within the range of 1 ppm to 500 ppm, so that the balance of biodegradability, mechanical properties such as bending elastic modulus and impact strength is achieved. It can be seen that coloration and odor are excellent.
 また、実施例17~26より、特定の重量平均分子量を有する(C)アクリル系樹脂を特定量配合することにより、より押出成形加工性、射出成形性に優れ、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れることがわかる。 Further, from Examples 17 to 26, by blending a specific amount of (C) acrylic resin having a specific weight average molecular weight, the extrusion processability and injection moldability are further improved, and the surface smoothness of the molded product is excellent. In addition, the biodegradability, rigidity, impact resistance, and heat resistance are balanced and excellent.
 また、実施例27~30より、さらに結晶核剤および可塑剤を配合することにより、より押出成形加工性、射出成形性に優れ、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れることがわかる。 Further, from Examples 27 to 30, by further blending a crystal nucleating agent and a plasticizer, the extrusion processability and injection moldability are further improved, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, It can be seen that the impact resistance and heat resistance are balanced and excellent.
 実施例27~28より、(C)アクリル系樹脂を特定量配合することにより、より押出成形加工性、射出成形性に優れ、成形品の表面平滑性に優れ、かつ生分解性、剛性、耐衝撃性、耐熱性が均衡して優れることがわかる。 From Examples 27 to 28, by blending a specific amount of the (C) acrylic resin, the extrusion processability and injection moldability are further improved, the surface smoothness of the molded product is excellent, and the biodegradability, rigidity, resistance It can be seen that the impact and heat resistance are balanced and excellent.

Claims (8)

  1. (A)ポリ乳酸樹脂100重量部に対して、(B)セルロース繊維1~100重量部を配合してなる熱可塑性樹脂組成物であって、熱可塑性樹脂組成物中の(A)ポリ乳酸樹脂のカルボキシル末端量が、10eq/t~100eq/tの範囲内であり、(B)セルロース繊維の平均繊維径が0.1μm~15μmの範囲内、かつ平均繊維長が200μm~800μmの範囲内である、熱可塑性樹脂組成物。 (A) A thermoplastic resin composition obtained by blending 1 to 100 parts by weight of cellulose fiber with respect to 100 parts by weight of a polylactic acid resin, wherein (A) the polylactic acid resin in the thermoplastic resin composition The amount of carboxyl ends of the fiber is within the range of 10 eq / t to 100 eq / t, the average fiber diameter of the (B) cellulose fiber is within the range of 0.1 μm to 15 μm, and the average fiber length is within the range of 200 μm to 800 μm. A thermoplastic resin composition.
  2. 請求項1記載の熱可塑性樹脂組成物であって、(A)ポリ乳酸樹脂に含まれる残存金属触媒量が、1ppm~500ppmの範囲内である、熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the amount of residual metal catalyst contained in (A) the polylactic acid resin is in the range of 1 ppm to 500 ppm.
  3. 請求項1または請求項2に記載の熱可塑性樹脂組成物であって、熱可塑性樹脂組成物からなる押出成形品の表面粗さの最大高さ(Ry)が、600μm以下である、熱可塑性樹脂組成物。 3. The thermoplastic resin composition according to claim 1, wherein the maximum height (Ry) of the surface roughness of an extruded product made of the thermoplastic resin composition is 600 μm or less. Composition.
  4. 請求項1から請求項3のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、重量平均分子量が100万~750万である(C)アクリル系樹脂0.1~20重量部を配合してなる、熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, wherein the weight average molecular weight is 1 million to 7.5 million with respect to 100 parts by weight of (A) polylactic acid resin. (C) A thermoplastic resin composition comprising 0.1 to 20 parts by weight of an acrylic resin.
  5. 請求項1から請求項4のいずれか1項に記載の熱可塑性樹脂組成物であって、配合する前の(B)セルロース繊維の嵩密度が、30kg/m3~200kg/m3の範囲内である、熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 4, wherein the bulk density of the (B) cellulose fiber before blending is in the range of 30 kg / m 3 to 200 kg / m 3 . A thermoplastic resin composition.
  6. 請求項1から請求項5のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、(D)結晶核剤を0.1~20重量部配合してなる、熱可塑性樹脂組成物。 6. The thermoplastic resin composition according to claim 1, further comprising (D) a crystal nucleating agent in an amount of 0.1 to 100 parts by weight per 100 parts by weight of the (A) polylactic acid resin. A thermoplastic resin composition comprising 20 parts by weight.
  7. 請求項1から請求項6のいずれか1項に記載の熱可塑性樹脂組成物であって、さらに、(A)ポリ乳酸樹脂100重量部に対して、(E)可塑剤を1~20重量部配合してなる、熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 6, further comprising 1 to 20 parts by weight of (E) plasticizer with respect to 100 parts by weight of (A) polylactic acid resin. A thermoplastic resin composition obtained by blending.
  8. 請求項1から請求項7のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。 A molded article comprising the thermoplastic resin composition according to any one of claims 1 to 7.
PCT/JP2013/004998 2012-08-31 2013-08-23 Thermoplastic resin composition and molded article WO2014034071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541100A JP5527489B1 (en) 2012-08-31 2013-08-23 Thermoplastic resin composition and molded article

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-191601 2012-08-31
JP2012191601 2012-08-31
JP2013-037099 2013-02-27
JP2013037098 2013-02-27
JP2013-037098 2013-02-27
JP2013037099 2013-02-27
JP2013-093477 2013-04-26
JP2013093477 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014034071A1 true WO2014034071A1 (en) 2014-03-06

Family

ID=50182909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004998 WO2014034071A1 (en) 2012-08-31 2013-08-23 Thermoplastic resin composition and molded article

Country Status (2)

Country Link
JP (1) JP5527489B1 (en)
WO (1) WO2014034071A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162337A1 (en) * 2014-04-23 2015-10-29 Oy All-Plast Ab An acoustic product composed of composite material
JP2020158751A (en) * 2019-03-20 2020-10-01 アサヒビール株式会社 Cellulose fiber-containing composition and containers and tools prepared by using the same for food product
KR102335950B1 (en) * 2020-07-17 2021-12-07 주식회사 그린마스터 Composition for Biodegradable and photodegradable seeding-pot and manufacturing method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026920A1 (en) * 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193168A (en) * 1995-01-19 1996-07-30 Mitsui Toatsu Chem Inc Biodegradable resin composition
JP2005002174A (en) * 2003-06-10 2005-01-06 Toray Ind Inc Resin composition and molded article made of the same
JP2005105245A (en) * 2003-01-10 2005-04-21 Nec Corp Kenaf fiber-reinforced resin composition
JP2005220171A (en) * 2004-02-03 2005-08-18 Mitsui Chemicals Inc Lactic acid-based polymer composition
JP2006206913A (en) * 2003-07-30 2006-08-10 Mitsubishi Plastics Ind Ltd Injection-molded object, process for producing the same, and pellet for use for injection-molded object
JP2007197654A (en) * 2005-04-22 2007-08-09 Mitsubishi Chemicals Corp Polyester and method for producing the same
WO2008072514A1 (en) * 2006-12-11 2008-06-19 Kuraray Co., Ltd. Thermoplastic resin composition
JP2008266630A (en) * 2007-03-26 2008-11-06 Kyoto Univ Surface-modified microfibrillated cellulose and composite resin including the same
JP2009249518A (en) * 2008-04-08 2009-10-29 Teijin Ltd Stereocomplex polylactic acid composition excellent in hue and heat resistance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193168A (en) * 1995-01-19 1996-07-30 Mitsui Toatsu Chem Inc Biodegradable resin composition
JP2005105245A (en) * 2003-01-10 2005-04-21 Nec Corp Kenaf fiber-reinforced resin composition
JP2005002174A (en) * 2003-06-10 2005-01-06 Toray Ind Inc Resin composition and molded article made of the same
JP2006206913A (en) * 2003-07-30 2006-08-10 Mitsubishi Plastics Ind Ltd Injection-molded object, process for producing the same, and pellet for use for injection-molded object
JP2005220171A (en) * 2004-02-03 2005-08-18 Mitsui Chemicals Inc Lactic acid-based polymer composition
JP2007197654A (en) * 2005-04-22 2007-08-09 Mitsubishi Chemicals Corp Polyester and method for producing the same
WO2008072514A1 (en) * 2006-12-11 2008-06-19 Kuraray Co., Ltd. Thermoplastic resin composition
JP2008266630A (en) * 2007-03-26 2008-11-06 Kyoto Univ Surface-modified microfibrillated cellulose and composite resin including the same
JP2009249518A (en) * 2008-04-08 2009-10-29 Teijin Ltd Stereocomplex polylactic acid composition excellent in hue and heat resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162337A1 (en) * 2014-04-23 2015-10-29 Oy All-Plast Ab An acoustic product composed of composite material
US9982100B2 (en) 2014-04-23 2018-05-29 Oy All-Plast Ab Acoustic product composed of composite material
JP2020158751A (en) * 2019-03-20 2020-10-01 アサヒビール株式会社 Cellulose fiber-containing composition and containers and tools prepared by using the same for food product
JP7405535B2 (en) 2019-03-20 2023-12-26 アサヒビール株式会社 Cellulose fiber-containing composition and food containers and utensils made using the same
KR102335950B1 (en) * 2020-07-17 2021-12-07 주식회사 그린마스터 Composition for Biodegradable and photodegradable seeding-pot and manufacturing method using the same

Also Published As

Publication number Publication date
JPWO2014034071A1 (en) 2016-08-08
JP5527489B1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5150052B2 (en) Method for producing polylactic acid composition
JP4792690B2 (en) Resin composition and molded article comprising the same
JP4720142B2 (en) Resin composition and molded article comprising the same
KR100840219B1 (en) Resin composition and molded article, film, and fiber each comprising the same
JP4983079B2 (en) Resin composition and molded article comprising the same
JP2005002174A5 (en)
JP5454100B2 (en) Thermoplastic polyester resin composition
JPWO2008102919A1 (en) Polylactic acid composition
JP2004339454A (en) Resin composition and molding composed of the same
JP5290587B2 (en) Method for producing polylactic acid composition
JP5527489B1 (en) Thermoplastic resin composition and molded article
JP2009249518A (en) Stereocomplex polylactic acid composition excellent in hue and heat resistance
JP2007231051A (en) Resin composition and molded article composed thereof
JP5223303B2 (en) Profile extrusion molding
JP2009249517A (en) Polylactic acid composition excellent in hue and moist heat stability
JP4306199B2 (en) Resin composition and molded article, film and fiber comprising the same
JP5155075B2 (en) Polylactic acid-containing composition and method for producing the same
JP2009155411A (en) Resin composition and molded article comprising the same
JP4770270B2 (en) Resin composition and molded article, film and fiber comprising the same
JP5428327B2 (en) Thermoplastic polyester resin composition
JP2008280503A (en) Thermoplastic resin composition and its molded product
JP2006328222A5 (en)
JP2011195815A (en) Thermoplastic resin composition, method for producing the same and article molded out of the same
JP2010070589A (en) Method for producing composition containing polylactic acid
JP5505065B2 (en) Resin composition, process for producing the same, and molded article comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013541100

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832935

Country of ref document: EP

Kind code of ref document: A1