JP2005042283A - Method for producing aliphatic polyester composition, pulp used for the same, and cellulosic fiber, and method for microfibrillating the same - Google Patents

Method for producing aliphatic polyester composition, pulp used for the same, and cellulosic fiber, and method for microfibrillating the same Download PDF

Info

Publication number
JP2005042283A
JP2005042283A JP2003333352A JP2003333352A JP2005042283A JP 2005042283 A JP2005042283 A JP 2005042283A JP 2003333352 A JP2003333352 A JP 2003333352A JP 2003333352 A JP2003333352 A JP 2003333352A JP 2005042283 A JP2005042283 A JP 2005042283A
Authority
JP
Japan
Prior art keywords
fiber
aliphatic polyester
pulp
aliphatic
swelling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333352A
Other languages
Japanese (ja)
Other versions
JP4013870B2 (en
Inventor
Hiroyuki Yano
浩之 矢野
Kazunori Yano
一憲 矢野
Yuko Mogi
優子 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Kansai Technology Licensing Organization Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2003333352A priority Critical patent/JP4013870B2/en
Priority to PCT/JP2004/009720 priority patent/WO2005003450A1/en
Publication of JP2005042283A publication Critical patent/JP2005042283A/en
Application granted granted Critical
Publication of JP4013870B2 publication Critical patent/JP4013870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a highly rigid and strong fiber/biodegradable resin composite material by uniformly and minutely dispersing a fiber component into a resin component by conventional means without requiring pretreatment of the resin component. <P>SOLUTION: The aliphatic polyester composition is produced by melting and kneading 1-99.9 pts.wt. resin component comprising 1-100 wt.% aliphatic polyester (A) and 99-0 wt.% polylactic acid (B), and 99-0.1 pt.wt fiber component comprising pretreated pulp by injuring primary walls and secondary outer walls and/or cellulose-based fiber (C) in the presence of a cellulose noncrystalline region-swelling agent (D). The fiber component is microfibrillated during melting and kneading and uniformly and minutely dispersed in the resin component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、家庭用雑貨や包装材料などの分野で使用され、廃棄された後は土壌中などの自然環境下において微生物により生物的に分解され、最終的に炭酸ガスと水に完全分解される、環境に優しい生分解性の脂肪族ポリエステル組成物であって、高強度で高剛性な脂肪族ポリエステル組成物を工業的に有利に製造する方法と、それに適切に用いられる前処理パルプ及び/又はセルロース系繊維並びにそのミクロフィブリル化方法に関する。   The present invention is used in fields such as household goods and packaging materials, and after being discarded, it is biologically decomposed by microorganisms in a natural environment such as soil, and finally completely decomposed into carbon dioxide and water. An environmentally friendly biodegradable aliphatic polyester composition, a method for industrially advantageously producing a high-strength, high-rigidity aliphatic polyester composition, pretreated pulp and / or The present invention relates to a cellulosic fiber and a method for microfibrillation thereof.

高剛性、高強度の生分解性複合材料として、植物繊維と生分解性樹脂との複合材料が検討されている。例えば、特開平06−345944号公報、特開2002−292608号公報には、パルプ又はセルロース系繊維を生分解性樹脂中に分散させることにより、剛性に優れた生分解性複合材料を得ることができることが記載されている。   As high-rigidity and high-strength biodegradable composite materials, composite materials of plant fibers and biodegradable resins have been studied. For example, in JP-A Nos. 06-345944 and 2002-292608, a biodegradable composite material having excellent rigidity can be obtained by dispersing pulp or cellulosic fibers in a biodegradable resin. It describes what you can do.

ところで、熱可塑性樹脂とファイバーからなる複合材料においては、その機械強度等の特性が、材料中に分散したファイバーのアスペクト比により制御されることは公知である。そして、高アスペクト比のセルロース系ファイバーを得るために、パルプ又はセルロース系繊維の特徴である親水性を利用したミクロフィブリル状化方法について、特公昭48−6641号公報、特公昭50−38720号公報に記載されており、パルプを、リファイナー、更にはホモジナイザー等により高度に繰り返し磨砕、ないし叩解を行うことにより、ミクロフィブリル状セルロースファイバーを得ている。
特開平06−345944号公報 特開2002−292608号公報 特公昭48−6641号公報 特公昭50−38720号公報
Incidentally, in a composite material composed of a thermoplastic resin and a fiber, it is known that characteristics such as mechanical strength are controlled by the aspect ratio of the fiber dispersed in the material. In order to obtain a high-aspect-ratio cellulosic fiber, Japanese Patent Publication No. 48-6641 and Japanese Patent Publication No. 50-38720 disclose a microfibril-forming method using the hydrophilicity characteristic of pulp or cellulosic fiber. The microfibril cellulose fibers are obtained by highly repeatedly grinding or beating the pulp with a refiner, a homogenizer or the like.
Japanese Patent Laid-Open No. 06-345944 JP 2002-292608 A Japanese Patent Publication No. 48-6641 Japanese Patent Publication No. 50-38720

パルプ又はセルロース系繊維を生分解性樹脂中に微細分散させることは難しく、生分解性樹脂中にこれらを均一に微細分散させるためには、生分解性樹脂原料を予め微粉状化又は微細繊維状化する必要がある。即ち、生分解性樹脂を予め微粉状化又は微細繊維状化することなく、パルプ又はセルロース系繊維が微細分散した複合材料は得られず、植物繊維/生分解性樹脂複合材料の製造には、必ず、生分解性樹脂複合材料の微粉状化又は微細繊維状化という煩雑な前処理が必要とされる。   It is difficult to finely disperse pulp or cellulosic fibers in a biodegradable resin. In order to uniformly disperse these in a biodegradable resin, the biodegradable resin raw material is pulverized or finely fibered in advance. It is necessary to make it. That is, without making the biodegradable resin into a fine powder or fine fiber beforehand, a composite material in which pulp or cellulosic fibers are finely dispersed cannot be obtained. A complicated pretreatment of pulverizing or finely forming the biodegradable resin composite material is always required.

また、このような植物繊維/生分解性樹脂複合材料の製造には、湿式混練工程、湿式圧縮成形工程、更にはその後の乾燥工程等の複雑な工程を経る必要があり、汎用の熱可塑性樹脂の装置や成形工程を適用することはできず、この結果、多大な労力エネルギーを費やし、得られる複合材料は高価となるため、実用化が困難であるという問題もある。   In addition, the production of such a plant fiber / biodegradable resin composite material requires a complicated process such as a wet kneading process, a wet compression molding process, and a subsequent drying process. The apparatus and the molding process cannot be applied. As a result, much labor energy is consumed, and the resulting composite material is expensive, so that there is a problem that it is difficult to put into practical use.

従って、本発明は、生分解性樹脂の煩雑な前処理やパルプの微細繊維化を必要とせず、汎用の混練手段を採用することにより、樹脂成分中に繊維成分を均一に微細分散させてミクロフィブリル状セルロースファイバーとし、高強度で高剛性な生分解性脂肪族ポリエステル組成物を製造する方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法を提供することを目的とする。   Therefore, the present invention does not require complicated pretreatment of the biodegradable resin and fine fiberization of the pulp, and by adopting a general-purpose kneading means, the fiber component is uniformly finely dispersed in the resin component to obtain a microfiber. It is an object of the present invention to provide a method for producing a high-strength and high-rigidity biodegradable aliphatic polyester composition as fibrillated cellulose fibers, and pulp and cellulosic fibers used therefor, and a method for microfibrillation thereof.

本発明の脂肪族ポリエステル組成物の製造方法は、(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその誘導体とを反応させて得られる脂肪族ポリエステル(A)1〜100重量%と、ポリ乳酸(B)99〜0重量%とからなる樹脂成分1〜99.9重量部と、一次壁及び二次壁外層を傷つけた前処理パルプ及び/又はセルロース系繊維(C)からなる繊維成分99〜0.1重量部とを、セルロース非晶領域膨潤剤(D)の存在下で溶融混練処理することを特徴とする(ただし、樹脂成分と繊維成分との合計で100重量部とする。)。   The method for producing an aliphatic polyester composition of the present invention comprises (a) an aliphatic diol and (b) an aliphatic polyester (A) obtained by reacting an aliphatic dicarboxylic acid and / or a derivative thereof (1 to 100 weights). %, From 1 to 99.9 parts by weight of a resin component consisting of 99% to 0% by weight of polylactic acid (B), pretreated pulp and / or cellulosic fibers (C) that have damaged the primary wall and the secondary wall outer layer. 99 to 0.1 parts by weight of the resulting fiber component is melt kneaded in the presence of the cellulose amorphous region swelling agent (D) (however, the total of the resin component and the fiber component is 100 parts by weight) And).

なお、本発明において、「脂肪族」とは「脂環族」をも含む広義の「脂肪族」を意味する。また、脂肪族ポリエステル(A)は、(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその誘導体と、(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体とを反応させて得られるものであっても良い。   In the present invention, “aliphatic” means “aliphatic” in a broad sense including “alicyclic”. The aliphatic polyester (A) reacts (a) an aliphatic diol, (b) an aliphatic dicarboxylic acid and / or a derivative thereof, and (c) a bifunctional aliphatic hydroxycarboxylic acid and / or a derivative thereof. It may be obtained.

本発明者らは、上記課題を解決すべく鋭意検討の結果、繊維成分として、パルプ及び/又はセルロース系繊維を前処理して一次壁及び二次壁外層を傷つけたものを用いることにより、樹脂成分の前処理を必要とすることなく、汎用の溶融混練方法で樹脂成分中に繊維成分を均一に微細分散させ、ミクロフィブリル状セルロースファイバーとすることができ、汎用の成形加工法で高剛性で高強度な複合材料を得ることができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have used a resin component obtained by pretreating pulp and / or cellulosic fibers and damaging the outer wall of the primary wall and the secondary wall. Without the need for pre-treatment of the components, the fiber component can be uniformly and finely dispersed in the resin component by a general-purpose melt-kneading method to obtain a microfibril-like cellulose fiber. The present inventors have found that a high-strength composite material can be obtained and completed the present invention.

前述の如く、従来の植物繊維/生分解性樹脂複合部材では、生分解性樹脂中への繊維成分の均一微細分散のために、生分解性樹脂を予め微粉状化又は微細繊維状化しており、このための前処理に多大な労力を要した。しかも、混練、成形、その後の乾燥等にも煩雑な操作が必要であった。   As described above, in the conventional plant fiber / biodegradable resin composite member, the biodegradable resin is pulverized or made into fine fibers in advance for uniform fine dispersion of the fiber component in the biodegradable resin. The pretreatment for this required a lot of labor. In addition, complicated operations are required for kneading, molding, and subsequent drying.

一方で、熱可塑性樹脂への繊維成分の均一分散のために、繊維成分を高度に繰り返し磨砕ないし叩解することによりミクロフィブリル化することが行われているが、この繊維成分のミクロフィブリル化は、水分の存在下における煩雑な操作と多大な労力が必要である上に、ミクロフィブリル化された繊維はスラリー状であるために、その取り扱いが困難であり、混練機への供給は必ずしも容易ではない。しかも、予めミクロフィブリル化された繊維は、樹脂との混練中にフロッグ(固まり)を作りやすく、高アスペクト比のファイバーとなりにくい。   On the other hand, in order to uniformly disperse the fiber component in the thermoplastic resin, the fiber component is microfibrillated by highly repeatedly grinding or beating the fiber component. In addition, complicated operations in the presence of moisture and a great amount of labor are required, and the microfibrillated fibers are in a slurry state, which makes it difficult to handle and is not always easy to supply to the kneader. Absent. In addition, the fibers that have been microfibrillated in advance tend to form frogs (solids) during kneading with the resin, and are not likely to become high aspect ratio fibers.

本発明者らは、このような前処理操作に多大な労力を費やすことなく、簡易な前処理のみで、しかも、特別な混練手段を必要とすることなく、汎用の混練手段により、樹脂成分中に繊維成分を均一に微細分散させる方法について鋭意検討した結果、一次壁及び二次壁外層を傷付けるという簡易な前処理を施したパルプ及び/又はセルロース系繊維を、セルロース非晶領域膨潤剤の存在下に樹脂成分と溶融混練させることにより、この溶融混練中に繊維成分を解繊してミクロフィブリル化すると共に樹脂成分中に均一に微細分散させることができることを見出した。即ち、前処理により一次壁及び二次壁外層が傷付けられたパルプ及び/又はセルロース系繊維は、溶融混練中に解繊され易く、容易に解繊されて溶融樹脂中に均一に微細分散される。しかも、一次壁及び二次壁外層を傷付けたのみのパルプ及び/又はセルロース系繊維は、その取り扱いも容易であり、混練操作も円滑に行える。   The present inventors do not spend a great deal of effort on such pretreatment operations, only simple pretreatment, and without the need for special kneading means. As a result of intensive investigations on a method for uniformly finely dispersing fiber components in the pulp, and / or cellulosic fibers that have been subjected to a simple pretreatment that damages the outer wall of the primary wall and the secondary wall, the presence of a cellulose amorphous region swelling agent It has been found that by melting and kneading the resin component below, the fiber component can be defibrated and microfibrillated during the melt kneading and can be uniformly finely dispersed in the resin component. That is, pulp and / or cellulosic fibers whose primary wall and secondary wall outer layer have been damaged by pretreatment are easily defibrated during melt-kneading, and are easily defibrated and uniformly finely dispersed in the molten resin. . Moreover, the pulp and / or cellulosic fibers in which only the primary wall and the secondary wall outer layer are damaged are easy to handle and can be kneaded smoothly.

本発明のパルプ及びセルロース系繊維は、例えば、このような脂肪族ポリエステル組成物の製造方法に適切に用いられるものであって、一次壁及び二次壁外層を傷つけてなることを特徴とする。   The pulp and cellulosic fiber of the present invention are suitably used in, for example, such a method for producing an aliphatic polyester composition, and are characterized by damaging the primary wall and the secondary wall outer layer.

また、本発明のパルプ及び/又はセルロース系繊維のミクロフィブリル化方法は、一次壁及び二次壁外層を傷つけてなるパルプ及び/又はセルロース系繊維(C)を、セルロース非晶領域膨潤剤(D)の存在下に混練することにより、繊維成分を解繊することを特徴とする。   Moreover, the microfibrillation method of the pulp and / or cellulosic fiber of the present invention comprises a pulp and / or cellulosic fiber (C) formed by damaging the outer wall of the primary wall and the secondary wall with a cellulose amorphous region swelling agent (D The fiber component is defibrated by kneading in the presence of).

本発明の脂肪族ポリエステル組成物の製造方法によれば、樹脂成分の煩雑な前処理工程を必要とすることなく、繊維成分について簡易な前処理を施すのみで、汎用の混練手段により、樹脂成分中に繊維成分を均一に微細分散させて、高剛性で高強度なファイバー/生分解性樹脂複合材料を製造することができる。   According to the method for producing an aliphatic polyester composition of the present invention, the resin component is obtained by general-purpose kneading means only by performing simple pretreatment on the fiber component without requiring a complicated pretreatment step of the resin component. A fiber component can be uniformly and finely dispersed therein to produce a highly rigid and high strength fiber / biodegradable resin composite material.

本発明によれば、汎用の熱可塑性樹脂の混練手段及び成形手段を採用して、高強度、高剛性のファイバー/生分解性樹脂複合成形品を製造することができることから、汎用熱可塑性樹脂の射出成形、フィルム、シートなどの押出成形設備への適用が可能であり、生産効率の向上と、生産コストの低減を図ることができる。   According to the present invention, a general-purpose thermoplastic resin kneading means and a molding means can be used to produce a high-strength, high-rigidity fiber / biodegradable resin composite molded product. It can be applied to extrusion molding equipment such as injection molding, film, and sheet, so that production efficiency can be improved and production cost can be reduced.

以下に本発明の脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for producing the aliphatic polyester composition of the present invention, pulp and cellulosic fibers used therefor, and a method for microfibrillation thereof will be described in detail.

[脂肪族ポリエステル(A)]
本発明に用いられる脂肪族ポリエステル(A)は、ポリエステル生成条件下に、(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその機能的誘導体と、必要に応じて(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体とを反応させて得られるものであり、好ましくは、この反応をゲルマニウム触媒の存在下に行って得られるものである。
[Aliphatic polyester (A)]
The aliphatic polyester (A) used in the present invention comprises (a) an aliphatic diol, (b) an aliphatic dicarboxylic acid and / or a functional derivative thereof, and (c) if necessary. It is obtained by reacting a bifunctional aliphatic hydroxycarboxylic acid and / or a derivative thereof, and preferably obtained by carrying out this reaction in the presence of a germanium catalyst.

<(a)脂肪族ジオール>
本発明に用いられる(a)脂肪族ジオール(脂環族ジオールを含む)は、水酸基を2個持つ化合物であるが、その好ましい具体例は下記一般式(I)で表されるものである。
<(A) Aliphatic diol>
The (a) aliphatic diol (including alicyclic diol) used in the present invention is a compound having two hydroxyl groups, and a preferred specific example thereof is represented by the following general formula (I).

HO−R−OH …(I) HO—R 1 —OH (I)

一般式(I)中、Rは、2価の脂肪族炭化水素基であり、好ましくは炭素数2〜11、特に好ましくは炭素数2〜6の脂肪族炭化水素基である。Rは、分岐鎖を有するものであっても良く、シクロアルキレン基であっても良い。Rは、好ましくは−(CH)n−(ただし、nは2〜11の整数、好ましくは2〜6の整数を示す。)である。 In the general formula (I), R 1 is a divalent aliphatic hydrocarbon group, preferably an aliphatic hydrocarbon group having 2 to 11 carbon atoms, particularly preferably 2 to 6 carbon atoms. R 1 may have a branched chain or a cycloalkylene group. R 1 is preferably — (CH 2 ) n — (where n is an integer of 2 to 11, preferably an integer of 2 to 6).

本発明に用いることができる(a)脂肪族ジオールは特に限定されないが、その具体例としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,6−シクロヘキサンジメタノール等が挙げられる。これらは1種を単独で用いても、2種以上の混合物として用いても良い。   The (a) aliphatic diol that can be used in the present invention is not particularly limited, and specific examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,4-cyclohexanediol, 1,6-cyclohexanedimethanol and the like. These may be used alone or as a mixture of two or more.

得られる脂肪族ポリエステル(A)の物性の点からは、(a)脂肪族ジオールは、1,4−ブタンジオールであることが特に好ましい。   In view of the physical properties of the resulting aliphatic polyester (A), the (a) aliphatic diol is particularly preferably 1,4-butanediol.

<(b)脂肪族ジカルボン酸及び/又はその誘導体>
本発明に用いられる(b)脂肪族ジカルボン酸(脂環族ジカルボン酸を含む)及び/又はその誘導体は、下記一般式(II)で表されるもの、或いはそれらの炭素数1〜4の低級アルキルエステル又はそれらの無水物などである。
<(B) Aliphatic dicarboxylic acid and / or derivative thereof>
(B) Aliphatic dicarboxylic acids (including alicyclic dicarboxylic acids) and / or derivatives thereof used in the present invention are those represented by the following general formula (II), or those having 1 to 4 carbon atoms lower And alkyl esters or anhydrides thereof.

HOOC−R−COOH …(II) HOOC-R 2 -COOH ... (II )

一般式(II)中、Rは直接結合、又は2価の脂肪族炭化水素基、好ましくは炭素数2〜11、特に好ましくは炭素数2〜6の2価の脂肪族炭化水素基である。Rは、分岐鎖を有するものであっても良く、シクロアルキレン基であっても良い。Rは好ましくは−(CH)m−(ただし、mは0又は1〜11の整数、好ましくは0又は1〜6の整数を示す。)である。 In general formula (II), R 2 is a direct bond or a divalent aliphatic hydrocarbon group, preferably a divalent aliphatic hydrocarbon group having 2 to 11 carbon atoms, particularly preferably 2 to 6 carbon atoms. . R 2 may have a branched chain or a cycloalkylene group. R 2 is preferably — (CH 2 ) m — (where m represents an integer of 0 or 1 to 11, preferably 0 or an integer of 1 to 6).

脂肪族ジカルボン酸の好ましい具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、スベリン酸、ドデカン二酸等が挙げられ、その機能的誘導体としてはこれらの酸無水物が挙げられる。   Preferable specific examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, suberic acid, dodecanedioic acid and the like, and functional derivatives thereof include these acid anhydrides. It is done.

これらは1種を単独で用いても、2種以上の混合物として用いても良い。即ち、各群内及び/又は各群間で併用しても良い。   These may be used alone or as a mixture of two or more. That is, you may use together within each group and / or between each group.

得られる脂肪族ポリエステル(A)の物性の点からは、(b)脂肪族ジカルボン酸及び/又はその誘導体は、コハク酸又は無水コハク酸、或はこれらとアジピン酸との混合物であることが好ましい。   From the viewpoint of physical properties of the resulting aliphatic polyester (A), (b) the aliphatic dicarboxylic acid and / or its derivative is preferably succinic acid or succinic anhydride, or a mixture of these with adipic acid. .

<(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体>
本発明に利用可能な(c)2官能脂肪族ヒドロキシカルボン酸(脂環族ヒドロキシカルボン酸を含む)及び/又はその誘導体の2官能脂肪族ヒドロキシカルボン酸としては、分子中に1個の水酸基と1個のカルボン酸基を有するものであれば特に限定されるものではないが、下記一般式(III)の脂肪族ヒドロキシカルボン酸単位に相当する脂肪族ヒドロキシカルボン酸が好適であり、誘導体としてはそれらの炭素数1〜4の低級アルキルエステル又はそれらの分子内エステルが好適である。
<(C) Bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof>
(C) The bifunctional aliphatic hydroxycarboxylic acid (including alicyclic hydroxycarboxylic acid) and / or its derivative bifunctional aliphatic hydroxycarboxylic acid usable in the present invention includes one hydroxyl group in the molecule. Although it will not specifically limit if it has one carboxylic acid group, The aliphatic hydroxycarboxylic acid corresponding to the aliphatic hydroxycarboxylic acid unit of the following general formula (III) is suitable, As a derivative, Those lower alkyl esters having 1 to 4 carbon atoms or their intramolecular esters are preferred.

HO−R−COOH …(III) HO-R 3 -COOH ... (III )

一般式(III)中、Rは2価の脂肪族炭化水素基、好ましくは炭素数1〜11、特に好ましくは炭素数1〜6の2価の脂肪族炭化水素基である。Rはシクロアルキレン基であっても良いが、好ましいのは鎖状炭化水素基である。なお、この「鎖状」とは、「直鎖状」であるもののみならず、「分岐鎖状」のものも包含する。 In the general formula (III), R 3 is a divalent aliphatic hydrocarbon group, preferably a C 1-11 carbon atom, particularly preferably a C 1-6 divalent aliphatic hydrocarbon group. R 3 may be a cycloalkylene group, but is preferably a chain hydrocarbon group. The “chain” includes not only “linear” but also “branched”.

(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体としては、より好ましくは、1つの炭素原子に水酸基とカルボキシル基とが結合したものであり、下記一般式(IV)で表されるものが好ましい。下記一般式(IV)で表される2官能脂肪族ヒドロキシカルボン酸、或いはその誘導体を用いた場合には、重合速度が増大するため、特に好ましい。   (C) The bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof is more preferably one in which a hydroxyl group and a carboxyl group are bonded to one carbon atom and represented by the following general formula (IV) Is preferred. The use of a bifunctional aliphatic hydroxycarboxylic acid represented by the following general formula (IV) or a derivative thereof is particularly preferable because the polymerization rate increases.

Figure 2005042283
(一般式(IV)中、aは0又は1以上の整数、好ましくは0又は1〜10、より好ましくは0又は1〜5の整数である。)
Figure 2005042283
(In general formula (IV), a is 0 or an integer of 1 or more, preferably 0 or 1 to 10, more preferably 0 or an integer of 1 to 5.)

この2官能脂肪族ヒドロキシカルボン酸の具体例としては、乳酸、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸、又はカプロラクトン等のラクトン類を開環させたものが挙げられる。これらは1種を単独で用いても、2種以上の混合物として用いても良い。なお、これらに光学異性体が存在する場合には、D体、L体、又はラセミ体のいずれでも良く、形状としては固体、液体、或いは水溶液であっても良い。特に、使用時の重合速度の増大が特に顕著で、なおかつ入手容易な乳酸及びこれらの水溶液が好ましい。乳酸は、50%、70%、90%の水溶液が一般的に市販されており、入手が容易である。しかも、乳酸を用いることにより脂肪族ポリエステル(A)とポリ乳酸(B)との相溶性が高められる。   Specific examples of the bifunctional aliphatic hydroxycarboxylic acid include lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2- Examples include those obtained by ring-opening lactones such as hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, or caprolactone. These may be used alone or as a mixture of two or more. In addition, when an optical isomer exists in these, any of D-form, L-form, or a racemic form may be sufficient, and a solid, liquid, or aqueous solution may be sufficient as a shape. In particular, lactic acid and an aqueous solution thereof are particularly preferred since the increase in the polymerization rate during use is particularly remarkable and is easily available. Lactic acid is generally commercially available in 50%, 70%, and 90% aqueous solutions, and is easily available. Moreover, the compatibility between the aliphatic polyester (A) and the polylactic acid (B) is enhanced by using lactic acid.

<脂肪族ポリエステル(A)及びその製造>
本発明で用いる脂肪族ポリエステル(A)は、上記成分(a),(b)、必要に応じて更に成分(c)を、ポリエステル生成条件下に、好ましくはゲルマニウム化合物からなる触媒の存在下で反応させる方法によって製造される。
<Aliphatic polyester (A) and production thereof>
The aliphatic polyester (A) used in the present invention comprises the above components (a), (b) and, if necessary, the component (c) under the conditions for forming the polyester, preferably in the presence of a catalyst comprising a germanium compound. Manufactured by reacting method.

(a)脂肪族ジオールの使用量は、(b)脂肪族ジカルボン酸及び/又はその誘導体に対して実質的に等モルであるが、実際の製造過程においてはエステル化反応中に留出することがあることから、(a)脂肪族ジオールは、(b)脂肪族ジカルボン酸及び/又はその誘導体100モルに対して、1〜50モル、好ましくは5〜30モル過剰に用いられる。   (A) The amount of the aliphatic diol used is substantially equimolar to (b) the aliphatic dicarboxylic acid and / or its derivative, but it is distilled during the esterification reaction in the actual production process. Therefore, (a) the aliphatic diol is used in an excess of 1 to 50 mol, preferably 5 to 30 mol, per 100 mol of (b) the aliphatic dicarboxylic acid and / or its derivative.

(c)成分を用いる場合、(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体の使用量は、(b)脂肪族ジカルボン酸及び/又はその誘導体100モルに対し、一般に0.04〜60モル、好ましくは1〜20モル、より好ましくは3〜10モルである。(c)2官能脂肪族オキシカルボン酸及び/又はその重合体がこの範囲よりも少ないと、これを用いたことによる重合反応性の向上効果が現れにくく、高分子量脂肪族ポリエステルを得難くなり、この範囲よりも多いと耐熱性、強度が不十分となる。   When the component (c) is used, the amount of the (c) bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof used is generally 0.04 to 100 mol per 100 mol of the (b) aliphatic dicarboxylic acid and / or derivative thereof. 60 mol, preferably 1 to 20 mol, more preferably 3 to 10 mol. (C) When the bifunctional aliphatic oxycarboxylic acid and / or its polymer is less than this range, the effect of improving the polymerization reactivity due to the use thereof is less likely to appear, making it difficult to obtain a high molecular weight aliphatic polyester, If it exceeds this range, the heat resistance and strength will be insufficient.

(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体の添加時期は、ポリエステル生成反応以前であれば特に限定されないが、例えば、予め触媒を(c)脂肪族ヒドロキシカルボン酸及び/又はその誘導体溶液に溶解させた状態で原料仕込時又はエステル化反応中に添加する方法、或いは、原料仕込時に触媒を添加すると同時に添加する方法、などが好ましい。   (C) The addition time of the bifunctional aliphatic hydroxycarboxylic acid and / or derivative thereof is not particularly limited as long as it is before the polyester formation reaction. For example, the catalyst is used in advance as the catalyst (c) aliphatic hydroxycarboxylic acid and / or derivative thereof. A method in which the raw material is added in the solution or in the esterification reaction in a state dissolved in a solution, or a method in which a catalyst is added at the same time as the raw material is added, is preferable.

本発明で用いる脂肪族ポリエステル(A)の製造は、一般に上記原料をゲルマニウム化合物系触媒の存在下で実施する。   The production of the aliphatic polyester (A) used in the present invention is generally carried out in the presence of a germanium compound-based catalyst.

使用されるゲルマニウム化合物系触媒は、ゲルマニウム化合物の1種のみからなるものであっても良く、2種以上からなるものであっても良く、また、ゲルマニウム化合物の1種又は2種以上と公知のポリエステルの製造に用いることのできる任意の触媒、例えばチタン、アンチモン、スズ、マグネシウム、亜鉛、カルシウム等の反応系に可溶な金属化合物触媒と組み合わせて使用することもできる。ゲルマニウム化合物としては、例えばテトラアルコキシゲルマニウムなどの有機ゲルマニウム化合物、又は酸化ゲルマニウム、塩化ゲルマニウムなどの無機ゲルマニウム化合物が特に好ましい。価格や入手のし易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム又はテトラブトキシゲルマニウムなどが特に好ましい。これらの触媒の使用量は、使用するモノマー量、すなわち成分(a)〜(c)の合計量に対して一般に0.001〜3重量%、より好ましくは0.005〜1.5重量%である。触媒の添加時期はポリエステル生成以前であれば特に制限されないが、原料仕込み時に添加しておいても良く、減圧開始時に添加しても良い。前述の如く、原料仕込み時に(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体と同時に添加するか、或いは(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体或いはその水溶液に触媒を溶解して添加するのが、特に好ましい。   The germanium compound-based catalyst used may be composed of only one kind of germanium compound, may be composed of two or more kinds, and is known as one or more kinds of germanium compounds. It can also be used in combination with any catalyst that can be used for the production of polyester, for example, a metal compound catalyst soluble in the reaction system such as titanium, antimony, tin, magnesium, zinc, calcium and the like. As the germanium compound, for example, an organic germanium compound such as tetraalkoxygermanium, or an inorganic germanium compound such as germanium oxide or germanium chloride is particularly preferable. In view of price and availability, germanium oxide, tetraethoxygermanium, tetrabutoxygermanium, and the like are particularly preferable. The amount of these catalysts used is generally 0.001 to 3% by weight, more preferably 0.005 to 1.5% by weight, based on the amount of monomers used, that is, the total amount of components (a) to (c). is there. The catalyst addition time is not particularly limited as long as it is before the production of the polyester, but it may be added when the raw materials are charged, or may be added at the start of pressure reduction. As described above, (c) the bifunctional aliphatic hydroxycarboxylic acid and / or its derivative is added at the same time as charging the raw materials, or (c) the catalyst is added to the bifunctional aliphatic hydroxycarboxylic acid and / or its derivative or its aqueous solution. It is particularly preferable to add after dissolving.

脂肪族ポリエステル(A)を製造する際の温度、時間、圧力などの条件は、目的物である脂肪族ポリエステル(A)が得られる条件であれば特に限定されないが、温度は150〜260℃、好ましくは180〜230℃、重合時間は1時間以上、好ましくは2〜15時間、重縮合反応時の減圧度は1.33×10Pa以下、より好ましくは0.27×10Pa以下の範囲から選択することが好ましい。 Conditions such as temperature, time, and pressure when producing the aliphatic polyester (A) are not particularly limited as long as the target aliphatic polyester (A) is obtained, but the temperature is 150 to 260 ° C. Preferably it is 180-230 degreeC, superposition | polymerization time is 1 hour or more, Preferably it is 2-15 hours, The pressure reduction degree at the time of a polycondensation reaction is 1.33 * 10 < 3 > Pa or less, More preferably, it is 0.27 * 10 < 3 > Pa or less. It is preferable to select from a range.

このようにして得られる脂肪族ポリエステル(A)は、(a)成分及び(b)成分を主要ポリエステル構成員とするものであって、その製造に際して前記した通りの配合比で原料を配合すれば、一般的に、(a)脂肪族ジオール単位と(b)脂肪族ジカルボン酸(機能的誘導体)単位のモル比が実質的に等しくなっており、脂肪族ポリエステル共重合体の全構成成分のモル数を100モルとしたとき、(c)2官能脂肪族ヒドロキシカルボン酸単位は、好ましくは0.02〜30モルである。特に、(c)2官能脂肪族ヒドロキシカルボン酸成分が乳酸である場合、このような範囲で(c)成分を導入することにより脂肪族ポリエステル(A)とポリ乳酸(B)との相溶性が高められ、非常に好ましい。   The aliphatic polyester (A) thus obtained has the (a) component and the (b) component as main polyester members, and if the raw materials are blended at the blending ratio as described above in the production thereof, In general, the molar ratio of (a) the aliphatic diol unit and (b) the aliphatic dicarboxylic acid (functional derivative) unit is substantially equal, and the moles of all constituent components of the aliphatic polyester copolymer When the number is 100 mol, (c) the bifunctional aliphatic hydroxycarboxylic acid unit is preferably 0.02 to 30 mol. In particular, when the (c) bifunctional aliphatic hydroxycarboxylic acid component is lactic acid, the compatibility between the aliphatic polyester (A) and the polylactic acid (B) is improved by introducing the component (c) within such a range. Is highly preferred.

本発明に用いられる脂肪族ポリエステル(A)の数平均分子量Mnは、一般に、1万以上30万以下、通常は3万以上30万以下である。   The number average molecular weight Mn of the aliphatic polyester (A) used in the present invention is generally 10,000 to 300,000, and usually 30,000 to 300,000.

なお、本発明に使用される脂肪族ポリエステル(A)には、その効果を損なわない限りにおいて、(d)他の共重合成分を導入することができる。(d)他の共重合成分として、3官能以上の多価ヒドロキシカルボン酸、多価カルボン酸、多価アルコールなどを添加した場合、溶融粘度を高めることができ、好ましい。このような成分としては、具体的にはリンゴ酸、トリメチロールプロパン、グリセリン、ペンタエリスルトール、トリメリット酸などが挙げられるが、得られる脂肪族ポリエステル(A)の物性からは、リンゴ酸、トリメチロールプロパン、グリセリンなどが特に好ましい。このような(d)他の共重合成分の割合は、脂肪族ポリエステル共重合体の全構成成分のモル数を100モルとしたとき、好ましくは0.001〜3モルである。   In addition, (d) other copolymerization components can be introduce | transduced to the aliphatic polyester (A) used for this invention, unless the effect is impaired. (D) Addition of trifunctional or higher polyhydric hydroxycarboxylic acid, polyhydric carboxylic acid, polyhydric alcohol and the like as other copolymerization components is preferable because the melt viscosity can be increased. Specific examples of such components include malic acid, trimethylolpropane, glycerin, pentaerythritol, trimellitic acid and the like. From the physical properties of the resulting aliphatic polyester (A), malic acid, Trimethylolpropane, glycerin and the like are particularly preferable. The proportion of such other copolymerization component (d) is preferably 0.001 to 3 moles when the number of moles of all components of the aliphatic polyester copolymer is 100 moles.

[ポリ乳酸(B)]
本発明に使用されるポリ乳酸(B)は、特に限定されないが、十分な強度を有するために必要な数平均分子量は3万以上、好ましくは10万以上である。ポリ乳酸(B)の数平均分子量の上限は特に制限はないが、通常100万以下、好ましくは50万以下である。得られるポリ乳酸(B)の物性から、ポリ乳酸(B)を構成するL体とD体のモル比はL/Dは100/0〜0/100の全ての組成で使用できるが、弾性率の高いものを得る上で、L体が95モル%以上であることが好ましい。ポリ乳酸(B)の製造法は特に限定されるものではなく、ラクチドを経由する開環重合法、或いは乳酸の直接重縮合法が挙げられる。
[Polylactic acid (B)]
The polylactic acid (B) used in the present invention is not particularly limited, but the number average molecular weight necessary for having sufficient strength is 30,000 or more, preferably 100,000 or more. The upper limit of the number average molecular weight of polylactic acid (B) is not particularly limited, but is usually 1,000,000 or less, preferably 500,000 or less. From the physical properties of the resulting polylactic acid (B), the molar ratio of the L-form and D-form constituting the polylactic acid (B) can be used in all compositions where L / D is 100/0 to 0/100. In order to obtain a high product, the L form is preferably 95 mol% or more. The production method of polylactic acid (B) is not particularly limited, and examples thereof include a ring-opening polymerization method via lactide or a direct polycondensation method of lactic acid.

[一次壁及び二次壁外層を傷付けた前処理パルプ及び/又はセルロース系繊維(C)]
<パルプ及び/又はセルロース系繊維>
本発明に使用されるパルプ及び/又はセルロース系繊維としては、クラフトパルプ、サルファイトパルプなどの木材の化学処理パルプ、古紙から再生された再生パルプ、人造セルロース繊維、酢酸菌によるバクテリアルセルロース繊維、ホヤ等の動物由来のセルロース繊維やこれらを化学修飾したもの等が挙げられ、これらは1種を単独で用いても良く、2種以上を混合して用いても良い。これらのうち、コストの面、地球環境の面より、植物由来の木材、古紙等から得られたパルプが好ましい。なお、パルプ及び/又はセルロース系繊維の代表的な化学修飾方法としては、アセチル化、シアノエチル化等がある。
[Pretreated pulp and / or cellulosic fiber (C) with damaged primary wall and secondary wall outer layer]
<Pulp and / or cellulosic fiber>
Pulp and / or cellulosic fibers used in the present invention include kraft pulp, chemically treated pulp of wood such as sulfite pulp, regenerated pulp regenerated from waste paper, artificial cellulose fiber, bacterial cellulose fiber by acetic acid bacteria, Examples thereof include cellulose fibers derived from animals such as sea squirts, and those obtained by chemically modifying these, and these may be used alone or in combination of two or more. Among these, from the viewpoint of cost and global environment, pulp obtained from plant-derived wood, waste paper or the like is preferable. In addition, there exist acetylation, cyanoethylation etc. as a typical chemical modification method of a pulp and / or a cellulose fiber.

<パルプ及び/又はセルロース系繊維の前処理>
パルプ及びセルロース系繊維は、図2に示すように、一次壁1、二次壁外層2、二次壁中層3、二次壁内層4よりなる積層構造を有する。図1中、各層内の細線はセルロースのミクロフィブリルの配向方向を示している。パルプの一次壁1、二次壁外層2は、この積層構造の70〜90%を占める二次壁中、内層3,4の鞘状のたがとして機能し、二次壁中の内層3,4を強固に結束している。
<Pretreatment of pulp and / or cellulosic fibers>
As shown in FIG. 2, the pulp and the cellulosic fiber have a laminated structure including a primary wall 1, a secondary wall outer layer 2, a secondary wall middle layer 3, and a secondary wall inner layer 4. In FIG. 1, fine lines in each layer indicate the orientation direction of cellulose microfibrils. The primary wall 1 of the pulp and the outer layer 2 of the secondary wall function as a sheath-shaped shell of the inner layers 3 and 4 in the secondary wall that occupies 70 to 90% of the laminated structure, and the inner layer 3 in the secondary wall. 4 is firmly bound.

従来の熱可塑性樹脂系複合材料では、この鞘状たがを完全に解きほぐし、集合体のセルロース繊維をミクロフィブリル状化させるために、数十回のリファイナー、高圧ホモジナイザーによる繰り返し磨砕、叩解を行っているが、本発明では、上述のパルプ及び/又はセルロース系繊維に対して一次壁及び二次壁外層を傷付ける軽度の前処理を施して、最外層の鞘状たがを崩壊し易くしたものを用いる。   In conventional thermoplastic resin-based composite materials, in order to completely unravel the sheath-like shell and make the cellulose fibers of the aggregate into microfibrils, repeated grinding and beating with dozens of refiners and high-pressure homogenizers are performed. However, in the present invention, the above-described pulp and / or cellulosic fiber is subjected to a mild pretreatment that damages the outer wall of the primary wall and the secondary wall, so that the outermost sheath is easily broken down. Is used.

この前処理法としては、公知のリファイナー処理、媒体撹拌ミル処理、振動ミル処理、石臼式処理等が挙げられるが、好ましくはリファイナー処理である。   Examples of the pretreatment method include known refiner treatment, medium stirring mill treatment, vibration mill treatment, stone mill treatment, and the like, but refiner treatment is preferred.

なお、パルプをリファイナー、グラインダー等で機械処理されたセミケミカルパルプも一般に提供されているが、後述の保水率を満たすものであれば、このセミケミカルパルプを前処理パルプとして利用することもできる。   In addition, although the semichemical pulp which processed the pulp mechanically with the refiner, the grinder, etc. is generally provided, if the water retention rate mentioned later is satisfy | filled, this semichemical pulp can also be utilized as a pre-processing pulp.

このような前処理による一次壁及び二次壁外層の傷付き状況は、顕微鏡による前処理パルプ及び/又はセルロース系繊維の形態観察や、前処理パルプ及び/又はセルロース系繊維の保水率により把握することができる。保水率とは、固形分2重量%濃度のスラリーを遠心分離器により1000Gで15分間処理した後の(含水量/固形分量)×100%の重量百分率であり、前処理無しパルプ及びセルロース系繊維の保水率は通常100〜120%である。本発明では、前処理により保水率が150〜600%、特に200〜400%となったパルプ及び/又はセルロース系繊維を用いることが好ましい。   The condition of scratches on the primary wall and the secondary wall outer layer due to such pretreatment is grasped by observing the morphology of the pretreated pulp and / or cellulosic fibers with a microscope and the water retention rate of the pretreated pulp and / or cellulosic fibers. be able to. The water retention is a weight percentage of (water content / solid content) × 100% after a slurry having a solid content of 2% by weight is treated with a centrifugal separator at 1000 G for 15 minutes, and pulp and cellulosic fibers without pretreatment The water retention rate is usually 100 to 120%. In the present invention, it is preferable to use pulp and / or cellulosic fibers having a water retention rate of 150 to 600%, particularly 200 to 400% by pretreatment.

前処理されたパルプ及び/又はセルロース系繊維(C)は、平均直径が十数μm〜数十μmのセルロース繊維の集合体であるが、例えば後述の二軸押出機による樹脂成分との溶融混練により、平均直径が数μm〜0.005μmで長さ/直径比(アスペクト比)が10以上、例えば20〜200のミクロフィブリル状化セルロースが、そのセルロース繊維の集合体から分岐(解繊)して、樹脂成分中にあたかも蜘蛛の巣の様に均一に微細分散する。   The pretreated pulp and / or cellulosic fiber (C) is an aggregate of cellulose fibers having an average diameter of several tens of μm to several tens of μm. For example, melt kneading with a resin component by a twin screw extruder described later Accordingly, microfibrillated cellulose having an average diameter of several μm to 0.005 μm and a length / diameter ratio (aspect ratio) of 10 or more, for example, 20 to 200, is branched (defibrated) from the aggregate of cellulose fibers. In the resin component, it is finely dispersed uniformly as if it were a spider web.

また、この一次壁及び二次壁外層を傷つけてなるパルプ及び/又はセルロース系繊維は、後述するセルロース非晶領域膨潤剤(D)の存在下に樹脂成分なしで混練することにより、繊維成分を解繊してミクロフィブリル化しておくこともでき、このようにして得られたパルプ及び/又はセルロース系繊維は、脂肪族ポリエステル組成物のみならず、各種用途に有効に使用することができる。   Further, the pulp and / or cellulosic fibers formed by damaging the primary wall and the secondary wall outer layer are kneaded without a resin component in the presence of a cellulose amorphous region swelling agent (D) described later, whereby the fiber component is mixed. It can be fibrillated and microfibrillated, and the pulp and / or cellulosic fibers thus obtained can be used effectively not only for aliphatic polyester compositions but also for various applications.

[セルロース非晶領域膨潤剤(D)]
本発明で用いるセルロース非晶領域膨潤剤(D)とは、セルロース繊維と水素結合能を有する低分子化合物であり、前処理されたパルプ及び/又はセルロース系繊維(C)のセルロース繊維集合体ないしはセルロース繊維の非晶領域に含浸、拡散可能な化合物である。
[Cellulose amorphous region swelling agent (D)]
The cellulose amorphous region swelling agent (D) used in the present invention is a low molecular compound having hydrogen bonding ability with cellulose fibers, and is a cellulose fiber aggregate or a pretreated pulp and / or cellulosic fiber (C). It is a compound that can be impregnated and diffused into the amorphous region of cellulose fiber.

セルロース非晶領域膨潤剤(D)の具体的な化合物としては、水、エチレングリコール、ブチレングリコール、メチルアルコール、エチルアルコール等があり、好ましいのは水、エチレングリコール、メチルアルコールである。これらのセルロース非晶領域膨潤剤(D)は1種を単独で用いても2種以上を混合して用いても良い。   Specific examples of the cellulose amorphous region swelling agent (D) include water, ethylene glycol, butylene glycol, methyl alcohol, ethyl alcohol, and the like, and water, ethylene glycol, and methyl alcohol are preferable. These cellulose amorphous region swelling agents (D) may be used alone or in combination of two or more.

[脂肪族ポリエステル組成物]
<脂肪族ポリエステル組成物の配合>
本発明において、脂肪族ポリエステル(A)、必要に応じて配合されるポリ乳酸(B)、前処理パルプ及び/又はセルロース繊維(C)の配合割合は、脂肪族ポリエステル(A):100〜1重量%とポリ乳酸(B):0〜99重量%の混合物よりなる樹脂成分1〜99.9重量部に対して、前処理パルプ及び/又はセルロース系繊維(D)が99〜0.1重量部である。
[Aliphatic polyester composition]
<Formulation of aliphatic polyester composition>
In the present invention, the blending ratio of the aliphatic polyester (A), the polylactic acid (B) blended as necessary, the pretreated pulp and / or the cellulose fiber (C) is aliphatic polyester (A): 100-1 % By weight and polylactic acid (B): 99 to 0.1 weight of pretreated pulp and / or cellulosic fiber (D) with respect to 1 to 99.9 parts by weight of resin component comprising a mixture of 0 to 99 weight% Part.

脂肪族ポリエステル(A)はポリ乳酸(B)より剛性、耐熱性が劣るが、前処理パルプ及び/又はセルロース系繊維(C)の微細分散性に優れることから、好ましくは、樹脂成分の配合は脂肪族ポリエステル(A)100〜40重量%に対しポリ乳酸(B)0〜60重量%であり、より好ましくは脂肪族ポリエステル(A)100〜60重量%に対しポリ乳酸(B)0〜40重量%である。脂肪族ポリエステル(A)、ポリ乳酸(B)の形態は粒状、粉状、繊維状の何れでも良いが、操作性の面から粒状であることが好ましい。   The aliphatic polyester (A) is inferior in rigidity and heat resistance to the polylactic acid (B), but preferably has a fine dispersibility of the pretreated pulp and / or cellulosic fiber (C). The polylactic acid (B) is 0 to 60% by weight with respect to 100 to 40% by weight of the aliphatic polyester (A), and more preferably the polylactic acid (B) is 0 to 40% with respect to 100 to 60% by weight of the aliphatic polyester (A). % By weight. The form of the aliphatic polyester (A) and polylactic acid (B) may be granular, powdery, or fibrous, but is preferably granular from the viewpoint of operability.

樹脂成分(脂肪族ポリエステル(A)及びポリ乳酸(B)の合計)1〜99.9重量部に対する繊維成分(前処理パルプ及び/又はセルロース系繊維(C))の割合は、99〜0.1重量部である。高剛性、高強度複合材料のためには、繊維成分を多量に配合することが望ましいが、この場合には成形加工時の流れ性が低下し、問題となる。好ましい配合比は樹脂成分5〜97重量部に対して繊維成分は95〜3重量部、より好ましくは樹脂成分35〜95重量部に対し繊維成分65〜5重量部である(ただし、樹脂成分と繊維成分との合計で100重量部とする。)。   The ratio of the fiber component (pretreated pulp and / or cellulosic fiber (C)) to 1 to 99.9 parts by weight of the resin component (total of aliphatic polyester (A) and polylactic acid (B)) is 99 to 0.00. 1 part by weight. For a high-rigidity, high-strength composite material, it is desirable to blend a large amount of fiber component. However, in this case, the flowability at the time of molding is lowered, which is a problem. A preferable blending ratio is 95 to 3 parts by weight of the fiber component with respect to 5 to 97 parts by weight of the resin component, more preferably 65 to 5 parts by weight of the fiber component with respect to 35 to 95 parts by weight of the resin component (however, 100 parts by weight in total with the fiber components).

なお、本発明の製造法による脂肪族ポリエステル組成物には、本発明の効果を損なわない限り、必要に応じて脂肪族ポリエステル(A)、ポリ乳酸(B)、前処理パルプ及び/又はセルロース系繊維(C)以外の成分、例えば、滑材、ワックス類、着色剤、安定剤、その他の各種の添加剤を配合しても良いことは言うまでもない。   In addition, in the aliphatic polyester composition by the manufacturing method of this invention, unless the effect of this invention is impaired, aliphatic polyester (A), polylactic acid (B), a pre-processing pulp, and / or a cellulose type as needed. It goes without saying that components other than the fiber (C), for example, lubricants, waxes, colorants, stabilizers, and other various additives may be blended.

溶融混練に当たって用いるセルロース非晶領域膨潤剤(D)の、繊維成分即ち、前処理パルプ及び/又はセルロース系繊維(C)に対する使用量は、繊維成分の保水率以上で有れば良いが、後述の分散工程での微細化効果と、その後の分離性から、前処理パルプ及び/又はセルロース系繊維(C)の100〜600重量%、特に200〜500重量%であることが好ましい。   The cellulose amorphous region swelling agent (D) used in the melt-kneading may be used in a fiber component, that is, the pretreated pulp and / or cellulosic fiber (C) in an amount equal to or higher than the water retention rate of the fiber component. From the refinement | purification effect in the dispersion | distribution process of this, and subsequent separability, it is preferable that it is 100 to 600 weight% of the pretreatment pulp and / or cellulosic fiber (C), especially 200 to 500 weight%.

<脂肪族ポリエステル組成物の製造(溶融混練)>
本発明においては、好ましくは二軸押出機を用いてセルロース非晶領域膨潤剤(D)の存在下に、樹脂成分と繊維成分を溶融混練することにより、繊維成分を解繊すると共に樹脂成分中に繊維成分を均一に微細分散させて脂肪族ポリエステル組成物を製造する。
<Manufacture of aliphatic polyester composition (melt kneading)>
In the present invention, the fiber component is melted and kneaded by using a twin screw extruder, preferably in the presence of the cellulose amorphous region swelling agent (D), so that the fiber component is defibrated and the resin component An aliphatic polyester composition is produced by uniformly finely dispersing fiber components.

ここで、使用される二軸押出機は、汎用の熱可塑性樹脂の混合、可塑化、押出に使用される装置であり、二本のスクリュウの回転方向は異方向、同方向回転どちらでも良い。スクリュウの噛み合いは完全噛み合い型、不完全噛み合い型、非噛み合い型があるが、繊維成分の分散性の面から完全噛み合い型が好ましい。スクリュウ長さ/スクリュウ直径比は20〜70であれば良い。具体的な二軸押出機としては、日本製鋼所製「TEX」、東芝機械社製「TEM」、クルップ・ウエルナー社製「ZSK」等を用いることができる。   Here, the twin screw extruder used is an apparatus used for mixing, plasticizing, and extruding general-purpose thermoplastic resins, and the rotation direction of the two screws may be either different or same direction. Screw engagement includes a complete engagement type, an incomplete engagement type, and a non-engagement type, but a complete engagement type is preferable from the viewpoint of dispersibility of fiber components. The screw length / screw diameter ratio may be 20 to 70. Specific examples of the twin screw extruder include “TEX” manufactured by Nippon Steel Works, “TEM” manufactured by Toshiba Machine Co., Ltd., and “ZSK” manufactured by Krupp Weller.

本発明に係る溶融混練は、このような二軸押出機を用いて、スクリュウ構成の組み合せにより、例えば次の(1)又は(2)の工程を経て行うことが好ましい。   The melt-kneading according to the present invention is preferably carried out by using such a twin-screw extruder, for example, through the following steps (1) or (2) by combining the screw configurations.

(1) 二軸押出機に樹脂成分、繊維成分及びセルロース非晶領域膨潤剤を供給して、二軸押出機内でセルロース非晶領域膨潤剤の存在下に繊維成分を樹脂成分中に解繊、分散させる解繊・分散工程と、その後、樹脂成分を溶融させると共に溶融樹脂成分中に繊維成分を更に解繊、微細分散させる溶融・分散工程と、その後、セルロース非晶領域膨潤剤を分離すると共に混練物を押し出すセルロース非晶領域膨潤剤分離・押出工程。   (1) A resin component, a fiber component and a cellulose amorphous region swelling agent are supplied to a twin screw extruder, and the fiber component is defibrated into the resin component in the presence of the cellulose amorphous region swelling agent in the twin screw extruder. A fibrillation / dispersion step to disperse, a melt / dispersion step to melt the resin component and further defibrate and finely disperse the fiber component in the molten resin component, and then separate the cellulose amorphous region swelling agent. Cellulose amorphous region swelling agent separation and extrusion process for extruding the kneaded product.

この場合において、解繊、分散工程は、温度が30〜90℃であることが好ましく、溶融・分散工程は温度が120〜200℃であることが好ましく、その後のセルロース非晶領域膨潤剤分離・押出工程は温度が120〜200℃であることが好ましい。また、スクリュウ回転数は全工程とも50〜400rpmの範囲であることが好ましく、長時間滞留による脂肪族ポリエステル(A)の加水分解を防止するためには、スクリュウ長さ/スクリュウ直径比は小さい方が好ましく、25〜50が好ましい。   In this case, the temperature of the defibrating and dispersing step is preferably 30 to 90 ° C., and the temperature of the melting / dispersing step is preferably 120 to 200 ° C. The extrusion process preferably has a temperature of 120 to 200 ° C. Further, the number of screw rotations is preferably in the range of 50 to 400 rpm in all steps, and in order to prevent hydrolysis of the aliphatic polyester (A) due to long-term residence, the smaller screw length / screw diameter ratio is required. Is preferable, and 25-50 are preferable.

(2) 二軸押出機に樹脂成分を供給して、二軸押出機内で樹脂成分を溶融させる溶融工程と、その後、繊維成分及びセルロース非晶領域膨潤剤の混合物を二軸押出機に加圧注入してセルロース非晶領域膨潤剤の存在下に繊維成分を樹脂成分中で解繊、微細分散させる溶融・解繊・分散工程と、その後、該セルロース非晶領域膨潤剤を分離すると共に混練物を押し出すセルロース非晶領域膨潤剤分離・押出工程。   (2) Supplying the resin component to the twin screw extruder and melting the resin component in the twin screw extruder, and then pressurizing the mixture of the fiber component and the cellulose amorphous region swelling agent to the twin screw extruder A melting, defibrating, and dispersing step in which the fiber component is defibrated and finely dispersed in the resin component in the presence of the cellulose amorphous region swelling agent, and then the cellulose amorphous region swelling agent is separated and kneaded. Cellulose amorphous region swelling agent separation / extrusion process.

この場合において、溶融工程は、温度が120〜200℃であることが好ましく、溶融・解繊・分散工程は温度が120〜180℃であることが好ましく、その後のセルロース非晶領域膨潤剤分離・押出工程は温度が120〜200℃で、圧力が大気圧〜真空であることが好ましい。また、スクリュウ回転数は全工程とも50〜400rpmの範囲であることが好ましい。また、溶融・解繊・分散工程においては、セルロース非晶領域膨潤剤(D)と繊維成分との混合物は、ポンプを用いて、圧力が大気圧〜数MPaの溶融樹脂成分中に加圧注入し、セルロース非晶領域膨潤剤(D)を分離させることなく、更に溶融、解繊、微細分散を行うことが好ましい。この場合のスクリュウ長さ/スクリュウ直径比は30〜70が好ましい。   In this case, the melting step is preferably performed at a temperature of 120 to 200 ° C., and the melting, defibrating and dispersing step is preferably performed at a temperature of 120 to 180 ° C. The extrusion process preferably has a temperature of 120 to 200 ° C. and a pressure of atmospheric pressure to vacuum. Moreover, it is preferable that a screw rotation speed is the range of 50-400 rpm in all the processes. In the melting / defibration / dispersing step, the mixture of the cellulose amorphous region swelling agent (D) and the fiber component is injected into the molten resin component at a pressure of atmospheric pressure to several MPa using a pump. In addition, it is preferable to further perform melting, defibration, and fine dispersion without separating the cellulose amorphous region swelling agent (D). In this case, the screw length / screw diameter ratio is preferably 30 to 70.

上記(1),(2)のいずれの方法においても、セルロース非晶領域膨潤剤(D)の二軸押出機への注入は、繊維成分と予備混合し液状でポンプで供給しても良く、必要に応じてセルロース非晶領域膨潤剤(D)を液状で単独で供給しても良い。また、繊維成分の短繊維状化を図るために、上記溶融混練工程を加圧条件として、セルロース非晶領域膨潤剤(D)の蒸発揮散を防止することもできる。更に、必要に応じて、樹脂成分の溶融工程に加圧ポンプによりセルロース非晶領域膨潤剤(D)を添加することもできる。溶融混練後は脱圧することにより、更には減圧することによりセルロース非晶領域膨潤剤(D)を分離することができる。   In any of the above methods (1) and (2), the cellulose amorphous region swelling agent (D) may be injected into the twin-screw extruder, premixed with the fiber component, and supplied in a liquid pump. If necessary, the cellulose amorphous region swelling agent (D) may be supplied alone in a liquid state. In addition, in order to shorten the fiber component, the melt-kneading step can be used as a pressurizing condition to prevent transpiration of the cellulose amorphous region swelling agent (D). Further, if necessary, the cellulose amorphous region swelling agent (D) can be added to the resin component melting step by a pressure pump. After melt-kneading, the cellulose amorphous region swelling agent (D) can be separated by releasing the pressure and further reducing the pressure.

このようにして押出、粒状化された脂肪族ポリエステル組成物は乾燥工程を必要とせず、ポリエステル樹脂に必須の成形加工前の表面付着水の分離のための予備乾燥のみで成形加工に供することができる。   Thus, the extruded and granulated aliphatic polyester composition does not require a drying step, and can be subjected to a molding process only by preliminary drying for separation of water adhering to the surface before the molding process essential for the polyester resin. it can.

なお、得られる脂肪族ポリエステル組成物、即ち、樹脂成分中に繊維成分が均一に微細分散した複合材料の特性は、樹脂成分中に分散している繊維成分の形態に大きく依存し、セルロース繊維の集合体であるよりもミクロフィブリル状化していることが好ましい。本発明では、上述のように、セルロース非晶領域膨潤剤(D)の存在下に好ましくは二軸押出機を用いて樹脂成分と繊維成分との溶融混練を行うと、樹脂成分である脂肪族ポリエステル(A)とポリ乳酸(B)を混合、混練媒体として、良好な混合、混練性のもとに、繊維成分を解繊すると共に樹脂成分中に均一微細分散させることができる。そして、セルロース非晶領域膨潤剤(D)は、このような溶融混練工程において、セルロースミクロフィブリル間の凝集力を低下させ、セルロース繊維の集合体をミクロフィブリル状に解繊しやすくするとともに、解繊されたミクロフィブリル状化セルロース同士の凝集を防止する機能を有し、均一微細分散性を高める効果を奏する。ただし、セルロース繊維の集合体を完全にミクロフィブリル状化することは困難であり、本発明により製造される脂肪族ポリエステル組成物中の繊維成分には、セルロース繊維の集合体から解繊されたミクロフィブリル状化セルロースだけでなく、セルロース繊維の集合体も存在する。   The characteristics of the resulting aliphatic polyester composition, that is, the composite material in which the fiber component is uniformly and finely dispersed in the resin component largely depend on the form of the fiber component dispersed in the resin component, and It is preferable to form microfibrils rather than aggregates. In the present invention, as described above, when the resin component and the fiber component are melt-kneaded in the presence of the cellulose amorphous region swelling agent (D), preferably using a twin screw extruder, an aliphatic resin component Polyester (A) and polylactic acid (B) can be mixed and kneaded as a kneading medium, and the fiber component can be defibrated and uniformly finely dispersed in the resin component under good mixing and kneading properties. In the melt-kneading step, the cellulose amorphous region swelling agent (D) reduces the cohesive force between the cellulose microfibrils, facilitates the fibrillation of the cellulose fiber aggregate, It has the function of preventing aggregation of the microfibrillated cellulose that has been fibrillated, and has the effect of improving uniform fine dispersibility. However, it is difficult to completely microfibrillate an aggregate of cellulose fibers, and the fiber component in the aliphatic polyester composition produced according to the present invention includes a microfiber fibrillated from the aggregate of cellulose fibers. Not only fibrillated cellulose but also aggregates of cellulose fibers exist.

<脂肪族ポリエステル組成物の成形法>
本発明の方法で製造される脂肪族ポリエステル組成物の成形方法には、通常の熱可塑性樹脂組成物の成形方法と同様な方法をいずれも適用することができる。具体的には、射出成形、押出成形、中空成形、発泡成形等を採用することができる。
<Molding method of aliphatic polyester composition>
As a method for molding the aliphatic polyester composition produced by the method of the present invention, any method similar to the method for molding a normal thermoplastic resin composition can be applied. Specifically, injection molding, extrusion molding, hollow molding, foam molding and the like can be employed.

本発明に係る脂肪族ポリエステル組成物は、十分な剛性と機械強度を有し、押出成形、射出成形法などの各種成形加工が可能であるため、家庭用雑貨、各種包装材など、幅広い用途の成形品に好適に利用可能であり、使用後、廃棄された後は、生分解されることにより、廃棄物の減量、環境保全に有効である。   Since the aliphatic polyester composition according to the present invention has sufficient rigidity and mechanical strength and can be subjected to various molding processes such as extrusion molding and injection molding, it can be used in a wide range of applications such as household goods and various packaging materials. It can be used suitably for a molded product, and after use and disposal, it is biodegraded, which is effective for reducing the amount of waste and protecting the environment.

以下に実施例及び比較例を挙げて、本発明の具体的態様をより詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。   EXAMPLES Specific examples of the present invention will be described in more detail below with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.

なお、以下の例における特性値は下記方法により測定したものである。
(1)数平均分子量(Mn)
ゲル・パーミエーション・クロマトグラフィー(GPC)法によって測定した。サンプルをクロロホルムに溶解し、GPC装置(東ソー(株)製,HLC−8120型)を用いてポリスチレン換算により測定した。カラムはTSKgel SuperHM−M(東ソー(株)製)を使用した。
(2)流れ性:メルトフローレイシオ(MFR)
荷重2.16kgで190℃にて、JIS K7210に準拠して測定した。
(3)3点曲げ剛性、破断強度
射出成形品を23℃、50%相対湿度、24時間の状態調節し、JIS K 7203に準拠して3点曲げ剛性と破断強度を測定した。
(4)射出成形品の外観
射出成形品を目視にて観察し、繊維の凝集体の有無による均一性を評価した。
(5)繊維の形態写真
パルプのみの場合:前処理パルプ又は前処理無しパルプと水の混合液の一部を凍結乾燥
し、走査型電子顕微鏡にて撮影した。
組成物中の場合:組成物をクロロホルムにて溶解し、蒸留水を添加してパルプ又は繊維
を水層側に抽出し、抽出液の一部を凍結乾燥し、走査型電子顕微鏡に
て撮影した。
The characteristic values in the following examples are measured by the following method.
(1) Number average molecular weight (Mn)
It measured by the gel permeation chromatography (GPC) method. The sample was dissolved in chloroform and measured by polystyrene conversion using a GPC apparatus (manufactured by Tosoh Corporation, HLC-8120 type). The column used was TSKgel SuperHM-M (manufactured by Tosoh Corporation).
(2) Flowability: Melt flow ratio (MFR)
Measurement was performed at 190 ° C. under a load of 2.16 kg in accordance with JIS K7210.
(3) Three-point bending rigidity and breaking strength The injection molded product was conditioned at 23 ° C., 50% relative humidity and 24 hours, and the three-point bending rigidity and breaking strength were measured according to JIS K 7203.
(4) Appearance of injection-molded product The injection-molded product was visually observed to evaluate the uniformity depending on the presence or absence of fiber aggregates.
(5) Photo of the form of the fiber In the case of pulp only: A part of the mixture of pretreated pulp or untreated pulp and water is freeze-dried
The images were taken with a scanning electron microscope.
In composition: Dissolve the composition in chloroform and add distilled water to pulp or fiber
Is extracted to the water layer side, and a part of the extract is lyophilized and placed in a scanning electron microscope.
I took a picture.

脂肪族ポリエステル(A)としては、下記製造例1で製造した脂肪族ポリエステル(A)を用いた。   As the aliphatic polyester (A), the aliphatic polyester (A) produced in Production Example 1 below was used.

製造例1:脂肪族ポリエステル(A)の製造
撹拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器に、コハク酸(b)118.1g、1,4−ブタンジオール(a)99.1g、酸化ゲルマニウムを予め1重量%溶解させた90%乳酸(c)水溶液6.3g(コハク酸100モルに対し、6.3モル)、及びリンゴ酸(d)0.2g(コハク酸100モルに対し、0.15モル)を仕込み、窒素雰囲気中、180℃にて0.5時間反応させた後、220℃に昇温し、0.5時間反応させた。引き続いて0.07×10Paの減圧下において2.5時間、重合反応させた。得られたポリエステルは乳白色であり、数平均分子量Mnは75,300、融点は110℃であった。また、H−NMRによる乳酸導入率はコハク酸100モルに対し、6.3モルであった。
Production Example 1 Production of Aliphatic Polyester (A) In a reaction vessel having a capacity of 300 ml equipped with a stirrer, a nitrogen introduction tube, a heating device, a thermometer, and an auxiliary agent addition port, 118.1 g of succinic acid (b), 4-butanediol (a) 99.1 g, 6.3 g of a 90% lactic acid (c) aqueous solution in which 1% by weight of germanium oxide was dissolved in advance (6.3 mol with respect to 100 mol of succinic acid), and malic acid (d ) 0.2 g (0.15 mol with respect to 100 mol of succinic acid) was added and reacted in a nitrogen atmosphere at 180 ° C. for 0.5 hour, then heated to 220 ° C. and reacted for 0.5 hour. It was. Subsequently, a polymerization reaction was performed for 2.5 hours under a reduced pressure of 0.07 × 10 3 Pa. The obtained polyester was milky white, the number average molecular weight Mn was 75,300, and the melting point was 110 ° C. The introduction rate of lactic acid by 1 H-NMR was 6.3 mol with respect to 100 mol of succinic acid.

また、ポリ乳酸(B)及びパルプとしては、次のものを用い、セルロース非晶領域膨潤剤(D)としては水を用いた。   Moreover, the following were used as polylactic acid (B) and a pulp, and water was used as a cellulose amorphous area | region swelling agent (D).

[ポリ乳酸(B)]
(株)島津製作所製 商品名「ラクティ#5400」(数平均分子量Mn:88000,MFR:4.5g/10min.,融点173℃)
[Polylactic acid (B)]
Product name “Lacty # 5400” manufactured by Shimadzu Corporation (number average molecular weight Mn: 88000, MFR: 4.5 g / 10 min., Melting point 173 ° C.)

[パルプ]
前処理パルプ(C):クラフトパルプをリファイナー処理したもの(保水率=390
%、繊維形態写真は図2(a)に示す通りであり、一次壁及び
二次壁外層が傷付けられていることが分かる。)
前処理なしパルプ:リファイナー処理無しのクラフトパルプ(保水率=100%、繊
維形態写真は図2(b)に示す通りであり、表面に傷付きはない
ことが分かる。)
[pulp]
Pretreated pulp (C): Kraft pulp refiner treated (water retention rate = 390
%, The fiber form photograph is as shown in FIG. 2 (a), the primary wall and
It can be seen that the outer layer of the secondary wall is damaged. )
Pulp without pretreatment: Kraft pulp without refiner treatment (water retention = 100%, fiber
The morphological photograph is as shown in FIG. 2 (b), and the surface is not damaged.
I understand that. )

実施例1,2
脂肪族ポリエステル(A)とポリ乳酸(B)、パルプ及びセルロース非晶領域膨潤剤としての水を表1に示した配合にて、二軸押出機にて混練した。用いた二軸押出機の仕様は次の通りである。
Examples 1 and 2
Aliphatic polyester (A), polylactic acid (B), pulp, and water as a cellulose amorphous region swelling agent were kneaded by the twin-screw extruder with the formulation shown in Table 1. The specifications of the twin screw extruder used are as follows.

[二軸押出機]
日本製鋼所(株)製二軸押出機「TEX30」
スクリュウ直径=30mm
スクリュウ長さ/スクリュウ直径比=42
スクリュウの噛み合い=完全噛み合い型
スクリュウ回転数=100rpm
処理能力=最終組成物量として5kg/hr
[Twin screw extruder]
Nippon Steel Works Co., Ltd. twin screw extruder “TEX30”
Screw diameter = 30mm
Screw length / screw diameter ratio = 42
Screw meshing = complete meshing type Screw rotation speed = 100 rpm
Processing capacity = 5 kg / hr as final composition amount

まず、脂肪族ポリエステル(A)及びポリ乳酸(B)の粒状物をブレンドして重量式フィーダーで二軸押出機に供給した。二軸押出機は、スクリュウ構成により、溶融工程、溶融・解繊・分散工程、水分離・押出工程の3工程を押出方向に設定した。各工程の設定温度は次の通りである。
溶融工程=180℃
溶融・解繊・分散工程=150℃
水分離・押出工程=150℃
First, granules of aliphatic polyester (A) and polylactic acid (B) were blended and fed to a twin screw extruder with a gravimetric feeder. In the twin-screw extruder, three steps of a melting step, a melting / defining / dispersing step, and a water separation / extrusion step were set in the extrusion direction depending on the screw configuration. The set temperature of each process is as follows.
Melting process = 180 ° C
Melting / defibration / dispersion process = 150 ° C.
Water separation / extrusion process = 150 ° C

パルプはセルロース非晶領域膨潤剤としての水と所定の割合で予備混合して混合液とし、この混合液を高圧ポンプにより溶融工程と溶融・解繊・分散工程との境界部で二軸押出機に注入した。   Pulp is premixed with water as a cellulose amorphous region swelling agent at a predetermined ratio to make a mixed solution, and this mixed solution is a twin screw extruder at the boundary between the melting step and the melting / defibrating / dispersing step by a high-pressure pump. Injected into.

溶融・解繊・分散工程はスクリュウ構成により1.5MPaの加圧部とし、水分離・押出工程の圧力は真空ポンプにより53.2kPaとした。   The melt / defibration / dispersion step was performed at a pressure of 1.5 MPa by a screw configuration, and the pressure in the water separation / extrusion step was set at 53.2 kPa by a vacuum pump.

得られた組成物を下記仕様の射出成形機で射出成形し、得られた成形品について評価を行い、結果を表1に示した。   The obtained composition was injection molded with an injection molding machine having the following specifications, and the obtained molded product was evaluated. The results are shown in Table 1.

なお、実施例2において得られた組成物中の繊維の形態写真を図3(a)に示す。   In addition, the form photograph of the fiber in the composition obtained in Example 2 is shown to Fig.3 (a).

[射出成形機]
東芝機械(株)製射出成形機「IT55T」
形締め圧=55t
金型=ASTM
金型温度=40℃
バレル温度設定=170℃
射出・保圧時間=10秒
[Injection molding machine]
"IT55T" injection molding machine manufactured by Toshiba Machine Co., Ltd.
Clamping pressure = 55t
Mold = ASTM
Mold temperature = 40 ℃
Barrel temperature setting = 170 ° C
Injection / holding time = 10 seconds

実施例3,4
実施例1において、ポリ乳酸(B)を用いず、表1に示す配合としたこと以外は同様にして脂肪族ポリエステル組成物を得、同様に射出成形を行って、射出成形品の評価結果を表1に示した。
Examples 3 and 4
In Example 1, an aliphatic polyester composition was obtained in the same manner except that polylactic acid (B) was not used and the composition shown in Table 1 was used, and injection molding was performed in the same manner. It is shown in Table 1.

比較例1
実施例1において、パルプ及び水を用いなかったこと以外は同様にして脂肪族ポリエステル組成物を得、同様に射出成形を行って、射出成形品の評価結果を表1に示した。
Comparative Example 1
In Example 1, an aliphatic polyester composition was obtained in the same manner except that pulp and water were not used, and injection molding was performed in the same manner, and the evaluation results of the injection molded product are shown in Table 1.

比較例2
実施例2において、前処理パルプ(C)の代りに前処理無しパルプを用いたこと以外は同様にして脂肪族ポリエステル組成物を得、同様に射出成形を行って、射出成形品の評価結果を表1に示した。
Comparative Example 2
In Example 2, an aliphatic polyester composition was obtained in the same manner except that untreated pulp was used in place of the pretreated pulp (C), and injection molding was performed in the same manner. It is shown in Table 1.

この比較例2において得られた組成物中の繊維の形態写真を図3(b)に示す。   A photograph of the morphology of the fibers in the composition obtained in Comparative Example 2 is shown in FIG.

比較例3
実施例3において、水を用いず、二軸押出機において水分離を行わなかったこと以外は同様にして脂肪族ポリエステル組成物を得、同様に射出成形を行って、射出成形品の評価結果を表1に示した。
Comparative Example 3
In Example 3, an aliphatic polyester composition was obtained in the same manner except that no water was used and water separation was not performed in a twin screw extruder, and injection molding was performed in the same manner. It is shown in Table 1.

比較例4
比較例3において、前処理パルプ(C)を用いなかったこと以外は同様にして脂肪族ポリエステル組成物を得、同様に射出成形を行って、射出成形品の評価結果を表1に示した。
Comparative Example 4
In Comparative Example 3, an aliphatic polyester composition was obtained in the same manner except that the pretreated pulp (C) was not used, and injection molding was performed in the same manner. The evaluation results of the injection molded product are shown in Table 1.

Figure 2005042283
Figure 2005042283

図2(a),(b)、図3(a),(b)、及び表1より次のことが明らかである。即ち、前処理を行って一次壁及び二次壁外層を傷付けたパルプを用いた実施例2の組成物では、パルプがミクロフィブリル状に均一に微細分散しているのに対して、前処理無しパルプを用いた比較例2の組成物ではパルプが解繊されずに、ちぎれた状態で散在している。そして、パルプがミクロフィブリル状に均一に微細分散した組成物であれば、高剛性で高強度のファイバー/生分解性樹脂複合成形品を得ることができる。   2 (a), (b), FIGS. 3 (a), (b), and Table 1 reveal the following. That is, in the composition of Example 2 using the pulp in which the primary wall and the secondary wall outer layer were scratched by pretreatment, the pulp was uniformly finely dispersed in the form of microfibrils, whereas no pretreatment was performed. In the composition of Comparative Example 2 using pulp, the pulp is not defibrated and is scattered in a broken state. If the composition is a composition in which the pulp is uniformly finely dispersed in the form of microfibrils, a highly rigid and high strength fiber / biodegradable resin composite molded product can be obtained.

パルプ及びセルロース系繊維の積層構造を示す模式的な斜視図である。It is a typical perspective view which shows the laminated structure of a pulp and a cellulose fiber. 図2(a)は実施例で用いた前処理パルプの形態を示す電子顕微鏡写真であり、図2(b)は比較例で用いた前処理無しパルプの形態を示す電子顕微鏡写真である。FIG. 2A is an electron micrograph showing the form of the pretreated pulp used in the examples, and FIG. 2B is an electron micrograph showing the form of the untreated pulp used in the comparative example. 図3(a)は実施例2で得られた組成物中の繊維成分の形態を示す電子顕微鏡写真であり、図3(b)は比較例2で得られた組成物中の繊維成分の形態を示す電子顕微鏡写真である。3 (a) is an electron micrograph showing the form of the fiber component in the composition obtained in Example 2, and FIG. 3 (b) is the form of the fiber component in the composition obtained in Comparative Example 2. It is an electron micrograph which shows.

符号の説明Explanation of symbols

1 一次壁
2 二次壁外層
3 二次壁中層
4 二次壁内層
1 Primary wall 2 Secondary wall outer layer 3 Secondary wall middle layer 4 Secondary wall inner layer

Claims (10)

一次壁及び二次壁外層を傷つけてなるパルプ。   Pulp made by damaging the outer wall of the primary wall and secondary wall. 一次壁及び二次壁外層を傷つけてなるセルロース系繊維。   Cellulosic fiber formed by damaging the outer wall of the primary wall and the secondary wall. 一次壁及び二次壁外層を傷つけてなるパルプ及び/又はセルロース系繊維(C)を、セルロース非晶領域膨潤剤(D)の存在下に混練することにより、繊維成分を解繊することを特徴とするパルプ及び/又はセルロース系繊維のミクロフィブリル化方法。   The fiber component is defibrated by kneading pulp and / or cellulosic fibers (C) that damage the outer wall of the primary wall and the secondary wall in the presence of the cellulose amorphous region swelling agent (D). A method for microfibrillation of pulp and / or cellulosic fibers. (a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその誘導体とを反応させて得られる脂肪族ポリエステル(A)からなる樹脂成分1〜99.9重量部と、
一次壁及び二次壁外層を傷つけた前処理パルプ及び/又はセルロース系繊維(C)からなる繊維成分99〜0.1重量部と
を、セルロース非晶領域膨潤剤(D)の存在下で溶融混練処理することを特徴とする脂肪族ポリエステル組成物の製造方法。
1 to 99.9 parts by weight of a resin component comprising an aliphatic polyester (A) obtained by reacting (a) an aliphatic diol and (b) an aliphatic dicarboxylic acid and / or a derivative thereof;
Melting 99 to 0.1 parts by weight of a fiber component composed of pretreated pulp and / or cellulosic fibers (C) with damaged primary and secondary wall outer layers in the presence of a cellulose amorphous region swelling agent (D) A method for producing an aliphatic polyester composition, comprising kneading.
(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその誘導体とを反応させて得られる脂肪族ポリエステル(A)1重量%以上と、ポリ乳酸(B)99重量%以下とからなる樹脂成分1〜99.9重量部と、
一次壁及び二次壁外層を傷つけた前処理パルプ及び/又はセルロース系繊維(C)からなる繊維成分99〜0.1重量部と
を、セルロース非晶領域膨潤剤(D)の存在下で溶融混練処理することを特徴とする脂肪族ポリエステル組成物の製造方法。
From (a) aliphatic diol and (b) aliphatic polyester (A) obtained by reacting an aliphatic dicarboxylic acid and / or a derivative thereof, 1% by weight or more and polylactic acid (B) 99% by weight or less 1 to 99.9 parts by weight of the resin component
Melting 99 to 0.1 parts by weight of a fiber component composed of pretreated pulp and / or cellulosic fibers (C) with damaged primary and secondary wall outer layers in the presence of a cellulose amorphous region swelling agent (D) A method for producing an aliphatic polyester composition, comprising kneading.
請求項4又は5において、前記前処理パルプ及び/又はセルロース系繊維(C)が更に化学修飾されたものであることを特徴とする脂肪族ポリエステル組成物の製造方法。   The method for producing an aliphatic polyester composition according to claim 4 or 5, wherein the pretreated pulp and / or the cellulosic fiber (C) is further chemically modified. 請求項4ないし6のいずれか1項において、該脂肪族ポリエステル(A)が、(a)脂肪族ジオールと、(b)脂肪族ジカルボン酸及び/又はその誘導体と、(c)2官能脂肪族ヒドロキシカルボン酸及び/又はその誘導体とを反応させて得られることを特徴とする脂肪族ポリエステル組成物の製造方法。   The aliphatic polyester (A) according to any one of claims 4 to 6, wherein the aliphatic polyester (A) comprises (a) an aliphatic diol, (b) an aliphatic dicarboxylic acid and / or a derivative thereof, and (c) a bifunctional aliphatic. A method for producing an aliphatic polyester composition, which is obtained by reacting a hydroxycarboxylic acid and / or a derivative thereof. 請求項4ないし7のいずれか1項において、前記溶融混練処理が、二軸押出機に前記樹脂成分、繊維成分及びセルロース非晶領域膨潤剤を供給して、該二軸押出機内で該セルロース非晶領域膨潤剤の存在下に前記繊維成分を該樹脂成分中に解繊、分散させる解繊・分散工程と、その後、該樹脂成分を溶融させると共に該繊維成分を更に解繊、微細分散させる溶融・分散工程と、その後、該セルロース非晶領域膨潤剤を分離すると共に混練物を押し出すセルロース非晶領域膨潤剤分離・押出工程とを備えることを特徴とする脂肪族ポリエステル組成物の製造方法。   8. The melt kneading treatment according to claim 4, wherein the melt-kneading process supplies the resin component, the fiber component, and the cellulose amorphous region swelling agent to a twin-screw extruder, and the cellulose A defibrating / dispersing step in which the fiber component is defibrated and dispersed in the resin component in the presence of a crystal region swelling agent, and then the resin component is melted and the fiber component is further defibrated and finely dispersed. A method for producing an aliphatic polyester composition, comprising: a dispersion step; and thereafter, a cellulose amorphous region swelling agent separation / extrusion step of separating the cellulose amorphous region swelling agent and extruding the kneaded product. 請求項4ないし8のいずれか1項において、前記溶融混練処理が、二軸押出機に前記樹脂成分を供給して、該二軸押出機内で該樹脂成分を溶融させる溶融工程と、その後、前記繊維成分及びセルロース非晶領域膨潤剤を該二軸押出機に加圧注入して該セルロース非晶領域膨潤剤の存在下に該繊維成分を該樹脂成分中で解繊、微細分散させる溶融・解繊・分散工程と、その後、該セルロース非晶領域膨潤剤を分離すると共に混練物を押し出すセルロース非晶領域膨潤剤分離・押出工程とを備えることを特徴とする脂肪族ポリエステル組成物の製造方法。   In any one of Claims 4 thru | or 8, the said melt-kneading process supplies the said resin component to a twin-screw extruder, the melting process which fuse | melts this resin component in this twin-screw extruder, and then said Melting / disaggregation in which a fiber component and a cellulose amorphous region swelling agent are injected under pressure into the twin-screw extruder, and the fiber component is defibrated and finely dispersed in the resin component in the presence of the cellulose amorphous region swelling agent. A method for producing an aliphatic polyester composition comprising: a fiber-dispersing step; and thereafter, a cellulose amorphous region swelling agent separating / extruding step of separating the cellulose amorphous region swelling agent and extruding the kneaded product. 請求項4ないし9のいずれか1項において、前記前処理パルプ及び/又はセルロース系繊維(C)の保水率が150〜600%であることを特徴とする脂肪族ポリエステル組成物の製造方法。   The method for producing an aliphatic polyester composition according to any one of claims 4 to 9, wherein the water retention of the pretreated pulp and / or cellulosic fiber (C) is 150 to 600%.
JP2003333352A 2003-07-08 2003-09-25 Method for producing aliphatic polyester composition Expired - Lifetime JP4013870B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003333352A JP4013870B2 (en) 2003-07-08 2003-09-25 Method for producing aliphatic polyester composition
PCT/JP2004/009720 WO2005003450A1 (en) 2003-07-08 2004-07-08 Process for production of aliphatic polyester composition, pulp and cellulosic fiber to be used therein, and process for microfibrillation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003193723 2003-07-08
JP2003333352A JP4013870B2 (en) 2003-07-08 2003-09-25 Method for producing aliphatic polyester composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007182811A Division JP4127316B2 (en) 2003-07-08 2007-07-12 Method for producing aliphatic polyester composition and method for microfibrillation of pulp used therefor

Publications (2)

Publication Number Publication Date
JP2005042283A true JP2005042283A (en) 2005-02-17
JP4013870B2 JP4013870B2 (en) 2007-11-28

Family

ID=33566776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333352A Expired - Lifetime JP4013870B2 (en) 2003-07-08 2003-09-25 Method for producing aliphatic polyester composition

Country Status (2)

Country Link
JP (1) JP4013870B2 (en)
WO (1) WO2005003450A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238812A (en) * 2006-03-09 2007-09-20 Hiroshima Pref Gov Polylactic acid-microfibrillated cellulose composite material and method for producing the same
JP2007262594A (en) * 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Functional cellulosic material high in functional particle content and method for producing the same
JP2007260941A (en) * 2006-03-27 2007-10-11 Hokuetsu Paper Mills Ltd Manufacturing method of paper compounded thermoplastic resin composition and paper pellet used therein
WO2007136086A1 (en) * 2006-05-23 2007-11-29 Kyushu University, National University Corporation Material comprising polylactic acid and cellulose fiber
WO2008010464A1 (en) 2006-07-19 2008-01-24 Kyoto University Microfibrillated cellulose having cellulose type-ii crystalline structure, and molded article containing the microfibrillated cellulose
WO2008010462A1 (en) * 2006-07-19 2008-01-24 Pioneer Corporation Nanofiber sheet, process for producing the same, and fiber-reinforced composite material
JP2008024795A (en) * 2006-07-19 2008-02-07 Kyoto Univ Microfibrillated cellulose-containing resin molded product with improved strength
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
JP2008087470A (en) * 2006-09-06 2008-04-17 Yamaha Livingtec Corp Filler and its manufacturing method
JP2008193478A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Manufacturing method of diaphragm for speaker
WO2009008822A1 (en) * 2007-07-12 2009-01-15 Stfi-Packforsk Ab Method for manufacturing a composite material having reduced mechanosorptive creep, the composite material, use of the method and the composite material
WO2010013502A1 (en) 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
WO2010016619A1 (en) * 2008-08-08 2010-02-11 Kao Corporatioin Biodegradable resin composition
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
WO2011049162A1 (en) 2009-10-23 2011-04-28 国立大学法人京都大学 Composition containing microfibrillated plant fibers
WO2011078142A1 (en) 2009-12-22 2011-06-30 Dic株式会社 Modified microfibrillated cellulose and resin composite material comprising the same
JP2011137095A (en) * 2009-12-28 2011-07-14 Kao Corp Method for manufacturing polylactic acid resin composition
JP2011137093A (en) * 2009-12-28 2011-07-14 Kao Corp Biodegradable resin composition
JP2011152787A (en) * 2009-12-28 2011-08-11 Kao Corp Method for producing polylactic acid resin composition
JP2011153297A (en) * 2009-12-28 2011-08-11 Kao Corp Biodegradable resin composition
JP2011153296A (en) * 2009-12-28 2011-08-11 Kao Corp Biodegradable resin composition
JP2011152786A (en) * 2009-12-28 2011-08-11 Kao Corp Method for manufacturing polylactic acid resin injection molding
WO2011115154A1 (en) 2010-03-19 2011-09-22 国立大学法人京都大学 Molding material and manufacturing method therefor
JP2012025949A (en) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp Fine cellulose fiber dispersion, cellulose fiber composite, and its manufacturing method
US8122996B2 (en) 2006-12-22 2012-02-28 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
WO2012043558A1 (en) 2010-09-29 2012-04-05 Dic株式会社 Method for pulverizing cellulose, cellulose noanofiber, materbatch and resin composition
WO2012124652A1 (en) 2011-03-11 2012-09-20 Dic株式会社 Modified cellulose nanofibers, manufacturing method therefor, and resin composition using same
JPWO2011093147A1 (en) * 2010-01-28 2013-05-30 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
WO2013122209A1 (en) 2012-02-17 2013-08-22 Dic株式会社 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
WO2013147063A1 (en) 2012-03-29 2013-10-03 Dic株式会社 Method for producing modified cellulose nanofibers, modified cellulose nanofibers, resin composition, and molded body thereof
WO2013147062A1 (en) 2012-03-28 2013-10-03 Dic株式会社 Method for producing cellulose nanofibers, cellulose nanofibers, master batch, and resin composition
JP2013203859A (en) * 2012-03-28 2013-10-07 Dic Corp Cocoon-shaped cellulose aggregate, cocoon-shaped cellulose aggregate-containing cellulose nanofiller, resin composition containing the cellulose nanofiller, and resin molded article
JP2014024928A (en) * 2012-07-25 2014-02-06 Konica Minolta Inc Cellulose nanofiber film and method for manufacturing the same
JP2014227639A (en) * 2013-05-27 2014-12-08 王子ホールディングス株式会社 Fine cellulose fiber-containing material and method for producing the same, and composite material and method for producing the same
CN104334615A (en) * 2012-03-09 2015-02-04 Dic株式会社 Method for producing resin composition comprising modified microfibrillated plant fibers, and same resin composition
WO2015040884A1 (en) 2013-09-18 2015-03-26 Dic株式会社 Method for producing modified cellulose nanofibers
JP2015150838A (en) * 2014-02-18 2015-08-24 株式会社日本製鋼所 Production apparatus and production method for microfibrillated cellulose composite resin material
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
US9822241B2 (en) 2013-10-02 2017-11-21 Dic Corporation Molded body and method for producing cellulose-nanofiber-containing composition
US9902820B2 (en) 2013-10-02 2018-02-27 Dic Corporation Molded body and method for producing cellulose-nanofiber-containing resin composition
KR20180027441A (en) 2015-07-07 2018-03-14 다이이치 고교 세이야쿠 가부시키가이샤 Mixture for resin reinforcement, fiber-reinforced resin mixture, fiber-reinforced resin, and method for producing same
US20180179369A1 (en) * 2015-06-11 2018-06-28 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition and method for producing thermoplastic resin composition
JP2018115292A (en) * 2017-01-20 2018-07-26 国立大学法人京都大学 Acetylated pulp composition containing ethylene glycol derivative, resin composition containing microfibrillated acetylated pulp, and method for producing the same
JP6422540B1 (en) * 2017-08-29 2018-11-14 旭化成株式会社 Method for producing cellulose reinforced resin composition
JP2019043977A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-reinforced resin composition
JP2019085584A (en) * 2019-02-19 2019-06-06 大阪瓦斯株式会社 Mixed composition, manufacturing method thereof and composite
WO2019163873A1 (en) * 2018-02-21 2019-08-29 国立大学法人京都大学 Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
WO2022138935A1 (en) * 2020-12-25 2022-06-30 凸版印刷株式会社 Biodegradable resin composition and molded body

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235113A1 (en) * 2005-03-11 2006-10-19 Dorgan John R High modulus polymer composites and methods of making the same
JP5207500B2 (en) * 2007-03-30 2013-06-12 スターライト工業株式会社 Method for producing phenolic resin composition
JP5356582B2 (en) * 2011-12-28 2013-12-04 花王株式会社 Polyester resin composition
CN106661833B (en) * 2014-05-30 2019-02-12 鲍利葛公司 Microfibrillated cellulose
JP2018024967A (en) * 2016-08-09 2018-02-15 花王株式会社 Fine cellulose fiber complex
JP7108375B2 (en) * 2017-01-18 2022-07-28 パナソニックホールディングス株式会社 Composite resin composition
CN110248993B (en) 2017-03-29 2022-12-30 古河电气工业株式会社 Polyolefin resin composite material and method for producing same
EP3689974A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. Molded article
JP7252128B2 (en) 2017-09-29 2023-04-04 古河電気工業株式会社 Molding
CN111183188A (en) 2017-09-29 2020-05-19 古河电气工业株式会社 Molded article
WO2019073918A1 (en) 2017-10-13 2019-04-18 Juki株式会社 Slide fastener sewing method and slide fastener product
EP3705520A4 (en) 2017-10-31 2021-07-21 Furukawa Electric Co., Ltd. Molded article
WO2020196799A1 (en) 2019-03-27 2020-10-01 古河電気工業株式会社 Cellulose fiber reinforced polypropylene resin molding and method for manufacturing same
JPWO2021172407A1 (en) * 2020-02-26 2021-09-02

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089675B2 (en) * 1987-05-16 1996-01-31 第一工業製薬株式会社 Sheets or molded products that decompose in nature
EP0444880B1 (en) * 1990-02-28 1997-05-07 Director-General Of The Agency Of Industrial Science And Technology Process for manufacture of a moldable biodegradable material
JP3090349B2 (en) * 1991-08-02 2000-09-18 カルプ工業株式会社 Degradable resin composition
JPH05300586A (en) * 1992-04-20 1993-11-12 Onkyo Corp Diaphragm for electroacoustic transducer
JP3345760B2 (en) * 1993-06-04 2002-11-18 ユニチカ株式会社 Method for producing molded articles composed of biodegradable composite materials
JP3423094B2 (en) * 1995-01-19 2003-07-07 三井化学株式会社 Biodegradable polymer composition
AU2547499A (en) * 1998-02-23 1999-09-06 Ichiro Sugimoto Biodegradable molded plastic
JP2002248018A (en) * 2001-02-26 2002-09-03 Fine Kk Toothbrush
JP3522706B2 (en) * 2001-04-02 2004-04-26 ニチハ株式会社 WOOD BASE MATERIAL AND PROCESS FOR PRODUCING THE SAME

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238812A (en) * 2006-03-09 2007-09-20 Hiroshima Pref Gov Polylactic acid-microfibrillated cellulose composite material and method for producing the same
JP2007262594A (en) * 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Functional cellulosic material high in functional particle content and method for producing the same
JP2007260941A (en) * 2006-03-27 2007-10-11 Hokuetsu Paper Mills Ltd Manufacturing method of paper compounded thermoplastic resin composition and paper pellet used therein
WO2007136086A1 (en) * 2006-05-23 2007-11-29 Kyushu University, National University Corporation Material comprising polylactic acid and cellulose fiber
JPWO2007136086A1 (en) * 2006-05-23 2009-10-01 国立大学法人九州大学 Material containing polylactic acid and cellulose fiber
JP2008024788A (en) * 2006-07-19 2008-02-07 Kyoto Univ Nanofiber sheet, method for producing the same, and fiber-reinforced composite material reinforced therewith
US8728272B2 (en) 2006-07-19 2014-05-20 Kyoto University Microfibrillated cellulose having cellulose type-II crystalline structure, and molded article containing the microfibrillated cellulose
JP2008024795A (en) * 2006-07-19 2008-02-07 Kyoto Univ Microfibrillated cellulose-containing resin molded product with improved strength
WO2008010462A1 (en) * 2006-07-19 2008-01-24 Pioneer Corporation Nanofiber sheet, process for producing the same, and fiber-reinforced composite material
KR101224427B1 (en) * 2006-07-19 2013-01-22 로무 가부시키가이샤 Nanofiber sheet, process for producing the same, and fiber-reinforced composite material
WO2008010464A1 (en) 2006-07-19 2008-01-24 Kyoto University Microfibrillated cellulose having cellulose type-ii crystalline structure, and molded article containing the microfibrillated cellulose
JP2008087470A (en) * 2006-09-06 2008-04-17 Yamaha Livingtec Corp Filler and its manufacturing method
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
US8235168B2 (en) 2006-12-22 2012-08-07 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8230966B2 (en) 2006-12-22 2012-07-31 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8177021B1 (en) 2006-12-22 2012-05-15 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8122996B2 (en) 2006-12-22 2012-02-28 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
JP4743130B2 (en) * 2007-02-06 2011-08-10 パナソニック株式会社 Manufacturing method of speaker diaphragm
JP2008193478A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Manufacturing method of diaphragm for speaker
WO2009008822A1 (en) * 2007-07-12 2009-01-15 Stfi-Packforsk Ab Method for manufacturing a composite material having reduced mechanosorptive creep, the composite material, use of the method and the composite material
JP2011006712A (en) * 2008-07-22 2011-01-13 Kao Corp Biodegradable resin composition
JP4612098B2 (en) * 2008-07-22 2011-01-12 花王株式会社 Biodegradable resin composition
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
US8877841B2 (en) 2008-07-31 2014-11-04 Kyoto University Molding material containing unsaturated polyester resin and microfibrillated plant fiber
WO2010013502A1 (en) 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
US8716373B2 (en) 2008-08-08 2014-05-06 Kao Corporation Biodegradable resin composition
JP4612730B2 (en) * 2008-08-08 2011-01-12 花王株式会社 Biodegradable resin composition
WO2010016619A1 (en) * 2008-08-08 2010-02-11 Kao Corporatioin Biodegradable resin composition
JP2010270290A (en) * 2008-08-08 2010-12-02 Kao Corp Biodegradable resin composition
JP2011046954A (en) * 2008-08-08 2011-03-10 Kao Corp Biodegradable resin composition
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
WO2011049162A1 (en) 2009-10-23 2011-04-28 国立大学法人京都大学 Composition containing microfibrillated plant fibers
WO2011078142A1 (en) 2009-12-22 2011-06-30 Dic株式会社 Modified microfibrillated cellulose and resin composite material comprising the same
JP2011152786A (en) * 2009-12-28 2011-08-11 Kao Corp Method for manufacturing polylactic acid resin injection molding
JP2011137093A (en) * 2009-12-28 2011-07-14 Kao Corp Biodegradable resin composition
JP2011137095A (en) * 2009-12-28 2011-07-14 Kao Corp Method for manufacturing polylactic acid resin composition
JP2011153297A (en) * 2009-12-28 2011-08-11 Kao Corp Biodegradable resin composition
JP2011152787A (en) * 2009-12-28 2011-08-11 Kao Corp Method for producing polylactic acid resin composition
JP2011153296A (en) * 2009-12-28 2011-08-11 Kao Corp Biodegradable resin composition
JP5660333B2 (en) * 2010-01-28 2015-01-28 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
JPWO2011093147A1 (en) * 2010-01-28 2013-05-30 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid
US9327426B2 (en) 2010-03-19 2016-05-03 Nippon Paper Industries Co., Ltd. Molding material and manufacturing method therefor
WO2011115154A1 (en) 2010-03-19 2011-09-22 国立大学法人京都大学 Molding material and manufacturing method therefor
JP2012025949A (en) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp Fine cellulose fiber dispersion, cellulose fiber composite, and its manufacturing method
US8735470B2 (en) 2010-09-29 2014-05-27 Dic Corporation Method for fibrillating cellulose, cellulose nanofiber, masterbatch, and resin composition
WO2012043558A1 (en) 2010-09-29 2012-04-05 Dic株式会社 Method for pulverizing cellulose, cellulose noanofiber, materbatch and resin composition
US9074077B2 (en) 2011-03-11 2015-07-07 Dic Corporation Modified cellulose nanofibers, production method thereof, and resin composition using same
WO2012124652A1 (en) 2011-03-11 2012-09-20 Dic株式会社 Modified cellulose nanofibers, manufacturing method therefor, and resin composition using same
JP5392590B1 (en) * 2012-02-17 2014-01-22 Dic株式会社 Fiber reinforced resin composite and reinforced matrix resin for fiber reinforced resin
CN104114619A (en) * 2012-02-17 2014-10-22 Dic株式会社 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
KR20140105528A (en) 2012-02-17 2014-09-01 디아이씨 가부시끼가이샤 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
WO2013122209A1 (en) 2012-02-17 2013-08-22 Dic株式会社 Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
CN104334615B (en) * 2012-03-09 2016-10-26 Dic株式会社 Comprise manufacture method and this resin combination of the resin combination of modified fibrillation Plant fiber
CN104334615A (en) * 2012-03-09 2015-02-04 Dic株式会社 Method for producing resin composition comprising modified microfibrillated plant fibers, and same resin composition
WO2013147062A1 (en) 2012-03-28 2013-10-03 Dic株式会社 Method for producing cellulose nanofibers, cellulose nanofibers, master batch, and resin composition
JP2013203859A (en) * 2012-03-28 2013-10-07 Dic Corp Cocoon-shaped cellulose aggregate, cocoon-shaped cellulose aggregate-containing cellulose nanofiller, resin composition containing the cellulose nanofiller, and resin molded article
KR20140105489A (en) 2012-03-28 2014-09-01 디아이씨 가부시끼가이샤 Method for producing cellulose nanofibers, cellulose nanofibers, master batch, and resin composition
US9624606B2 (en) 2012-03-28 2017-04-18 Dic Corporation Method for producing cellulose nanofiber, cellulose nanofiber, master batch, and resin composition
WO2013147063A1 (en) 2012-03-29 2013-10-03 Dic株式会社 Method for producing modified cellulose nanofibers, modified cellulose nanofibers, resin composition, and molded body thereof
JP2014024928A (en) * 2012-07-25 2014-02-06 Konica Minolta Inc Cellulose nanofiber film and method for manufacturing the same
JP2014227639A (en) * 2013-05-27 2014-12-08 王子ホールディングス株式会社 Fine cellulose fiber-containing material and method for producing the same, and composite material and method for producing the same
WO2015040884A1 (en) 2013-09-18 2015-03-26 Dic株式会社 Method for producing modified cellulose nanofibers
US9902820B2 (en) 2013-10-02 2018-02-27 Dic Corporation Molded body and method for producing cellulose-nanofiber-containing resin composition
US9822241B2 (en) 2013-10-02 2017-11-21 Dic Corporation Molded body and method for producing cellulose-nanofiber-containing composition
JP2015150838A (en) * 2014-02-18 2015-08-24 株式会社日本製鋼所 Production apparatus and production method for microfibrillated cellulose composite resin material
US20180179369A1 (en) * 2015-06-11 2018-06-28 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition and method for producing thermoplastic resin composition
KR20180027441A (en) 2015-07-07 2018-03-14 다이이치 고교 세이야쿠 가부시키가이샤 Mixture for resin reinforcement, fiber-reinforced resin mixture, fiber-reinforced resin, and method for producing same
JP2018115292A (en) * 2017-01-20 2018-07-26 国立大学法人京都大学 Acetylated pulp composition containing ethylene glycol derivative, resin composition containing microfibrillated acetylated pulp, and method for producing the same
JP6422540B1 (en) * 2017-08-29 2018-11-14 旭化成株式会社 Method for producing cellulose reinforced resin composition
JP2019043979A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-reinforced resin composition
JP2019043977A (en) * 2017-08-29 2019-03-22 旭化成株式会社 Method of producing cellulose-reinforced resin composition
WO2019163873A1 (en) * 2018-02-21 2019-08-29 国立大学法人京都大学 Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
JPWO2019163873A1 (en) * 2018-02-21 2020-05-28 国立大学法人京都大学 Disentangling aid for hydrophobized cellulosic fibers, method for producing resin composition using the same, and molded article
JP2019085584A (en) * 2019-02-19 2019-06-06 大阪瓦斯株式会社 Mixed composition, manufacturing method thereof and composite
WO2022138935A1 (en) * 2020-12-25 2022-06-30 凸版印刷株式会社 Biodegradable resin composition and molded body

Also Published As

Publication number Publication date
JP4013870B2 (en) 2007-11-28
WO2005003450A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4013870B2 (en) Method for producing aliphatic polyester composition
KR102158129B1 (en) Cellulose-containing resin composition and cellulosic ingredient
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
TWI537286B (en) The cellulose nano fiber and the manufacturing method of the same,the composition of the masterbatch,the composition of the resin,and the molded article
CN107429071B (en) Fiber-reinforced resin composition containing chemically modified cellulose nanofibers and thermoplastic resin
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
CN1102944C (en) Composite resin composition
JP6640623B2 (en) Masterbatch containing acylated modified microfibrillated plant fibers
JP5119432B2 (en) Microfibrillated cellulose-containing resin molding with improved strength
KR20090054434A (en) Mastermatch and polymer composition
JPWO2019163873A1 (en) Disentangling aid for hydrophobized cellulosic fibers, method for producing resin composition using the same, and molded article
JP4127316B2 (en) Method for producing aliphatic polyester composition and method for microfibrillation of pulp used therefor
JP7434871B2 (en) Molding composition and molded object
JP2019059956A (en) Thermoplastic resin composition
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
Lal et al. Old corrugated box (OCB)-based cellulose nanofiber-reinforced and citric acid-cross-linked TSP–guar gum composite film
JP3933315B2 (en) Composite resin composition
JP6935650B2 (en) Aliphatic polyester resin composition and molded article
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
WO2021172407A1 (en) Fiber-reinforced resin composition having an improved fibrillation property and method for producing the same, and molded body and fibrillation agent
Rigotti Polymer composites for sustainable 3D printing materials
WO2019194032A1 (en) Resin composition for solid molding material, method for producing same, and solid molded article
KR101856496B1 (en) Modified microfibrillated cellulose and preparation method thereof
WO2019012724A1 (en) Resin composition and resin molded article
WO2023074691A1 (en) Resin composition, molded body using this, and production method of resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4013870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250