JP4820825B2 - バルーンカテーテル及びその他の治療装置への極低温水の制御された効率的な搬送 - Google Patents

バルーンカテーテル及びその他の治療装置への極低温水の制御された効率的な搬送 Download PDF

Info

Publication number
JP4820825B2
JP4820825B2 JP2007546758A JP2007546758A JP4820825B2 JP 4820825 B2 JP4820825 B2 JP 4820825B2 JP 2007546758 A JP2007546758 A JP 2007546758A JP 2007546758 A JP2007546758 A JP 2007546758A JP 4820825 B2 JP4820825 B2 JP 4820825B2
Authority
JP
Japan
Prior art keywords
valve
pulse width
pressure
balloon
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007546758A
Other languages
English (en)
Other versions
JP2008523897A (ja
JP2008523897A5 (ja
Inventor
レイノルズ、バイロン
Original Assignee
クリオヴァスキュラー・システムズ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオヴァスキュラー・システムズ・インコーポレイテッド filed Critical クリオヴァスキュラー・システムズ・インコーポレイテッド
Publication of JP2008523897A publication Critical patent/JP2008523897A/ja
Publication of JP2008523897A5 publication Critical patent/JP2008523897A5/ja
Application granted granted Critical
Publication of JP4820825B2 publication Critical patent/JP4820825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F7/123Devices for heating or cooling internal body cavities using a flexible balloon containing the thermal element

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、冷却及びバルーン膨張ののうちの少なくともいずれか一方を使用して組織の治療をするための器具及び方法に関する。
多くの実施例において、本発明は、冷却流体圧力及び温度制御のうち少なくともいずれかにて組織の温度を目標温度範囲まで冷却することによって、患者の血管系や他の組織を低温で治療するためのシステム、装置、及び方法を提供する。冷却水圧及び温度制御のうち少なくともいずれか一方は、冷却水の流れが通過する制御バルブにおける一つ以上の特性を測定することによって、高められる。ある実施例では、組織は冷却、または非冷却状態に保持されるが、気化された、或いは気体の膨張水により、組織治療バルーンの膨張を制御している。
多くの経皮的な血管内処理が患者の血管系におけるアテローム性動脈硬化性の治療のため開発されてきた。これらの治療のうちもっとも成功したものは、経皮的血管形成術(PTA)である。PTAは拡張可能な先端部を有するカテーテルを使用し、通常膨張可能なバルーンの形状で、血管系内の狭窄部位を膨張させ、狭窄していた部位の血液が十分に流れるよう復旧する。狭窄部位を開くためのその他の方法として、指向的なアテローム切除術、回転アテローム切除術、レーザー血管形成術、ステント術等がある。これらの処理の中でも、特にPTA及びステント術は広く受け入れられているが、その一方、二次の再狭窄の発生に苦しみ続けている。
再狭窄は、動脈が再び狭くなることを意味し、最初の有効な血管形成術や、他の一次治療に続いて発生する。再狭窄は通常、最初の処理から数週間乃至数ヶ月の間に起こり、血管形成術が施された患者の50%にある程度の影響を及ぼす。再狭窄は、一次治療に起因する負傷に応じて平滑筋細胞増殖から少なくとも一部に生ずる。この細胞増殖は「過形成」と呼ばれる。重大な再狭窄が起こる血管は通常さらなる治療を要する。
過形成を治療し、再狭窄を減少させるため、多くの治療案が提案されてきた。以前に提案された治療案は、長期のバルーン膨張、加熱したバルーンを使用した血管の治療、放射線を使用した血管の治療、一次治療に続く反血栓症薬の投与、一次治療に続く部位のステント術、薬剤溶出性ステントの使用等である。これらの提案が様々なレベルの成功を収める一方で、これらの治療案は、あらゆる部位における再狭窄及び過形成の全ての発生を回避するために完全に成功しているとは証明されていない。また、多くの患者にとって、これらを実行するために要するコストは過大である。
膨張及び極低温の冷却の組み合わせを使用して、変形を再構成することによって、冠状動脈や末梢の血管系における血管形成術に続く、変形の防止や緩慢な再閉が最近提案されてきた。特許文献1には、極低温に冷却されたバルーンを使用して再狭窄を抑制する構造及び方法が開示されている。2003年6月4日に出願された特許文献2において、冷却されたバルーンが非膨張状態と膨張して血管を膨張させる膨張状態の間の圧力に制御可能に膨張され、極低温に組織を冷却するための構造及び方法の改良を開示している。
米国特許第6300029号明細書 米国特許出願第10/455253号明細書
これらの冷却治療は血管内における使用に大きな保証をもたらすものだが、血管内における極低温の冷却を実行するための上述の構造及び方法はさらに向上する余地がある。特に、本発明に関連した作業は、バルーン膨張圧、バルーン温度、バルーンが膨張していない状態から膨張した冷却バルーンに至る過程に対する正確な制御が、極低温の冷却水の有効な使用と同時には、必ずしも膨張速度に対して所望のレベルの制御を提供するとは限らないということを示している。
これらの理由により、血管及び他の身体の管腔の極低温の冷却のために向上した装置、システム、及び方法を提供するのが望ましい。概して、極低温療法の圧力及び温度を制御する新しい向上した技術は有益である。特に、もしこれらの改良が、冷却流体をより有効に使用しつつ、コスト及び複雑さのうち少なくともいずれか一方を有意に抑える場合である。仮にこれらの装置、システム、及び方法の改良により、非常に制御された状態で治療を遂行でき、その結果、血管内の極低温のバルーンが膨張している間に組織の損傷を防止できるなら、特に望ましい。
本発明は、血管及びその他の身体の組織を、制御可能に膨張及び冷却する装置、システム、及び方法を提供する。血管を治療するために使用される場合に、本発明の実施例は、アテローム性動脈硬化性やその他の病気の治療のため周囲の血管の壁を冷却するための、極低温の冷却流体により膨張されるバルーンにより構成される。バルーンは、バルーン内の極低温の流体の位相における変化、通常、液体の位相から気体の位相への変化により冷却される。極低温の冷却流体の放出や浪費を制限しながら、数値に制限のある圧力における「段階的」増加に頼ることなく、時間に対する治療圧力及び温度プロファイルのうちいずれか一方を提供する。ある実施例において、拡張等のためのバルーン膨張の制御は、治療のための冷却、あるいは非冷却により、少なくともその一部が、気体の膨張の影響を受ける。
本発明に関連する作業により、温度制御及び圧力のうち少なくともいずれか一方を備える治療プローブから放出される極低温の冷却流体の量が減少する。あるいは、このようなプローブにおける温度及び圧力のうち少なくともいずれか一方の制御は、使用される構成要素のタイプの標準的な性能に単純に依存するよりは、むしろ極低温の冷却流体路における流体制御要素(特にソレノイドバルブ)において測定される応答を使用することにより、驚くべきほどに高められる。例えば、特定のタイプのバルブを確実に開く最小パルス幅、あるいは特定の製造バッチのバルブを開くのに十分なパルス幅を使用するよりは、むしろ、重要な極低温の冷却流体を開放するソレノイドバルブに出力される最小パルス幅を決定することにより、指令パルス幅を測定して使用する。そのようなパルス幅は、治療設定において、治療中にソレノイドバルブを駆動する特定のバッテリを使用して測定される。また、そのようなパルス幅は、周知技術に基づき形成される少量の極低温の冷却流体を許容する。処理プロトコルは測定されたパルス幅から決定される。プロトコルは、測定された最小パルス幅を繰り返し使用可能である。
第一の側面において、本発明は、患者の目標組織を極低温で冷却する方法を提供する。この方法は目標組織と熱的に接続されるプローブシステムの熱伝達面を配置する工程と、プローブシステムの個々のバルブのバルブ性能特性が測定する工程と、測定されたバルブ性能特性を使用して処理プロトコルを決定する工程よりなる。処理プロトコルはバルブを駆動することにより構成される。極低温の冷却流体が治療面と熱的に接触するようバルブを駆動することにより処理プロトコルが実行され、少なくとも冷却流体の一部が組織を冷却するために蒸発する。
特定の治療設定において患者のために処理プロトコルが実行され、バルブ性能特性がその特定の治療設定において測定される。例えば、患者が病室で治療を受ける場合に、治療の直前に、バルブ性能特性も病室内において測定される。これにより、例えば、同じシステム構成を使用して、同じ周囲の温度及び気圧等でというように、治療の状況が容易に再現できるようになる。
プローブシステムの制御部を使用してバルブ性能特性が測定され、プローブシステムの制御部が処理プロトコルも実行する。好適には、制御部は、極低温の冷却流体キャニスター、制御部入力、制御部出力ディスプレイ等のための設置部とともに、プローブシステムの携帯可能なハウジング内に備えられる。プローブシステムのバッテリを使用してバルブ性能特性が測定され、治療中にバッテリは、バルブの駆動装置も駆動する。別の一人を超える患者に使用されるのを抑制するように、患者の治療後に個々のバルブは配置される。
バルブはソレノイドバルブから構成され、バルブ性能特性は、バルブを駆動するための指令パルス幅を決定することにより測定される。指令パルス幅は、複数のパルス幅候補を順次的に算定し、プローブシステム内の冷却流体の流れを監視することにより、測定される。複数の順次的なパルス幅候補は、短いパルス幅から長いパルス幅の順に算定される。通常、指令パルス幅は、バルブの下流における冷却流体路の圧力と閾値の圧力とを比較することにより決定される。
指令パルス幅は、プローブシステムの制御部を使用して測定され、プローブシステムの制御部も、a)バルブへの指令パルス幅を有する指令パルスを搬送する工程と、b)先行する指令パルスに応じて冷却流体路に沿った熱伝達面に隣接する、あるいは、下流の、冷却流体の圧力を測定する工程と、c)測定された圧力と目標圧力とを比較する工程と、d)目標圧力より低い、測定された圧力に応じてa)〜c)の工程を繰り返す工程と、e)目標圧力より大きい測定された圧力に応じてa)〜d)の工程を終結する工程とを実行することにより処理プロトコルを実行する。時間の機能として目標圧力は変更可能である。例えば、目標圧力は、時間を増やす機能として線形に増加し、それによって、膨張圧力において円滑に、かつ徐々に増加する。ある実施例において、圧力は膨張サイクルの第1の部分の間、第1の速度で増加し、その後、膨張サイクルの第2の部分の間、第2の速度で増加する。例えば、5psi/秒(約34.5kPa/秒)以下の最初の比較的低い膨張速度が、バルーンを小さな外形構造から展開した外形構造になるまで徐々に膨張させるために使用され、その後、膨張圧力に対して過剰な膨張速度を回避するために5psi/秒(約34.5kPa/秒)を超える膨張速度が続く。このような円滑かつ徐々の膨張により、隣接する組織等に対するバルーンの壁の急激な動きや衝突を防止する。さらに治療圧力または温度プロファイルの別例が可能であり、極低温の冷却流体の温度と圧力との関係は、治療面と熱的に接触する蒸発室内における蒸発温度と圧力との関係により、決定される。選択された治療温度及び圧力のうち少なくともいずれか一方が決定され、さらに、これらのパラメーターの制御された変化速度が決定される。異なる温度や圧力における異なるドウェル時間や、温度及び圧力の偏位のサイクルの繰り返し等も同様に使用可能である。
処理プロトコルは、ソレノイドバルブに搬送される、指令パルス幅を有する複数の指令パルスから構成される。各指令パルスは冷却流体路の極低温の冷却流体の全集合を開放する。冷却する表面はバルーンからなる。目標圧力は、バルーンが非膨張状態と組織膨張状態との間で徐々に変化する。指令パルスにより開放された、冷却流体の全集合の大部分が冷却流体路において蒸発するように、指令パルス幅は短く設定されている。極低温のバルーンの膨張速度における段階的な変化とは異なり、圧力における徐々の変化は、少なくとも5psiの圧力における増加の間中、100psi/秒(約689kPa/秒)未満の圧力膨張速度に制限され、通常は50psi/秒(約344.5kPa/秒)以下であり、理想的には、5psi/秒(約34.5kPa/秒)以下である。
バルブは、プローブシステムを製造する業者により、プローブシステムのその他の構成要素とともに組み立てられる。バルブは、共通するバルブのモデルを共有する複数のバルブのうちの一つであり、バルブを供給する業者経由でプローブシステムを製造する業者によって供給される。通常、指令パルス幅は当該バルブのモデルの複数のバルブを確実に開く最小パルス幅より小さい。モデルの最小パルス幅は、プローブシステムを製造する業者及びバルブを供給する業者のうち少なくともいずれか一方により特定される。
指令パルス幅は、特定のバルブの所望の動作反応を得るための、最小パルス幅により構成される。制御部により測定された最小指令パルス幅及び治療中に適用された最小指令パルス幅のうち少なくともいずれか一方は、バルブを開閉するための絶対的な最小パルス幅である必要性はない。例えば、小さな安全係数を、測定された最小パルス幅に加算することも可能である。最小パルス幅を測定する場合に、制御部は連続したパルス幅の候補をスキャンする。パルス幅の候補はステップサイズで増加し、その結果、測定された最小パルス幅は、二つの候補の間にあたる絶対的な最小パルス幅よりわずかに大きくなるかもしれない。にもかかわらず、指令パルス幅は最小パルス幅や最小搬送パルス幅とされる。いずれの場合にせよ、このバルブの測定されるバルブ特性は、膨張圧力及び温度のうち少なくともいずれか一方に対して、極低温の膨張流体を蒸発させるために、特定のタイプやモデルの全てのバルブを許容する標準的なパルス幅を単純に使用するシステムの性能を超える制御を提供するものである。
別の側面において、本発明は、患者の組織を極低温で冷却する方法を提供する。この方法は、組織と熱的に接続されるプローブシステムの熱伝達面を配置する工程と、プローブシステムの制御部を使用してプローブシステムの個々のソレノイドバルブの最小の受容可能な指令パルス幅を測定する工程と、プローブシステムの制御部を使用して、最小の指令パルス幅によって繰り返しバルブを駆動させ、組織を冷却する工程と、極低温の冷却流体が治療面と熱的に接触するよう流れるようにする工程からなる。少なくとも一部の冷却流体が蒸発する。
別の側面において、本発明は、患者の目標組織を治療する方法を提供する。この方法は、目標組織に隣接するバルーンシステムのバルーンを配置する工程と、バルーンシステムの個々のバルブのバルブ性能特性を測定する工程と、測定されたバルブ特性性能を使用して処理プロトコルを決定する工程からなる。処理プロトコルはバルブの駆動から構成される。すなわち、バルブを駆動することによりバルーン内に流体が流れるようにし、バルーン内の流体の少なくとも一部が気体から構成され、気体がバルーンを膨張させることにより処理プロトコルを実行する。
通常、バルーンは目標組織を膨張させるのに使用され、バルーンシステムは、目標組織の冷却に影響を与える可能性がある。膨張圧力は、膨張治療サイクルを通して正確に制御可能である。バルーンは、ともに配置された放射線不透過性の材料により、露出が容易になる。驚くべきことに、このような気体の膨張は、標準的な流体及び膨張に比して、繰り返しが容易である。これにより、血管形成術、ステント術、末梢の血管の膨張、その他の様々なバルーンシステムによる治療が容易になる。バルブは通常ソレノイドバルブにより構成され、バルブ性能特性は通常バルブを駆動させるための最小指令パルス幅を決定することにより測定される。少なくとも流体の一部は、バルーン内で蒸発する流体からなる。
またある側面において、本発明は患者の組織を治療するためのシステムを提供する。そのシステムは、流体路とそれに接続する治療面を有するプローブから構成される。流体路は流体源と接続可能である。バルブは、プローブの流体路に沿って設けられ、センサは、プローブの流体路に沿って設けられる。制御部は、バルブとセンサとに接続される。制御部は、バルブを駆動し、センサを使用して冷却流体を監視することにより、バルブの特性を測定するよう構成されている。さらに、制御部は、測定されたバルブ性能特性に応じて処理プロトコルを決定し、組織を冷却するようバルブを駆動することにより処理プロトコルを実行するよう構成されている。
バルブは、ソレノイドバルブから構成され、バルブの性能特性は、バルブを駆動するための指令パルス幅から構成される。測定された指令パルス幅は所望の駆動結果を達成するための最小の指令パルス幅から構成される。測定された指令パルス幅は、いかなる冷却流体の開放をも許容する絶対的な最小の指令パルス幅である必要性はないが、同一のバルブのモデルのバルブを確実に開放するようバルブを供給する業者により特定される最小パルス幅以下である。
バッテリは、制御部と電気的に接続される。制御部は、組織を治療できるようバッテリを使用してバルブ性能特性を測定し、バルブを駆動するよう構成されている。制御部は、センサを使用して冷却流体を監視する間、複数のパルス幅候補を順次的に算定することにより指令パルス幅を測定するよう構成されている。複数の順次的なパルス幅候補が、短いパルス幅から長いパルス幅の順に算定される。順番は多少前後してもよく、短いパルス幅から長いパルス幅に渡る全体的な傾向が維持されているならば、好適な最小パルス幅が特定される場合に、冷却流体が不必要に開放されるのを防止することができる。センサは圧力センサから構成され、流体路に沿った冷却流体の流れ及び圧力のうち少なくともいずれか一方を示す。制御部は、冷却流体路の圧力と閾値の圧力とを比較することにより、指令パルス幅が決定されるように構成されている。
制御部は、指令パルス幅を有する指令パルスをバルブに搬送することにより処理プロトコルを実行するよう構成されている。冷却流体路に沿った熱伝達面に隣接する、あるいは、下流の、冷却流体の圧力が測定される。なぜなら冷却流体は先行する各指令パルスに応じて変化するからである。測定された圧力は、目標圧力と比較され、測定された圧力が目標圧力より低い場合、指令パルスの搬送、測定、及び比較が繰り返される。目標圧力より大きい測定された圧力に応じて、搬送、測定、比較、及び、任意に反復が終結する。
制御部は、目標圧力を時間の機能として変更するよう構成されている。処理プロトコルは指令パルス幅を有する複数の指令パルスから構成可能である。各指令パルスは、冷却流体路に沿った極低温の冷却流体の集合を開放する。冷却する表面はバルーンから構成可能であり、制御部は、目標圧力を徐々に変化させるよう構成されている。バルーンは、非膨張状態と組織膨張状態の間で徐々に変化する。指令パルスにより開放された、冷却流体の全集合の大部分が冷却流体路において蒸発するように、指令パルス幅が短く設定されている。
本発明は、人体の管腔における管腔壁及び人体の他の組織の膨張及び冷却のうち少なくともいずれかを使用した治療のための装置、システム、及び方法に関する。本発明においては、通常は血管壁(あるいは他の包囲する組織)を径方向にはめ込むために、冷却流体で膨張させたバルーンを使用する。通常、冷却流体は、バルーン内において少なくともその一部が第1の段階から第2の段階に変化する。その結果、気化による潜熱が、周囲の組織を冷却する。好適な冷却流体の導入により、冷却流体が液体からガスの段階に沸騰し始めたら(通常液体がカテーテルに入るとすぐに起こる)、バルーンが非常に速く拡張される。本発明は、バルーン膨張工程を好適に制御できる。例えば、ゆっくり時間をかけてバルーン内の圧力の状態を円滑に、かつ叙々に変化させる。冷却処理する表面に対して熱的に接触する液体と、蒸気との混合物を気化させて冷却効果を得る極低温の冷却システムにおいて、圧力と温度とは相関関係にあるため、本発明は、過剰な通気や冷却流体の浪費を回避するための重要な「段階的」変化に頼ることなく、温度及び圧力のうち少なくともいずれかによる多種多様な治療の概略を描く。類似の技術が、バルーンの少なくともその一部を気体で膨張させるために使用可能であるが、治療のための冷却を伴うものではない。
本発明は、膨張可能なバルーンカテーテルを使用する実施例において、以下に記載されるが、代替的なプローブ構造においても、ここに記載される有効な冷却流体制御装置、システム、及び方法が利用可能である。例えば、拡張しない気化室を有する可撓性を備えた極低温のカテーテルは、不整脈及び他の冠状動脈の疾患を治療できるよう、心臓の組織において変形部位を制御可能に形成するために使用される。固定の処理表面及び膨張可能である処理表面のうち少なくともどちらか一方を有する堅固なプローブは、体中の組織や特定の組織の広範囲な治療のための侵入を最小限にした外科的治療に適用可能である。圧力及び温度プロファイルのうち少なくともいずれか一方を制御することにより、極低温の研磨の制御やその他の冷却療法が提供される。
図1を参照する。カテーテルシステム10は制御/供給ユニット12及びカテーテル14を備える。ユニット12は、冷却流体サプライ16、バルブ、圧力変換器、電子制御ハードウェア及びソフトウェアのうち少なくともいずれか一方等の冷却流体制御システム構成品を備える。ユニット12は、スイッチ、インプットキー、ディスプレイ等を含むユーザーインターフェースを任意に組み込む。代替的な実施例では、外部ユーザーインターフェースやデータプロセッサが使用可能である。ユニット12の構成品は複数のハウジング構造体に分散される。
具体例としての供給/制御ユニット12は、バッテリから受ける電力を供給するためのケーブル18、壁コンセント、あるいは好適な電源を備える。加えて、真空源20はユニット12に組み込まれ、ここではシリンジのようなプラスの排気ポンプの形状である。ユニット12のハウジングは処置中に片手で保持するのに好適な寸法、形状、重さを有する。ユニット12はカテーテル14に対して、ユニット上の連結ハブやコネクタ22及びカテーテルにより連結される。ユニット12、カテーテル14、及び連結コネクタについては、発明の名称が「安全冷凍療法カテーテルの改良」である米国特許第6648879号明細書において十分に開示されている。
カテーテル14は基端部隣接コネクタ22、先端部24、及びそれらの間を延びる長尺状のカテーテル本体26を備える。バルーン28はカテーテル本体26の近接する先端部24に配置される。実施例において、バルーン28は内部バルーン30及び真空空間を有する外部バルーン32(図2参照)よりなる。第1のバルーン及び第2のバルーンの間の真空を監視し、仮に真空が悪化するならば冷却流体の流れを遮断することにより、第1のバルーン及び第2のバルーンの両者の封じ込めが効果的に監視可能になり、血管系内の冷却流体や気体の流出が抑制可能である。
極低温に冷却されたバルーンが膨張している間、膨張水は650psi(約4478.5kPa)を超す高圧、通常850psi(約5856.5kPa)乃至950psi(約6545.5kPa)の間で、ユニット12内のキャニスターに保持される。容積の少ない小さな密封したキャニスターを使用することにより、冷却流体の消耗による過処理を制限することができるシングルユースの好適なシステムが使用可能である。10cc乃至20ccの容積を有する亜酸化窒素のキャニスターは、約8g乃至25gの冷却流体を収容可能で、バルーンカテーテルシステム10用の非常に安全かつ有効な冷却及び膨張媒体を提供することができる。しかしながら、これらの高圧キャニスターがバルーンカテーテルシステム10に連結されるときのバルーン膨張速度は、過大になり、通常0.1秒以下になる。このような高速のバルーン膨張は、治療する部位の血管に対する過大な損傷の原因となり、その結果、解剖率が上昇し、再狭窄率等も上昇する。
バルーンの膨張速度を減少させるために、様々な制御方法が使用可能である。2003年6月4日に出願され、発明の名称が「圧力制御可能な極低温のバルーン治療システム及び方法」である米国特許出願第10/455253号明細書には制御方法が開示され、その全内容がここに開示されたものとする。この特許に記載されているように、カテーテル間の重要な変化、すなわち、管腔からバルーンへの冷却流体の流入量と径、冷却流体を搬送する管系の温度、サプライキャニスターをカテーテル本体へ連結する様々なマニフォ―ルド、及びその他の物理的差異が、カテーテルに入る亜酸化窒素水の温度、並びに、ガス及び液体の混合等を有効に制御する。これにより、圧力制御アルゴリズムが複雑化され、広汎に変化するカテーテルにおいて、一様な応答をするのは無理となる。さらに、カテーテル本体からの流出量を測定する際に、全冷却流体システムの応答時間が単純なフィードバックループに依存するのが無理となり、その結果、例えば、カテーテルのいかなる範囲を使用する際にも圧力は徐々に変化することになる。
ユニット12は複数のバルーンカテーテルに選択的に接続され、通常、カテーテル本体及びバルーン、並びに、その他の特性が異なる構成要素を備える。より詳細には、交互に配置される選択可能なカテーテルの具体例としての組み合わせは、カテーテル本体の長さが80,120,135cm、並びに、バルーンの長さが2,4,6及び8cmである。本体の長さとバルーンの長さの組み合わせのいくつか、あるいは全ては直径が2.5,3.0,4,5,6,7,及び8mmのバルーンを備えるカテーテルにおいて利用可能である。具体的な組み合わせは、異なる液流特性を有する48のカテーテルを含む。これはカテーテル構造体間の付加的な相違に起因する。例えば、カテーテルの長さ、バルーンの長さ、及びバルーンの径の相違に伴い、バルーンに流入する流体を冷却させるためのオリフィスの長さがカテーテルごとに異なる(通常、短いオリフィスを有する長いバルーンにおける冷却流体の流入速度は、バルーン表面全体を冷却するのに十分になる)。これらの異なる特性は、ユニット12からの冷却流体の液流特性に強く影響を与えるため、ユニット12に接続されるときに、選択されるいずれのバルーンカテーテルの膨張速度でも制御できる制御方法が望ましい。
図2及び3を参照する。カテーテル10の様々な構造が詳細に図示されている。カテーテル本体26は、冷却流体供給管腔40と、カテーテル本体の基端部及び先端部に延びる排出管腔42とを備える。第1バルーン及び第2バルーン30,32はカテーテル本体に組み込まれた拡張体であるか、あるいは、別々に形成されて、カテーテル本体に取り付けられるものである。バルーンはカテーテル本体と同一、あるいは別の材料から形成され、接着剤や熱溶接等によりカテーテル本体に取り付けられる。カテーテル本体26は様々なポリマー材料からなる。ポリマー材料としては、ポリエチレン、ポリイミド、ナイロン、ポリエステル、並びに、これらのコポリマー及び派生物の少なくともいずれか一方を含む。バルーン30,32は弾性を備えた構造体及び非弾性を備えた構造体の少なくともいずれか一方からなり、ナイロン、ポリエチレンテレフタレート(PET)、ウレタン、ラテックスシリコン、ポリエチレンや、PEB AX(登録商標)のような強力なポリマー等からなる。バルーン30,32は様々な材料からなり、例えば、第1のバルーンがPETのような強力な材料からなる一方で、第2のバルーンがポリエチレンのような高い耐久性を備えた材料からなる。バルーン28は通常少なくとも1cmの長さを有し、好ましくは、1.5cm乃至10cmの範囲にある。バルーン28は直径が1.5mm乃至10mmの範囲にある。
防熱壁が真空スペース34内に設けられる。防熱壁は、バルーンとバルーンの間の空間を含む。好適な防熱壁は、螺旋状に編み込まれた繊維材、あるいは、ニューヨーク州SummersのSAATITECHから登録商標名SAATIFILポリエステル、PES38/3IMとして販売されているポリエステル材料のような結ばれた繊維材よりなる。放射線不透過性のマーカもポリエステル層上、あるいは、第1バルーン及び第2バルーン間に設けられて、表示され易くなっている。これ以外に、各種の代替物が採用可能である。
さらに、図2及び3を参照する。カテーテル本体26に沿って配置されたハブ44はガイドワイヤポート46をカテーテル本体のガイドワイヤ管腔48に接続する。バルーン膨張ポート50は、排出管腔42に接続され、処理工程の完了後、バルーンが膨張し易くする。少なくとも1枚の破裂板が内部バルーンの内側表面と、真空スペースとの間に設けられ、バルーンの破裂前にシステムの全動作を停止させる。真空スペース34は真空管腔52によりハブ22に接続されている。ワイヤ54によりバルーンのセンサはユニット12に接続される。
図4はシステム10の流体通過路と制御要素との作用を示すフローチャートである。システム10における流体遮断部60は、回路により遮断バルブ64に接続される真空スィッチ62を備え、回路はバッテリ66により電力供給される。スィッチ62は、一定レベルの真空が検知されるときにのみ閉状態に保持される。これに代えて、一定レベルの真空が存在するときにのみスィッチが開き、スィッチが開状態にあるときに遮断バルブ64が開放されるように回路を構成することもできる。真空は、カテーテル本体、内部バルーン、及び外部バルーンの少なくともいずれか一つに裂け目があるときに減少し、真空管腔や真空スペースに極低温の水や血液が進入することを許容する。
システムの圧力制御部70において、(亜酸化窒素キャニスターのような)流体供給部74からソレノイド式の搬送バルブ64を介して冷却流体路に沿って流体が通過する。バルブ64が開状態にあるとき、流体は流体供給管腔40に沿ってバルーン30に向かって移動することが許容され、バルーン30において冷却流体は液体から気体に位相を変化させる。流体がバルーン30に進入前、及びバルーンが、バルーン30から排出管腔42に排出された後のいずれか一方において、流体の少なくとも一部が液体から気体に変換される。圧力開放バルブ76は排出流体を外部に逃がすように制御する。別例として、排出流体は真空源、排出流体チャンバ、リサイクルシステム等に逃がされる。開放バルブ76は排出管腔42及びバルーン30内の後方圧力を制御する。
バルブ64の開放時において、流体供給部74からの冷却流体は通気バルブ72に向かって移動することが許容される。このバルブ72(及び冷却流体制御部70のその他の部材)はバッテリ66に接続されている。この接続回路はバルブの稼動サイクルを設定するタイマを備えることが一般的である。通気バルブ72の開放時に、流体供給部及び流体供給管腔の少なくともいずれか一方からの冷却流体は排出され、バルーン30への冷却流体の通過を相当量にわたって制限する。
米国特許出願第10/455253号明細書に開示されるように、非膨張状態と完全な膨張状態との間にあったり、段階的な膨張圧の変化を受けているバルーンは、トランスデューサー78により測定された圧力に応じて選択される通気バルブのサイクルや、遮断バルブのサイクルの調整により制御されている。詳細には、初期状態、即ちキャリブレーション状態にある冷却流体は、バルブ64を開閉することにより、流体供給部40内に導入される。トランスデューサー78において圧力を測定することにより、制御部がシステムにおける冷却流体路の特性の少なくともいくつかを決定する。具体的な実施例において、通気バルブ及び遮断バルブのバルブサイクルのうち少なくともいずれか一方は、圧力トランスデューサー78により測定される排出圧力に応じて決定される。その結果、カテーテル本体の所定の長さやバルーンの所定の寸法等に対して、制御システムの応答を適合させる。冷却流体路に沿ったシステム10の構成要素は図5に示されている。
図6を参照する。制御部100と冷却流体路102に沿って配置された構成要素とが簡易的に示されている。冷却流体の流れは、少なくともその一部が冷却流体路102に沿って配置されたソレノイドバルブ64により制御される。圧力トランスデューサー78は圧力センサ―として機能し、冷却流体路102に沿った冷却流体の流れを監視する。
ソレノイドバルブ64はユニット12内に設けられ、ユニットのその他の構成要素とともに、プローブシステムを製造する業者によって組み立てられる。ソレノイドバルブ64はユニット12とともに再利用することも可能であるが、カテーテル14は廃棄される。これは、カテーテルを一人の患者のみに使用することを意図するものである。別例においては、バルブはカテーテル14の構造をなしている。このため、バルブは一人の特定の患者のためにのみ使用される。いずれの場合にせよ、ソレノイドバルブは通常、型番や名称等のようなバルブのタイプによって指定される。バルブは、関連するバッチ番号等によって指定可能である。同一のタイプ、モデル、名称、番号、及びバッチ番号のうち少なくともいずれかに該当する複数のバルブが(バルブ製造業者やバルブの中間業者のような)バルブを供給する業者から、プローブシステムを製造する業者に供給される。
バルブを供給する業者はプローブシステムを製造する業者に対してバルブの特性に関する情報を提供する。このような情報は通常、ソレノイドバルブを駆動するための特定の最小パルス幅を含む。この情報は、特定のバルブ作動電位が引加されるときに、このタイプ(等)のバルブを確実に駆動するに十分なパルス幅を正確に指示する。しかしながら、これらバルブは、バルブを供給する業者により特定される情報より小さなパルス幅に応じて開閉するのが実情である。実際、バルブは非常に少量の冷却流体を通過させる。膨張バルーン(例)内の圧を円滑、かつ徐々に変化させる制御において、所望の正確性を達成することは、個々のバルブの能力の限界付近でバルブを操作することにより高められる。バルブをその個々の性能の限界付近で開閉し、各パルスにより流体の流れを最小にするために、個々のバルブ、バッテリ電圧、周囲の温度等とともに変化するパルス幅が望ましい。
バルブの性能の限界付近において同バルブを開閉するために、最小のバルブの反応を得るためのパルス幅が、個々のバルブのため測定される。バルブの製造交差や、バルブが駆動される環境等により、バルブの性能及び最小パルス幅は、特定されているバルブ特性とは異なるものである。
個々のバルブの能力を利用するため、制御部100はパルス幅スキャンモジュール104と、処理プロトコル設定モジュール106と、処理プロトコル実行モジュール108とを備える。制御部100は一連の方法のステップを実行するためのソフトウェア、ハードウェアを備える。典型的なモジュールは機械で読み取り可能なコードでプログラムされた再プログラム可能なハードウェアで構成される。典型的な制御部は登録商標名がMicrochip Pic であるプロセッサを備え、C言語でプログラムされる。
パルス幅スキャンモジュール104は、バルブからの所望な応答を引き出す指令パルス幅を決定する。このパルス幅は、所望の結果が得られる「最小の」パルス幅を意味する。パルス幅は必ずしも絶対的な最小のパルス幅ではない。その理由として、スキャンの結果により安全指数が加算されたり、乗算されたりすることが挙げられる。さらに、スキャン自身が、単にパルス幅を得るためのものであり、ここで得られたパルス幅が増分により増加されることもあるからである(従って、スキャンによって得た2つのパルス幅の中間のパルス幅が所望の結果をもたらすこともある)。
処理プロトコルモジュール106は、パルス幅スキャンモジュール104により特定されたパルス幅に応答して処理プロトコルを立ち上げる。実施例において、処理プロトコルモジュールは、パルス幅の候補群中において、所望の結果を提供する最小のパルス幅の候補に対応して変化可能な指令パルス幅を設定する。別例として、選択されたパルス幅を修正するように設定してもよい。あるいは、システム10中のソレノイドバルブ64の特性を適切に利用すべく、処理プロトコルを再調整することも可能である。
処理実行モジュール108は所望の極低温組織治療に影響を与える。この極低温組織処理は、一つあるいはそれ以上の組織処理温度、一つあるいはそれ以上の組織冷却速度、一つあるいはそれ以上の処理温度における滞留時間等を含む。処理の温度及び温度変化速度は、特定の目標処理温度や目標温度変化速度、あるいは、目標範囲により決定される。
所望の範囲内の温度や圧力における制御された変化に影響を及ぼすように、処理実行モジュール108は、制御部100のクロックからの入力を受承する。処理実行モジュール108は、測定したパルス幅やその他のバルブの性能に従って、バッテリ66の電力をソレノイドバルブ64へ送る。バルブ特性の決定の際及び処置の実行のうちいずれか一方において、パルス幅スキャンモジュール104及び処理実行モジュール108の少なくともどちらか一方では圧力センサ78からのフィードバックが使用される。
図7を参照すると、バルブのパルス幅をスキャンし、特定の膨張圧を提供するための具体的な方法が詳細に示されている。この方法全体は参照符号120にて示されている。最初のステップ122において最初のパルス幅候補PWを設定し、ステップ124において圧力センサ78で排出圧力を測定する。初期のパルス幅は0.1秒以下、通常30ミリ秒以下で、多くの場合10ミリ秒以下であり、理想的には3ミリ秒以下である。設定したパルス幅がソレノイド126に出力され、その後、システムが指令したパルスによって生じる排出圧力130を登録することを許容するように適切なディレイ128が実行される。最終的な圧力も圧力センサ78により測定される。ステップ132において、最終的な圧力は最初の圧力と比較され、圧力や他の冷却水の応答についての閾値が変化されたか否かが判断される。圧力の変化の閾値は通常5psi(約34.5kPa)以下であり、理想的には2psi(約13.8kPa)以下である。
直前に指令されたパルスが、閾値より大きな圧力の変化を生成しなかったならば、パルス幅はステップ134において増分134だけ増加する。そして、排出圧力は再びステップ124で測定される。パルス幅の増加は10ミリ秒以下であり、通常1.0ミリ秒以下である。新しいパルス幅がソレノイド126に対して指令され、閾値に関するシステム応答が再び計測される。パルス幅は閾値に関する応答が得られるまで繰り返し増加される。
短いパルス幅の候補から長いパルス幅の候補にわたってパルス幅の候補をスキャンすることにより、スキャンモジュール104により実行されるパルス幅スキャンの間、冷却流体路に沿った冷却流体の過剰な放出が防止される。その順番は必ずしも絶対的なものではない。なぜなら(例えば)、スキャンの幅を狭めるように、パルス幅の大きな増加が最初に使用され、次に続くより細かいスキャンの増加が使用される。従って、スキャンの連続におけるパルスの大多数は、先のパルスの大多数より長いため、スキャンにおける冷却流体の全使用量は制限される。
所望の結果を得るための最小の出力パルス幅が一旦特定されると、処理プロトコルが、特定されたパルス幅(あるいは、そこから導かれる他の指令パルス幅)を使用して設定される。図7に示される方法120において、処理プロトコルは、単に選択されたパルス幅候補PWに等しい指令パルス幅を設定することにより、決定される。実施例の別例は、安全率等を決定した候補に加算したり乗算したりして、決定したパルス幅候補を修正する。
方法120は処理実行モジュール108により実行される工程を含む。この工程では、ステップ136においてソレノイドバルブにパルス幅を出力することによるパルス幅スキャンから導かれる指令パルス幅を使用する。ステップ138において排出圧が圧力センサ78にて測定される。排出圧は、ステップ140において、目標圧力と比較される。処理プロトコルの少なくとも一部の工程の間、目標圧力は固定された値である。処理プロトコルの他の工程において、目標圧力は計時的に機能する。目標圧力が提供されているかいないかに拘わらず、方法120のステップ136において、ソレノイドに対して再度パルス幅が出力され、排出圧が測定される。これは目標圧力が提供されるまで繰り返される。
フローチャートに示される方法120はさらなる利点を有する。例えば、ステップ136におけるパルス幅の出力、及びステップ138における排出圧力の測定の間で十分なディレイが実行される。その結果、プローブシステムの圧力を適切に反応させる。さらに、目標圧力がステップ140において決定されると、処理は終了しない。その代わり、圧力減衰遅延時間が決定されるか、排出圧力が目標圧力以下に下がるまで監視される。圧力が目標圧力以下に減衰したら、目標圧力が再び得られるまで、ステップ136においてパルス幅に関する指令がソレノイドに出力される。代替的に、米国特許出願第10/455253号明細書に記載の方法に類似したものを任意に使用して、ソレノイドバルブ及び吸気バルブのうち少なくともいずれか一方が、周期的に開放及び閉塞される。
図8を参照する。極低温バルーンカテーテルの段階的な膨張が、時間(秒)対膨張圧(psi(kPa))でグラフに示されている。バルーンが非膨張状態150と膨張状態152との間の複数の中間状態を取るとき、バルーンの膨張速度154は50psi/秒(約344.5kPa/秒)を超える。このような段階的な膨張は、システム10から影響を受けるが、特に最初に非膨張状態150からバルーンを拡張するときには緩やかな膨張が有利である。挿入と位置づけのために小さな形状を維持するようバルーン内に真空が引き込まれるため、圧力は最初ゼロ以下である。
図9に示す別例では、非膨張状態150から膨張状態152までの膨張が低い圧力変化速度での圧力において円滑かつ徐々に変化する。
初期の膨張部分156は、圧力の変化速度が5psi/秒(約34.5kPa/秒)以下に制限され、バルーンの壁を非膨張状態150から径方向にすなわち外側に徐々に広げ、バルーンの周囲の血管の内壁に係合する。バルーンが十分に膨張されると(例えば、一気圧より大きい膨張圧まで)、膨張サイクルの他の膨張部分158において圧力の変化速度が上昇する。この膨張には、極低温のプローブシステムにおける特定のソレノイドバルブ用の最小パルス幅が使用される。
図10A乃至10Cを参照する。血管BVの目標部位TPを治療する方法が示されている。カテーテル14はガイドワイヤGWにより導入され、バルーン28が目標部位TPに隣接する血管BV内に位置される。
患部が膨張前や、膨張中において冷却されると、非冷却バルーンを使用した血管形成術に適用される圧力より低い膨張バルーンの膨張圧が使用できるようになる。ある実施例において、約8atmの圧力でバルーン28を膨張し、係合される血管の壁の組織を約−2℃から−12℃の間、好ましくは−10℃の温度に冷却すると、反動や再狭窄を抑制しながら、狭窄した部位を開くことができる。患部のうち、特に激しく石灰化したり繊維化したりした部位はより高い圧力の影響を受ける。血管の壁に対する損傷を規制すべく、初期においてはゆるやかな膨張速度で患部は膨張させるのが有効である。初期の低い圧力で血管が順調に膨張しなければ、2回目はより高い圧力にて(任意だが、続く3回目ではさらに高い圧での)膨張されることが望ましい。膨張速度は2つ以上の膨張圧力値の間で制御される。
上記したような亜酸化窒素のような極低温の冷却流体を搬送するための最小パルス幅の多数のパルスが使用されるが、これに代える実施例を以下に述べる。例えば、最小の出力パルスを使用して送られるガスの量を特徴とするものであり、より大きな幅のパルスが最小の幅のパルスから生じ、膨張サイクルの少なくとも一部において、より大きな量の冷却水を選択的かつ制御可能に搬送する。
上述のプローブシステム10において、冷却流体の供給量に制限がある。通気バルブ72(図4参照)は、圧力及び温度のうち少なくともいずれか一方を制御するために、冷却水が組織治療バルーン(あるいはその他の蒸発室)に入る前に冷却水を放出する。これにより冷却水を外部に放出し、所定のコンテナサイズから提供されうる治療を制限する。これに代えて、システム10において個々のバルブの性能特性を利用して、気体の放出をより少なくすることにより、より多くの気体が冷却バルーンを通過し、組織の治療のために使用される。多くの実施例において、5psi/秒(約34.5kPa/秒)以下の円滑にして、徐々に移行するバルーン膨張速度にもかかわらず、冷却流体の大部分(冷却流体の75%を超える。ある実施例においては、冷却流体の90%以上)はバルーンを通過する。従って、同一の制限された冷却流体を供給しても、バルーンはより大きい容積を有したり、より長い治療のサイクルに使用されたり、個別の治療に使用されたりするよう実施することも可能である。
典型的な実施例が、例を通して明確に理解されるよう詳述されてきたが、当業者には、様々な変形及び変更が可能なのが認識されるであろう。従って、本発明の範囲は付加している請求項によってのみ制限される。
本発明の原理に基づいた極低温バルーンカテーテルシステムの一部破断斜視図。 図1のシステムのバルーンカテーテルの一部破断斜視図。 図2の3−3線における断面図。 図1のバルーンカテーテルシステムの構成要素を機能的に示すブロック図。 図1のシステムの冷却流体の流体路に沿って配置される構成要素を示す概要図。 時間に対する膨張圧及び温度のうち少なくともいずれか一方を制御する制御部の構成要素、並びに、制御部及び冷却流体路の構成要素の相互作用を示す概要図。 図1のシステムにおける冷却流体路に沿って配置されたソレノイドバルブのための最小パルス幅を測定する方法を、所望の治療圧力を提供するための単一のプロトコルとともに概略的に示すフローチャート。 バルーンの非膨張状態から血管が膨張するバルーンの膨張状態までの圧力の段階的な増加を示すグラフ。 図1のシステムを使用した、非膨張状態から血管が膨張する膨張状態にわたる、冷却したバルーンの円滑にして、かつ徐々に移行する膨張を示すグラフ。 図1のシステムを使用した治療法を概略的に示すための血管の壁の断面図。 図1のシステムを使用した治療法を概略的に示すための血管の壁の断面図。 図1のシステムを使用した治療法を概略的に示すための血管の壁の断面図。

Claims (10)

  1. 個々の患者の組織を治療するためのシステムであって、
    流体路とそれに接続する組織治療面を有するプローブと、
    該流体路は流体源と接続可能であることと、プローブの流体路に沿って設けられるバルブと、プローブの流体路に沿って設けられるセンサと、該バルブと該センサに接続される制御部と、該制御部は、バルブを駆動し、センサを使用して流体路沿いの流体を監視することにより、バルブの特性を測定することと、さらに、該制御部は、測定されたバルブ性能特性に応じて処理プロトコルを決定し、組織を治療するためバルブを駆動することにより処理プロトコルを実行するよう構成されていることとを特徴とするシステム。
  2. 流体路が冷却流体路から構成されることと、処理プロトコルは、治療面と熱的に接触をする冷却流体の蒸発による目標組織の極低温の冷却に影響を与えることと、該治療面が熱伝達面からなることと、該バルブはソレノイドバルブから構成されることと、バルブ性能特性は、バルブを駆動させるための指令パルス幅から構成されることとを特徴とする請求項1に記載のシステム。
  3. 制御部と電気的に接続されるバッテリをさらに備え、該制御部が、バルブ性能特性を測定し、バッテリを使用して処理プロトコルを実行しながらバルブを駆動させるように構成されていることを特徴とする請求項2に記載のシステム。
  4. 前記制御部は、センサを使用して冷却流体の流れを監視する間、複数のパルス幅候補を順次的に算定することにより指令パルス幅を測定するよう構成されていることを特徴とする請求項2に記載のシステム。
  5. 複数の順次的なパルス幅候補が、短いパルス幅から長いパルス幅の順に算定されることと、前記センサが圧力センサから構成されることと、指令パルス幅が冷却流体路の圧力と閾値の圧力とを比較することにより決定されるように制御部が構成されていることとを特徴とする請求項4に記載のシステム。
  6. 制御部が、
    a)バルブへ指令パルス幅を有する指令パルスを搬送する工程と、
    b)冷却流体路に沿った熱伝達面に隣接する、あるいは、下流の、冷却流体の圧力を測定する工程と、
    c)測定された圧力と目標圧力とを比較する工程と、
    d)目標圧力より低い、測定された圧力に応じてa)〜c)の工程を繰り返す工程と、
    目標圧力より大きい測定された圧力に応じてa)〜d)の工程を終結する工程とを実行することにより、処理プロトコルを実行するよう構成されていることを特徴とする請求項2に記載のシステム。
  7. 制御部が目標圧力を時間の機能として変更するようさらに構成されていることを特徴とする請求項6に記載のシステム。
  8. 処理プロトコルは、指令パルス幅を有する複数の指令パルスからなることと、各指令パルスは、冷却流体路に沿った極低温の冷却流体の集合を開放することと、冷却する表面はバルーンからなることと、バルーンが非膨張状態と組織膨張状態の間で徐々に変化するように、制御部が目標圧力を徐々に変化させるよう構成されていることと、指令パルスにより開放された、冷却流体の全集合の大部分が冷却流体路において蒸発するように、指令パルス幅が短く設定されていることとを特徴とする請求項2に記載のシステム。
  9. バルブは、統合されたバルブのモデルを有し、バルブを供給する業者により供給されることと、指令パルス幅は、同バルブのモデルのバルブを確実に開くためバルブを供給する業者により特定される最小パルス幅より小さいこととを特徴とする請求項2に記載のシステム。
  10. 前記治療面がバルーンからなることと、流体の少なくとも一部が気体からなる一方で、処理プロトコルが制御可能に流体を使用してバルーンを膨張させることとを特徴とする請求項1に記載のシステム。
JP2007546758A 2004-12-15 2005-12-07 バルーンカテーテル及びその他の治療装置への極低温水の制御された効率的な搬送 Active JP4820825B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/013,937 US7604631B2 (en) 2004-12-15 2004-12-15 Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US11/013,937 2004-12-15
PCT/US2005/044366 WO2006065610A2 (en) 2004-12-15 2005-12-07 Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices

Publications (3)

Publication Number Publication Date
JP2008523897A JP2008523897A (ja) 2008-07-10
JP2008523897A5 JP2008523897A5 (ja) 2009-01-29
JP4820825B2 true JP4820825B2 (ja) 2011-11-24

Family

ID=36585032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007546758A Active JP4820825B2 (ja) 2004-12-15 2005-12-07 バルーンカテーテル及びその他の治療装置への極低温水の制御された効率的な搬送

Country Status (7)

Country Link
US (2) US7604631B2 (ja)
EP (1) EP1827279B1 (ja)
JP (1) JP4820825B2 (ja)
AT (1) ATE499061T1 (ja)
CA (1) CA2589573C (ja)
DE (1) DE602005026563D1 (ja)
WO (1) WO2006065610A2 (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727228B2 (en) * 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7850683B2 (en) * 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20070299433A1 (en) * 2006-06-27 2007-12-27 C2 Therapeutics Barrett's Esophagus Cryogenic Ablation System
US9254162B2 (en) * 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
DE112008000881A5 (de) 2007-01-21 2010-01-21 Hemoteq Ag Medizinprodukt zur Behandlung von Verschlüssen von Körperdurchgängen und zur Prävention drohender Wiederverschlüsse
US8409185B2 (en) 2007-02-16 2013-04-02 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
JP5639764B2 (ja) 2007-03-08 2014-12-10 シンク−アールエックス,リミティド 運動する器官と共に使用するイメージング及びツール
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
WO2014002095A2 (en) 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
US10716528B2 (en) 2007-03-08 2020-07-21 Sync-Rx, Ltd. Automatic display of previously-acquired endoluminal images
US9968256B2 (en) 2007-03-08 2018-05-15 Sync-Rx Ltd. Automatic identification of a tool
EP2358269B1 (en) 2007-03-08 2019-04-10 Sync-RX, Ltd. Image processing and tool actuation for medical procedures
US11197651B2 (en) 2007-03-08 2021-12-14 Sync-Rx, Ltd. Identification and presentation of device-to-vessel relative motion
US20080312644A1 (en) * 2007-06-14 2008-12-18 Boston Scientific Scimed, Inc. Cryogenic balloon ablation instruments and systems
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US8828068B2 (en) 2007-07-17 2014-09-09 Cardiac Pacemakers, Inc. Systems and methods for local vasoactive response using temperature modulation
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
US9050069B2 (en) 2008-05-16 2015-06-09 Medtronic Cryocath Lp Thermocouple-controlled catheter cooling system
US8187261B2 (en) 2008-05-29 2012-05-29 Boston Scientific Scimed, Inc. Regulating internal pressure of a cryotherapy balloon catheter
EP2303385B1 (en) 2008-06-19 2013-12-11 Sync-RX, Ltd. Stepwise advancement of a medical tool
US8945106B2 (en) * 2008-07-03 2015-02-03 Steve Arless Tip design for cryogenic probe with inner coil injection tube
EP2330995B1 (en) 2008-09-03 2015-08-05 Endocare, Inc. A cryogenic system and method of use
US10182859B2 (en) * 2008-09-03 2019-01-22 Endocare, Inc. Medical device for the transport of subcooled cryogenic fluid through a linear heat exchanger
US9408654B2 (en) * 2008-09-03 2016-08-09 Endocare, Inc. Modular pulsed pressure device for the transport of liquid cryogen to a cryoprobe
US9089316B2 (en) 2009-11-02 2015-07-28 Endocare, Inc. Cryogenic medical system
US9974509B2 (en) 2008-11-18 2018-05-22 Sync-Rx Ltd. Image super enhancement
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
US10362962B2 (en) 2008-11-18 2019-07-30 Synx-Rx, Ltd. Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US11064903B2 (en) 2008-11-18 2021-07-20 Sync-Rx, Ltd Apparatus and methods for mapping a sequence of images to a roadmap image
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US8382746B2 (en) 2008-11-21 2013-02-26 C2 Therapeutics, Inc. Cryogenic ablation system and method
ES2427980T3 (es) 2008-12-22 2013-11-05 Myoscience, Inc. Sistema crioquirúrgico integrado con refrigerante y fuente de energía eléctrica
CN102316794B (zh) * 2009-01-15 2015-06-17 皇家飞利浦电子股份有限公司 电生理学导管
ES2550634T3 (es) 2009-07-10 2015-11-11 Boston Scientific Scimed, Inc. Uso de nanocristales para un balón de suministro de fármaco
JP5933434B2 (ja) 2009-07-17 2016-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 薬剤送達バルーンの製造方法
US8702689B2 (en) 2009-09-01 2014-04-22 Boston Scientific Scimed, Inc. Systems and methods for twisting an expansion element of a cryoablation system
CA2807277C (en) 2010-08-05 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Cryoablation apparatuses, systems, and methods for renal neuromodulation
WO2012031236A1 (en) 2010-09-02 2012-03-08 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
US9060755B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
EP3590453B1 (en) * 2011-02-01 2024-02-28 Channel Medsystems, Inc. Apparatus for cryogenic treatment of a body cavity or lumen
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
EP2696821B1 (en) 2011-04-13 2017-10-18 Cryotherapeutics GmbH Plaque stabilisation using cryoenergy
CN103930061B (zh) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 用于限制导管壁低温消融的有关低温球囊限制部署的装置及方法
CN102755190B (zh) * 2011-04-26 2014-12-31 中国科学院理化技术研究所 全功能型宽温区低温治疗设备
EP2723231A4 (en) 2011-06-23 2015-02-25 Sync Rx Ltd LUMINAL BACKGROUND CLEANING
JP2014529315A (ja) 2011-07-25 2014-11-06 ニューロセーブ インコーポレイテッド 選択的脳冷却のための非侵襲的なシステム、機器、および方法
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
US9056152B2 (en) 2011-08-25 2015-06-16 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
US9314588B2 (en) * 2011-10-28 2016-04-19 Medtronic Cryocath Lp Systems and methods for variable injection flow
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
WO2013106860A1 (en) 2012-01-13 2013-07-18 Myoscience, Inc. Cryogenic probe filtration system
WO2013106859A1 (en) 2012-01-13 2013-07-18 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
CN104411263A (zh) 2012-04-27 2015-03-11 美敦力阿迪安卢森堡有限公司 用于肾神经调节的冷冻治疗装置及相关的系统和方法
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9358042B2 (en) 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
US10016229B2 (en) 2013-03-15 2018-07-10 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
CN105208954B (zh) 2013-03-15 2019-06-04 肌肉科技股份有限公司 低温钝性解剖方法和设备
US9468484B2 (en) * 2013-09-13 2016-10-18 Cryofocus Medtech (Shanghai) Co. Ltd. Automated balloon catheter fluid purging system
WO2015069792A1 (en) 2013-11-05 2015-05-14 Myoscience, Inc. Secure cryosurgical treatment system
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US9936997B2 (en) 2014-05-28 2018-04-10 Kyphon SÀRL Cryogenic kyphoplasty instrument and methods of use
CA2980745C (en) 2015-03-27 2023-10-24 Project Moray, Inc. Articulation systems, devices, and methods for catheters and other uses
US9414878B1 (en) 2015-05-15 2016-08-16 C2 Therapeutics, Inc. Cryogenic balloon ablation system
US10449336B2 (en) 2015-08-11 2019-10-22 The Spectranetics Corporation Temporary occlusions balloon devices and methods for preventing blood flow through a vascular perforation
US10499892B2 (en) 2015-08-11 2019-12-10 The Spectranetics Corporation Temporary occlusion balloon devices and methods for preventing blood flow through a vascular perforation
WO2017096388A2 (en) 2015-12-04 2017-06-08 Barrish Mark D Input and articulation system for catheters and other uses
US11420021B2 (en) 2016-03-25 2022-08-23 Project Moray, Inc. Fluid-actuated displacement for catheters, continuum manipulators, and other uses
EP3454762B1 (en) 2016-05-13 2024-04-03 Pacira CryoTech, Inc. Systems for locating and treating with cold therapy
KR102366631B1 (ko) 2016-05-20 2022-02-22 펜탁스 오브 아메리카 인코포레이티드 회전 및 병진 운동 가능한 카테터를 구비한 극저온 어블레이션 시스템
WO2018191013A1 (en) * 2017-04-11 2018-10-18 Cryterion Medical, Inc. Pressure control assembly for cryogenic balloon catheter system
WO2018222372A1 (en) * 2017-05-30 2018-12-06 Cryterion Medical, Inc. Cryoballoon deflation assembly and method
WO2019022937A1 (en) * 2017-07-27 2019-01-31 Cryterion Medical, Inc. PRESSURE INHIBITOR FOR INTRAVASCULAR CATHETER SYSTEM
US11766285B2 (en) * 2017-10-27 2023-09-26 St. Jude Medical, Cardiology Division, Inc. Cryogenic ablation system
EP3709918A4 (en) 2017-11-15 2021-08-11 Pacira CryoTech, Inc. INTEGRATED COLD THERAPY AND ELECTRIC STIMULATION SYSTEMS FOR LOCALIZATION AND TREATMENT OF NERVE AND RELATED PROCEDURES
US20190247106A1 (en) * 2018-02-15 2019-08-15 Cryterion Medical, Inc. Balloon inflation rate controller for cryogenic balloon catheter system
US12004794B2 (en) * 2019-12-06 2024-06-11 Medtronic Cryocath Lp Active pressure control and method of fault monitoring
CN111529047B (zh) * 2020-06-23 2020-11-17 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
US20220047303A1 (en) * 2020-08-17 2022-02-17 Ebr Systems, Inc. Systems and methods for delivering stimulation electrodes to endocardial or other tissue
CN113206947B (zh) * 2021-07-05 2021-10-01 江西方兴科技有限公司 物联网智能监控箱
US20230165619A1 (en) * 2021-12-01 2023-06-01 Medtronic Cryocath Lp Method to mitigate balloon breach during cryoballoon therapy
US20230389976A1 (en) * 2022-06-06 2023-12-07 Medtronic Cryocath Lp Delivering refrigerant to catheters for cryotherapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280969A (ja) * 1990-03-30 1991-12-11 Sumitomo Bakelite Co Ltd 大動脈内バルーン駆動制御装置
WO2002058576A1 (en) * 2001-01-26 2002-08-01 Cryocath Technologies, Inc. Precooled cryogenic medical system
JP2002538882A (ja) * 1999-03-15 2002-11-19 クリオヴァスキュラー・システムズ・インコーポレイテッド 冷凍外科用流体供給
WO2004080280A2 (en) * 2003-03-11 2004-09-23 Cryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125096A (en) 1964-03-17 Compressor
US3823575A (en) * 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
USRE28657E (en) * 1972-05-08 1975-12-23 Cryosurgical apparatus
US3901241A (en) 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
US4336691A (en) 1979-12-13 1982-06-29 The Board Of Trustees Of The Leland Stanford Junior University Cryojet rapid freezing apparatus
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
US4754752A (en) 1986-07-28 1988-07-05 Robert Ginsburg Vascular catheter
JPS6446056U (ja) 1987-09-17 1989-03-22
US5041089A (en) 1987-12-11 1991-08-20 Devices For Vascular Intervention, Inc. Vascular dilation catheter construction
US5147355A (en) 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5191883A (en) 1988-10-28 1993-03-09 Prutech Research And Development Partnership Ii Device for heating tissue in a patient's body
US5151100A (en) 1988-10-28 1992-09-29 Boston Scientific Corporation Heating catheters
GB2226497B (en) 1988-12-01 1992-07-01 Spembly Medical Ltd Cryosurgical probe
US4946460A (en) * 1989-04-26 1990-08-07 Cryo Instruments, Inc. Apparatus for cryosurgery
WO1991005528A1 (en) 1989-10-19 1991-05-02 Granulab B.V. Device for cooling or heating a person
US5624392A (en) 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
US5092841A (en) 1990-05-17 1992-03-03 Wayne State University Method for treating an arterial wall injured during angioplasty
US5196024A (en) 1990-07-03 1993-03-23 Cedars-Sinai Medical Center Balloon catheter with cutting edge
US5190539A (en) 1990-07-10 1993-03-02 Texas A & M University System Micro-heat-pipe catheter
US5275595A (en) 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
US5486208A (en) 1993-02-10 1996-01-23 Ginsburg; Robert Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US5501681A (en) 1993-11-12 1996-03-26 Neuwirth; Robert S. Intrauterine cryoablation cauterizing apparatus and method
US5458612A (en) 1994-01-06 1995-10-17 Origin Medsystems, Inc. Prostatic ablation method and apparatus for perineal approach
US5545195A (en) 1994-08-01 1996-08-13 Boston Scientific Corporation Interstitial heating of tissue
US5617739A (en) 1995-03-29 1997-04-08 Mmr Technologies, Inc. Self-cleaning low-temperature refrigeration system
US5644502A (en) 1995-05-04 1997-07-01 Mmr Technologies, Inc. Method for efficient counter-current heat exchange using optimized mixtures
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US6505629B1 (en) * 1996-07-23 2003-01-14 Endocare, Inc. Cryosurgical system with protective warming feature
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5902299A (en) 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6974463B2 (en) 1999-02-09 2005-12-13 Innercool Therapies, Inc. System and method for patient temperature control employing temperature projection algorithm
US7458984B2 (en) 1998-01-23 2008-12-02 Innercool Therapies, Inc. System and method for inducing hypothermia with active patient temperature control employing catheter-mounted temperature sensor and temperature projection algorithm
US6648879B2 (en) 1999-02-24 2003-11-18 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6428534B1 (en) 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6300029B1 (en) 1999-03-02 2001-10-09 Ricoh Company, Ltd. Electrophotographic image forming process and electrophotographic photoconductor
AT409452B (de) * 1999-03-02 2002-08-26 Nikolai Dr Korpan Kryogenes system insbesondere für kryochirurgie
JP4102031B2 (ja) * 1999-03-09 2008-06-18 サーメイジ インコーポレイテッド 組織を治療するのための装置および方法
US6283959B1 (en) 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6575966B2 (en) 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6551274B2 (en) 2000-02-29 2003-04-22 Biosense Webster, Inc. Cryoablation catheter with an expandable cooling chamber
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
WO2002065930A1 (en) * 2001-02-09 2002-08-29 Tushar Navneetlal Shah Apparatus for endometrial ablation
EP1467668B1 (en) 2002-01-16 2006-07-05 John W. Lehmann Cryosurgical catheter
US6989009B2 (en) 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
US7060062B2 (en) 2003-06-04 2006-06-13 Cryo Vascular Systems, Inc. Controllable pressure cryogenic balloon treatment system and method
US7402140B2 (en) * 2004-02-12 2008-07-22 Sanarus Medical, Inc. Rotational core biopsy device with liquid cryogen adhesion probe
US7727228B2 (en) * 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280969A (ja) * 1990-03-30 1991-12-11 Sumitomo Bakelite Co Ltd 大動脈内バルーン駆動制御装置
JP2002538882A (ja) * 1999-03-15 2002-11-19 クリオヴァスキュラー・システムズ・インコーポレイテッド 冷凍外科用流体供給
WO2002058576A1 (en) * 2001-01-26 2002-08-01 Cryocath Technologies, Inc. Precooled cryogenic medical system
WO2004080280A2 (en) * 2003-03-11 2004-09-23 Cryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque

Also Published As

Publication number Publication date
US7604631B2 (en) 2009-10-20
US8574225B2 (en) 2013-11-05
JP2008523897A (ja) 2008-07-10
WO2006065610A2 (en) 2006-06-22
EP1827279A2 (en) 2007-09-05
WO2006065610A3 (en) 2006-11-30
US20100042086A1 (en) 2010-02-18
DE602005026563D1 (de) 2011-04-07
ATE499061T1 (de) 2011-03-15
EP1827279A4 (en) 2009-02-04
CA2589573A1 (en) 2006-06-22
CA2589573C (en) 2015-03-17
EP1827279B1 (en) 2011-02-23
US20060129142A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4820825B2 (ja) バルーンカテーテル及びその他の治療装置への極低温水の制御された効率的な搬送
JP4887141B2 (ja) 圧力と温度を制御可能なバルーン治療システム
US8177779B2 (en) Controllable pressure cryogenic balloon treatment system and method
US6648879B2 (en) Safety cryotherapy catheter
EP1894534B1 (en) Improved safety cryotherapy catheter
US6811550B2 (en) Safety cryotherapy catheter
US8672919B2 (en) Dual balloon catheter assembly
US8715274B2 (en) Regulating internal pressure of a cryotherapy balloon catheter
AU2001284647A1 (en) Improved safety cryotherapy catheter
US20050192652A1 (en) Thermal treatment systems with enhanced tissue penetration depth using adjustable treatment pressures and related methods
JP2004180934A (ja) 生体器官瞬間加熱冷却用カテーテル、生体器官瞬間加熱冷却装置及び生体器官の瞬間加熱冷却方法
JP3841603B2 (ja) 加温治療装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250