JP4815054B2 - 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法 - Google Patents

信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法 Download PDF

Info

Publication number
JP4815054B2
JP4815054B2 JP2000569720A JP2000569720A JP4815054B2 JP 4815054 B2 JP4815054 B2 JP 4815054B2 JP 2000569720 A JP2000569720 A JP 2000569720A JP 2000569720 A JP2000569720 A JP 2000569720A JP 4815054 B2 JP4815054 B2 JP 4815054B2
Authority
JP
Japan
Prior art keywords
bone
data set
coordinates
digitized
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000569720A
Other languages
English (en)
Other versions
JP2002524192A (ja
Inventor
ブレント ディー. ミトルスタッド,
スティーブン エム. コーアン,
スティーブ シュレイナー,
Original Assignee
キューレクソ テクノロジー コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キューレクソ テクノロジー コーポレイション filed Critical キューレクソ テクノロジー コーポレイション
Publication of JP2002524192A publication Critical patent/JP2002524192A/ja
Application granted granted Critical
Publication of JP4815054B2 publication Critical patent/JP4815054B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • G06T3/02
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D2001/062Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end characterised by adaptors where hub bores being larger than the shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/922Computer assisted medical diagnostics including image analysis

Description

【0001】
(発明の背景)
(1.発明の分野)
本発明は一般に、外科手術法および外科手術システムに関するものである。より具体的に、本発明は、長い骨の少なくとも部分的画像を表示しているデータセットをロボット座標系に変換することにより、ロボットで操作された外科手術器具の位置を手術前の画像と整合させる方法およびシステムに関連している。
【0002】
神経外科手術処置手順、腹腔鏡検査処置手順、整形外科処置手順などの多数の医療処置手順について支援を行うためのロボットシステムが提案されている。特定の処置手順の詳細は広範にまちまちであるが、多数のかかる処置手順が、手術を施される領域の手術前画像をまず第一に獲得し、続いて手術前画像についての情報に基づいて医療器具をロボット制御することに依存している。この処置手順は、通常は外科手術向けであるが、診断用にもなり得る。このように、手術前の画像(通常は、従来型の画像化技術により獲得されるディジタルデータセットの形式である)をロボットにより採用される座標系に変換する必要が存在している。このように、ロボットは、患者の現実の解剖を表示している画像データセットに基づいて外科手術器具を操舵することができる。
【0003】
本発明にとっての特定の関心事のうちでも、ロボット支援による股関節全体の置換手術は、通常はコンピュータ断層撮影(CT)によって大腿骨をまず画像化し、大腿骨を表示しているディジタル骨画像データセットを生成することにより実施される。次に、大腿骨内移植片の選択と位置決めとが、Integrated Surgical Systems,Inc.,Sacramento,California(本発明の譲受人)が開発したORTHODOCTM術前プラニング用ワークステーションのようなコンピュータワークステーションでプラニングされる。医者がワークステーションで移植片設置のプラニングを完了すると、画像データ(患者の解剖組織)と移植片の計画上の位置決め処理の両方を含むディジタルデータセットが生成される。次いで、Integrated Surgical Systemsが開発したROBODOCTM外科手術ロボットシステムのような、外科手術を実施することを目的とするコンピュータ制御のロボットシステムにこのデータセットを伝送することが必要である。
【0004】
成功する股関節置換手術は、特にセメントを使用しない移植片を採用する場合には、大腿骨の基端(上端)内に移植片を受容するための空洞を極めて高精度に作成することに依存する。計画上の空洞設置位置からの逸脱が±1mmより少ないのが望ましい。かかる精度を達成する際の重要な要件は、骨の画像データセットと外科手術ロボットの座標系との間の厳密な整合である。
【0005】
ロボット座標系内の画像整合は、全股関節置換処置手順や膝関節置換処置手順における大腿骨などの、手術が施される患者の肉体部位の物理的位置と、肉体特性を表示するディジタル骨画像セットと、ロボット座標系との間の相関関係を必要とする。肉体部分に関する或る画像化された特性部にロボットの操作アームの端部にあるプローブを物理的に接触させることによって骨画像データセットを肉体特性部の現実の位置とロボット座標空間内で整合させることにより、上述のような相関関係を達成することができる。従って、ロボット制御装置により得られる情報がここで使用されて、画像を固定した大腿骨などの現実の肉体部位とロボットの作動空間内で整合させることができる。
【0006】
本発明の先行技術では、ROBODOCTM外科手術ロボットシステムは、大腿骨の末梢端(下端)の1対の金属ピンと骨の基端の付加的な金属ピンとの外科手術移植に依存していた。これらのピンは、通常は基準マーカーと称するが、骨のCT画像では容易に明らかとなり、従って、操作アーム上に搭載されたプローブをピンの各々に係合させることにより、骨画像をロボット座標空間と整合させるのに信頼することができる。かかる整合はTaylorほか著(1994年刊)のIEEE Trans.Robotics Automat.10:261−275に詳細に記載されている。
【0007】
高度の精度と厳密さを達成することが可能であるが、マーカーピンを移植する必要性のために患者は相当な手術性外傷を受ける。このため、基準マーカーピンの移植を一切排除して、骨の画像データセットをロボット座標系と整合させるシステムを設けることが望ましい。基準マーカーピンの排除は処置手順全体の経費を削減すること、治療の全体的な複雑さを減じること、それにより、患者へのリスクを減じることなど、無数の利点を提供する。1つの現行の外科手術処置手順を排除することにより、手術後の苦痛と不快感が実質的に低減される。
【0008】
基準マーカーピンを排除することの別な利点は、以下に記すように、末梢方向の固定が改善される点である。現在のところ、大腿骨末梢部は膝関節より下の下肢を固定することにより普通は安定する。基準マーカーを使用している場合には、外科手術期間中に外科医がマーカーピンに接近する必要があるので、膝関節より下の下肢の固定が必要である。膝関節を固定するこの方法は最適ではなく、というのも、大腿骨が比較的可動性である膝関節の反対側に位置していて、大腿骨がうまく安定されないからである。基準マーカーピンを排除することによって、大腿骨末梢部は膝関節を直接固定することにより固着状態にすることができる。
【0009】
基準マーカーピンを排除する更なる利点は、骨のコンピュータ断層撮影画像が、外科手術の前の都合のよい時に、すなわち、外科手術の数ヶ月前にでも撮像することができる点である。比較すると、基準マーカーピンが使用された場合には、ピンが装着されてからほんのわずかの後に、コンピュータ断層撮影画像を撮ることが必要である。従って、本発明の先行技術では、ピン移植と、骨のコンピュータ断層撮影画像化処理と、ロボット外科手術とを比較的短い時間枠内に全部一緒に受けることが必要となるのが普通であった。
【0010】
後で説明するように、本発明は、事前挿入された基準マーカーピンの使用が排除された、骨の画像をロボット座標系に整合させるシステムを提供することにより、先行技術の無数の欠陥を克服している。
【0011】
(2.背景技術の説明)
ORTHODOCTM手術前プラニング用ワークステーションとROBODOCTMロボット外科手術システムとが後述する多数の引例に記載されており、すなわち、(1)P. Kazanzides、J. Zuhars、B. D. Mittelstadt、R. H. Taylor共著、「外科手術ロボットのための力検知と力制御(Force Sensing and Control for a Surgical Robot)」IEEEロボットおよび自動制御学会紀要(Proc.IEEE Conference.on Robotics & Automation)612頁から616頁、1992年5月フランス国ニース開催、(2)P. Kazanzides、J. Zuhars、B. D. Mittelstadt、B. Williamson、P. Cain、F. Smith、L. Rose、B. Mustis共著、「外科手術用ロボットの構造(Architecture of a Surgical Robot)」IEEEシステム、人間、自動制御学会議紀要(Proc.IEEE Conference.on Systems,Man,and Cybernetics)1624頁から1629頁、1992年10月イリノイ州シカゴ開催、(3)H. A. Paul、W. L. Bargar、B. Mittelstadt、B. Musits、R. H. Taylor、P. Kazanzides、J. Zuhars、B. Williamson、W. Hanson共著、「セメント未使用の全股関節形成術のための外科手術用ロボットの開発(Development of a Surgical Robot For Cementless Total Hip Arthroplasty)」、臨床整形外科学(Clinical Orthopaedics)285巻57頁から66頁、1992年12月刊、(4)P. Kazanzides、B. D. Mittelstadt、J. Zuhars、P. Cain、H. A. Paul共著、「外科手術用ロボットと産業用ロボット:比較と事例研究(Surgical and Industrial Robots:Comparison and Case Study)」、国際ロボットおよび視角自動化会議紀要(Proc.International Robots and Vision Automation Conference)1019頁から1026頁、1993年4月ミシガン州デトロイト開催、(5)B. Mittelstadt、P. Kazanzides、J. Zuhars、B. Williamson、R. Pettit、P. Cain、D. Kloth、L. Rose、B. Musits共著、「セメント未使用の全股関節置換のための外科手術用ロボットの開発(Development of a surgical robot for cementless total hip replacement)」、ロボチカ(Robotica)11巻553頁から560頁、1993年刊、(6)B. Mittelstadt、P. Kazanzides、J. Zuhars、P. Cain、B. Williamson共著、「ロボット外科手術:予測不可能な環境で予測可能な結果を達成すること(Robotic surgery:Achieving predictable results in an unpredictable environment)」、第6回上級ロボット工学国際会議紀要(Proc.Sixth International Conference on Advanced Robotics)367頁から372頁、1993年11月東京開催、(7)P. Cain、P. Kazanzides、J. Zuhars、B. Mittelstadt、H. Paul共著、「外科手術用ロボットの安全配慮(Safety Consideration in a Surgical Robot)」、生体医療科学器械研究(Biomedical Sciences Instrumentation)29巻291頁から294頁、1993年4月テキサス州サンアントニオ開催、(8)B. D. Mittelstadt、P. Kazanzides、J. Zuhars、B. Williamson、P. Cain、F. Smith、W. Bargar共著、「プロトタイプから人体臨床用途までの外科手術用ロボットの進化(The Evolution of A Surgical Robot From Prototype to Human Clinical Use)」、第1回医療用ロボットおよびコンピュータ支援による外科手術についての国際会議紀要(Proc.First International Symposium on Medical Robotics and Computer Assisted Surgery)1巻36頁から41頁、1994年9月ペンシルバニア州ピッツバーグ開催。
【0012】
ロボット外科手術および他の処置手順における画像整合を解説している上記以外の出版物としては以下のものが挙げられる。すなわち、(9)W. E. L. Grimson、T. Lozano−Perez、W. M. Wells III、G. J. Ettinger、S. J. White、R. Kikinis共著、「外科手術における向上した実体視覚化のための自動化された整合(Automated Registration for Enhanced Reality Visualization in Surgery)」、医療用ロボットおよびコンピュータ支援による外科手術についての第1回国際会議紀要(Proceedings of the First International Symposium on Medical Robotics and Comuter Assisted Surgery)1巻、セッションIからIII、82頁から89頁、1995年9月22日から24日ペンシルバニア州ピッツバーグ開催、(10)L. P. Nolte、L. J. Zamorano、Z. Jiang、Q. Wang、F. Langlotz、E. Arm、H. Visarius共著、「コンピュータ支援による脊椎外科手術への新規な取り組み(A Novel Approach to Computer Assisted Spine Surgery)」、医療用ロボットおよびコンピュータ支援による外科手術についての第1回国際シンポジウム紀要2巻、セッションIV、323頁から328頁、1994年9月22日から24日ペンシルベニア州ピッツバーグ開催、(11)S. Lavallee、P. Sautot、J. Troccaz、P. Cinquin、P. Merloz共著、「コンピュータ支援による脊椎外科手術:CTデータおよび3次元光学定位器を使用した正確な椎弓根横断ねじ固定のための技術(Computer Assisted Spine Surgery: a technique for accurate transpedicular screw fixation using CT data and a 3−D optical localizer)」、医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際会議紀要2巻、セッションIV、315頁から321頁、1994年9月22日から24日ペンシルベニア州ピッツバーグ開催、(12)P. Potamianos、B. L. Davies、R. D. Hibberd共著、「鍵穴外科手術方法論と補正のための術中画像化処理ガイダンス(Intra−Operative Imaging Guidance For Keyhole Surgery Methodology and Calibration)」、医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウム紀要1巻、セッションIからIII、98頁から104頁、1994年9月22日から24日ペンシルベニア州ピッツバーグ開催、(13)D. A. Simon、M. Hebert、T. Kanade共著、「迅速で正確な内部外科手術用整合のための技術(Techniques for Fast and Accurate Intra−Surgical Registration)」医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウム紀要1巻、セッションIからIII、90頁から97頁、1995年9月22日から24日ペンシルベニア州ピッツバーグ開催、(14)O. Peria、A. Francois−Joubert、S. Lavallee、G. Champleboux、P. Cinquin、S. Grand共著、「癲癇または腫瘍に罹った患者のSPECT脳画像およびMR脳画像の正確な整合(Accurate Registration of SPECT and MR brain images of patients suffering from epilepsy or tumor)」、医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウムの紀要2巻、セッションIV、58頁から62頁、1995年9月22日から24日ペンシルベニア州ピッツバーグ開催、(15)J. T. Lea、D. Watkins、A. Mills、M. A. Peshkin、T. C. Kienzle III、D. S. Stulberg共著、「ロボット支援型整形外科手術のための整合および固定(Registration and Immobilization for Robot−Assisted Orthopaedic Surgery)」医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウムの紀要1巻、セッションIからIII、63頁から68頁、1995年9月22日から24日ペンシルベニア州ピッツバーグ開催、(16)T. Ault、M. W. Siegel共著、「超音波画像化処理を利用した枠の無い患者整合(Frameless Patient Registration Using Ultrasonic Imaging)」、医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウム紀要1巻、セッションIからIII、74頁から81頁、1995年9月22日から24日ペンシルベニア州ピッツバーグ開催、(17)G. Champleboux、S. Lavallee、P. Cinquin共著、「X線セラピー治療プラニングのための光学成形挿入物(An Optical Conformer for Radiotherapy Treatment Planning)」、医療用ロボット工学とコンピュータ支援による外科手術についての第1回国際シンポジウム1巻、セッションIからIII、69頁から73頁、1995年9月22日から24日ペンシルベニア州ピッツバーグ開催。
【0013】
基準移植片を利用した画像整合を目的とした多様なシステムが以下のアレン(Allen)に付与された米国特許に記載されている。すなわち、米国特許第4,991,579号、第4,945,914号、第5,094,241号、第5,119,817号、第5,097,839号、第5,142,930号、第5,211,164号、第5,230,338号、第5,222,499号、第5,397,329号である。
【0014】
ロボットによる支援を受けた外科手術を実施するためのシステムおよび方法が米国特許第5,086,401号に記載されている。コンピュータ支援による画像処理とプローブ追跡システムが米国特許第5,383,454号、第5,198,877号、WO91/07726号に記載されている。本件出願と同一譲受人に譲渡された同時係属中の最近特許を認可された出願連続番号第08/526,826号は、大腿骨の骨髄管内部でロボットプローブを整列させることにより、骨の画像をロボット座標系に変換する方法およびシステムを記載している。特許出願連続番号第09/022,643号は、これも本件出願の譲受人に譲渡されたのだが、ロボット座標系と、画像データセット、すなわち、(1)骨に沿って軸線方向に間隔を設けた2つの位置座標および(2)2つの位置座標のうちの少なくとも一方を通過する方向ベクトルとの間の整合処理に基づいて、骨の画像をロボット座標系に変換する方法およびシステムを記載している。
【0015】
(発明の要旨)
本発明によれば、骨の画像を座標系と整合させるための改良された方法、システム、および、装置が提供されるが、ここでは、骨自体は座標系で固定され、座標系は通常は、股関節置換外科手術、膝関節置換外科手術、長骨切断術などのような外科手術処置手順を実施するために使用されるタイプのロボット座標系である。改良した発明は基準マーカーピンの使用を回避するとともに、骨の画像データセットを以下のようなロボット座標系と整合させる工程を含んでいる。第1に、骨の画像データセットは、コンピュータ断層撮影(CT)スキャナーなどの従来型スキャナーにより得られる、骨の画像などに多様な画像処理アルゴリズムを適用することによって生成される。次いで連接可動ディジタイザーアームを使用して、骨の上の複数の表面定位位置を表示する座標を含んでいるディジタル化された骨のデータセットを生成する(ディジタル化された骨のデータセットは、後述のように、ロボット座標系で生成される)。代替例として、ディジタル化されたデータセットは、ロボットアーム自体により生成することができる。次に、骨の画像データセットの座標をディジタル化された骨のデータセットの対応する座標と適合させることによって、好ましくは、最小自乗最適適合技術によって、骨の画像データセットがロボット座標系に変換される。ディジタイザーアームがディジタル化された骨のデータセットをロボット座標系に生成するには、骨ディジタイザーアームの座標系が、後述のような多様な技術を利用して、ロボット座標系と予備整合されるのが好ましい。
【0016】
本発明の重要な利点は、外科手術の前に、骨に装着された基準マーカーピンを除去することである。
【0017】
骨の画像は普通はコンピュータ断層撮影(CT)、ディジタルX線撮影などにより得られる。次に、骨のデータ画像データセットが既に獲得された骨の画像から生成されて、骨の表面の幾何学的座標モデルを表示する。多様な画像処理法は、ファセット図示表示など、一般化された骨の表面モデルを生成することができる。可能な限り最良の精度を得るには、骨の画像データセットが極めて高い分解能(すなわち、極めて小さいファセット)を有していなければならないのが好ましい。しかし、かかる高分解能を達成することは実施面での困難さをもたらし、というのも、骨の表面全体が高分解能へとモデル化された場合には、モデル自体が極端に大きくなり、この骨の画像モデルをロボット座標系に変換する時に、扱いにくい計算を生じことになる。このような計算は外科手術期間中に完了されねばならないので、モデルを最小限に抑えるのが望ましい。従って、興味の対象である十分に規定された領域内に在る(特に、骨の末梢端と基端に在る)骨の表面がより高度な分解能までモデル化されるのが好ましい。
【0018】
骨の画像から生成された骨の画像データセットは、骨の外側表面のみを表示しているデータを含んでいるのが好ましい。これは、モデルデータセットの寸法を減じるのに役立てるためと、変換計算の粗性(robustness)を増大させるのを助けるためと、両方の目的で達成される。その代わりに骨の内側表面と外側表面の両方が骨の画像データセットに含まれている場合にはまた、骨の画像データセットのロボット座標系への最適変換を判定する際に不正確さを発生することがある。従って、コンピュータ断層撮影の骨の画像から骨の画像データセットを生成する時には、データセットに含まれるべき骨の組織とデータセットに含まれるべきではない周囲の軟組織との間で容易に区別立てすることができるように、対話型限界機能を利用するのが好ましい。それにより、骨表面上の手術定位または他の興味の対象となる定位の選択的高分解能表示を容易に生成することができる。
【0019】
上述のように、骨の全表面にわたる高分解能の必要性を回避することにより、データセットの寸法を幾分最小化することが可能である。従って、それゆえに、骨の画像データセット自体は計算が厄介になる程には大きくならずに、非常に正確な座標系変換が達成され得る。そのため、非常に高速の応答、すなわち、ほぼ実時間の応答が外科手術期間中に可能となる。
【0020】
骨の画像から骨の画像データセットを生成する前に、それと同時に、或いは、その後で、本文で後述される多様な技術を利用して、固定した基端と自由運動する末梢端とを有しているのが好ましい連接型骨ディジタイザーアームがロボット座標系と予備整合される。その整合の後で、骨ディジタイザーアームは以下のようなディジタル化された骨のデータセットを生成するために使用される。まず骨がロボット座標系内で固定されてから、ディジタイザーアームの自由可動末梢端が骨の上の複数の異なる定位で骨表面に接触するように移動させられる。これら表面定位の各々の位置がこれにより判定され、記録されることにより、ディジタル化された骨のデータセットを形成する。骨ディジタイザーアームがロボット座標系と予備整合されるので、ディジタル化された骨のデータセットもロボット座標系に存在するようになる。
【0021】
代替例として、ディジタル化された骨のデータセットは、外科手術ロボットアーム自体を利用して収集することが可能である。本発明のこの局面では、外科手術ロボットアームの自由可動末梢端が骨の上の複数の異なる定位で骨表面と接触するように動かされる。それにより、これら表面定位の各々の位置が判定され、記録されることにより、ディジタル化された骨のデータセットを形成する。
【0022】
本発明の代替の局面では、超音波システムまたはレーザシステムのような非接触型ディジタル化装置を使用して、ディジタル化された骨のデータセットを生成することが可能である。本発明のこの局面では、超音波システムまたはレーザシステムが、骨の表面上の複数の定位の位置を検知および記録するために使用される。
【0023】
ディジタル化された骨のデータセットは(これは、前述のように骨の表面上の多様な定位にディジタイザーアームの自由可動端を接触させることにより生成されるのが好ましいが)、骨の末梢端と基端とにデータ点を有しているように生成されるのが好ましい。従って、骨の末梢端と基端とにおいて、ディジタル化された骨のデータセットが選択的により詳細にされる。骨の両端におけるディジタル化された骨データセットのかかるより高いデータ分解能は、骨の中央部に沿った点と比較して、骨の両端付近のより多数の点における骨の表面とディジタイザーアームを接触させることにより達成される。
【0024】
このように、ディジタル化された骨のデータセットの座標データ点が骨の画像データセットの高分解能領域に対応し、これにより、最適変換計算を確実にする。骨の両端のみにおけるデータ点を含むようにディジタル化された骨のデータセットを生成することの付加的な利点は、それが故に、表面データ点を得るために骨の中間各部に外科手術上の接近を行う必要がなくなる点である。こうして、患者に対する外科手術的外傷が実質的に低減される。
【0025】
本発明の好ましい局面では、ディジタイザーアームは、関節ごとに高分解能位置センサーを有している連接連結装置を備えている。ディジタイザーアームの基端は、ロボット座標系の分かっている定位に固定状態のまま留まる。埋設型プロセッサおよび適切なソフトウエアを利用すると、ディジタイザーアームが、その基部と相対的にその末梢先端部の位置の正確な測定値を生成することが可能となる。ディジタル化された骨のデータセットを生成する時に、ディジタイザーアームの末梢端に無菌プローブが先端に取付けられるのも同様に好ましい。しかしながら、本発明のディジタル化された骨のデータセットを生成するためのシステムは連接連結装置には限定されないものと理解するべきである。例えば、連接ディジタイザーアームと比較すると、ディジタル化された骨のデータセットは光学センサー(Northern Degital of Waterloo(Ontario,Canada)により製造されているOPTOTRACKTMなどの)、超音波、または、レーザーにより生成することができる。
【0026】
先に述べたように、ディジタル化されたデータセットは、ディジタイザーアームにより判定されたように、ロボット座標系における骨の表面上の複数の点の定位を表示している。大腿骨の事例では、ディジタル化された骨データセットは、大腿骨の末梢端上の内横面定位、前面定位、外横面定位と、大腿骨の頚部付近の点などの、大腿骨の基端の複数の表面定位点と、大腿骨の頂部基端の点とを含んでいるのが好ましい。このような多様は表面定位点から、末梢端座標と基端座標とが大腿骨について算出され得る。
【0027】
生成されたディジタル化骨データセットはそれ自体が標準の骨画像表面モデルとの比較により検証され得る。特に、骨の画像データセットの多様な表面定位を表示する座標は標準の骨画像座標モデル(すなわち、標準の骨形状モデル)と比較されて、かかる表面定位の間の空間関係の変化が予測された公差の範囲内にあるかどうかを判定することができる。ディジタル化された骨のデータセットの座標が標準の骨モデル形状から予測された公差を超過している場合には(従って、奇妙な形状の骨を表示するデータを示している場合は)、これはディジタル化された骨のデータセットの座標点の初期収集の誤差を暗示するものと受け取られ、ユーザはディジタイザーアームの末梢端を骨の表面上の多様な好ましい定位に再度接触することによって、ディジタル化された骨のデータセットを生成し直すように促されるようにする。
【0028】
骨の画像データセット(ロボット座標系には存在していない)を生成した後と、ディジタル化された骨のデータセット(ロボット座標系に存在している)を生成した後で、本発明は、骨の画像データセットの座標とディジタル化された骨のデータセットの対応する座標との間の最適適合計算を実施することにより、骨の画像データセットをロボット座標系に変換するためのシステムを提供する。特に、ディジタイザーアームデータセットの多様な表面定位座標が使用されて、骨の画像データセットの座標とディジタル化された骨のデータセットの対応する座標との間の距離の二乗の和を最小限にすることを含んでいるのが好ましい最適適合計算により、骨の画像をロボット座標システムに変換する。特に、骨の画像データセット(剛性体として処理される)の座標とディジタル化された骨のデータセット(同様に剛性体として処理される)の座標との間の距離が最小限にされる。最適適合処置手順は、骨の端部の相対位置と、ディジタル化された骨のデータセットから算出されるようなものと比較して骨の画像データセットから算出されるような骨の末梢部重心および基部重心の相対位置との最初の比較を利用し得るようにするのが好ましい対話型計算として実施されるのが好ましい。次に、外科手術ロボットアームで粉砕除去されるべき骨の領域を表す「切除空洞」座標システムの位置および配向は、変換された骨の画像データセット上に重畳することが可能であり、それにより、骨に相対的な外科手術用ロボットアームの位置を確立し、制御できるようにしている。
【0029】
最適適合計算自体は、変換された骨の画像データセットの座標とディジタル化された骨のデータセットの座標との間の平均距離を判定する等の多数の異なる技術により検証され得る。代替例として、ディジタル化された骨のデータセットの対応する座標から離れた限界距離よりも長い変換された骨の画像データセットの座標の数を判定することにより、検証を達成することができる。最後に、変換された骨の画像データセットの最も遠い座標からの距離をそれと対応する座標のディジタル化された骨のデータセットにおける位置と比較することにより、検証を達成することも可能である。
【0030】
本発明の別な局面では、骨ディジタイザーアームが、下記のように、ロボット座標系に予備整合される。ディジタイザーアーム試験データセットが生成されると、データセットはディジタイザーアームにより測定されたような、試験取付け具上の複数の試験構造体の位置を含んでいる。次にディジタイザーアームの測定精度を検証するために、このディジタイザーアーム試験データセットが試験取付け具上の試験構造体の現実の予備測定された位置と比較される。同様の処置手順が同一試験取付け具を備えた外科用ロボットアームを利用して実行される。特に、まず試験取付け具上の複数の試験構造体の各々の位置を含む外科手術用ロボットアーム試験データセットを、ここでロボットアームにより測定されたように生成することにより、外科用ロボットアームがロボット座標系と整合される。次に、前と同様に外科手術用ロボットアームの測定精度を検証するために、ロボットアーム試験データセットが試験取付け具上の試験構造の現実の予備測定された位置と比較される。
【0031】
固定的な1セットの座標に関連して骨ディジタイザーアームと外科手術用ロボットアームの両方の測定精度を決定した後では、骨ディジタイザーアームと外科手術用ロボットアームとの間で変換関係を直接的に生成することが可能となる。従って、次には、骨ディジタイザーアームにより最初に供与される位置情報に基づいて、外科手術用ロボットアームが骨に手術を施す時に、該アームを誘導することが可能となるが、この時、ディジタイザーアームと外科手術用ロボットアームの両方が同一ロボット座標系と整合される。
【0032】
従って、上述の方法のいずれかにより得られた変換画像データセットの情報に基づいて、外科手術用ロボットアームを位置決めすることにより、股関節置換外科手術を実施することができる。外科手術用ロボットアームは手術前プランに従って位置決めされ、そこに装着されたロボットカッターが作動され、操作されて、股関節補綴を受容するための大腿骨中の空洞を設ける。この股関節補綴は一般に従来型の態様で空洞内に移植される。
【0033】
本発明は、ロボット座標系内にカッターを位置決めするプログラミング可能な制御装置を備えた改良型ロボットシステムを更に提供する。長い骨の画像を表示する骨の画像データセットがロボット座標系に変換されて、制御装置が所定の手術プランに従ってカッターを位置決めできるようにする。
【0034】
本発明は、上述のタイプのロボットシステムのための制御装置プログラムを更に備えている。制御装置プログラムは、骨の画像データセットの座標とディジタル化された骨のデータセットの対応する座標との間の最適適合計算を実施する触知できる媒体で具現化された指示アルゴリズムを含んでいる。アルゴリズム自体は、ディスク、読み出し専用リーメモリ、ランダムアクセスメモリ、フラッシュメモリ、テープ、CD−ROMなどの制御装置やコンピュータをプログラミングするために使用されるタイプの任意の従来型の媒体で具体化することが可能である。
【0035】
任意で、本発明の更なる局面では、付加的な位置決めマーカーを骨に直接装着し、それにより、外科手術期間中に骨の運動が継続的に、または、周期的に監視され、補正され得るようにすることが可能となるが、この時、これら任意の位置決めマーカーの位置は骨ディジタイザーアームにより経時的に監視されている。
【0036】
本発明の方法、システム、および、装置は、これらが、座標系で固定されている時には、骨の画像データセットの現実の骨の位置への極めて正確な整合を提供するので、特に有利である。かかる精微な公差は、非常に良好な初期的な機械的安定性および卓越した組織内殖性を伴った股関節移植片の位置決めを可能にしている。
【0037】
(好ましい実施態様の説明)
本発明は、長い骨の画像をシステム座標空間内で固定された長い骨自体と整合させることを意図している。画像化され、整合され得る長い骨としては、大腿骨、脛骨、上腕骨、尺骨、橈骨が挙げられる。かかる長い骨の画像整合は、関節置換のようなロボット外科手術処置手順と関連して、全股関節置換、膝関節置換、長い骨切断術などの特殊処置手順と関連して、特に有用となる。全股関節置換外科手術を実施することを意図したロボットシステム内で大腿骨の画像データセットを変換する具体的な方法、システム、装置が後述されるが、かかる説明は本発明の範囲を限定することを意図してはいない。
【0038】
本発明は、上述の処置手順のいずれかを実施すること、または、支援することを意図したロボットシステムを典型例とするシステム座標空間に長い骨の幾何学的形状を表示する骨の画像データセットを変換する方法、システム、装置を提供する。しかしながら、本発明は、かかるロボット処置手順に限定されず、また、手動外科手術処置手順、診断処置手順、および、手術空間のような現実の座標空間内で長い骨の事前獲得された画像を整列させることが必要である前記以外の医療処置手順においても等しく有用となる。かかる手動システムおよび手動処置手順は、光学外科手術測定器具、受動電気機械装置などを採用しているコンピュータ支援による外科手術処置手順を含んでいる。このような事例では、本発明の使用は、骨に沿って多数の基準マーカーを事前移植する必要性無しに、かつ/または骨の長さに沿った多数の点で骨に外科手術で接近する必要性無しに、固定した長い骨との高精度の画像整合提供するという点で有利である。
【0039】
本発明は、コンピュータ断層撮影(CT)、X線撮影(ディジタル化されたX線画像)、磁気共鳴画像化処理(MRI)などの従来の医療画像化技術を利用して、骨の画像をまず獲得することに依存している。通常は、CT画像化処理およびX線撮影画像化処理は、骨の材料の情報を特に精度よく画像化するので好ましい。あらゆる事例で、画像はディジタル形式で得られるか、或いは、ディジタル形式に変換されて、従来のコンピュータ化された画像処理器具およびソフトウエアを利用して、ディジタル操作に好適な骨の画像データセットを生成する。普通は、画像処理器具は、本文後記で一般に制御装置およびプロセッサとして総称される、特にプログラミングされたコンピュータの形式を呈することになる。特に、本発明は、画像自体から直接得られる骨の画像データセットを分析し、操作するための手術前プラニング用ワークステーション(コンピュータ)を利用する。
【0040】
骨の画像データセットは骨の画像から生成され、骨の外側表面の幾何学的座標モデルを表示している。骨の画像が外科手術の前に得られるのが好ましい場合は、それに一致する結果として生じる骨の画像のデータセットを外科手術の直前にロボット座標系に変換する必要がある。本発明は、外科手術前に骨の上の多様な位置に骨ディジタイザーアームを接触させることにより生成されるような、ロボット座標系における骨の表面位置座標を含むディジタル化された骨のデータセットをまず獲得することに基づいてこの変換を達成するシステムを提供している。次に、後述するように、骨の画像データセットをディジタル化された骨のデータセットの座標に適合させることにより、骨の画像データセットはロボット座標系に変換される。
【0041】
骨の画像データセットに話を戻すが、この骨の画像データセットの分解能の程度は骨の上の特定位置において、すなわち、好ましくは、骨の末梢端と基端においては遥かに高いのが好ましい。骨の画像データセットは、骨の上の高分解能の好ましい領域をユーザが最初に決定することで、生成することが可能である。代替例として、手術前プラニング用ワークステーションは、特にユーザの介入が無くても、かかる好適な高分解能位置を識別するようにプログラミングすることが可能である。いずれの場合にせよ、骨の画像データセットはその後に、手術システム、または、骨が固定されることになる他のシステムに転送される。
【0042】
図面を参照すると、股関節置換外科手術のための本発明の方法を実現することができる具体的なシステム10が図1に例示されている。システム10は、手術前プラニング用ワークステーション12と、CADモデルデータセット15の形式の移植設計14のライブラリーの両方を備えている。骨の画像データセット16は、CT骨画像を表示するのが典型的であるが、これが獲得されて、手術前プラニング用ワークステーション12に転送される。通常は施療を行う外科医か、施療を行う外科医と一緒に作業する助手であるユーザーが、好適な移植片設計を選択し、患者の大腿骨内部に位置決めするように、手術前プラニング用ワークステーションで作業することが可能である。かかる手術前プラニングの詳細が、先に引例に挙げたORTHODOCTM手術前プラニング用システムに関連する文献にうまく説明されている。
【0043】
本発明のシステム10は、ロボット制御装置22(プログラミング可能なコンピュータの形式のディジタルプロセッサであるのが典型的である)と、オンライン表示スクリーン24と、ロボット26とを備えているロボット手術システム20を更に有している。ロボット手術システム20の細部が図2に示されている。ロボットは、少なくとも5本の軸を有し、かつ、高精度設置を行う能力があるのが好ましい操作自在な外科手術用ロボットアーム28を備えた任意の従来型の産業用ロボットであり得る。好適な外科手術用ロボットが、SR−5427−ISSとモデル指定されたサンキョ−ロボティックス(Sankyo Robotics)から入手可能である。本発明における用途としては、力センサー30はアーム28の末梢端に搭載されており、プローブ32または外科手術用切断器具(例示していない)の形態の作業体が力センサーに装着され得る。
【0044】
ロボットシステム20は、図1に例示されているように、安全プロセッサ44および実時間監視用コンピュータ46を更に備えている。力センサー30、安全プロセッサ44、実時間モニター46、骨の運動モニター50は各々が、操作自在アーム28の作動体端の位置、滑り量、および、ブロッケージを監視する補助を行っている間に、大腿骨60が固定装置アセンブリ52で適所に保持される。これらのパラメータの実時間監視処理は、ロボットシステムが計画されたとおりに作動していることを確実にするのに役立つ。これら監視システムの詳細は、ROBODOCTMロボット外科手術システムを説明している先に引例に挙げた文献に解説されている。
【0045】
上述のように、本発明は、ロボット座標系に整合される骨ディジタイザアームにより測定されるような、骨の上の多数の表面定位の座標位置を含んでいるディジタル化された骨のデータセットを獲得することに依存している。従って、システム10は骨ディジタイザーアーム100を更に供えており、この詳細が図3および図5に最も良好に示されている。後述するように、既に獲得したディジタル化された骨のデータセット17(ロボット制御装置22への入力として図1に示されている)は、骨ディジタイザーアーム100により獲得されて、骨の画像データセット16をロボット座標系に変換するために使用される。
【0046】
図3を参照すると、固定装置アセンブリ52をまず使用して、大腿骨60の基端62を固定する。ロボット26に装着されると、固定装置アセンブリ52はロボット座標系内で大腿骨60を固定する。大腿骨60は、最上部(基部)領域62と下部(末梢部)領域64とを備えている。大腿骨骨頭62と皮質骨66とに隣接して配置されている骨梁骨65は、骨の2つの両端の間にほぼ位置している。頚部領域68は、骨梁骨より上方の大腿骨骨頭の真下に位置している。
【0047】
骨ディジタイザーアーム100は、図示のように、固定基端102と自由可動末梢端104とを有している連接構造体であるのが好ましい。ロボット26に装着されると、その固定基端102がロボット座標系内の分かっている位置で固定状態になる。ディジタイザーアーム100は、図示のように、接合部106、108、110、112、および114で接続されている複数のリンク101、103、105、107、および109から構成されているのが好ましい。高分解能位置センサー111、113、115、117、および119は、図示のように、柔軟な接合部106、108、110、112、および114に配置されている。位置センサー111、113、115、117、および119ならびに適切なソフトウエアとを利用すると、末梢端104が多様な位置に移動させられた時に、骨ディジタイザーアーム100が固定基端102に関して、遠位端104(および、特に、そこに搭載された無菌の、先端に取付けたプローブリンク109)の位置の正確な測定値を生成することができる。図3に概略的に見られるように、柔軟な接合部106、108、110、112、114を中心とした回転は、多様な接合部が互いに軸線を中心として回転することにより、ディジタイザーアーム100の末梢端104の運動が固定末梢端102に相対的な5種の自由度のいずれでも達成することができるようにすることで、達成される。
【0048】
ディジタル化された骨のデータセット17は、無菌の、先端に取付けたプローブリンク109を骨の表面上の複数の表面定位に接触させることにより生成される一方で、これらの定位を1セットの位置座標として記録する。(これらの定位は、後述するように、図4A、図4B、図4C、および図4Dで最も良好に見られるような定位80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、および97を含んでいるのが好ましい)。基端102の位置は最初からロボット座標系の分かっている定位に在るので、ディジタル化された骨のデータセット17の座標の各々の位置はロボット座標系でも判定される。
【0049】
本発明の代替の局面では、ディジタル化された骨のデータセットはロボットアーム28により生成される。本発明のこの局面では、外科手術用ロボットアームの可動末梢端は骨の上の複数の異なる定位で骨表面と接触するように移動させられる(ディジタル化された骨のデータセットがディジタイザーアーム100により生成された上述のアプローチと同様に)。これによりこれら表面定位の各々の位置が判定され、記録されることにより、ディジタル化された骨のデータセットを形成する。
【0050】
本発明の代替の局面では、超音波システムまたはレーザシステム27のような非接触ディジタル化装置を使用して、ディジタル化された骨のデータセットを生成することが可能である。本発明のこの局面では、骨の表面上の複数の定位の位置を検知し、記録するために、超音波システムまたはレーザシステムが使用される。
【0051】
次に、ディジタル化された骨のデータセット17を含んでいる座標の検出された位置を使用して、後述のように、骨の画像データセット16をロボット座標系に変換する。概略的に例示するために、また、理解を容易にするために、骨の画像データセット16が固定大腿骨60の上方の空間に浮遊している骨の画像として示されているにすぎない。(これは、変換の前には、骨の画像データセット16の厳密な位置がロボット座標系の範囲内で分かっていないからである)。例示のために、骨の画像データセット16のロボット座標系への変換は、骨の画像データセット16を移動させて、その座標が大腿骨60の上に重畳された状態になるようにする処理に一致していると理解される。
【0052】
理解を容易にするために、骨の画像データセット16が大腿骨の全表面形状に一致するものとして示されている。しかしながら、骨の画像データセット16が骨の両端16Aおよび16Bに対応する高分解能データ領域を備えていることしか必要としないのが好ましいことが理解されるべきである。
【0053】
図4A、図4B、図4C、および図4Dを参照すると、ディジタル化された骨のデータセット17を含むように選択された好ましい座標を見ることが可能である。これら好ましい座標は、骨の画像データセット16における座標位置に対応するように選択される。特に、ディジタル化された骨のデータセット17の座標位置は、図示のように、全部が大腿骨の両端付近に在るのが好ましい。ディジタル化された骨のデータセット17の座標位置は、オペレータが無菌の、先端に取付けたプローブリンク109を骨60の表面に定位80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、および97の各々で手動で接触させることにより収集されるのが好ましい。従って、基端102の位置に関連すると、これら定位の各々の位置は、ディジタル化された骨のデータセット17として識別され、記録される。
【0054】
図示のように、ディジタル化された骨のデータセット17は、大腿骨の末梢端64の内横面定位80、外横面定位81、前面定位82の座標位置を含んでいるのが好ましい。定位80、81、および82から、末梢端重心150の位置を計算することが可能である。ディジタル化された骨のデータセット17は、大腿骨の基端62の頚部68の周囲とその付近の複数の表面定位83から96の各位置も含んでいるのが好ましい。表面定位83ないし92からは、基端重心152の位置を計算することができる。更に、大腿骨の頂部端97の位置もディジタル化された骨のデータセット17に追加されるのが好ましい。
【0055】
大腿骨の末梢端64のデータ点定位80、81、82の収集は、無菌の、先端に取付けたプローブによりリンク109の末梢端で柔組織を経皮的に刺し通して達成できるのが好ましい。従って、この態様でデータを収集すると、外科手術期間中に大腿骨の末梢端を露出することは必要ではない。大腿骨の基端62における定位83から97でデータ点を収集すると、大腿骨の基端62は既に外科手術期間中に露出されており、従って、大腿骨の頚部68の周囲とそれに隣接した骨の表面定位83から97にオペレータが容易に直接接触することが可能となる。大腿骨の末梢端と基端のいずれにおけるデータ点定位の収集期間中にも、図式表示24が正確な位置にユーザを誘導する支援を行うのが好ましい。
【0056】
典型的な、或いは、標準的な幾何学的骨形状を表示している標準の骨表面モデルファイル19はロボット制御装置22に記憶することも可能であるとともに、ディジタル化された骨のデータセット17を検証するために使用することも可能となる。特に、ディジタル化された骨のデータセット17の座標の各々は標準的骨表面モデルファイル19と比較されて、ディジタル化された骨のデータセット17が骨の形状の容認できない表示である可能性を判定できるようにしている。ディジタル化された骨のデータセット17の座標が容認された公差から外れているように思われる場合には、これはデータセットを収集する際の誤差を暗示しており、ここでユーザを促して、定位座標80から97の正しい位置を判定し直すために骨ディジタイザーアーム100の末梢端104を位置決めし直すことにより、データを収集し直すことができる。
【0057】
任意で、ディジタル化された骨のデータセット17を数学的に検証することに加えて、図4Eでわかるように、140、141、142、143、144、および145を含む付加的な骨の表面定位をディジタル化するとともに、図4Aの点80および81における骨の表面定位をディジタル化し直すことにより、変換の適正性の視認チェックをユーザが実施することも好ましい。骨の表面定位140から145(および、ディジタル化し直された定位80および81)は、6種の可能な自由度のうちのいずれであれ、変換誤差すなわち回転誤差を識別するために選択されるのが好ましい。追加の定位140から145と80および81の各々は、ディジタル化されると、ロボット座標系から骨の画像座標系まで変換されて(ディジタル化された骨のデータセットをロボット座標系に変換した、先に使用された最適適合変換の逆変換を利用する)、定位140から145と80および81が表示装置24上の骨の画像データセットの頂部に表示される。これら新たにディジタル化された点は骨表面上に物理的に位置しているので、それらに一致する表示された各点も、スクリーン上の骨画像の骨表面に重畳された状態で現れるべきである。
【0058】
上述のように、本発明は、ディジタル化された骨データセット17において最適適合計算により見つけ出された対応する座標に骨画像データセット16を適合させることによって、骨の画像データセット16をロボット座標系に変換する。かかる最適適合計算は、骨画像データセット16、移植片形状データ、および移植片設置データを含んでいるデータ転送ファイル70を利用して、ロボット制御装置22の内部で実行できるのが好ましい。ロボット制御装置22はディジタル化された骨データセット17と標準的骨表面モデルファイル19とを入力データとして受信もする。データ転送ファイル70は通常はインターフェイス71を介してロボット制御装置22に転送されるが、このインターフェイスは、データ送信ライン、データ転送テープ、または、これら以外の従来型のデータ転送システムを備え得る。
【0059】
本発明の好ましい局面では、骨画像データセット16の座標とディジタル化された骨データセット17の座標との間の距離の二乗の和は最小限にされる。図3を参照すると、この最適適合計算は、ディジタル化された骨のデータセット17から算出されたような、骨60の端部97、末梢端重心150、および、基端重心152の相対位置の、骨の画像データセット16から算出されるような、骨60の端部154、末梢端重心151、および、基端重心153との最初の比較から始まる反復解として実行することができる。これに続いて、「切除空洞」座標系(外科手術用ロボットアーム28上の切除装置により粉砕除去されるべき骨を表示している)がここで、既に変換された骨の画像データセット16上に重畳されて、外科手術用ロボット切除アームにより骨の粉砕処理を制御することができる。
【0060】
骨ディジタイザーアーム100はロボット座標系と予備整合されて、以下のように、ディジタル化された骨のデータセット17を含む座標データの収集がロボット座標系にも存在するようにする。図5を参照すると、骨ディジタイザーアーム100を利用して試験取付け具120上に複数の試験構造体122の位置を表示しているディジタイザーアーム試験データセットをまず生成することによって、骨ディジタイザーアーム100はロボット座標系と整合される。続いて、ロボットアーム試験データセットが生成されて、ここではロボットアームにより判定されたように試験取付け具120上の試験構造体122の位置を表示する、同様の処置手順がロボットアーム28について反復される。試験取付け具120上の試験構造体122の各々の厳密な事前測定された定位は既に分かっていることになる。
【0061】
試験取付け具120、ディジタイザーアーム100の基端102、外科手術用ロボットアーム28のベースは全て、これら構成要素の間の相対運動が阻止されるように、共通構造(ロボット26など)に堅固に付着される。従って、ディジタイザーアームの試験データセットを試験取付け具上の試験構造体の現実の事前測定された位置と比較することにより、ディジタイザーアームの位置測定精度を検証することが可能となる。同様に、ロボットアーム試験データセットを試験取付け具上の試験構造体の現実の事前測定された位置と比較することにより、ロボット試験アームの位置測定精度を検証することができる。ディジタイザーアーム試験データセットをロボットアーム試験データセットと比較することにより、ディジタイザーアームによって取られた測定値とロボットアームによって取られた測定値との間で変換関係を算出することが可能となり、それにより、骨ディジタイザーアームと外科手術用ロボットアームの両方における運動学的測定の不正確さを評価し、更にそれにより、ディジタイザーアームをロボット座標系と整合することが可能となる。ここで、外科手術用ロボットアームが骨に作動する時に、骨ディジタイザーアームにより最初に供与された位置情報に基づいて外科手術用ロボットアームを誘導することが可能でとなり、この場合、ディジタイザーアームと外科手術用ロボットアームの両方が同一ロボット座標系で作動している。
【0062】
本発明の別な局面では、任意のマーカーピン130および132を大腿骨60に取り付けることが可能となる(図示のように、基端62と末梢端64に取り付けるのが好ましい)。続いて、骨ディジタイザーアーム100を作動させて、無菌の、先端に取り付けたプローブリンク109をこれらマーカーピンに反復して接触させることによりピン130および132の位置を継続的に、または、周期的にディジタル化することによって、外科手術期間中にマーカーピン130および132のどのような運動でも検出できるようにする。従って、ロボット座標系内のマーカーピン130および132のどのような運動でも骨ディジタイザーアーム100により検出されて、外科手術期間中はいかなる望ましくない骨の運動も検出され、補償され得るようにする。代替例として、別個の可撓性機械アーム、或いは、レーザシステムまたは超音波システムを備え得る付加的な骨運動検出装置のような、骨ディジタイザーアーム100以外の装置によりマーカーピン130および132の運動を追跡することができる。
【0063】
1本のマーカーピン(130または132)しか使用されていない場合には、3つの相互に直交する軸のうちの1本以上について骨の運動が発生しているか否かを検出することが可能となる。しかしながら、2つのマーカーピン(130および132)が経時的に同時に追跡されると、3つの相互に直交する軸線を中心とした回転運動を検出することが可能となって、骨の運動の厳密な方向と量を測定できるようになる。従って、2つのマーカーピンを使用している場合には、検出された骨運動の量と方向を使用して、ロボット座標系における骨の位置を更新することが可能となり、検出された骨運動に基づくロボット座標系内の骨の現在の位置に基づいて、外科手術用ロボットアームの位置を誘導することができるようにしている。
【図面の簡単な説明】
【図1】 図1は、手術前プラニング構成要素と外科手術用構成要素とを備えている、本発明に従ったロボット外科手術用システムの構造を例示する図である。
【図2】 図2は、図1の外科手術用システムの外科手術用構成要素を例示しており、外科手術用ロボットと、それと関与する制御装置、器具、安全相互ロック、無菌の先端取付けプローブを有する骨ディジタイザーアーム、ロボットに骨を固着保持するための固定装置、骨の運動検出装置、オンライン表示コンピュータとの人/マシンインターフェイス、およびロボット制御装置にインターフェイス接続される手の平サイズの端末と共に備えているのを例示する図である。
【図3】 図3は、骨ディジタイザーアームの構造的細部と人体大腿骨上におけるその使用態様を示す、骨の画像データセットのロボット座標系への変換を例示する概略図である。
【図4A】 図4Aは、ディジタル化された骨データセットを生成するための表面接触位置を示す、図3の大腿骨の拡大前後図である。
【図4B】 図4Bは、図4Aの大腿骨の基端の内側面図である。
【図4C】 図4Cは、図4Aの大腿骨の基端の前後図である。
【図4D】 図4Dは、図4Aの大腿骨の基端の斜視図である。
【図4E】 図4Eは、図4Cに一致しているが、変換後のディジタル化された座標を示している図である。
【図5】 図5は、骨ディジタイザーアームと外科手術用ロボットアームの各々をロボット座標系と予備整合するために、試験取付け具を使用しているのを例示している概略図である。

Claims (10)

  1. 長い骨の少なくとも部分画像を表示している骨の画像データセットをロボット座標系に変換するためのシステムであって、
    骨の画像に一致する座標を含んでいる骨の画像データセットと、
    骨ディジタイザーアームを該ロボット座標系に整合させるための手段であって、該ディジタイザーアームは、該骨の表面上の各点と相対的に位置決めされて、該各点に一致する座標を含んでいるディジタル化された骨のデータセットを生成する、手段と、
    該骨の画像データセットの座標と、これに対応する、該ディジタル化された骨のデータセットの座標との間で最適適合計算を実施して、該ロボット座標系に該骨の画像データセットを変換するための手段と、
    該ディジタル化された骨のデータセットに一致する座標から所定の距離より長く離れた距離にある該変換された骨の画像データセットの座標の数を見出すことにより、該最適適合計算を検証するための手段であって、該座標の数は、検証されるべき該最適適合計算にとっての閾値よりも少ない、手段とを含んでいる、システム。
  2. 前記骨の画像をコンピュータ断層撮影により供与する、請求項1に記載のシステム。
  3. 前記骨の画像データセットが、該骨の末梢端および基端でより高い分解能を有する、請求項1に記載のシステム。
  4. 前記骨の画像データセットが、該骨の外側表面上の座標を表示している、請求項1に記載のシステム。
  5. 前記骨の画像データセットが骨の組織しか含んでおらず、柔組織を排除する閾値の判定のための手段をさらに含んでいる、請求項4に記載のシステム。
  6. 前記ロボットアームの精度を検証するための手段をさらに含んでおり、該手段は、
    試験取付け具上の試験構造体と相対的にロボットアームを位置決めして、該試験構造体の定位に一致する座標を含んでいるロボットアーム試験データセットを生成するための手段と、
    該ロボットアーム試験データセットを該試験取付け具上の試験構造体の現実の位置と比較するための手段とを含んでいる、請求項1に記載のシステム。
  7. 前記最適適合計算が、前記骨画像データセットの座標と、これに対応する、前記ディジタル化された骨データセットの座標との間の距離の二乗の和を最小限にする工程を含んでいる、請求項1に記載のシステム。
  8. 前記最適適合計算が、前記骨の画像データセットから算出される、骨の端部と、骨の末梢端重心と、骨の基端重心との相対位置と、前記ディジタル化された骨のデータセットから算出される、骨の端部と、骨の末梢端重心と、骨の基端重心との相対位置との最初の比較から開始する反復解法である、請求項7に記載のシステム。
  9. 骨の前記基端重心を、骨の基端の頚部の周囲の前記ディジタル化された骨のデータセットの座標から算出する、請求項8に記載のシステム。
  10. 前記ディジタル化された骨のデータセットの座標の間の空間関係を、標準の骨の画像データセットにおける対応する座標の間の空間関係と比較することにより、該ディジタル化された骨のデータセットの適合性を判定する、請求項1に記載のシステム。
JP2000569720A 1998-09-14 1999-09-13 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法 Expired - Lifetime JP4815054B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/152,359 1998-09-14
US09/152,359 US6033415A (en) 1998-09-14 1998-09-14 System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
PCT/US1999/021115 WO2000015134A1 (en) 1998-09-14 1999-09-13 System and method for performing image directed robotic orthopedic procedures without a fiducial reference system

Publications (2)

Publication Number Publication Date
JP2002524192A JP2002524192A (ja) 2002-08-06
JP4815054B2 true JP4815054B2 (ja) 2011-11-16

Family

ID=22542597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000569720A Expired - Lifetime JP4815054B2 (ja) 1998-09-14 1999-09-13 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法

Country Status (6)

Country Link
US (1) US6033415A (ja)
EP (1) EP1113760B1 (ja)
JP (1) JP4815054B2 (ja)
AT (1) ATE414482T1 (ja)
DE (1) DE69939940D1 (ja)
WO (1) WO2000015134A1 (ja)

Families Citing this family (320)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29704393U1 (de) 1997-03-11 1997-07-17 Aesculap Ag Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen
CA2591678C (en) * 1999-03-07 2008-05-20 Active Implants Corporation Method and apparatus for computerized surgery
JP3608448B2 (ja) 1999-08-31 2005-01-12 株式会社日立製作所 治療装置
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
GB0015683D0 (en) 2000-06-28 2000-08-16 Depuy Int Ltd Apparatus for positioning a surgical instrument
GB0114659D0 (en) * 2001-06-15 2001-08-08 Finsbury Dev Ltd Device
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
JP2003144454A (ja) * 2001-11-16 2003-05-20 Yoshio Koga 関節手術支援情報算出方法、関節手術支援情報算出プログラム、及び関節手術支援情報算出システム
GB0127658D0 (en) * 2001-11-19 2002-01-09 Acrobot Company The Ltd Apparatus for surgical instrument location
GB0127659D0 (en) * 2001-11-19 2002-01-09 Acrobot Company The Ltd Apparatus and method for registering the position of a surgical robot
ES2295547T3 (es) * 2002-01-16 2008-04-16 Orthosoft Inc. Procedimiento y aparato para la reconstruccion de superficies oseas durante una intervencion quirurgica.
US7715602B2 (en) * 2002-01-18 2010-05-11 Orthosoft Inc. Method and apparatus for reconstructing bone surfaces during surgery
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7831292B2 (en) * 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US8996169B2 (en) 2011-12-29 2015-03-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
US7206627B2 (en) 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for intra-operative haptic planning of a medical procedure
US11202676B2 (en) 2002-03-06 2021-12-21 Mako Surgical Corp. Neural monitor-based dynamic haptics
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
EP1348394B1 (de) * 2002-03-27 2006-02-22 BrainLAB AG Planungs- bzw. Navigationsunterstützung durch generische und erfasste Patientendaten mit zweidimensionaler Anpassung
ATE357190T1 (de) * 2002-03-27 2007-04-15 Brainlab Ag Medizinische navigation bzw. prä-operative behandlungsplanung mit unterstützung durch generische patientendaten
DE10235963A1 (de) * 2002-04-01 2003-10-16 Ilan Elias Vorrichtung zum Erzeugen einer Passivbewegung eines Patienten in einem Magnet-Resonanz-Tomographen
US7907988B2 (en) * 2002-04-01 2011-03-15 Ilan Elias Method and device for generating a passive movement in a diagnostic device
EP1501406A4 (en) * 2002-04-16 2006-08-30 Philip C Noble COMPUTER-BASED TRAINING PROCEDURES FOR SURGICAL PROCEDURES
US7787932B2 (en) * 2002-04-26 2010-08-31 Brainlab Ag Planning and navigation assistance using two-dimensionally adapted generic and detected patient data
US8801720B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
JP4056791B2 (ja) * 2002-05-22 2008-03-05 策雄 米延 骨折整復誘導装置
US7155316B2 (en) * 2002-08-13 2006-12-26 Microbotics Corporation Microsurgical robot system
EP1555963A4 (en) 2002-10-23 2008-12-31 Mako Surgical Corp MODULAR FEMORAL ELEMENT FOR REPLACING THE WHOLE KNEE JOINT BY MINIMALLY INVASIVE IMPLANTATION
US7094241B2 (en) 2002-11-27 2006-08-22 Zimmer Technology, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US20070282347A9 (en) * 2002-12-20 2007-12-06 Grimm James E Navigated orthopaedic guide and method
US7029477B2 (en) 2002-12-20 2006-04-18 Zimmer Technology, Inc. Surgical instrument and positioning method
US20040122305A1 (en) * 2002-12-20 2004-06-24 Grimm James E. Surgical instrument and method of positioning same
US20040172044A1 (en) * 2002-12-20 2004-09-02 Grimm James E. Surgical instrument and method of positioning same
US6925339B2 (en) 2003-02-04 2005-08-02 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US20040152955A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Guidance system for rotary surgical instrument
US7458977B2 (en) * 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US6988009B2 (en) * 2003-02-04 2006-01-17 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US20040171930A1 (en) * 2003-02-04 2004-09-02 Zimmer Technology, Inc. Guidance system for rotary surgical instrument
JP2004254899A (ja) * 2003-02-26 2004-09-16 Hitachi Ltd 手術支援システム及び手術支援方法
DE102004020783A1 (de) * 2004-04-27 2005-11-24 Ilan Elias Diagnosegerät
US6932823B2 (en) * 2003-06-24 2005-08-23 Zimmer Technology, Inc. Detachable support arm for surgical navigation system reference array
US7427272B2 (en) * 2003-07-15 2008-09-23 Orthosoft Inc. Method for locating the mechanical axis of a femur
US7641661B2 (en) 2003-12-26 2010-01-05 Zimmer Technology, Inc. Adjustable resection guide
US7026564B1 (en) 2004-01-27 2006-04-11 Pass & Seymour/Legrand Paddle switch assembly
US8758355B2 (en) * 2004-02-06 2014-06-24 Synvasive Technology, Inc. Dynamic knee balancer with pressure sensing
US9380980B2 (en) * 2004-03-05 2016-07-05 Depuy International Limited Orthpaedic monitoring system, methods and apparatus
US20070073306A1 (en) * 2004-03-08 2007-03-29 Ryan Lakin Cutting block for surgical navigation
US8114086B2 (en) * 2004-03-08 2012-02-14 Zimmer Technology, Inc. Navigated cut guide locator
US7641660B2 (en) * 2004-03-08 2010-01-05 Biomet Manufacturing Corporation Method, apparatus, and system for image guided bone cutting
US7993341B2 (en) * 2004-03-08 2011-08-09 Zimmer Technology, Inc. Navigated orthopaedic guide and method
FR2871363B1 (fr) * 2004-06-15 2006-09-01 Medtech Sa Dispositif robotise de guidage pour outil chirurgical
US8167888B2 (en) * 2004-08-06 2012-05-01 Zimmer Technology, Inc. Tibial spacer blocks and femoral cutting guide
CA2598627C (en) 2005-02-22 2013-11-26 Mako Surgical Corp. Haptic guidance system and method
CN1298293C (zh) * 2005-04-28 2007-02-07 上海交通大学 基于手眼式机器人的股骨中心定位方法
US20070073136A1 (en) * 2005-09-15 2007-03-29 Robert Metzger Bone milling with image guided surgery
CN101309783B (zh) * 2005-11-16 2013-09-11 Abb股份有限公司 控制装有定位开关的工业机器人运动的方法、装置、系统及其应用
US20070149977A1 (en) * 2005-11-28 2007-06-28 Zimmer Technology, Inc. Surgical component positioner
US7520880B2 (en) * 2006-01-09 2009-04-21 Zimmer Technology, Inc. Adjustable surgical support base with integral hinge
US7744600B2 (en) * 2006-01-10 2010-06-29 Zimmer Technology, Inc. Bone resection guide and method
US7780671B2 (en) * 2006-01-23 2010-08-24 Zimmer Technology, Inc. Bone resection apparatus and method for knee surgery
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US20070239153A1 (en) * 2006-02-22 2007-10-11 Hodorek Robert A Computer assisted surgery system using alternative energy technology
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8473305B2 (en) * 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US7967868B2 (en) * 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US20080257363A1 (en) * 2007-04-17 2008-10-23 Biomet Manufacturing Corp. Method And Apparatus For Manufacturing An Implant
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US7842092B2 (en) * 2006-03-14 2010-11-30 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
EP1857070A1 (de) * 2006-05-18 2007-11-21 BrainLAB AG Kontaktfreie medizintechnische Registrierung mit Distanzmessung
AU2007254160B2 (en) * 2006-05-19 2013-06-20 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20080163118A1 (en) * 2006-12-29 2008-07-03 Jason Wolf Representation of file relationships
WO2008118524A2 (en) * 2007-01-26 2008-10-02 Zimmer, Inc. Instrumented linkage system
US20100137881A1 (en) * 2007-02-22 2010-06-03 Lukas Kamer Arrangement for Planning and Carrying Out a Surgical Procedure
US20090012509A1 (en) * 2007-04-24 2009-01-08 Medtronic, Inc. Navigated Soft Tissue Penetrating Laser System
US8311611B2 (en) * 2007-04-24 2012-11-13 Medtronic, Inc. Method for performing multiple registrations in a navigated procedure
US8108025B2 (en) * 2007-04-24 2012-01-31 Medtronic, Inc. Flexible array for use in navigated surgery
US8734466B2 (en) * 2007-04-25 2014-05-27 Medtronic, Inc. Method and apparatus for controlled insertion and withdrawal of electrodes
US8301226B2 (en) 2007-04-24 2012-10-30 Medtronic, Inc. Method and apparatus for performing a navigated procedure
US9289270B2 (en) 2007-04-24 2016-03-22 Medtronic, Inc. Method and apparatus for performing a navigated procedure
FR2917598B1 (fr) * 2007-06-19 2010-04-02 Medtech Plateforme robotisee multi-applicative pour la neurochirurgie et procede de recalage
US8655429B2 (en) * 2007-06-29 2014-02-18 Accuray Incorporated Robotic arm for a radiation treatment system
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
US8398645B2 (en) 2007-09-30 2013-03-19 DePuy Synthes Products, LLC Femoral tibial customized patient-specific orthopaedic surgical instrumentation
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8545509B2 (en) 2007-12-18 2013-10-01 Otismed Corporation Arthroplasty system and related methods
DE102008003440A1 (de) * 2008-01-07 2009-07-09 Kuka Roboter Gmbh Verfahren zur Fehlererkennung in einem Steuerungssystem eines medizinischen Behandlungs- und/oder Diagnosegeräts
US9408618B2 (en) * 2008-02-29 2016-08-09 Howmedica Osteonics Corporation Total hip replacement surgical guide tool
US8494825B2 (en) * 2008-03-13 2013-07-23 Robert L. Thornberry Computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery
US20090306499A1 (en) * 2008-06-09 2009-12-10 Mako Surgical Corp. Self-detecting kinematic clamp assembly
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US8078440B2 (en) * 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US8170641B2 (en) * 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US8615286B2 (en) * 2009-07-15 2013-12-24 Curexo Technology Corporation In vivo sensor for detecting bone surface
DE102009028503B4 (de) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen
US8525460B2 (en) * 2010-02-02 2013-09-03 GM Global Technology Operations LLC Architecture for robust force and impedance control of series elastic actuators
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
FR2963693B1 (fr) 2010-08-04 2013-05-03 Medtech Procede d'acquisition automatise et assiste de surfaces anatomiques
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US8983794B1 (en) * 2010-10-04 2015-03-17 The Boeing Company Methods and systems for non-destructive composite evaluation and repair verification
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
KR101239294B1 (ko) * 2011-05-23 2013-03-05 한양대학교 산학협력단 좌표공간 상에서의 영상정합장치 및 영상정합방법
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US8936596B2 (en) * 2011-06-21 2015-01-20 Brent Mittelstadt Method and apparatus for generating a tool path for a robotic orthopedic surgical procedure
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
EP3656317A1 (en) 2011-09-02 2020-05-27 Stryker Corporation Surgical system including an instrument and method for using the instrument
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9808356B2 (en) 2011-10-24 2017-11-07 Synvasive Technology, Inc. Knee balancing devices, systems and methods
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
KR20130046337A (ko) 2011-10-27 2013-05-07 삼성전자주식회사 멀티뷰 디바이스 및 그 제어방법과, 디스플레이장치 및 그 제어방법과, 디스플레이 시스템
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
ES2635542T3 (es) 2011-10-27 2017-10-04 Biomet Manufacturing, Llc Guías glenoideas específicas para el paciente
FR2983059B1 (fr) 2011-11-30 2014-11-28 Medtech Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre.
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9539112B2 (en) 2012-03-28 2017-01-10 Robert L. Thornberry Computer-guided system for orienting a prosthetic acetabular cup in the acetabulum during total hip replacement surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
CN104736092B (zh) 2012-08-03 2017-07-21 史赛克公司 用于机器人外科手术的系统和方法
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US10292887B2 (en) 2012-12-31 2019-05-21 Mako Surgical Corp. Motorized joint positioner
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
WO2014165060A2 (en) 2013-03-13 2014-10-09 Stryker Corporation Systems and methods for establishing virtual constraint boundaries
CN105025835B (zh) 2013-03-13 2018-03-02 史赛克公司 用于在外科程序的准备中布置手术室中的对象的系统
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10347380B2 (en) 2013-03-14 2019-07-09 Think Surgical, Inc. Intra-operative registration of anatomical structures
US9901356B2 (en) 2013-03-14 2018-02-27 Think Surgical, Inc. Systems and methods for monitoring a surgical procedure with critical regions
US9545288B2 (en) 2013-03-14 2017-01-17 Think Surgical, Inc. Systems and devices for a counter balanced surgical robot
CN113180834A (zh) 2013-03-15 2021-07-30 史赛克公司 手术机器人臂的端部执行器
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US20140303631A1 (en) * 2013-04-05 2014-10-09 Thornberry Technologies, LLC Method and apparatus for determining the orientation and/or position of an object during a medical procedure
US9901407B2 (en) 2013-08-23 2018-02-27 Stryker European Holdings I, Llc Computer-implemented technique for determining a coordinate transformation for surgical navigation
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US20150112349A1 (en) 2013-10-21 2015-04-23 Biomet Manufacturing, Llc Ligament Guide Registration
EP3094272B1 (en) 2014-01-15 2021-04-21 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
EP3134022B1 (en) 2014-04-24 2018-01-10 KB Medical SA Surgical instrument holder for use with a robotic surgical system
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
KR101570856B1 (ko) * 2014-05-16 2015-11-24 큐렉소 주식회사 조직 위치 검출 방법 및 이를 이용하는 장치
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
WO2016008880A1 (en) 2014-07-14 2016-01-21 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US10932866B1 (en) 2014-12-08 2021-03-02 Think Surgical, Inc. Implant based planning, digitizing, and registration for total joint arthroplasty
CN106999245B (zh) * 2014-12-08 2020-11-10 思想外科有限公司 用于全关节成形术中的基于计划、数字化、以及配准的植入物
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
WO2016131903A1 (en) 2015-02-18 2016-08-25 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
AU2016225968B2 (en) 2015-03-05 2020-07-23 Think Surgical, Inc. Methods for locating and tracking a tool axis
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
FR3036279B1 (fr) * 2015-05-21 2017-06-23 Medtech Sa Robot d'assistance neurochirurgicale
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
EP3344179B1 (en) 2015-08-31 2021-06-30 KB Medical SA Robotic surgical systems
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
EP3376990A4 (en) 2015-11-16 2019-05-08 Think Surgical, Inc. METHOD OF CONFIRMING BONE RECORDING UNDER OBSERVATION
ITUB20155830A1 (it) 2015-11-23 2017-05-23 R A W Srl "sistema di navigazione, tracciamento, e guida per il posizionamento di strumenti operatori"
WO2017091380A1 (en) 2015-11-24 2017-06-01 Think Surgical, Inc. Active robotic pin placement in total knee arthroplasty
KR20180099702A (ko) 2015-12-31 2018-09-05 스트리커 코포레이션 가상 객체에 의해 정의된 타깃 부위에서 환자에게 수술을 수행하기 위한 시스템 및 방법
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10621736B2 (en) 2016-02-12 2020-04-14 Brainlab Ag Method and system for registering a patient with a 3D image using a robot
EP3419544A4 (en) 2016-02-26 2019-10-23 Think Surgical, Inc. METHOD AND SYSTEM FOR GUIDING USER POSITIONING OF A ROBOT
KR20220131355A (ko) 2016-03-02 2022-09-27 씽크 써지컬, 인크. 관절성형 수술의 자동 입안
WO2017151751A1 (en) * 2016-03-02 2017-09-08 Think Surgical, Inc. Method for recovering a registration of a bone
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11207114B2 (en) 2016-09-26 2021-12-28 Think Surgical, Inc. Pin placement holder for surgical pin driver
EP3551099B1 (en) 2016-12-08 2024-03-20 Orthotaxy Surgical system for cutting an anatomical structure according to at least one target plane
US11633233B2 (en) 2016-12-08 2023-04-25 Orthotaxy S.A.S. Surgical system for cutting an anatomical structure according to at least one target cutting plane
US11202682B2 (en) 2016-12-16 2021-12-21 Mako Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
US10772685B2 (en) 2017-01-16 2020-09-15 Think Surgical, Inc. System and method for bone re-registration and marker installation
JP7233841B2 (ja) 2017-01-18 2023-03-07 ケービー メディカル エスアー ロボット外科手術システムのロボットナビゲーション
KR101963643B1 (ko) * 2017-03-13 2019-04-01 한국과학기술연구원 식물의 표현형 분석을 위한 3d 영상 생성 방법 및 그 시스템
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
WO2018200256A1 (en) * 2017-04-24 2018-11-01 Think Surgical, Inc. Magnetic coupling and method for calibrating a robotic system
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11786379B2 (en) * 2017-08-11 2023-10-17 Think Surgical, Inc. System and method for implant verification
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20200281656A1 (en) * 2017-11-30 2020-09-10 Think Surgical, Inc. System and method fir installing bone hardware outside an end-effectors tool path
US10810427B1 (en) 2017-12-15 2020-10-20 AI Incorporated Methods for an autonomous robotic device to identify locations captured in an image
WO2019143689A1 (en) * 2018-01-17 2019-07-25 Mako Surgical Corp. Systems and methods for robotic infection treatment of a prosthesis
US11154369B2 (en) 2018-01-24 2021-10-26 Think Surgical, Inc. Environmental mapping for robotic assisted surgery
WO2019160827A1 (en) * 2018-02-13 2019-08-22 Think Surgical, Inc. Bone registration in two-stage orthopedic revision procedures
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
WO2019200154A1 (en) * 2018-04-13 2019-10-17 Think Surgical, Inc. A rollable digitizer for computer-assisted surgery
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument
US11298186B2 (en) * 2018-08-02 2022-04-12 Point Robotics Medtech Inc. Surgery assistive system and method for obtaining surface information thereof
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
FR3092746A1 (fr) * 2019-02-18 2020-08-21 Sylorus Robotics Instrument chirurgical pour une installation de chirurgie robotique
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11439411B2 (en) 2019-05-24 2022-09-13 Think Surgical, Inc. System and method to improve surgical cutting in the presence of surgical debris
US20220338886A1 (en) 2019-06-19 2022-10-27 Think Surgical, Inc. System and method to position a tracking system field-of-view
CN110206840B (zh) * 2019-06-21 2020-07-14 重庆大学 一种仿股骨头减震结构及步行机器人
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
EP3815643A1 (en) 2019-10-29 2021-05-05 Think Surgical, Inc. Two degree of freedom system
JP2023502727A (ja) * 2019-11-21 2023-01-25 マイクロポート ナビボット(スーチョウ)カンパニー,リミテッド 骨切り術校正方法、校正装置、読み取り可能な記憶媒体、および整形外科手術システム
CN110811832B (zh) 2019-11-21 2021-02-23 苏州微创畅行机器人有限公司 截骨校验方法、校验设备、可读存储介质及骨科手术系统
JP6901160B2 (ja) * 2019-12-05 2021-07-14 炳碩生醫股▲フン▼有限公司 手術支援システムおよびその表面情報を取得する方法
CN111035452B (zh) * 2019-12-27 2021-07-02 苏州微创畅行机器人有限公司 定位工具、机械臂系统、手术系统以及注册配准方法
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
JP2023520934A (ja) * 2020-04-08 2023-05-22 シンク サージカル,インク. デジタイザの較正チェック
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
CN113331949B (zh) * 2021-06-01 2022-10-21 武汉联影智融医疗科技有限公司 具有注册探针的手术机器人系统及其注册方法
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US20230115849A1 (en) * 2021-10-11 2023-04-13 Mazor Robotics Ltd. Systems and methods for defining object geometry using robotic arms
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62327A (ja) * 1985-06-26 1987-01-06 間中 信也 頭蓋内手術部位の位置検出装置
JPH0763472B2 (ja) * 1990-05-11 1995-07-12 インターナショナル・ビジネス・マシーンズ・コーポレイション 手術用ロボット装置、骨中への空洞形成装置及び手術計画装置
WO1997009929A1 (en) * 1995-09-11 1997-03-20 Integrated Surgical Systems, Inc. Method and system for positioning surgical robot
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
WO1998014127A1 (en) * 1996-09-30 1998-04-09 Integrated Surgical Systems, Inc. Method and system for finish cutting bone cavities
WO1998027887A1 (de) * 1996-12-21 1998-07-02 Wahrburg Juergen Vorrichtung zum positionieren und führen eines chirurgischen werkzeuges bei orthopädischen eingriffen

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146924A (en) * 1975-09-22 1979-03-27 Board Of Regents For Education Of The State Of Rhode Island System for visually determining position in space and/or orientation in space and apparatus employing same
US4373532A (en) * 1980-07-07 1983-02-15 Palo Alto Medical Research Foundation Ultrasonic marker for physiologic diagnosis and method of using same
US4841975A (en) * 1987-04-15 1989-06-27 Cemax, Inc. Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging
US4932414A (en) * 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US4991579A (en) * 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4979949A (en) * 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
EP0647428A3 (en) * 1989-11-08 1995-07-12 George S Allen Interactive image-guided surgery system.
US5222499A (en) * 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
CA2003497C (en) * 1989-11-21 1999-04-06 Michael M. Greenberg Probe-correlated viewing of anatomical image data
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
DE69133634D1 (de) * 1990-10-19 2010-08-26 Univ St Louis System zur Lokalisierung einer chirurgischen Sonde relativ zum Kopf
DE4040307C2 (de) * 1990-12-17 1996-03-07 Eden Medizinische Elektronik G Vorrichtung zur Positionierung eines Doppler-Signalgebers und/oder -aufnehmers
US5320115A (en) * 1991-01-16 1994-06-14 Applied Biological Concepts Method and apparatus for arthroscopic knee surgery
US5306306A (en) * 1991-02-13 1994-04-26 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5161536A (en) * 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5249581A (en) * 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5524180A (en) * 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5343877A (en) * 1992-09-09 1994-09-06 University Of Iowa Research Foundation Orthopedic implant and method
FR2699271B1 (fr) * 1992-12-15 1995-03-17 Univ Joseph Fourier Procédé de détermination du point d'ancrage fémoral d'un ligament croisé de genou.
US5575794A (en) * 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5411503A (en) * 1993-06-18 1995-05-02 Hollstien; Steven B. Instrumentation for distal targeting of locking screws in intramedullary nails
US5480400A (en) * 1993-10-01 1996-01-02 Berger; J. Lee Method and device for internal fixation of bone fractures
EP0649117A3 (en) * 1993-10-15 1996-01-31 George S Allen Process for the production of medical images.
US5394875A (en) * 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5546942A (en) * 1994-06-10 1996-08-20 Zhang; Zhongman Orthopedic robot and method for reduction of long-bone fractures
US5695501A (en) * 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5649021A (en) * 1995-06-07 1997-07-15 David Sarnoff Research Center, Inc. Method and system for object detection for instrument control
US5825908A (en) * 1995-12-29 1998-10-20 Medical Media Systems Anatomical visualization and measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62327A (ja) * 1985-06-26 1987-01-06 間中 信也 頭蓋内手術部位の位置検出装置
JPH0763472B2 (ja) * 1990-05-11 1995-07-12 インターナショナル・ビジネス・マシーンズ・コーポレイション 手術用ロボット装置、骨中への空洞形成装置及び手術計画装置
WO1997009929A1 (en) * 1995-09-11 1997-03-20 Integrated Surgical Systems, Inc. Method and system for positioning surgical robot
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
WO1998014127A1 (en) * 1996-09-30 1998-04-09 Integrated Surgical Systems, Inc. Method and system for finish cutting bone cavities
WO1998027887A1 (de) * 1996-12-21 1998-07-02 Wahrburg Juergen Vorrichtung zum positionieren und führen eines chirurgischen werkzeuges bei orthopädischen eingriffen

Also Published As

Publication number Publication date
WO2000015134A1 (en) 2000-03-23
DE69939940D1 (de) 2009-01-02
EP1113760A4 (en) 2005-12-21
ATE414482T1 (de) 2008-12-15
JP2002524192A (ja) 2002-08-06
EP1113760B1 (en) 2008-11-19
EP1113760A1 (en) 2001-07-11
US6033415A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4815054B2 (ja) 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法
WO2022126828A1 (zh) 关节置换手术导航系统及方法
US5806518A (en) Method and system for positioning surgical robot
US11844577B2 (en) System and method for verifying calibration of a surgical system
WO2022126827A1 (zh) 关于置换手术机器人导航定位系统及方法
CN109998687B (zh) 骨折复位手术机器人系统及方法
Howe et al. Robotics for surgery
Barratt et al. Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery
Lea et al. Registration and immobilization in robot-assisted surgery
US20070233156A1 (en) Surgical instrument
CN104994803B (zh) 利用图像数据来放置部件的系统和方法
US20210052327A1 (en) Bone registration in two-stage orthopedic revision procedures
JP2022546381A (ja) オーグメント式股関節形成術手順のためのロボット外科システム
US20230100824A1 (en) Bone registration methods for robotic surgical procedures
Leloup et al. A novel technique for distal locking of intramedullary nail based on two non-constrained fluoroscopic images and navigation
Hassfeld et al. Intraoperative guidance in maxillofacial and craniofacial surgery
EP1016030A1 (en) Method and system for registering the position of a surgical system with a preoperative bone image
Zixiang et al. Robot-assisted orthopedic surgery
Lavallée et al. An overview of computer-integrated surgery and therapy
Wang et al. Comparison analysis of robot-assisted computed tomography navigation system and manual freehand technique in orthopedic surgery
CN117064557B (zh) 用于骨科手术的手术机器人
Portaccio et al. Design of a positioning system for orienting surgical cannulae during Minimally Invasive Spine Surgery
Gao et al. Computer-Assisted Orthopedic Surgery
PRAXIM SURGETICA at Grenoble: from computer assisted medical interventions to quality inspired surgery
Zheng et al. Technical principles of computer assisted orthopaedic surgery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100805

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term