WO2022126827A1 - 关于置换手术机器人导航定位系统及方法 - Google Patents
关于置换手术机器人导航定位系统及方法 Download PDFInfo
- Publication number
- WO2022126827A1 WO2022126827A1 PCT/CN2021/073209 CN2021073209W WO2022126827A1 WO 2022126827 A1 WO2022126827 A1 WO 2022126827A1 CN 2021073209 W CN2021073209 W CN 2021073209W WO 2022126827 A1 WO2022126827 A1 WO 2022126827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hip joint
- module
- acetabular
- navigation
- surgical
- Prior art date
Links
- 238000001356 surgical procedure Methods 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 44
- 210000004394 hip joint Anatomy 0.000 claims abstract description 197
- 230000003287 optical effect Effects 0.000 claims abstract description 61
- 239000000523 sample Substances 0.000 claims abstract description 32
- 239000012636 effector Substances 0.000 claims abstract description 24
- 230000011218 segmentation Effects 0.000 claims abstract description 6
- 210000000988 bone and bone Anatomy 0.000 claims description 45
- 238000002513 implantation Methods 0.000 claims description 38
- 210000000689 upper leg Anatomy 0.000 claims description 21
- 230000033001 locomotion Effects 0.000 claims description 17
- 210000000588 acetabulum Anatomy 0.000 claims description 14
- 230000002980 postoperative effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 8
- 210000004197 pelvis Anatomy 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 210000001519 tissue Anatomy 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 6
- 238000012790 confirmation Methods 0.000 claims description 6
- 210000002436 femur neck Anatomy 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 210000002414 leg Anatomy 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 abstract description 7
- 230000000399 orthopedic effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 28
- 230000000740 bleeding effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 210000001624 hip Anatomy 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 230000008407 joint function Effects 0.000 description 4
- 210000003141 lower extremity Anatomy 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 210000004872 soft tissue Anatomy 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 210000003484 anatomy Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011540 hip replacement Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 208000012659 Joint disease Diseases 0.000 description 1
- 208000035965 Postoperative Complications Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000011882 arthroplasty Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000012829 orthopaedic surgery Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000011541 total hip replacement Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2002/4632—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2002/4632—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
- A61F2002/4633—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery for selection of endoprosthetic joints or for pre-operative planning
Definitions
- hip arthroplasty has been widely carried out at home and abroad as a more effective treatment method for hip joint diseases.
- my country is a country with a high incidence of hip diseases, and Asia is expected to add nearly 10 million new patients suffering from various hip-related diseases.
- traditional joint replacement surgery has imperfect preoperative planning, insufficient preoperative preparation, lack of precise intraoperative navigation and positioning, and heavy dependence on the surgeon's surgical experience, tedious operation, and poor repeatability, resulting in a high incidence of postoperative complications.
- the embodiments of the present application provide a navigation and positioning system and method for a joint replacement surgery robot.
- an embodiment of the present application provides a robot navigation and positioning system for joint replacement surgery, including: a preoperative planning module, an optical navigation and positioning module, and a robotic arm control module;
- the optical navigation and positioning module is configured to generate navigation instructions according to the surgical plan, and to register the three-dimensional model of the hip joint according to the optical positioning instrument, the spatial positional relationship between the patient's hip joint and the surgical probe to obtain a hip joint entity model , match the hip joint entity model with the preoperative planning model, and determine the patient's bone surgery position according to the hip joint entity model;
- the robotic arm control module is configured to move the end effector to the surgical position of the patient's bone, and control the end effector to perform osteotomy, rasping and press-fitting operations on the hip joint according to the navigation instruction.
- the preoperative planning module includes: a data acquisition submodule, a three-dimensional model reconstruction submodule, an acetabular side plan determination submodule, a femoral side plan determination submodule, and a plan scheme confirmation submodule;
- the three-dimensional model reconstruction sub-module is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint;
- the acetabular side plan determination sub-module is configured to determine the acetabular rotation center, the acetabular diameter, the acetabular anteversion angle, the acetabular abduction angle according to the three-dimensional model of the hip joint, and according to the acetabular rotation center, the acetabulum Diameter, acetabular anteversion angle and acetabular abduction angle, considering the coverage of acetabular cup, determine the size and position of the implanted prosthesis on the acetabular side;
- the femoral side plan determination sub-module is configured to determine the rotation center of the femoral head, the shape of the femoral medullary canal, the anatomical axis of the femoral medullary canal and the shaft angle of the femoral neck according to the three-dimensional model of the hip joint, and according to the rotation center of the femoral head, the femoral medullary canal
- the cavity shape, the anatomical axis of the femoral medullary cavity and the femoral neck shaft angle determine the size and position of the femoral prosthesis implantation, while considering the leg length difference and the eccentricity of the femoral syndesmosis;
- the planning scheme confirmation submodule is configured to confirm whether the acetabular side prosthesis implantation plan determined by the acetabular side planning determination submodule and the femoral side prosthesis implantation plan determined by the femoral side planning determination submodule are not. Appropriate, if not, trigger the acetabular side plan determination submodule and the femoral side plan determination submodule to re-determine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan, and if so, set the The acetabular side planning determination submodule and the femoral side planning determination submodule determine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan as a preoperative planning scheme.
- the spatial position of the patient's hip joint is determined according to the pelvic reference frame and the femoral reference frame, and the three-dimensional model of the hip joint is registered according to the spatial positional relationship between the patient's hip joint and the robotic arm to obtain the hip joint entity model, and according to the The physical model of the hip joint is described to determine the surgical position of the patient's skeleton and the real-time pose of the robotic arm.
- the optical tracking sub-module when the optical tracking sub-module registers the hip joint entity model according to the spatial positional relationship between the robotic arm and the pelvic reference frame and the femur reference frame, it is configured to:
- the robotic arm control module includes a robotic arm position positioning sub-module
- the manipulator control module when the manipulator control module performs a press-fitting operation, it is configured to:
- the joint replacement surgery robot navigation and positioning system further includes a display module
- the display module is connected in communication with the optical navigation and positioning module, and is configured to display the real-time state of the hip joint entity model on the human-computer interaction display screen.
- Navigation instructions are generated according to the surgical plan, and the three-dimensional model of the hip joint is registered according to the optical locator, the spatial positional relationship between the patient's hip joint and the surgical probe to obtain a hip joint entity model, and the hip joint entity model is compared with the surgical probe.
- the pre-planning model is matched, and the patient's bone surgery position is determined according to the hip joint entity model;
- a three-dimensional model of the hip joint is obtained according to the medical image data of the hip joint before surgery, and then the operation planning is performed according to the three-dimensional model of the hip joint, and the determination is made.
- Surgical plan the navigation instructions are generated according to the surgical plan during the operation, and the three-dimensional model of the hip joint is registered according to the spatial position relationship between the patient's hip joint and the surgical probe, so that the three-dimensional model of the hip joint can accurately reflect the structure of the patient's hip joint.
- the surgical robot can perform the surgical operation according to the navigation instruction and the surgical position.
- the three-dimensional model is used for preoperative planning, and the spatial positioning method is used for intraoperative navigation and positioning, so that the surgical robot can use its high-precision three-dimensional model to optimize the surgical path planning, and use the high-freedom
- the path is realized through the operation of the robotic arm, so as to assist the orthopaedic surgeon to complete the operations such as osteotomy, grinding, and fixation.
- the embodiments of the present application greatly reduce the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
- FIG. 1 is a schematic structural diagram of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
- FIG. 2 is a schematic structural diagram of an optical positioning module of a navigation and positioning system for a robot for joint replacement surgery according to an embodiment of the present application;
- FIG. 3 is a schematic structural diagram of a robotic arm control module of a navigation and positioning system for a joint replacement surgery robot according to an embodiment of the present application;
- FIG. 4 is a schematic structural diagram of another joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application.
- FIG. 5 is a flowchart of a method for navigation and positioning of a joint replacement surgery robot provided by an embodiment of the present application
- FIG. 6 is a flowchart of another method for navigation and positioning of a joint replacement surgery robot provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of an acetabular cup implantation plan of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
- FIG. 8 is a schematic diagram of a femoral stem implantation plan of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
- FIG. 9 is a schematic diagram of an osteotomy operation of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application.
- FIG. 10 is a schematic diagram of a file grinding operation of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
- FIG. 11 is a schematic diagram of a press-fitting operation of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
- FIG. 14 is a schematic diagram of a registration process of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
- 16 is a schematic diagram of a file grinding scene of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
- FIG. 18 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
- FIG. 1 shows a schematic structural diagram of a joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application. The following is a detailed explanation and description of the joint replacement surgery robot navigation and positioning system provided by the embodiment of the present application with reference to FIG. 1 .
- a navigation and positioning system for a joint replacement surgery robot includes: a preoperative planning module 1 , an optical navigation and positioning module 2 , and a robotic arm control module 3 ;
- the preoperative planning module 1 is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint, and to perform preoperative planning according to the three-dimensional hip joint model to determine a surgical plan;
- the optical navigation and positioning module 2 is configured to generate navigation instructions according to the surgical plan, and to register the three-dimensional model of the hip joint according to the optical positioner, the spatial positional relationship between the patient's hip joint and the surgical probe to obtain a hip joint entity A model, matching the hip joint entity model with the preoperative planning model, and determining the patient's bone surgery position according to the hip joint entity model;
- the robotic arm control module 3 is configured to move the end effector to the surgical position of the patient's bones, and to control the end effector to perform osteotomy, rasping and press-fitting operations on the hip joint according to the navigation instruction.
- an imaging device can be used to scan the patient's pelvis and both lower extremities preoperatively to generate a preoperative three-dimensional view of the pelvis and both lower extremities.
- the surgical navigation system reads the CT images in DICOM format before the operation, performs segmentation processing on the hip joint images to obtain multiple segmented images, and reconstructs the individualized complex three-dimensional model of the hip joint according to the image data corresponding to the multiple segmented images (this One step can be implemented according to existing algorithms), including virtual pelvis and femur, so that the surgeon can fully evaluate the patient's condition before surgery through the 3D model of the hip joint, use the system software to plan the surgical approach and simulate the hip joint (femoral side, acetabular side ) surgical plan.
- the surgical plan includes surgical information such as the position, size, and angle of implantation of the prosthesis.
- the embodiments of the present application can implement medical image processing on a common computer, so that doctors can arbitrarily divide the visualized three-dimensional image.
- the lesion information is clearly visible visually, and the surgical operation is convenient.
- the surgical navigation system is imported through a computer system, including measurement of acetabular shape, bone mass, acetabular abduction angle and anteversion angle, leg length difference and eccentricity.
- all data can be templated according to the actual measurement data and displayed on the computer in time to determine the size and position of the prosthesis.
- the pelvic reference frame and the femoral reference frame can be manually placed on the acetabular side and the femoral side, and the system's navigation camera is used to track the tracking elements on the pelvic reference frame and the femoral reference frame to determine the pelvis of the patient's hip joint. and the spatial position of the femur.
- the navigation camera tracks the tracer element at the tail of the surgical probe, calculates the spatial position of the collected point through an algorithm, and then integrates the surgical probe with the spatial position of the pelvic reference frame and the femur reference frame.
- the 3D model of the hip joint is registered.
- the preoperative planning module includes: a data acquisition sub-module, a three-dimensional model reconstruction sub-module, an acetabular side plan determination sub-module, a femoral side plan determination sub-module, and a plan scheme confirmation sub-module submodule;
- the data acquisition sub-module is configured to acquire hip joint medical image data
- the three-dimensional model reconstruction sub-module is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint;
- the acetabular side plan determination sub-module is configured to determine the acetabular rotation center, the acetabular diameter, the acetabular anteversion angle, the acetabular abduction angle according to the three-dimensional model of the hip joint, and according to the acetabular rotation center, the acetabulum Diameter, acetabular anteversion angle, acetabular abduction angle, and acetabular cup coverage to determine the size and location of the implanted prosthesis on the acetabular side;
- the size of the corresponding implanted prosthesis on the acetabular side is determined to be about 50mm, when the acetabular anteversion angle is 20°, and the acetabular abduction angle is 40°, According to the position of the center of acetabular rotation and ensuring that the coverage of the acetabular cup is greater than 70%, the specific position of the acetabular implant prosthesis is determined.
- the femoral side plan determination sub-module is configured to determine the center of rotation of the femoral head, the shape of the femoral medullary canal, the anatomical axis of the femoral medullary canal and the shaft angle of the femoral neck according to the three-dimensional model of the hip joint, and according to the center of rotation of the femoral head, the femoral medullary canal Cavity shape, the anatomical axis of the femoral medullary cavity and the femoral neck shaft angle, determine the size and position of the femoral prosthesis implantation, and consider the leg length difference and the eccentricity of the femoral syndesmosis;
- the rotation center of the femoral side prosthesis can be determined according to the rotation center of the femoral head
- the axis of the femoral side prosthesis can be determined according to the anatomical axis of the femoral medullary canal
- the size of the femoral side prosthesis can be determined according to the shape of the femoral medullary canal and the angle of the neck shaft.
- the planning scheme confirmation submodule is configured to confirm whether the acetabular side prosthesis implantation plan determined by the acetabular side planning determination submodule and the femoral side prosthesis implantation plan determined by the femoral side planning determination submodule are not. Appropriate, if not, trigger the acetabular side plan determination submodule and the femoral side plan determination submodule to re-determine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan, and if so, set the The acetabular side planning determination submodule and the femoral side planning determination submodule determine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan as a preoperative planning scheme.
- the diameter of the acetabular cup is approximately equal to the diameter of the acetabulum, the acetabular cup and the acetabular anteroposterior diameter are fit, but the bone is not worn too much, and the coverage of the acetabular cup is more than 70%. Criteria for proper acetabular cup position: The acetabular cup is placed in the safe zone. Femoral fit criteria: The femoral side prosthesis fits the femur.
- the triangle composed of a', b, and 'c' and the triangle composed of A, B, and C are basically congruent triangles.
- the planned spatial positions of a, b, and c are corrected to the spatial positions of a', b, and 'c', and the ICP registration method can be used to register the points marked during the operation with the points planned before the operation, so as to achieve Accurate registration of femoral and acetabular surfaces.
- the acetabular side is visually reaped under the guidance of the robotic arm, and the bone volume is preserved with less bleeding.
- the system sets a safety range and stereotaxic boundary to guide the manipulation of the robotic arm. If the user Attempts to perform an unplanned procedure, the system is augmented to create a cone-shaped barrier (stereotactic boundary) that automatically occurs when the reamer is close enough to the planned acetabular cup location within the acetabulum, the boundary is designed to be specific Shape, when the acetabular reamer is close to the target position, the cross-section of the boundary will be displayed to limit the robotic arm.
- a cone-shaped barrier stereotactic boundary
- the system When the acetabular reamer deviates from the stereotaxic boundary, the system will guide the user back to the planned boundary.
- the stereotaxic boundary When the stereotaxic boundary is applied, the operation needs to be completed according to the coaxial within the positioning control range.
- the mechanical arm supports power to complete the high-speed drilling operation. If the robotic arm moves out of the positioning control by 5 degrees, the power supply of the drill will be cut off to stop the grinding operation.
- the stereotaxic boundary When the stereotaxic boundary is not applied, the user can perform reaming at any angle of inclination and deflection. It can be seen that, in this embodiment, the operation process of the robotic arm is constrained by the conical stereotaxic boundary, which effectively ensures the safety of the surgical operation through the robotic arm.
- This embodiment can greatly reduce the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
- the angle range of the conical stereotaxic boundary is about 10-15°, and the angle here refers to the angle deviating from the acetabular axis to ensure the safety of the patient.
- the manipulator control module when the manipulator control module performs the press-fitting operation, it is configured to:
- the tapered stereotaxic boundary When press-fitting the acetabulum, when the press-fit rod is moved into the acetabular position, the tapered stereotaxic boundary will activate, aligning the anteversion and abduction angles in real time to match the preoperatively planned anteversion and abduction angles and display the effect;
- the position of the acetabulum cup is positioned under the guidance of the robotic arm, and the doctor is assisted in accurate implantation through visual effects and force feedback.
- the press-fit rod is moved into the acetabulum, the stereotaxic boundary will be It will start, align the anteversion angle and abduction angle in real time to match the angle of the screen plan and display the effect (for example: anteversion 20 degrees, abduction 40 degrees), that is, the head end of the acetabular reamer and the target depth are up and down, inside and outside ⁇
- the intraoperative navigation system can be used to monitor whether the patient's body moves in real time. Moving the robotic arm will perform real-time compensation of the position, and provide guidance in the compensation mode to assist the doctor in completing the operation.
- the robotic arm is a 7-DOF movable joint, and there are two states during use and operation, including: "free arm” state, where the robotic arm is unconstrained and can move freely, and is not subject to stereotaxic boundaries The limit, "fixed arm” state, the manipulator moves within the agreed range, and also provides a safe resting state for the manipulator, which has more resistance than the free arm.
- the system has set up multiple control and protection mechanisms.
- the display is press-fitted forward 20, abducted 40, and the real-time effect display guides the user to operate and set boundary protection.
- the power of the model can be automatically stopped and sound prompts according to the boundary protection range. , At the same time, it can support users to complete emergency stop, mechanical protection, power-off protection and other functions.
- images of the injured part of the patient are acquired and uploaded to the main console to complete the identification, and the doctor plans the operation path design through the main console.
- the robotic arm After the doctor drags the robotic arm to the surgical area, the robotic arm performs precise positioning according to the planned surgical path and completes the intraoperative operation.
- the computer system can reconstruct and segment the CT data to complete the preoperative plan. At the same time, it has the function of automatically identifying the body surface feature marker points of the 3D image, and realizes the patient space, robot space, and image by registering the marker points.
- the structure of the embodiment of the present application is open, and can be used as a basic platform to be perfectly combined with a navigation system.
- the operation mode is flexible. It can be connected with an automatic navigation device, and can be used as an executing mechanism to complete preoperative planning operations under the guidance of the navigation device. It can also be used as an independent surgical auxiliary instrument to realize osteotomy, grinding and other surgical operations under the operation of the doctor. , and greatly improve the quality and anti-jitter function of real-time tracking data stream.
- a represents the main control trolley display, which is set to complete preoperative planning and display the entire surgical process.
- Live information b represents the master trolley, which is set to carry the display a of the master trolley, which can be moved at will;
- i represents the optical navigator, which is set to track the robotic arm d, probe c, femoral reference frame l and acetabulum The spatial position of the reference frame m;
- c represents the surgical probe, which is set to collect some points on the patient's anatomy;
- d represents the robotic arm of the orthopaedic surgical robot, which is a 7-DOF robotic arm fixedly mounted on a movable Above the base, it is connected to the controller through a signal cable and receives its control signal.
- the embodiment of the present application may further include a reset determination sub-module configured to confirm whether to perform surgical reset.
- a reset determination sub-module configured to confirm whether to perform surgical reset.
- the spatial position of the patient's hip joint is determined according to the pelvic reference frame and the femur reference frame, and the three-dimensional model of the hip joint is registered according to the spatial positional relationship between the patient's hip joint and the robotic arm to obtain the hip joint entity model, and according to the The physical model of the hip joint is described to determine the surgical position of the patient's skeleton and the real-time pose of the robotic arm.
- the pelvic reference frame and the femur reference frame can be manually placed on the acetabular side and the femur.
- the system's navigation camera is used to track the tracking elements on the pelvic reference frame and the femoral reference frame to determine the spatial position of the patient's pelvis and femur.
- the robotic arm enters the tracking range of the system navigation camera, the spatial position of the robotic arm is determined by the tracking element on the robotic arm, and then the spatial positions of the robotic arm, the pelvic reference frame and the femur reference frame are integrated into a common coordinate.
- the three-dimensional model of the hip joint is registered.
- the posture and position information of the robotic arm can be displayed in real time in the 3D model of the hip joint.
- the reference position of the to-be-operated area obtained before or during the operation is compared and calibrated with the real-time position of the robotic arm, so as to realize the tracking and navigation of the robotic arm.
- the process of registering the actual spatial position of the image and the actual bone tissue of the patient during the operation is difficult to operate, and the position of the robotic arm cannot be calibrated, and there is a position error of the robotic arm.
- the bone tissue is attached to the skin and muscle and is located in a relatively deep position, it is difficult to fully expose during the operation, and it is difficult to see through the naked eye. Only images, human eye observations, and doctor's experience can determine the surgical site, resulting in large errors and heavy reliance on doctor's experience.
- the orthopedic robot needs to compare and calibrate the real-time position of the surgical instrument through the reference position of the to-be-operated area obtained before or during the operation, so as to realize the tracking and navigation of the surgical instrument.
- the optical tracking sub-module is configured to register the hip joint entity model according to the spatial positional relationship between the robotic arm and the pelvic reference frame and the femoral reference frame, and perform registration on the robotic arm according to the registered hip joint entity model. model position for calibration;
- the existing technology related to the navigation robot system cannot meet the fine-tuning of the surgical plan, and cannot break through the limitations brought by the traditional surgical tools. It can be seen that the embodiments of the present application can calibrate the position of the robotic arm and the surgical instruments, accurately calculate the tool coordinate systems of different surgical instruments, and realize the identification of marker points and the conversion of different coordinate systems through software.
- FIG. 3 a schematic structural diagram of a robotic arm control module of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application, the robotic arm control module includes a mechanical Arm position positioning sub-module 5;
- the robotic arm position positioning sub-module 5 is configured to send the position and attitude information of the robotic arm to the optical tracking sub-module, so that the optical tracking sub-module acquires the spatial position information of the robotic arm in real time.
- the robotic arm position positioning sub-module 5 can send the acquired position and attitude information of the robotic arm to the optical tracking sub-module 4, so that the optical tracking sub-module acquires the spatial position information of the robotic arm in real time, so as to The spatial position information of the manipulator is used for error calibration of the manipulator.
- the joint replacement surgery robot navigation and positioning system further includes: display module 6;
- the display module 6 is connected in communication with the optical navigation and positioning module 2, and is configured to display the real-time state of the hip joint entity model on the human-computer interaction display screen.
- the display module 6 is configured to display the real-time state of the entity model in the hip joint book through the human-computer interaction display screen, so that the doctor can refer and control.
- FIG. 4 is a schematic structural diagram of another joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application
- the joint replacement surgery robot navigation and positioning system further includes: Postoperative verification sub-module 6;
- Step 503 Move the end effector of the robotic arm to the surgical position of the patient's bones, and control the end effector to perform osteotomy, rasping and press-fitting operations on the hip joint according to the navigation instruction.
- the three-dimensional model is used for preoperative planning, and the spatial positioning method is used for intraoperative navigation and positioning, so that the surgical robot can use its high-precision three-dimensional model to optimize the surgical path planning, and use the high-freedom
- the path is realized through the operation of the robotic arm, so as to assist the orthopaedic surgeon to complete the operations such as osteotomy, grinding, and fixation.
- the embodiments of the present application greatly reduce the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
- the navigation and positioning method for a joint replacement surgery robot described in this embodiment can be used to implement the above method embodiments, and the principles and technical effects thereof are similar, and are not repeated here.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Human Computer Interaction (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
一种关节置换手术机器人导航定位系统及方法,系统包括:术前规划模块(1),被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,进行术前规划,确定手术方案;光学导航定位模块(2),被配置为根据手术方案生成导航指令,根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,得到髋关节实体模型,根据髋关节实体模型,确定患者骨骼手术位置;机械臂控制模块(3),被配置为将末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作。通过骨科手术机器人执行术前规划,高水准的完成手术操作,能大大减低医师的作业强度,节约手术时间,提高作业精度。
Description
相关申请的交叉引用
本申请要求于2020年12月18日提交的申请号为2020115065733,发明名称为“关于置换手术机器人导航定位系统及方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
本申请涉及医疗技术领域,具体涉及一种关节置换手术机器人导航定位系统及方法。
近年来,髋关节置换术作为治疗髋关节疾病较有效的治疗方法,在国内外得到了广泛的开展。我国是髋关节疾病的高发国家,亚洲预计将新增近千万罹患各类髋关节相关疾病的患者。然而,传统关节置换手术术前规划不完善,术前准备不充分,缺乏术中精准导航定位,严重依赖医生的手术经验,操作繁琐,可重复性差,造成较高的术后并发症发生率,严重制约了髋关节置换手术的效果。
发明内容
(一)要解决的技术问题
由于现有方法存在上述问题,本申请实施例提供一种关节置换手术机器人导航定位系统及方法。
(二)发明内容
第一方面,本申请实施例提供了一种关节置换手术机器人导航定位系统,包括:术前规划模块、光学导航定位模块和机械臂控制模块;
术前规划模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
光学导航定位模块,被配置为根据手术方案生成导航指令,以及,根 据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
机械臂控制模块,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本申请的一个实施例中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计划确定子模块和计划方案确认子模块;
其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;
所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型;
所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角以及髋臼外展角,综合考虑髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;
所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;
所述计划方案确认子模块,被配置为确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若否,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若是,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
在本申请的一个实施例中,所述光学导航定位模块,可以被配置为:
根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准, 得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿。
在本申请的一个实施例中,所述光学导航定位模块包括光学跟踪子模块;
所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的髋关节实体模型对机械臂模型位置进行校准。
在本申请的一个实施例中,所述光学跟踪子模块在根据机械臂与骨盆参考架和股骨参考架的空间位置关系对所述髋关节实体模型进行配准时,被配置为:
以三角形为配准过程中的最小单元,若医生术中标记的点为A、B、C三点,对应的术前规划点为a、b、c,其中,医生标记的点都在人体组织表面上;
在a、b、c分别对应的邻域空间点集中筛选出对应的点a’、b’、c’,使三角形ABC和三角形a’b’c’全等,其中,a’b’c’三点都在人体组织表面上;其中,由a’、b、’c’组成的三角形与A、B、C组成的三角形是全等三角形;
将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用配准方法将术中标记的点和术前规划的点进行配准,以实现股骨侧和髋臼侧表面的精确配准。
在本申请的一个实施例中,所述机械臂控制模块包括机械臂位置定位子模块;
所述机械臂位置定位子模块,被配置为将机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使光学跟踪子模块实时获取机械臂的空间位置信息。
在本申请的一个实施例中,所述机械臂控制模块在进行磨锉操作时,被配置为:
确定安全操作范围和锥形立体定向边界;
当机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;
在本实施例中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示边界的横截面进行机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当机械臂在锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作,机械臂支持动力完成高速磨钻操作,若机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
在本申请的一个实施例中,所述机械臂控制模块在进行压配操作时,被配置为:
在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;
其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界;
其中,在操作过程中,实时监测患者是否发生体位移动,如果监测到体位移动,机械臂将会进行位置实时补偿,在补偿模式下提供引导操作辅助完成操作。
在本申请的一个实施例中,所述关节置换手术机器人导航定位系统还包括显示模块;
所述显示模块与所述光学导航定位模块通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
在本申请的一个实施例中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型。
在本申请的一个实施例中,所述光学导航定位模块还包括术后验证子模块;
所述术后验证子模块被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
第二方面,本申请实施例还提供了一种关节置换手术机器人导航定位方法,包括:
根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
第三方面,本申请实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如第二方面所述关节置换手术机器人导航定位方法的步骤。
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位系统及方法,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些图获得其他的附图。
图1是本申请一实施例提供的一种关节置换手术机器人导航定位系统的结构示意图;
图2是本申请一实施例提供的一种关节置换手术机器人导航定位系统光学定位模块的结构示意图;
图3是本申请一实施例提供的一种关节置换手术机器人导航定位系统机械臂控制模块的结构示意图;
图4是本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图;
图5是本申请一实施例提供的一种关节置换手术机器人导航定位方法的流程图;
图6是本申请一实施例提供的另一种关节置换手术机器人导航定位方法的流程图;
图7是本申请一实施例提供的一种关节置换手术机器人导航定位系统髋臼杯植入计划示意图;
图8是本申请一实施例提供的一种关节置换手术机器人导航定位系统股骨柄植入计划示意图;
图9是本申请一实施例提供的一种关节置换手术机器人导航定位系统截骨操作示意图;
图10是本申请一实施例提供的一种关节置换手术机器人导航定位系统磨锉操作示意图;
图11是本申请一实施例提供的一种关节置换手术机器人导航定位系统压配操作示意图;
图12是本申请一实施例提供的另一种关节置换手术机器人导航定位系统在锥形立体定向边界内进行安全磨锉的操作示意图;
图13是本申请一实施例提供的一种关节置换手术机器人导航定位系统复位操作示意图;
图14是本申请一实施例提供的一种关节置换手术机器人导航定位系统的配准过程示意图;
图15是本申请一实施例提供的一种骨科手术机器人的应用场景示意图;
图16是本申请一实施例提供的一种关节置换手术机器人导航定位系统磨锉场景示意图;
图17是本申请一实施例提供的一种关节置换手术机器人导航定位系统压配场景示意图;
图18是本申请一实施例的电子设备的结构示意图。
下面结合附图,对本申请的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本申请的技术方案,而不能以此来限制本申请的保护范围。
图1示出了本申请一实施例提供的一种关节置换手术机器人导航定位系统的结构示意图,下面结合图1对本申请实施例提供的关节置换手术机器人导航定位系统进行详细解释和说明。
如图1所示,本申请一实施例提供的一种关节置换手术机器人导航定位系统,包括:术前规划模块1、光学导航定位模块2和机械臂控制模块3;
术前规划模块1,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
光学导航定位模块2,被配置为根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
机械臂控制模块3,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本实施例中,可以通过成像设备(CT/MRI/X线)对病人的骨盆及双下肢进行术前扫描,生成术前骨盆及双下肢的三维视图。可选的,手术导航系统在术前读入DICOM格式CT图像,并对髋关节图像进行分割处 理得到多个分割图像,根据多个分割图像对应的图像数据重建个体化复杂髋关节三维模型(这一步可以根据现有算法实现),包括虚拟骨盆和股骨,以使手术人员通过髋关节三维模型在术前充分评估病人情况、利用系统软件规划手术入路和模拟髋关节(股骨侧、髋臼侧)手术方案。所述手术方案包括假体植入的位置、大小和角度等手术信息。本申请实施例可以在普通计算机上实现医学图像处理,使医生可以对可视化三维图像任意剖分。在手术导航系统中,病灶信息在视觉上清晰可见,而且便于手术操作。
在本实施例中,通过计算机系统导入手术导航系统,包括测量髋臼形态、骨量、髋臼外展角及前倾角、腿长差异和偏心距。术中可根据实际测量数据并及时在电脑中显示对所有数据进行模板化,以确定假体的大小和位置。
在本实施例中,如图7本申请一实施例提供的一种关节置换手术机器人导航定位系统髋臼杯植入计划示意图和图8本申请一实施例提供的一种关节置换手术机器人导航定位系统股骨柄植入计划示意图所示,术前规划确定假体植入的方案,包括:模拟髋臼杯和股骨柄植入后的实况,并显示假体相关信息。
在本实施例中,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的髋关节的骨盆和股骨的空间位置。相应的,在手术探针进行采点时导航相机跟踪手术探针尾部的示踪元件,通过算法计算出所采集点的空间位置,进而将手术探针与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中会显示出相应的采集点,通过点云配准算法,分别实现股骨侧和髋臼侧表面的精确配准。可以理解的是,术中导航模块2需要将术中病人体位与术前扫描数据(如CT和MRI)进行坐标系配准,从而找到术前扫描数据与术中病人体位的转换关系,进而根据术中病人体位对术前规划生成的髋关节三维模型进行修正,以降低术前规划过程中标记点空间位置的误差,从而极大的提高配准精度。
基于上述实施例的内容,在本实施例中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计 划确定子模块和计划方案确认子模块;
其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;
所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型;
所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,以及髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;
举例来说,当髋关节三维模型髋臼直径为50mm,确定相应的髋臼侧植入假体的大小型号约为50mm,当髋臼前倾角为20°,髋臼外展角为40°,根据髋臼旋转中心位置及保证髋臼杯覆盖率大于70%情况,确定髋臼植入假体的具体位置。
所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴和股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴和股骨颈干角,确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;
可选地,可以根据股骨头旋转中心,确定股骨侧假体旋转中心,并根据股骨髓腔解剖轴确定股骨侧假体轴线,根据股骨髓腔形态及颈干角确定股骨侧假体大小号。
所述计划方案确认子模块,被配置为确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若否,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若是,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
在本实施例中,在确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适时,包括:
髋臼侧假体大小型号合适标准:髋臼杯直径近似于髋臼直径相等,髋 臼杯与髋臼前后径贴合但又不过多磨损骨质,保证髋臼杯覆盖率大于70%。髋臼杯位置合适的标准:髋臼杯放置在安全区。股骨合适的标准:股骨侧假体与股骨贴合。
在本申请实施例中,采用一种优选的实施方式,将术前在扫描数据上选定的点云与术中医生标定的点云进行拟合,找出最合适的旋转矩阵,其中医生在病人人体上标定的点会参照术前选定的点,当医生标定的点和术前选定的点在人体上不在同一位置时,需要根据医生标记的点云的空间位置关系和结构来实时修正术前选定的点云的位置,使最终配准结果达到较高的精度。其中,点云配准算法如下:
以使用手术探针采集至少三个病人解剖结构上的点为例,此时配准算法的最小单元为三角形,假设医生术中标记的点为A B C三点,对应的术前规划点为a b c,可以默认医生标记的点都在人体组织表面上,则我们需要在a b c的邻域中找到点a’,b’,c’,使三角形ABC和三角形a’b’c’全等,其中a’b’c’点都在人体组织表面上,这样a’b’c’三点与ABC三点在人体组织上的位置重合度极高,因为三角形具有唯一性。如图14所示,本申请一实施例提供的一种关节置换手术机器人导航定位系统的配准过程示意图。图中左侧A、B、C为医生术中标记的点,右侧a、b、c为术前规划的点,可以看出,(A、B、C)和(a、b、c)有明显的空间位置误差,右侧空白标记点为a、b、c邻域空间的点集。在大量空白标记点中筛选出a’、b、’c’,由a’、b、’c’组成的三角形与A、B、C组成的三角形基本上是全等三角形,此时将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用ICP配准方法即可将术中标记的点和术前规划的点进行配准,以实现股骨侧和髋臼侧表面的精确配准。
可以理解的是,由于三角形具有唯一性和足够的稳定性,因此在配准时采用三角形作为配准最小单元能够有效提高配准的准确性,从而可以实现股骨侧和髋臼侧表面的精确配准。
在本实施例中,在完成股骨侧和髋臼侧表面的精确配准后,操纵机械臂实现对骨骼的定位,机械臂结合配套的手术工具完成操作,为髋关节置换的精准操作提供保障,同时术中还能进行手术计划的微调,突破传统的手术工具的限制,实现患者的个性化设计,完成假体置换,以恢复关节的 自然运动。可选地,将机械臂的末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作,如图9、图10、图11和图12所示。其中,导航指令匹配术前规划模块1制定的手术方案。
在本实施例中,机械臂控制模块3涉及的机器人本体包括可移动基座、七自由度机械臂和机器人末端执行器。其中,可移动基座作为整个装置的基座,七自由度机械臂固定安装于可移动基座的上方,通过信号电缆与控制器相连并接受其控制信号,机器人末端执行器固定安装于机械臂末端的机械接口上,并通过导线与控制器相连以接收控制信号,机器人末端执行器作为机器人的作业工具,包括手术用的骨锯、骨钻和夹持工具。
在本实施例中,本申请实施例的性能指标包括定位误差、重复定位精度、机械臂距离测量误差、机械臂工作范围、机械臂负载位移、机械臂头端受力方向移动、软件功能(含患者序列管理、三维浏览、图像配准、三维重建、手术计划制定、患者注册、术中定向定位),可辅助完成髋关节置换的骨科手术,完成截骨、磨搓、固定等操作。
基于上述实施例的内容,在本实施例中,所述机械臂控制模块在进行磨锉操作时,被配置为:
确定安全操作范围和锥形立体定向边界;
当机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;
其中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示边界的横截面进行机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当机械臂在锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作(同轴的设置能够有效保证手术操作的一致性以及安全性),机械臂支持动力完成高速磨钻操作,若机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
在本实施例中,髋臼侧在机械臂的引导下进行可视化磨锉,保留骨量较少出血,如图12所示,系统设置了安全范围及立体定向边界来指导机 械臂操作,如果用户试图在计划外进行操作,系统会出现加力产生一个锥形壁垒(立体定向边界),当髋臼锉足够靠近计划的髋臼内的髋臼杯位置时,边界会自动出现,边界设计为特定形状,当髋臼锉靠近靶点位时候会显示边界的横截面进行机械臂的限制,当髋臼锉偏离立体定向边界,系统会进行引导用户回到计划的边界内,同时当机械臂时在立体定向边界应用时候,在定位控制范围内需要依据同轴完成操作,机械臂支持动力完成高速磨钻操作,如果机械臂移出定位控制以外5度,钻的电源会被切断停止磨锉操作,对于立体定向边界没有应用的时候,用户可以任意倾斜和偏转角度进行扩锉。由此可见,本实施例通过锥形立体定向边界来约束机械臂的操作过程,有效保证了通过机械臂进行手术操作的安全性。本实施例能够很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
在本实施例中,可以理解的是,锥形立体定向边界的角度范围大约在10-15°,这里的角度是指偏离髋臼轴的角度,以保证患者的安全。
基于上述实施例的内容,在本实施例中,所述机械臂控制模块在进行压配操作时,被配置为:
在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;
其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界。
在本实施例中,机械臂引导下定位髋臼杯位置,通过视觉效果及力反馈辅助医生准确植入,在进行压配髋臼时,将压配杆移入髋臼位置时,立体定向边界将会启动,实时对齐前倾角、外展角使之与屏幕计划的角度匹配并进行效果展示(例如:前倾20度、外展40度),即髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时用户停止操作,系统同时更新压配图和立体定向边界,在用户操作过程中,利用术中导航系统能够实时监测患者是否发生体位移动,如果监测体位移动机械臂将会进行位置的实时补偿,在补偿模式下提供引导操作辅助医生完成操作。在本申请中,机械臂为7自由度活动关节,在使用操作过程中存在两种状态, 包含:“自由臂”状态,机械臂不受约束能够进行机械臂的自由移动,不受立体定向边界的限制、“固定臂”状态,机械臂在约定的范围内进行移动,同时也为机械臂提供了一个安全静息状态,较自由臂相比存在更多的阻力。同时,系统设定了多重控制及保护机制,显示器进行压配前倾20外展40的实时效果展示引导用户操作同时设定边界保护,模型动力可根据在边界保护范围内实现自动停止及声音提示,同时可支持用户完成急停,机械保护、断电保护等功能操作。
在本实施例中,采用一种优选的实施方式,本申请实施例还可以包括以下几部分——机械臂系统、光学导航定位系统、计算机控制系统及配套辅助工具组成。通过“机械臂+导航”模式实现光学导航下的机械臂实时定位和操作。对机器人辅助导航系统的全空间坐标转换技术,研究了图像中规划的工具投影变换到患骨坐标系下的方法,并基于光学定位系统建立了患骨坐标系与机器人基坐标系之间的映射关系,从而建立图像坐标系到机器人坐标系的变换。可选地,术前/术中获取患者损伤部位的影像并上传到主控台完成识别,医生通过主控台规划手术路径设计。医生将机械臂拖动至术区后,机械臂按照规划好的手术路径进行精准定位,并完成术中操作。在本实施例中,计算机系统可针对CT数据进行重建、分割完成术前计划,同时具有自动识别3D图像的体表特征标记点的功能,并通过标志点配准实现患者空间、机器人空间、图像空间的坐标映射,利用七自由度机构的运动控制算法,包括快速定位的点位控制及精确轨迹控制,实现控制机器人运动,并依据设定的参考位置调整机器人运动轨迹规划。光学导航定位系统一般是由测量仪器、传感器、光学定位仪等计算机软件构成。建模与规划阶段主要依靠影像系统完成图像的采集、处理与特征分析,确定手术实施策略,此阶段主要由机器人的规划导航定位部分来确保手术的操作与运行。在本实施例中,计算机系统的中央控制模块通过局域网络与光学跟踪系统相连接,接受来自导航装置的导航指令,并将机器人位置、姿态等自身信息输出到光学跟踪系统,中央控制模块通过PCI总线与多轴运动控制模块相连接,中央控制模块完成机器人运动规划,并将指令发送到多轴运动控制模块,由后者具体实现机器人运动控制。机械臂为多自由度臂,依靠机械臂配合专用手术器械,根据术前规划参数无需更改机位即 可完全覆盖整个全髋关节置换手术所涉及的空间范围,完成精准定位。
在本实施例中,本申请实施例涉及的手术辅助机器人能自主实现手术术前规划的操作动作,并可在手术中由医师随时进行调整,并且机械手的定位准确、稳定且有力,可以避免外科医生长时间手术而带来的疲劳,以及可能造成医生手臂颤动,从而提高了手术的精度、稳定性以及安全性。此外,本申请实施例自由度高,适用性强。现有骨科手术辅助机器人系统都是为特定手术作业设计的,而本申请实施例涉及的手术辅助机器人有7自由度,灵活性高,还具有冗余自由度,便于与医师协同作业。
在本实施例中,功能模块之间采用快速接口技术(数据接口及机械接口),以方便组装框架及连接驱动电机和线缆。
在本实施例中,采用一种优选的实施方式,本申请实施例可以采用上下位机的控制结构,上位机采用计算机系统,根据术前计划内容向下位机发送运动控制信号;下位机是7自由度机械臂,接收上位机传来的控制指令,从而实现机器人的连接与运动。在系统控制同时使用了自动控制和手动控制两种不同的控制方式:采用自动控制时,用计算机系统作为上位机,完成和医生的人机交互工作,并将控制信息发送给下位机器人;采用手动控制时,用手控面板作为上位机,由医生直接通过按钮来控制导航单元和牵引单元的运动。这样的设计实现了控制系统的冗余:在通常情况下可以使用计算机系统自动控制来方便的控制导航单元和机器人定位单元的运动:一旦计算机系统出现故障,还可以使用手控面板,这样就提高了控制系统的可靠性和稳定性。
在本实施例中,本申请实施例结构开放,能够作为基础平台与导航系统完美结合。操作方式灵活,既可以与自动导航装置连接,在导航装置的引导下作为执行机构完成术前规划的操作,也可以作为独立的手术辅助器械在医师的操作下实现截骨、磨削等手术操作,并且极大提高了实时跟踪数据流的质量和防抖动功能。
在本实施例中,如图15,本申请一实施例提供的一种骨科手术机器人的应用场景示意图所示,a表示主控台车显示器,被设置为完成术前规划和显示整个手术过程的实况信息;b表示主控台车,被设置为承载主控台车显示器a,可任意移动;i表示光学导航仪,被设置为追踪机械臂d、探 针c、股骨参考架l和髋臼参考架m的空间位置;c表示手术探针,被设置为收集患者解剖结构上的一些点;d表示骨科手术机器人的机械臂,所述机械臂为7自由度机械臂,固定安装于可移动基座的上方,通过信号电缆与控制器相连并接受其控制信号。e表示磨锉杆,被设置为通过机械臂d实现磨锉操作;f表示机械臂标定支架,被设置为承载机械臂d;g表示机械臂动力,可根据头端受力方向移动,完成截骨和固定等操作;h表示手术床,被设置为承载手术患者;m表示髋臼参考架,被设置为定位患者髋臼侧位置;l表示股骨参考架,被设置为定位患者股骨位置;j表示光学导航仪显示器,被设置为显示由光学导航仪i捕捉到的机械臂d、探针c、股骨参考架l和髋臼参考架m的空间姿态;k表示光学导航底座,被设置为承载光学导航仪i和光学导航仪显示器j,可任意移动。如图16和图17所示,本申请实施例先进行磨锉操作,后进行压配操作。
在本实施例中,采用一种优选的实施方式,本申请实施例在假体植入后,还可以包括被配置为确认是否进行手术复位的复位确定子模块,参见图13,本申请一实施例提供的一种关节置换手术机器人导航定位系统复位操作示意图。
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位系统,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块,被配置为:
根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿。
在本实施例中,如图2本申请一实施例提供的一种关节置换手术机器人导航定位系统光学定位模块的结构示意图所示,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的骨盆和股骨的空间位置。相应的,在机械臂进入系统导航相机追踪范围时,通过机械臂上的示踪元件确定机械臂所在空间位置,进而将机械臂与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中可以实时显示机械臂的姿态和位置信息。由此可见,本申请实施例通过术前/术中获得的待手术区的基准位置与机械臂所在的实时位置进行比对和标定,从而实现对机械臂的追踪和导航。而现有的髋关节置换技术,术中将影像与患者实际骨组织进行实际空间位置配准注册的过程操作难度系数大,不能对机械臂进行位置校准,存在机械臂位置误差的情况。
在本实施例中,由于骨组织附着有皮肤、肌肉且处于较深处,手术中难以充分暴露,肉眼难以透视,为获取准确施术位置,传统手术需要借助术中多次CT扫描,通过结合图像、人眼观察及医生经验才能确定手术位点,造成误差较大且对医生经验依赖较重。骨科机器人需要通过术前/术中获得的待手术区的基准位置与手术器械所在的实时位置进行比对和标定,从而实现对手术器械的追踪和导航。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块包括光学跟踪子模块4;
所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的髋关节实体模型对机械臂模型位置进行校准;
在本实施例中,如图15本申请一实施例提供的一种关节置换手术机器人导航定位系统的机械臂标定示意图所示,在根据患者髋关节和机械臂 的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿后,对机械臂模型的位置进行校准。光学跟踪子模块4负责术中实时定位监测,对定位误差进行实时动态调整,引导机械臂自动调整。而现有技术有关导航机器人系统的涉及,还无法满足手术计划的微调,无法突破传统的手术工具带来的限制。由此可见,本申请实施例可以对机械臂及手术器械进行位置校准,精准计算不同手术器械的工具坐标系,通过软件实现标志点的识别和不同坐标系的转换。
基于上述实施例的内容,在本实施例中,如图3本申请一实施例提供的一种关节置换手术机器人导航定位系统机械臂控制模块的结构示意图所示,所述机械臂控制模块包括机械臂位置定位子模块5;
所述机械臂位置定位子模块5,被配置为将机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使光学跟踪子模块实时获取机械臂的空间位置信息。
在本实施例中,机械臂位置定位子模块5可以将获取的有关机械臂的位置和姿态信息发送至光学跟踪子模块4,以使光学跟踪子模块实时获取机械臂的空间位置信息,从而根据机械臂的空间位置信息对机械臂进行误差校准。
基于上述实施例的内容,在本实施例中,如图4本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图所示,所述关节置换手术机器人导航定位系统还包括显示模块6;
所述显示模块6与所述光学导航定位模块2通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
在本实施例中,显示模块6被配置为通过人机交互显示屏将髋关节书中的实体模型的即时状态进行显示,以便医生进行参考和把控。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以使根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型。
在本实施例中,术中利用手术探针的针尖点触髋臼侧和股骨测上至少 三个不同位置,以使根据手术探针采集股骨解剖结构上至少三个点的空间位置和股骨参考架的空间位置关系,对髋关节三维模型中的股骨进行配准,以及,根据手术探针采集髋臼侧结构上至少三个点的空间位置和骨盆参考架的空间位置关系,对髋关节三维模型中的髋臼侧进行配准。
基于上述实施例的内容,在本实施例中,如图4本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图所示,所述关节置换手术机器人导航定位系统还包括术后验证子模块6;
所述术后验证子模块6被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
在本实施例中,在髋臼侧和股骨侧配准完成后,根据配准后的采集点距离骨表面的距离验证配准是否正确。
基于相同的发明构思,本申请另一实施例提供了一种关节置换手术机器人导航定位方法,如图5本申请一实施例提供的一种关节置换手术机器人导航定位方法的流程图和图6本申请一实施例提供的另一种关节置换手术机器人导航定位方法的流程图所示,所述方法包括:
步骤501:根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
在本步骤中,可以通过成像设备(CT/MRI/X线)对病人的骨盆及双下肢进行术前扫描,生成术前骨盆及双下肢的三维视图。可选的,手术导航系统在术前读入DICOM格式CT图像,并对髋关节图像进行分割处理得到多个分割图像,根据多个分割图像对应的图像数据重建个体化复杂髋关节三维模型,包括虚拟骨盆和股骨,以使手术人员通过髋关节三维模型在术前充分评估病人情况、利用系统软件规划手术入路和模拟髋关节(股骨侧、髋臼侧)手术方案。所述手术方案包括假体植入的位置、大小和角度等手术信息。本申请实施例可以在普通计算机上实现医学图像处理,使医生可以对可视化三维图像任意剖分。在手术导航系统中,病灶信息在视觉上清晰可见,而且便于手术操作。
步骤502:根据手术方案生成导航指令,以及,根据光学定位仪,患 者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
在本步骤中,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的髋关节的骨盆和股骨的空间位置。相应的,在手术探针进行采点时导航相机跟踪手术探针尾部的示踪元件,通过算法计算出所采集点的空间位置,进而将手术探针与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中会显示出相应的采集点,通过点云配准算法,分别实现股骨侧和髋臼侧表面的精确配准。可以理解的是,术中需要术中病人体位与术前扫描数据(如CT和MRI)进行坐标系配准,从而找到术前扫描数据与术中病人体位的转换关系,进而根据术中病人体位对术前规划生成的髋关节三维模型进行修正,以降低术前规划过程中标记点空间位置的误差,从而极大的提高配准精度。
步骤503:将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本步骤中,在完成股骨侧和髋臼侧表面的精确配准后,操纵机械臂实现对骨骼的定位,机械臂结合配套的手术工具完成操作,为髋关节置换的精准操作提供保障,同时术中还能进行手术计划的微调,突破传统的手术工具的限制,实现患者的个性化设计,完成假体置换,以恢复关节的自然运动。具体的,将机械臂的末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作。其中,导航指令匹配术前规划制定的手术方案。
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位方法,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结 构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
本实施例所述的关节置换手术机器人导航定位方法可以用于执行上述方法实施例,其原理和技术效果类似,此处不再赘述。
基于相同的发明构思,本申请又一实施例提供了一种电子设备,参见图18所述电子设备的结构示意图,包括如下内容:处理器1901、存储器1902、通信接口1903和通信总线1904;
其中,所述处理器1901、存储器1902、通信接口1903通过所述通信总线1904完成相互间的通信;所述通信接口1903被配置为实现各设备之间的信息传输;
所述处理器1901被配置为调用所述存储器1902中的计算机程序,所述处理器执行所述计算机程序时实现上述一种关节置换手术机器人导航定位方法的全部步骤,例如,根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;根据手术方案生成导航指令,以及,根据患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置;将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
基于相同的发明构思,本申请又一实施例提供了一种非暂态计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述一种关节置换手术机器人导航定位方法的全部步骤,例如,根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;根据手术方案生成导航指令,以及,根据患者髋关节和手术探针的 空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置;将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的关节置换手术机器人导航定位方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (14)
- 一种关节置换手术机器人导航定位系统,包括:术前规划模块、光学导航定位模块和机械臂控制模块;所述术前规划模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;所述光学导航定位模块,被配置为根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将所述髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;所述机械臂控制模块,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计划确定子模块和计划方案确认子模块;其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到所述髋关节三维模型;所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角以及髋臼外展角,综合考虑髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;所述计划方案确认子模块,被配置以确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若所述髋臼侧计划确定子模块确定的髋臼侧假 体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划不合适,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划合适,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块,被配置为:根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定所述患者骨骼手术位置和机械臂的实时位姿。
- 根据权利要求3所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块包括光学跟踪子模块;所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的所述髋关节实体模型对机械臂模型位置进行校准。
- 根据权利要求4所述的关节置换手术机器人导航定位系统,其中,所述光学跟踪子模块在根据机械臂与骨盆参考架和股骨参考架的空间位置关系对所述髋关节实体模型进行配准时,被配置为:以三角形为配准过程中的最小单元,若医生术中标记的点为A、B、C三点,对应的术前规划点为a、b、c,其中,医生标记的点都在人体组织表面上;在a、b、c分别对应的邻域空间点集中筛选出对应的点a’、b’、c’,使三角形ABC和三角形a’b’c’全等,其中,a’b’c’三点都在人体组织表面上;其中,由a’、b、’c’组成的三角形与A、B、C组成的三角形是全等三角形;将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用配准方法将术中标记的点和术前规划的点进行配准,以实现股骨侧 和髋臼侧表面的精确配准。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块包括机械臂位置定位子模块;所述机械臂位置定位子模块,被配置为将所述机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使所述光学跟踪子模块实时获取机械臂的空间位置信息。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块在进行磨锉操作时,被配置为:确定安全操作范围和锥形立体定向边界;当所述机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;其中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示所述边界的横截面进行所述机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当所述机械臂在所述锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作,所述机械臂支持动力完成高速磨钻操作,若所述机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
- 根据权利要求7所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块在进行所述压配操作时,被配置为:在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界;其中,在操作过程中,实时监测患者是否发生体位移动,如果监测体位移动所述机械臂将会进行位置实时补偿,在补偿模式下提供引导操作辅助完成操作。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,还包括显示模块;所述显示模块与所述光学导航定位模块通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以使根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到所述髋关节实体模型。
- 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块还包括术后验证子模块;所述术后验证子模块被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
- 一种关节置换手术机器人导航定位方法,包括:根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将所述髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
- 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求12所述关节置换手术机器人导航定位方法的步骤。
- 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求12所述关节置换手术机器人导航定位方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21904774.3A EP4265213A4 (en) | 2020-12-18 | 2021-01-22 | NAVIGATION AND POSITIONING SYSTEM AND METHOD FOR SURGICAL JOINT REPLACEMENT ROBOT |
US18/258,160 US11950859B2 (en) | 2020-12-18 | 2021-01-22 | Navigation and positioning system and method for joint replacement surgery robot |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011506573.3 | 2020-12-18 | ||
CN202011506573.3A CN112641510B (zh) | 2020-12-18 | 2020-12-18 | 关节置换手术机器人导航定位系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022126827A1 true WO2022126827A1 (zh) | 2022-06-23 |
WO2022126827A9 WO2022126827A9 (zh) | 2023-06-22 |
Family
ID=75355290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/073209 WO2022126827A1 (zh) | 2020-12-18 | 2021-01-22 | 关于置换手术机器人导航定位系统及方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11950859B2 (zh) |
EP (1) | EP4265213A4 (zh) |
CN (1) | CN112641510B (zh) |
WO (1) | WO2022126827A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115300038A (zh) * | 2022-07-15 | 2022-11-08 | 北京和华瑞博医疗科技有限公司 | 控制装置、髋关节置换系统、可读存储介质及电子设备 |
CN115553923A (zh) * | 2022-09-19 | 2023-01-03 | 重庆生物智能制造研究院 | 踝关节手术机器人系统及其控制方法 |
CN115645050A (zh) * | 2022-11-07 | 2023-01-31 | 上海卓昕医疗科技有限公司 | 手术导航系统及手术导航系统的控制方法 |
CN116342672A (zh) * | 2023-05-26 | 2023-06-27 | 杭州三坛医疗科技有限公司 | 髋关节实际位置配准方法、装置、电子设备及存储介质 |
CN116619393A (zh) * | 2023-07-24 | 2023-08-22 | 杭州键嘉医疗科技股份有限公司 | 基于svm的机械臂变导纳控制方法、装置及设备 |
CN116725684A (zh) * | 2022-09-27 | 2023-09-12 | 北京和华瑞博医疗科技有限公司 | 关节手术装置及外科手术系统 |
CN116942312A (zh) * | 2023-09-20 | 2023-10-27 | 中南大学 | 一种关节置换手术辅助定位方法及系统 |
CN116983086A (zh) * | 2023-09-26 | 2023-11-03 | 北京长木谷医疗科技股份有限公司 | 一种自主关节置换手术机器人导航定位系统 |
CN117064550A (zh) * | 2023-08-31 | 2023-11-17 | 中日友好医院(中日友好临床医学研究所) | 一种体外冲击波治疗股骨头坏死的虚拟仿真系统及装置 |
US11944392B2 (en) | 2016-07-15 | 2024-04-02 | Mako Surgical Corp. | Systems and methods for guiding a revision procedure |
WO2024196134A1 (ko) * | 2023-03-21 | 2024-09-26 | 주식회사 코렌텍 | 수술 보조 로보틱 시스템 및 그를 통한 자세제어 방법 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270166B (zh) * | 2021-05-07 | 2022-02-22 | 北京长木谷医疗科技有限公司 | 一种髋臼窝的磨挫计算方法、装置、磨挫工具及存储介质 |
CN113400305B (zh) * | 2021-06-07 | 2023-01-17 | 北京长木谷医疗科技有限公司 | 磨挫工具的控制方法、装置、电子设备及存储介质 |
CN113349933A (zh) * | 2021-07-08 | 2021-09-07 | 杭州柳叶刀机器人有限公司 | 一种机器人系统 |
CN115381557A (zh) * | 2021-07-09 | 2022-11-25 | 武汉联影智融医疗科技有限公司 | 末端工具位姿的实时修正方法、系统以及手术机器人 |
CN113679447B (zh) * | 2021-07-20 | 2023-02-28 | 国家康复辅具研究中心 | 一种用于股骨远端截骨术的导航模板及其设计方法 |
CN113808163A (zh) * | 2021-08-30 | 2021-12-17 | 中科尚易健康科技(北京)有限公司 | 机械臂位置的动图动态展示方法和控制终端 |
CN113850851B (zh) * | 2021-09-03 | 2022-10-21 | 北京长木谷医疗科技有限公司 | 手术机器人骨骼的配准方法及系统 |
CN113925564B (zh) * | 2021-10-15 | 2024-09-03 | 汕头大学 | 一种用于髋臼磨锉的系统 |
CN114010321B (zh) * | 2021-10-20 | 2022-08-23 | 中科智博(珠海)科技有限公司 | 一种骨科导航手术机器人设备 |
CN113893035A (zh) * | 2021-10-27 | 2022-01-07 | 杭州柳叶刀机器人有限公司 | 一种关节置换手术导航系统及计算机可读存储介质 |
CN114305688A (zh) * | 2021-12-22 | 2022-04-12 | 杭州键嘉机器人有限公司 | 一种基于柔性法兰的髋关节置换手术导航定位方法 |
CN116327360A (zh) * | 2021-12-24 | 2023-06-27 | 北京天智航医疗科技股份有限公司 | 用于髋关节置换手术的机器人辅助导航系统及手术系统 |
CN114305697B (zh) * | 2021-12-25 | 2024-08-09 | 山东航维骨科医疗器械股份有限公司 | 一种关节置换手术机器人的控制方法 |
CN114533277B (zh) * | 2022-02-24 | 2024-07-05 | 上海电气集团股份有限公司 | 机械臂的控制方法、电子设备和存储介质 |
CN114681058B (zh) * | 2022-03-02 | 2023-02-28 | 北京长木谷医疗科技有限公司 | 用于关节置换术的导航定位系统精度验证方法及装置 |
CN116831731A (zh) * | 2022-03-23 | 2023-10-03 | 北京天智航医疗科技股份有限公司 | 用于髋关节置换手术的机械臂辅助导航系统及手术系统 |
CN114748168B (zh) * | 2022-04-27 | 2024-09-03 | 汕头大学 | 一种全髋关节置换手术机器人系统 |
CN115137482B (zh) * | 2022-07-05 | 2024-08-30 | 杭州湖西云百生科技有限公司 | 关节置换计算机辅助手术的导航与定位数据治理方法 |
CN115381554B (zh) * | 2022-08-02 | 2023-11-21 | 北京长木谷医疗科技股份有限公司 | 一种骨科手术机器人智能位置调整系统及方法 |
CN115300041B (zh) * | 2022-08-10 | 2023-03-14 | 骨圣元化机器人(深圳)有限公司 | 髋臼截骨矫形手术定位工具、系统及计算机设备 |
CN115444565B (zh) * | 2022-08-22 | 2024-01-30 | 北京长木谷医疗科技股份有限公司 | 手术机器人系统及其执行末端的反馈控制系统和方法 |
CN115462900A (zh) * | 2022-09-19 | 2022-12-13 | 山东科技大学 | 一种脊椎手术机器人椎板磨削轨迹规划方法 |
CN117814908A (zh) * | 2022-09-28 | 2024-04-05 | 北京和华瑞博医疗科技有限公司 | 采样点提示装置、髋关节置换系统、电子设备和介质 |
CN115607281B (zh) * | 2022-11-15 | 2023-05-12 | 北京市春立正达医疗器械股份有限公司 | 髋关节骨科手术导航系统 |
CN115830247B (zh) * | 2023-02-14 | 2023-07-14 | 北京壹点灵动科技有限公司 | 髋关节旋转中心的拟合方法和装置、处理器及电子设备 |
CN116098707B (zh) * | 2023-04-13 | 2023-07-11 | 青岛大学附属医院 | 无线电磁波引导的远程手术系统 |
CN116473678B (zh) * | 2023-06-21 | 2023-09-29 | 杭州键嘉医疗科技股份有限公司 | 一种虚拟墙引导末端执行器移动的方法及装置 |
CN116942310B (zh) * | 2023-06-29 | 2024-04-02 | 北京长木谷医疗科技股份有限公司 | 基于强化学习的智能骨科手术机器人系统 |
CN117064557B (zh) * | 2023-08-24 | 2024-03-29 | 春风化雨(苏州)智能医疗科技有限公司 | 用于骨科手术的手术机器人 |
CN117379184B (zh) * | 2023-10-26 | 2024-08-16 | 北京长木谷医疗科技股份有限公司 | 基于强化学习的关节手术机器人智能压配控制方法及装置 |
CN117671215B (zh) * | 2024-01-04 | 2024-05-28 | 北京长木谷医疗科技股份有限公司 | 关节置换手术机器人虚拟安全墙约束方法及装置 |
CN118121312B (zh) * | 2024-05-06 | 2024-11-01 | 北京壹点灵动科技有限公司 | 手术机器人系统、计算机可读存储介质及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281465A1 (en) * | 2004-02-04 | 2005-12-22 | Joel Marquart | Method and apparatus for computer assistance with total hip replacement procedure |
US20070073133A1 (en) * | 2005-09-15 | 2007-03-29 | Schoenefeld Ryan J | Virtual mouse for use in surgical navigation |
US20160128654A1 (en) * | 2014-02-25 | 2016-05-12 | JointPoint, Inc. | Systems and Methods for Intra-Operative Image Analysis |
CN107468351A (zh) * | 2016-06-08 | 2017-12-15 | 北京天智航医疗科技股份有限公司 | 一种手术定位装置、定位系统及定位方法 |
CN109890281A (zh) * | 2016-08-30 | 2019-06-14 | 马科外科公司 | 用于术中骨盆配准的系统和方法 |
CN111179350A (zh) * | 2020-02-13 | 2020-05-19 | 张逸凌 | 基于深度学习的髋关节图像处理方法及计算设备 |
CN111345895A (zh) * | 2020-03-13 | 2020-06-30 | 北京天智航医疗科技股份有限公司 | 全膝关节置换手术机器人辅助系统、控制方法及电子设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9008757B2 (en) * | 2012-09-26 | 2015-04-14 | Stryker Corporation | Navigation system including optical and non-optical sensors |
KR102101435B1 (ko) * | 2013-03-13 | 2020-04-17 | 스트리커 코포레이션 | 수술 절차들을 위한 준비시 수술실에 대상들을 배치하는 시스템 |
CN112370159A (zh) * | 2016-02-26 | 2021-02-19 | 思想外科有限公司 | 用于指导用户定位机器人的系统 |
WO2017204832A1 (en) * | 2016-05-27 | 2017-11-30 | Mako Surgical Corp. | Preoperative planning and associated intraoperative registration for a surgical system |
AU2019261299B2 (en) * | 2018-04-23 | 2024-07-25 | Mako Surgical Corp. | System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment |
CN110974426A (zh) * | 2019-12-24 | 2020-04-10 | 上海龙慧医疗科技有限公司 | 骨科关节置换手术机器人系统 |
CN111467036B (zh) * | 2020-04-15 | 2023-12-26 | 上海电气集团股份有限公司 | 手术导航系统、髋臼截骨的手术机器人系统及其控制方法 |
CN111938813A (zh) * | 2020-07-21 | 2020-11-17 | 南京市第一医院 | 一种髋关节翻修手术的术前规划方法 |
-
2020
- 2020-12-18 CN CN202011506573.3A patent/CN112641510B/zh active Active
-
2021
- 2021-01-22 WO PCT/CN2021/073209 patent/WO2022126827A1/zh active Application Filing
- 2021-01-22 US US18/258,160 patent/US11950859B2/en active Active
- 2021-01-22 EP EP21904774.3A patent/EP4265213A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281465A1 (en) * | 2004-02-04 | 2005-12-22 | Joel Marquart | Method and apparatus for computer assistance with total hip replacement procedure |
US20070073133A1 (en) * | 2005-09-15 | 2007-03-29 | Schoenefeld Ryan J | Virtual mouse for use in surgical navigation |
US20160128654A1 (en) * | 2014-02-25 | 2016-05-12 | JointPoint, Inc. | Systems and Methods for Intra-Operative Image Analysis |
CN107468351A (zh) * | 2016-06-08 | 2017-12-15 | 北京天智航医疗科技股份有限公司 | 一种手术定位装置、定位系统及定位方法 |
CN109890281A (zh) * | 2016-08-30 | 2019-06-14 | 马科外科公司 | 用于术中骨盆配准的系统和方法 |
CN111179350A (zh) * | 2020-02-13 | 2020-05-19 | 张逸凌 | 基于深度学习的髋关节图像处理方法及计算设备 |
CN111345895A (zh) * | 2020-03-13 | 2020-06-30 | 北京天智航医疗科技股份有限公司 | 全膝关节置换手术机器人辅助系统、控制方法及电子设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4265213A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11944392B2 (en) | 2016-07-15 | 2024-04-02 | Mako Surgical Corp. | Systems and methods for guiding a revision procedure |
CN115300038A (zh) * | 2022-07-15 | 2022-11-08 | 北京和华瑞博医疗科技有限公司 | 控制装置、髋关节置换系统、可读存储介质及电子设备 |
CN115300038B (zh) * | 2022-07-15 | 2023-06-09 | 北京和华瑞博医疗科技有限公司 | 控制装置、髋关节置换系统、可读存储介质及电子设备 |
CN115553923A (zh) * | 2022-09-19 | 2023-01-03 | 重庆生物智能制造研究院 | 踝关节手术机器人系统及其控制方法 |
CN116725684A (zh) * | 2022-09-27 | 2023-09-12 | 北京和华瑞博医疗科技有限公司 | 关节手术装置及外科手术系统 |
CN115645050A (zh) * | 2022-11-07 | 2023-01-31 | 上海卓昕医疗科技有限公司 | 手术导航系统及手术导航系统的控制方法 |
WO2024196134A1 (ko) * | 2023-03-21 | 2024-09-26 | 주식회사 코렌텍 | 수술 보조 로보틱 시스템 및 그를 통한 자세제어 방법 |
CN116342672A (zh) * | 2023-05-26 | 2023-06-27 | 杭州三坛医疗科技有限公司 | 髋关节实际位置配准方法、装置、电子设备及存储介质 |
CN116342672B (zh) * | 2023-05-26 | 2023-10-03 | 杭州三坛医疗科技有限公司 | 髋关节实际位置配准方法、装置、电子设备及存储介质 |
CN116619393A (zh) * | 2023-07-24 | 2023-08-22 | 杭州键嘉医疗科技股份有限公司 | 基于svm的机械臂变导纳控制方法、装置及设备 |
CN116619393B (zh) * | 2023-07-24 | 2023-11-14 | 杭州键嘉医疗科技股份有限公司 | 基于svm的机械臂变导纳控制方法、装置及设备 |
CN117064550A (zh) * | 2023-08-31 | 2023-11-17 | 中日友好医院(中日友好临床医学研究所) | 一种体外冲击波治疗股骨头坏死的虚拟仿真系统及装置 |
CN117064550B (zh) * | 2023-08-31 | 2024-04-30 | 中日友好医院(中日友好临床医学研究所) | 一种体外冲击波治疗股骨头坏死的虚拟仿真系统及装置 |
CN116942312A (zh) * | 2023-09-20 | 2023-10-27 | 中南大学 | 一种关节置换手术辅助定位方法及系统 |
CN116942312B (zh) * | 2023-09-20 | 2023-12-22 | 中南大学 | 一种关节置换手术辅助定位方法及系统 |
CN116983086B (zh) * | 2023-09-26 | 2024-01-09 | 北京长木谷医疗科技股份有限公司 | 一种自主关节置换手术机器人导航定位系统 |
CN116983086A (zh) * | 2023-09-26 | 2023-11-03 | 北京长木谷医疗科技股份有限公司 | 一种自主关节置换手术机器人导航定位系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112641510A (zh) | 2021-04-13 |
US20240065771A1 (en) | 2024-02-29 |
EP4265213A4 (en) | 2024-03-27 |
US11950859B2 (en) | 2024-04-09 |
WO2022126827A9 (zh) | 2023-06-22 |
EP4265213A1 (en) | 2023-10-25 |
CN112641510B (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022126827A1 (zh) | 关于置换手术机器人导航定位系统及方法 | |
WO2022126828A1 (zh) | 关节置换手术导航系统及方法 | |
WO2023029363A1 (zh) | 一种手术机器人导航定位系统及方法 | |
JP4815054B2 (ja) | 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法 | |
EP3322337B1 (en) | Computer-implemented lower extremities leg length calculation method | |
KR101837301B1 (ko) | 수술 항법 시스템 | |
US20170112508A1 (en) | Computer-assisted hip joint resurfacing method and system | |
JP2022133440A (ja) | ナビゲーション手術における拡張現実ディスプレイのためのシステム及び方法 | |
CN111345895A (zh) | 全膝关节置换手术机器人辅助系统、控制方法及电子设备 | |
KR20210137500A (ko) | 수술용 레지스트레이션을 위한 시스템 및 방법 | |
US20070073136A1 (en) | Bone milling with image guided surgery | |
CN111345896B (zh) | 截骨执行系统及定位、控制和模拟执行方法与电子设备 | |
US20070016008A1 (en) | Selective gesturing input to a surgical navigation system | |
US20080033442A1 (en) | Computer-assisted surgery tools and system | |
JP2022546381A (ja) | オーグメント式股関節形成術手順のためのロボット外科システム | |
WO2023116076A1 (zh) | 用于髋关节置换手术的机器人辅助导航系统及手术系统 | |
Jaramaz et al. | Precision freehand sculpting for unicondylar knee replacement: design and experimental validation | |
CN219579025U (zh) | 全功能骨科手术控制系统 | |
Wang et al. | Comparison analysis of robot-assisted computed tomography navigation system and manual freehand technique in orthopedic surgery | |
Jakopec et al. | Acrobot: a" hands-on" robot for total knee replacement surgery | |
Zixiang et al. | Robot-assisted orthopedic surgery | |
WO2023178944A1 (zh) | 用于髋关节置换手术的机械臂辅助导航系统及手术系统 | |
Kong et al. | Navigation method for mandible reconstruction surgery robot | |
CN117814913A (zh) | 全功能骨科手术控制系统 | |
CN116725681A (zh) | 末端执行器及手术系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21904774 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18258160 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021904774 Country of ref document: EP Effective date: 20230718 |