WO2022126827A9 - 关于置换手术机器人导航定位系统及方法 - Google Patents

关于置换手术机器人导航定位系统及方法 Download PDF

Info

Publication number
WO2022126827A9
WO2022126827A9 PCT/CN2021/073209 CN2021073209W WO2022126827A9 WO 2022126827 A9 WO2022126827 A9 WO 2022126827A9 CN 2021073209 W CN2021073209 W CN 2021073209W WO 2022126827 A9 WO2022126827 A9 WO 2022126827A9
Authority
WO
WIPO (PCT)
Prior art keywords
hip joint
acetabular
navigation
femoral
patient
Prior art date
Application number
PCT/CN2021/073209
Other languages
English (en)
French (fr)
Other versions
WO2022126827A1 (zh
Inventor
张逸凌
刘星宇
Original Assignee
北京长木谷医疗科技股份有限公司
张逸凌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京长木谷医疗科技股份有限公司, 张逸凌 filed Critical 北京长木谷医疗科技股份有限公司
Priority to EP21904774.3A priority Critical patent/EP4265213A4/en
Priority to US18/258,160 priority patent/US11950859B2/en
Publication of WO2022126827A1 publication Critical patent/WO2022126827A1/zh
Publication of WO2022126827A9 publication Critical patent/WO2022126827A9/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • A61F2002/4633Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery for selection of endoprosthetic joints or for pre-operative planning

Definitions

  • the present application relates to the field of medical technology, in particular to a navigation and positioning system and method for a joint replacement surgery robot.
  • hip arthroplasty as a more effective treatment method for hip joint diseases, has been widely carried out at home and abroad.
  • my country is a country with a high incidence of hip joint diseases, and it is estimated that nearly 10 million new patients will suffer from various hip joint related diseases in Asia.
  • traditional joint replacement surgery has imperfect preoperative planning, inadequate preoperative preparation, lack of precise intraoperative navigation and positioning, relies heavily on doctors' surgical experience, cumbersome operations, and poor repeatability, resulting in a high incidence of postoperative complications.
  • Traditional joint replacement surgery has imperfect preoperative planning, inadequate preoperative preparation, lack of precise intraoperative navigation and positioning, relies heavily on doctors' surgical experience, cumbersome operations, and poor repeatability, resulting in a high incidence of postoperative complications.
  • severely restrict the effect of hip replacement surgery has restrictive the effect of hip replacement surgery.
  • the embodiments of the present application provide a navigation and positioning system and method for a joint replacement surgery robot.
  • the embodiment of the present application provides a robot navigation and positioning system for joint replacement surgery, including: a preoperative planning module, an optical navigation and positioning module, and a robotic arm control module;
  • the preoperative planning module is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint, and perform preoperative planning according to the three-dimensional model of the hip joint to determine the surgical plan;
  • the optical navigation positioning module is configured to generate navigation instructions according to the operation plan, and, according to the optical positioner, the spatial position relationship between the patient's hip joint and the surgical probe, register the three-dimensional model of the hip joint to obtain a solid model of the hip joint , matching the hip joint solid model with the preoperative planning model, and determining the bone surgery position of the patient according to the hip joint solid model;
  • the robotic arm control module is configured to move the end effector to the bone operation position of the patient, and control the end effector to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instruction.
  • the preoperative planning module includes: a data acquisition submodule, a three-dimensional model reconstruction submodule, an acetabular side plan determination submodule, a femoral side plan determination submodule, and a plan confirmation submodule;
  • the data acquisition submodule is configured to acquire hip joint medical image data
  • the three-dimensional model reconstruction submodule is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint;
  • the acetabular side plan determination submodule is configured to determine the acetabular rotation center, acetabular diameter, acetabular anteversion, and acetabular abduction angle according to the hip joint three-dimensional model, and according to the acetabular rotation center, acetabular Diameter, acetabular anteversion angle and acetabular abduction angle, comprehensively consider the acetabular cup coverage, determine the size, type and position of the acetabular prosthesis;
  • the femoral side plan determination submodule is configured to determine the center of rotation of the femoral head, the shape of the femoral medullary cavity, the anatomical axis of the femoral medullary cavity, and the femoral neck-shaft angle according to the three-dimensional model of the hip joint, and according to the center of rotation of the femoral head, the femoral marrow
  • the shape of the cavity, the anatomical axis of the femoral medullary cavity and the femoral neck-shaft angle determine the size and position of the femoral prosthesis implantation, while considering the leg length difference and femoral union eccentricity;
  • the plan confirmation submodule is configured to confirm whether the acetabular side prosthesis implantation plan determined by the acetabular side plan determination submodule and the femoral side prosthesis implantation plan determined by the femoral side plan determination submodule are Appropriate, if not, then trigger the acetabular side plan determination submodule and the femoral side plan determination submodule to redetermine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan, if so, then the described
  • the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan determined by the acetabular side plan determination submodule and the femoral side plan determination submodule are used as preoperative planning schemes.
  • the optical navigation positioning module may be configured as:
  • the spatial position of the patient's hip joint is determined according to the pelvic reference frame and the femoral reference frame, and, according to the spatial position relationship between the patient's hip joint and the mechanical arm, the three-dimensional model of the hip joint is registered to obtain a solid model of the hip joint.
  • the physical model of the hip joint is used to determine the patient's bone surgery position and the real-time pose of the robotic arm.
  • the optical navigation positioning module includes an optical tracking sub-module
  • the optical tracking sub-module is configured to register the hip joint entity model according to the spatial positional relationship between the mechanical arm and the pelvic reference frame and the femoral reference frame, and to align the mechanical arm with the registered hip joint entity model.
  • the model position is calibrated.
  • the optical tracking sub-module is configured to:
  • the points marked by the doctor during the operation are A, B, and C
  • the corresponding preoperative planning points are a, b, and c.
  • the points marked by the doctor are all in the human tissue on the surface;
  • the robotic arm control module includes a robotic arm position positioning sub-module
  • the positioning sub-module of the robotic arm is configured to send the position and attitude information of the robotic arm to the optical tracking sub-module, so that the optical tracking sub-module acquires the spatial position information of the robotic arm in real time.
  • the manipulator control module when the manipulator control module is performing a filing operation, it is configured to:
  • the tapered stereotaxic boundary appears, and the boundary is designed as a specific conical shape
  • the acetabular reamer approaches the target position
  • a cross-section showing the boundaries performed by the robotic arm when the acetabular reamer deviates from the tapered stereotaxic boundary, guides back inside the tapered stereotaxic boundary, while when the robotic arm is applied on the tapered stereotaxic boundary, in Within the range of positioning control, the operation is completed based on coaxiality, and the mechanical arm supports the power to complete the high-speed grinding and drilling operation. If the mechanical arm moves out of the preset angle outside the conical stereotaxic boundary, the power supply of the acetabular rasp is controlled to cut off and stop the rasping operation.
  • control module of the robotic arm when performing a press-fitting operation, is configured to:
  • the tapered stereotaxic boundary When press-fitting the acetabulum, when the press-fit rod is moved into the acetabular position, the tapered stereotaxic boundary will be activated, and the anteversion and abduction angles will be aligned in real time to match the anteversion and abduction angles planned before surgery And display the effect;
  • the robotic arm during the operation, it is monitored in real time whether the patient's body position moves. If the body position movement is detected, the robotic arm will perform real-time position compensation, and provide guidance operation assistance to complete the operation in the compensation mode.
  • the robot navigation and positioning system for joint replacement surgery further includes a display module
  • the display module communicates with the optical navigation positioning module, and is configured to display the real-time status of the hip joint solid model on a human-computer interaction display screen.
  • the optical navigation and positioning module collects the spatial positions of at least three marker points on the patient's bone through a surgical probe, so as to determine the spatial position of the marker points on the patient's bone and the spatial position of the patient's hip joint.
  • the three-dimensional model of the hip joint was registered to obtain the solid model of the hip joint.
  • the optical navigation positioning module further includes a postoperative verification submodule
  • the postoperative verification submodule is configured to, after the registration of the three-dimensional model of the hip joint is completed, collect the spatial positions of at least three marker points on the patient's bone again through a surgical probe, and verify whether the registered marker positions are correct.
  • the embodiment of the present application also provides a navigation and positioning method for a joint replacement surgery robot, including:
  • the end effector of the mechanical arm is moved to the bone operation position of the patient, and the end effector is controlled to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instruction.
  • the embodiment of the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, The steps of the navigation and positioning method for the joint replacement surgery robot described in the second aspect are realized.
  • the embodiment of the present application provides a joint replacement surgery robot navigation and positioning system and method.
  • the three-dimensional model of the hip joint is obtained according to the medical image data of the hip joint before the operation, and then the operation planning is carried out according to the three-dimensional model of the hip joint.
  • Surgical plan generate navigation instructions according to the surgical plan during the operation, and register the 3D model of the hip joint according to the spatial position relationship between the patient's hip joint and the surgical probe, so that the structure of the patient's hip joint can be accurately reflected by the 3D model of the hip joint , and then accurately locate the position of the patient's bone surgery, so that the surgical robot can perform the surgical operation according to the navigation instructions and the surgical position.
  • the embodiment of the present application uses the three-dimensional model for preoperative planning, and uses the spatial positioning method for intraoperative navigation and positioning, so that the surgical robot can use its high-precision three-dimensional model to perform optimal surgical path planning, and through high-freedom
  • the path is realized through the operation of the high-speed robotic arm, thereby assisting orthopedic surgeons to complete operations such as osteotomy, grinding, and fixation.
  • the embodiment of the present application not only improves the success rate of the operation, but also greatly reduces the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
  • Fig. 1 is a schematic structural diagram of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of an optical positioning module of a joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of a robot arm control module of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of another joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application.
  • Fig. 5 is a flow chart of a navigation and positioning method for a joint replacement surgery robot provided by an embodiment of the present application
  • Fig. 6 is a flow chart of another navigation and positioning method for a joint replacement surgery robot provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an acetabular cup implantation plan of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
  • Fig. 8 is a schematic diagram of a femoral stem implantation plan of a robot navigation and positioning system for joint replacement surgery provided by an embodiment of the present application;
  • Fig. 9 is a schematic diagram of an osteotomy operation of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the file grinding operation of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 11 is a schematic diagram of press-fit operation of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 12 is a schematic diagram of another joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application for safely grinding files within the conical stereotaxic boundary;
  • Fig. 13 is a schematic diagram of a reset operation of a navigation and positioning system of a robot for joint replacement surgery provided by an embodiment of the present application;
  • Fig. 14 is a schematic diagram of the registration process of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 15 is a schematic diagram of an application scenario of an orthopedic surgical robot provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a filing scene of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • Fig. 17 is a schematic diagram of a press-fitting scene of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application;
  • FIG. 18 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Fig. 1 shows a schematic structural diagram of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application.
  • the navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application will be explained in detail below in conjunction with Fig. 1 .
  • a joint replacement surgical robot navigation and positioning system provided by an embodiment of the present application includes: a preoperative planning module 1, an optical navigation and positioning module 2, and a robotic arm control module 3;
  • the preoperative planning module 1 is configured to perform segmentation and reconstruction of the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint, and perform preoperative planning according to the three-dimensional model of the hip joint to determine a surgical plan;
  • the optical navigation positioning module 2 is configured to generate navigation instructions according to the operation plan, and, according to the optical positioner, the spatial positional relationship between the patient's hip joint and the surgical probe, register the three-dimensional model of the hip joint to obtain the hip joint entity A model, matching the hip joint solid model with the preoperative planning model, and determining the bone surgery position of the patient according to the hip joint solid model;
  • the robotic arm control module 3 is configured to move the end effector to the bone operation position of the patient, and control the end effector to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instructions.
  • the patient's pelvis and lower limbs can be scanned preoperatively by imaging equipment (CT/MRI/X-ray) to generate a three-dimensional view of the pelvis and lower limbs before operation.
  • CT/MRI/X-ray imaging equipment
  • the surgical navigation system reads in DICOM format CT images before the operation, and performs segmentation processing on the hip joint images to obtain multiple segmented images, and reconstructs an individualized complex three-dimensional model of the hip joint according to the image data corresponding to the multiple segmented images (this One step can be realized according to the existing algorithm), including virtual pelvis and femur, so that the surgeon can fully evaluate the patient's condition before operation through the three-dimensional model of the hip joint, use the system software to plan the surgical approach and simulate the hip joint (femoral side, acetabular side ) Surgical plan.
  • the operation plan includes operation information such as position, size and angle of prosthesis implantation.
  • the embodiment of the present application can implement medical image processing on a common computer, so that doctors can arbitrarily divide the visualized three-dimensional image.
  • the lesion information is clearly visible visually, and it is convenient for surgical operation.
  • the computer system is used to import the surgical navigation system, including measuring the acetabular shape, bone mass, acetabular abduction angle and anteversion angle, leg length difference and eccentricity.
  • all data can be templated according to the actual measurement data and displayed on the computer in time to determine the size and position of the prosthesis.
  • FIG 7 a schematic diagram of a joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application for acetabular cup implantation plan and Figure 8, a joint replacement surgery robot navigation and positioning provided by an embodiment of the present application
  • the schematic diagram of the systemic femoral stem implantation plan shows that the preoperative planning determines the prosthesis implantation plan, including: simulating the actual situation after implantation of the acetabular cup and femoral stem, and displaying relevant information of the prosthesis.
  • the pelvic reference frame and the femoral reference frame can be manually placed on the acetabular side and the femoral side, and the navigation camera of the system is used to track the tracking elements on the pelvic reference frame and the femoral reference frame to determine the pelvic position of the patient's hip joint. and the spatial position of the femur.
  • the navigation camera tracks the tracking element at the tail of the surgical probe, calculates the spatial position of the collected points through an algorithm, and then integrates the spatial positions of the surgical probe with the pelvic reference frame and femoral reference frame To a common coordinate system, the 3D model of the hip joint is registered.
  • the intraoperative navigation module 2 needs to coordinate system registration between the intraoperative patient position and the preoperative scan data (such as CT and MRI), so as to find the transformation relationship between the preoperative scan data and the intraoperative patient position, and then according to The position of the patient during the operation corrects the three-dimensional model of the hip joint generated by the preoperative planning to reduce the error of the spatial position of the marker points during the preoperative planning process, thereby greatly improving the registration accuracy.
  • the preoperative scan data such as CT and MRI
  • the preoperative planning module includes: a data acquisition submodule, a three-dimensional model reconstruction submodule, an acetabular side plan determination submodule, a femoral side plan determination submodule, and a plan confirmation submodule;
  • the data acquisition submodule is configured to acquire hip joint medical image data
  • the three-dimensional model reconstruction submodule is configured to segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint;
  • the acetabular side plan determination submodule is configured to determine the acetabular rotation center, acetabular diameter, acetabular anteversion, and acetabular abduction angle according to the hip joint three-dimensional model, and according to the acetabular rotation center, acetabular Diameter, acetabular anteversion angle, acetabular abduction angle, and acetabular cup coverage, determine the size, type and position of the acetabular side implant prosthesis;
  • the size and model of the corresponding acetabular side implant prosthesis is determined to be about 50mm, when the acetabular anteversion angle is 20°, and the acetabular abduction angle is 40°,
  • the specific position of the acetabular prosthesis was determined according to the position of the center of acetabular rotation and the condition that the coverage of the acetabular cup was greater than 70%.
  • the femoral side plan determination submodule is configured to determine the center of rotation of the femoral head, the shape of the femoral medullary cavity, the anatomical axis of the femoral medullary cavity and the femoral neck-shaft angle according to the three-dimensional model of the hip joint, and according to the center of rotation of the femoral head, the femoral marrow
  • the shape of the cavity, the anatomical axis of the femoral medullary canal and the femoral neck-shaft angle are used to determine the size, model and position of the femoral prosthesis, taking into account the difference in leg length and the eccentricity of the femoral union;
  • the center of rotation of the femoral prosthesis can be determined according to the center of rotation of the femoral head
  • the axis of the femoral prosthesis can be determined according to the anatomical axis of the femoral medullary canal
  • the size of the femoral prosthesis can be determined according to the shape of the femoral medullary canal and the neck-shaft angle.
  • the plan confirmation submodule is configured to confirm whether the acetabular side prosthesis implantation plan determined by the acetabular side plan determination submodule and the femoral side prosthesis implantation plan determined by the femoral side plan determination submodule are Appropriate, if not, then trigger the acetabular side plan determination submodule and the femoral side plan determination submodule to redetermine the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan, if so, then the described
  • the acetabular side prosthesis implantation plan and the femoral side prosthesis implantation plan determined by the acetabular side plan determination submodule and the femoral side plan determination submodule are used as preoperative planning schemes.
  • the diameter of the acetabular cup is approximately equal to the diameter of the acetabulum, and the acetabular cup fits the anteroposterior diameter of the acetabulum but does not wear too much bone, ensuring that the coverage of the acetabular cup is greater than 70%. Criteria for proper acetabular cup position: The acetabular cup is placed in a safe zone. Appropriate standard of the femur: The prosthesis on the femoral side fits well with the femur.
  • a preferred implementation mode is used to fit the point cloud selected on the scan data before the operation with the point cloud calibrated by the doctor during the operation to find the most suitable rotation matrix.
  • the points calibrated on the patient's body will refer to the points selected before the operation.
  • real-time Correct the position of the point cloud selected before the operation so that the final registration result can achieve higher accuracy.
  • the point cloud registration algorithm is as follows:
  • the smallest unit of the registration algorithm is a triangle.
  • the points marked by the doctor during the operation are A B C points, and the corresponding preoperative planning points are a b c
  • the points marked by doctors are all on the surface of human tissue
  • FIG. 14 a schematic diagram of a registration process of a navigation and positioning system for a joint replacement surgery robot provided by an embodiment of the present application.
  • A, B, and C on the left side of the figure are the points marked by the doctor during the operation, and a, b, and c on the right side are the points planned before the operation. It can be seen that (A, B, C) and (a, b, c) There is an obvious spatial position error, and the blank marked points on the right are point sets in the neighborhood spaces of a, b, and c.
  • Select a', b, and 'c' from a large number of blank markers, and the triangle formed by a', b, 'c' and the triangle formed by A, B, and C are basically congruent triangles.
  • the planned spatial positions of a, b, and c are corrected to the spatial positions of a', b, and 'c', and the ICP registration method can be used to register the points marked during the operation with the points planned before the operation to achieve Precise registration of femoral and acetabular surfaces.
  • the mechanical arm is manipulated to realize the positioning of the bone, and the mechanical arm is combined with the matching surgical tools to complete the operation, providing guarantee for the precise operation of hip joint replacement.
  • the fine-tuning of the surgical plan can be performed during the operation, breaking through the limitations of traditional surgical tools, realizing the personalized design of the patient, and completing the replacement of the prosthesis to restore the natural movement of the joint.
  • the navigation instruction matches the operation plan formulated by the preoperative planning module 1 .
  • the robot body involved in the robot arm control module 3 includes a movable base, a seven-degree-of-freedom robot arm and a robot end effector.
  • the movable base is used as the base of the whole device
  • the seven-degree-of-freedom mechanical arm is fixedly installed above the movable base, connected to the controller through a signal cable and receives its control signal
  • the end effector of the robot is fixedly installed on the mechanical arm
  • the mechanical interface at the end is connected to the controller through wires to receive control signals
  • the robot end effector is used as a working tool for the robot, including bone saws, bone drills and clamping tools for surgery.
  • the performance indicators of the embodiment of the present application include positioning error, repeat positioning accuracy, distance measurement error of the robotic arm, working range of the robotic arm, load displacement of the robotic arm, movement of the force direction of the head end of the robotic arm, software functions (including Patient sequence management, 3D browsing, image registration, 3D reconstruction, surgical plan formulation, patient registration, intraoperative directional positioning), can assist in the completion of orthopedic surgery for hip joint replacement, osteotomy, grinding, fixation and other operations.
  • control module of the robotic arm is configured to:
  • the boundary is designed as a specific conical shape, and when the acetabular reamer is close to the target position, the transverse direction of the boundary is displayed. Sections are constrained by the robotic arm when the rasp deviates from the tapered stereotaxic boundary, guided back within the tapered stereotaxic boundary, and within positioning control when the robotic arm is applied within the tapered stereotaxic boundary According to the coaxial operation (the coaxial setting can effectively ensure the consistency and safety of the surgical operation), the mechanical arm supports power to complete the high-speed grinding and drilling operation. If the mechanical arm moves out of the preset angle outside the conical stereotaxic boundary, the control The power to the acetabular reamer is cut off to stop the rasp operation.
  • the acetabular side is visually reamed under the guidance of the robotic arm to preserve the bone mass and reduce bleeding.
  • the system sets a safe range and stereotaxic boundaries to guide the operation of the robotic arm. If the user Attempts to maneuver outside of the planned acetabular position and the system will be forced to create a tapered barrier (stereotaxic border) that will automatically appear when the reamer is close enough to the planned position of the acetabular cup within the acetabulum.
  • the border is designed to be specific Shape, when the acetabular reamer is close to the target position, it will display the cross-section of the boundary to limit the mechanical arm.
  • the system When the acetabular reamer deviates from the stereotaxic boundary, the system will guide the user back to the planned boundary.
  • the stereotaxic boundary When the stereotaxic boundary is applied, the operation needs to be completed according to the coaxial within the positioning control range.
  • the mechanical arm supports the power to complete the high-speed grinding and drilling operation. If the mechanical arm moves out of the positioning control by 5 degrees, the power of the drill will be cut off and the grinding operation will be stopped.
  • no stereotaxic boundaries are applied, the user can perform file reaming with arbitrary tilt and deflection angles. It can be seen that, in this embodiment, the operation process of the robotic arm is constrained by the tapered stereotaxic boundary, which effectively ensures the safety of the surgical operation through the robotic arm.
  • This embodiment can greatly reduce the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
  • the angle range of the tapered stereotaxic boundary is about 10-15°, and the angle here refers to the angle away from the acetabular axis, so as to ensure the safety of the patient.
  • the manipulator control module when the manipulator control module performs a press-fit operation, it is configured as:
  • the tapered stereotaxic boundary When press-fitting the acetabulum, when the press-fit rod is moved into the acetabular position, the tapered stereotaxic boundary will be activated, and the anteversion and abduction angles will be aligned in real time to match the anteversion and abduction angles planned before surgery And display the effect;
  • the position of the acetabular cup is positioned under the guidance of the robotic arm, and the doctor is assisted in accurate implantation through visual effects and force feedback. It will start, align the anteversion and abduction angles in real time to match the angles planned on the screen and display the effect (for example: 20 degrees anteversion, 40 degrees abduction), that is, the acetabular reamer head and the target depth are in the upper, lower, inner and outer , When the distance in the front and rear directions is 0mm in all directions, the user stops the operation, and the system updates the press fit map and stereotaxic boundaries at the same time. The moving robotic arm will perform real-time compensation of the position, and provide guidance in the compensation mode to assist the doctor to complete the operation.
  • the robotic arm is a 7-degree-of-freedom movable joint, and there are two states during use and operation, including: "free arm” state, the robotic arm can move freely without being constrained by stereotaxic boundaries
  • the limitation of the "fixed arm” state the mechanical arm moves within the agreed range, and also provides a safe resting state for the mechanical arm, which has more resistance than the free arm.
  • the system has set up multiple control and protection mechanisms.
  • the display will display the real-time effect of press-fitting forward tilt 20 and outward extension 40 to guide the user to operate and set the boundary protection at the same time.
  • the model power can be automatically stopped and sound prompts according to the boundary protection range. , At the same time, it can support users to complete functional operations such as emergency stop, mechanical protection, and power-off protection.
  • a preferred implementation mode is adopted, and the embodiment of the application may also include the following parts: a mechanical arm system, an optical navigation and positioning system, a computer control system and supporting auxiliary tools.
  • the real-time positioning and operation of the manipulator under optical navigation is realized through the "manipulator + navigation" mode.
  • the method of transforming the tool projection planned in the image into the coordinate system of the affected bone is studied, and the mapping between the coordinate system of the affected bone and the base coordinate system of the robot is established based on the optical positioning system relationship, thereby establishing the transformation from the image coordinate system to the robot coordinate system.
  • the image of the patient's injury site is obtained before/during the operation and uploaded to the main console to complete the identification, and the doctor plans the surgical path design through the main console.
  • the robotic arm After the doctor drags the robotic arm to the operation area, the robotic arm performs precise positioning according to the planned surgical path and completes the intraoperative operation.
  • the computer system can reconstruct and segment CT data to complete the preoperative plan, and has the function of automatically identifying the body surface feature marker points of the 3D image, and realizes patient space, robot space, and image alignment through marker point registration.
  • the coordinate mapping of the space uses the motion control algorithm of the seven-degree-of-freedom mechanism, including fast positioning point control and precise trajectory control, to realize the control of the robot's movement, and adjust the robot's trajectory planning according to the set reference position.
  • Optical navigation and positioning systems are generally composed of computer software such as measuring instruments, sensors, and optical locators.
  • the modeling and planning stage mainly relies on the imaging system to complete image acquisition, processing and feature analysis, and determine the operation implementation strategy.
  • the planning, navigation and positioning part of the robot is mainly used to ensure the operation and operation of the operation.
  • the central control module of the computer system is connected to the optical tracking system through a local area network, accepts navigation instructions from the navigation device, and outputs the robot's own information such as position and posture to the optical tracking system.
  • the bus is connected with the multi-axis motion control module, and the central control module completes the motion planning of the robot, and sends instructions to the multi-axis motion control module, which specifically realizes the robot motion control.
  • the robotic arm is a multi-degree-of-freedom arm. Relying on the robotic arm and special surgical instruments, it can completely cover the entire space involved in total hip replacement surgery according to the preoperative planning parameters without changing the machine position, and complete precise positioning.
  • the surgical assisting robot involved in the embodiment of the present application can autonomously realize the operation action planned before the operation, and can be adjusted by the doctor at any time during the operation, and the positioning of the manipulator is accurate, stable and powerful, which can prevent the surgeon from The fatigue caused by long-term surgery and the possible vibration of the doctor's arm improve the accuracy, stability and safety of the operation.
  • the embodiment of the present application has a high degree of freedom and strong applicability.
  • Existing orthopedic surgery assisting robot systems are designed for specific surgical operations, but the surgical assisting robot involved in the embodiment of the present application has 7 degrees of freedom, high flexibility, and redundant degrees of freedom, which is convenient for collaborative work with doctors.
  • fast interface technology data interface and mechanical interface
  • functional modules to facilitate assembly of the frame and connection of drive motors and cables.
  • the embodiment of the application can adopt the control structure of the upper and lower computers.
  • the upper computer uses a computer system to send motion control signals to the lower computer according to the content of the preoperative plan; the lower computer is 7
  • the degree of freedom mechanical arm receives the control instructions from the host computer to realize the connection and movement of the robot.
  • Two different control methods, automatic control and manual control, are used in the system control at the same time: when automatic control is used, the computer system is used as the upper computer to complete the human-computer interaction with the doctor and send the control information to the lower robot; When controlling, the hand control panel is used as the upper computer, and the doctor directly controls the movement of the navigation unit and the traction unit through the buttons.
  • This design realizes the redundancy of the control system: under normal circumstances, the automatic control of the computer system can be used to conveniently control the movement of the navigation unit and the robot positioning unit; once the computer system fails, the hand control panel can also be used, which improves The reliability and stability of the control system.
  • the structure of the embodiment of the application is open, and it can be perfectly combined with the navigation system as a basic platform.
  • the operation mode is flexible, it can be connected with the automatic navigation device, and under the guidance of the navigation device, it can be used as an actuator to complete the operation of preoperative planning, and it can also be used as an independent surgical auxiliary device to realize osteotomy, grinding and other surgical operations under the operation of the doctor. , and greatly improved the quality of real-time tracking data stream and anti-shake function.
  • a represents the display of the main control trolley, which is set to complete preoperative planning and display the entire surgical process.
  • Live information b represents the main control trolley, which is set to carry the main control trolley display a, which can be moved arbitrarily;
  • i represents the optical navigator, which is set to track the manipulator d, probe c, femoral reference frame l and acetabulum The spatial position of the reference frame m;
  • c represents the surgical probe, which is set to collect some points on the patient's anatomical structure;
  • d represents the mechanical arm of the orthopedic surgical robot, which is a 7-DOF mechanical arm fixedly mounted on a movable
  • the top of the base is connected with the controller through a signal cable and receives its control signal.
  • the embodiment of the present application may also include a reset determination submodule configured to confirm whether surgical reset is performed, see FIG. 13 , an implementation of the present application
  • the example provides a schematic diagram of the reset operation of a joint replacement surgery robot navigation and positioning system.
  • the embodiment of the present application provides a robot navigation and positioning system for joint replacement surgery.
  • the three-dimensional model of the hip joint is obtained according to the medical image data of the hip joint before the operation, and then the surgical planning is performed according to the three-dimensional model of the hip joint to determine the surgical plan.
  • navigation instructions are generated according to the surgical plan, and the three-dimensional model of the hip joint is registered according to the spatial position relationship between the patient's hip joint and the surgical probe, so that the three-dimensional model of the hip joint can accurately reflect the structural structure of the patient's hip joint, and then Accurately locate the position of the patient's bone surgery, so that the surgical robot can perform surgery according to the navigation instructions and the surgical position.
  • the embodiment of the present application uses the three-dimensional model for preoperative planning, and uses the spatial positioning method for intraoperative navigation and positioning, so that the surgical robot can use its high-precision three-dimensional model to perform optimal surgical path planning, and through high-freedom
  • the path is realized through the operation of the high-speed robotic arm, thereby assisting orthopedic surgeons to complete operations such as osteotomy, grinding, and fixation.
  • the embodiment of the present application not only improves the success rate of the operation, but also greatly reduces the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
  • the optical navigation positioning module is configured to:
  • the physical model of the hip joint is used to determine the patient's bone surgery position and the real-time pose of the robotic arm.
  • the pelvic reference frame and the femoral reference frame can be manually placed on the acetabular side and the femoral On the side, use the system's navigation camera to track the tracking elements on the pelvic reference frame and femoral reference frame to determine the spatial position of the patient's pelvis and femur.
  • the spatial position of the robotic arm is determined through the tracking elements on the robotic arm, and then the spatial positions of the robotic arm, the pelvic reference frame and the femoral reference frame are integrated into a common coordinate In the system, the three-dimensional model of the hip joint is registered.
  • the posture and position information of the robotic arm can be displayed in real time in the three-dimensional model of the hip joint. It can be seen that, in the embodiment of the present application, the reference position of the area to be operated obtained before or during the operation is compared and calibrated with the real-time position of the robot arm, so as to realize the tracking and navigation of the robot arm.
  • the bone tissue is attached to the skin and muscles and is in a relatively deep place, it is difficult to fully expose during the operation, and it is difficult to see through with the naked eye.
  • traditional operations need to rely on multiple CT scans during the operation. Only images, human eye observation and doctor's experience can determine the surgical site, resulting in large errors and heavy dependence on doctor's experience.
  • the orthopedic robot needs to compare and calibrate the reference position of the area to be operated obtained before or during the operation with the real-time position of the surgical instrument, so as to realize the tracking and navigation of the surgical instrument.
  • the optical navigation positioning module includes an optical tracking sub-module 4;
  • the optical tracking sub-module is configured to register the hip joint entity model according to the spatial positional relationship between the mechanical arm and the pelvic reference frame and the femoral reference frame, and to align the mechanical arm with the registered hip joint entity model.
  • the model position is calibrated;
  • a schematic diagram of calibration of a robotic arm of a navigation and positioning system for a joint replacement surgery robot provided in an embodiment of the present application, according to the spatial positional relationship between the patient's hip joint and the robotic arm, the hip
  • the three-dimensional model of the joint is registered to obtain a solid model of the hip joint, and after determining the position of the patient's bone surgery and the real-time pose of the mechanical arm according to the solid model of the hip joint, the position of the mechanical arm model is calibrated.
  • the optical tracking sub-module 4 is responsible for real-time positioning monitoring during the operation, real-time and dynamic adjustment of positioning errors, and guiding the automatic adjustment of the mechanical arm.
  • the prior art related to the navigation robot system is still unable to meet the fine-tuning of the surgical plan, and cannot break through the limitations brought by traditional surgical tools. It can be seen that the embodiment of the present application can calibrate the position of the robotic arm and surgical instruments, accurately calculate the tool coordinate systems of different surgical instruments, and realize the identification of marker points and the conversion of different coordinate systems through software.
  • a structural schematic diagram of a robot arm control module of a navigation and positioning system for a joint replacement surgery robot provided in an embodiment of the present application, the robot arm control module includes mechanical Arm position positioning sub-module 5;
  • the robotic arm position positioning sub-module 5 is configured to send the position and attitude information of the robotic arm to the optical tracking sub-module, so that the optical tracking sub-module can obtain the spatial position information of the robotic arm in real time.
  • the robotic arm position positioning sub-module 5 can send the acquired position and attitude information of the robotic arm to the optical tracking sub-module 4, so that the optical tracking sub-module can obtain the spatial position information of the robotic arm in real time, thereby according to The spatial position information of the manipulator is used to calibrate the error of the manipulator.
  • the joint replacement surgery robot navigation and positioning system also includes display module 6;
  • the display module 6 communicates with the optical navigation positioning module 2 and is configured to display the real-time status of the hip joint solid model on a human-computer interaction display screen.
  • the display module 6 is configured to display the real-time status of the solid model in the hip joint book through the human-computer interaction display screen, so as to facilitate the reference and control of the doctor.
  • the optical navigation and positioning module collects the spatial positions of at least three marker points on the patient's bones through surgical probes, so that the spatial positions of the marker points on the patient's bones and the patient's hip joint positional relationship, registering the three-dimensional model of the hip joint to obtain a solid model of the hip joint.
  • the needle tip of the surgical probe is used to touch at least three different positions on the acetabular side and the upper femur during the operation, so that the spatial positions and femoral reference points of at least three points on the femoral anatomical structure can be collected according to the surgical probe.
  • the femur in the three-dimensional model of the hip joint is registered, and, according to the spatial position of at least three points on the acetabular side structure collected by the surgical probe and the spatial position relationship of the pelvic reference frame, the three-dimensional hip joint
  • the acetabular side in the model is registered.
  • Fig. 4 a structural schematic diagram of another joint replacement surgery robot navigation and positioning system provided by an embodiment of the present application, the joint replacement surgery robot navigation and positioning system also includes Postoperative verification sub-module 6;
  • the postoperative verification sub-module 6 is configured to, after the three-dimensional model of the hip joint is registered, collect the spatial positions of at least three marker points on the patient's bone again through a surgical probe, and verify the registered marker position is it right or not.
  • another embodiment of the present application provides a navigation and positioning method for a joint replacement surgery robot, as shown in Figure 5.
  • the method includes:
  • Step 501 Segment and reconstruct the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint, and perform preoperative planning according to the three-dimensional model of the hip joint to determine the surgical plan;
  • the patient's pelvis and both lower limbs can be scanned preoperatively by imaging equipment (CT/MRI/X-ray) to generate a preoperative three-dimensional view of the pelvis and both lower limbs.
  • CT/MRI/X-ray imaging equipment
  • the surgical navigation system reads in DICOM format CT images before the operation, and performs segmentation processing on the hip joint images to obtain multiple segmented images, and reconstructs an individualized complex three-dimensional model of the hip joint according to the image data corresponding to the multiple segmented images, including
  • the virtual pelvis and femur allow the surgeon to fully assess the patient's condition before surgery through the three-dimensional model of the hip joint, use the system software to plan the surgical approach, and simulate the surgical plan of the hip joint (femoral side, acetabular side).
  • the operation plan includes operation information such as position, size and angle of prosthesis implantation.
  • the embodiment of the present application can implement medical image processing on a common computer, so that doctors can arbitrarily divide the visualized three-dimensional image.
  • the lesion information is clearly visible visually, and it is convenient for surgical operation.
  • Step 502 Generate navigation instructions according to the surgical plan, and register the three-dimensional model of the hip joint according to the optical locator, the spatial position relationship between the patient's hip joint and the surgical probe, obtain a solid model of the hip joint, and integrate the solid hip joint
  • the model is matched with the preoperative planning model, and the position of the patient's bone surgery is determined according to the solid model of the hip joint;
  • the pelvic reference frame and the femoral reference frame can be manually placed on the acetabular side and the femoral side, and the system’s navigation camera is used to track the tracking elements on the pelvic reference frame and the femoral reference frame to determine the pelvic and femoral reference frames of the patient’s hip.
  • the spatial position of the femur when the surgical probe collects points, the navigation camera tracks the tracking element at the tail of the surgical probe, calculates the spatial position of the collected points through an algorithm, and then integrates the spatial positions of the surgical probe with the pelvic reference frame and femoral reference frame To a common coordinate system, the 3D model of the hip joint is registered.
  • the corresponding acquisition points will be displayed in the three-dimensional model of the hip joint, and the precise registration of the femoral side and the acetabular side surface can be respectively realized through the point cloud registration algorithm.
  • intraoperative patient position and preoperative scan data (such as CT and MRI) need to be registered in the coordinate system, so as to find the conversion relationship between preoperative scan data and intraoperative patient position, and then according to the intraoperative patient position
  • the three-dimensional model of the hip joint generated by the preoperative planning is corrected to reduce the error of the spatial position of the marker points during the preoperative planning process, thereby greatly improving the registration accuracy.
  • Step 503 Move the end effector of the mechanical arm to the bone operation position of the patient, and control the end effector to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instruction.
  • the manipulator is manipulated to position the bone, and the manipulator is combined with the matching surgical tools to complete the operation, providing guarantee for the precise operation of hip replacement.
  • fine-tuning of the operation plan can also be carried out, breaking through the limitations of traditional surgical tools, realizing the individualized design of the patient, and completing the replacement of the prosthesis to restore the natural movement of the joint.
  • the navigation instruction matches the operation scheme formulated by the preoperative planning.
  • the embodiment of the present application provides a robot navigation and positioning method for joint replacement surgery.
  • the three-dimensional model of the hip joint is obtained according to the medical image data of the hip joint, and then the operation planning is carried out according to the three-dimensional model of the hip joint to determine the operation plan.
  • navigation instructions are generated according to the surgical plan, and the three-dimensional model of the hip joint is registered according to the spatial position relationship between the patient's hip joint and the surgical probe, so that the three-dimensional model of the hip joint can accurately reflect the structural structure of the patient's hip joint, and then Accurately locate the position of the patient's bone surgery, so that the surgical robot can perform surgery according to the navigation instructions and the surgical position.
  • the embodiment of the present application uses the three-dimensional model for preoperative planning, and uses the spatial positioning method for intraoperative navigation and positioning, so that the surgical robot can use its high-precision three-dimensional model to perform optimal surgical path planning, and through high-freedom
  • the path is realized through the operation of the high-speed robotic arm, thereby assisting orthopedic surgeons to complete operations such as osteotomy, grinding, and fixation.
  • the embodiment of the present application not only improves the success rate of the operation, but also greatly reduces the damage of soft tissue and bone tissue, so that the patient has less bleeding and less trauma, and the postoperative recovery of hip joint function will be faster.
  • another embodiment of the present application provides an electronic device, referring to the schematic structural diagram of the electronic device shown in FIG.
  • the processor 1901, memory 1902, and communication interface 1903 complete mutual communication through the communication bus 1904; the communication interface 1903 is configured to implement information transmission between devices;
  • the processor 1901 is configured to call the computer program in the memory 1902, and when the processor executes the computer program, all the steps of the above-mentioned navigation and positioning method for a joint replacement surgery robot are implemented, for example, according to the obtained hip joint Segment and reconstruct the hip joint from medical image data to obtain a three-dimensional model of the hip joint, and perform preoperative planning based on the three-dimensional model of the hip joint to determine the surgical plan; generate navigation instructions according to the surgical plan, and, according to the patient's hip joint and surgical probe
  • the three-dimensional model of the hip joint is registered to obtain the solid model of the hip joint, and according to the solid model of the hip joint, the surgical position of the patient's bone is determined; the end effector of the mechanical arm is moved to the patient's bone and controlling the end effector to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instructions.
  • another embodiment of the present application provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned joint All the steps of the robot navigation and positioning method for replacement surgery, for example, performing segmentation and reconstruction of the hip joint according to the acquired medical image data of the hip joint to obtain a three-dimensional model of the hip joint, and performing preoperative planning according to the three-dimensional model of the hip joint to determine the surgical plan; Generate navigation instructions according to the operation plan, and register the three-dimensional model of the hip joint according to the spatial position relationship between the patient's hip joint and the surgical probe to obtain a solid model of the hip joint, and determine the patient according to the solid model of the hip joint Bone surgery position: move the end effector of the robotic arm to the patient's bone surgery position, and control the end effector to perform osteotomy, rasp and press-fit operations on the hip joint according to the navigation instructions.
  • the above logic instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disc, CD, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the joint replacement surgery robot navigation and positioning method described in each embodiment or some parts of the embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

一种关节置换手术机器人导航定位系统及方法,系统包括:术前规划模块(1),被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,进行术前规划,确定手术方案;光学导航定位模块(2),被配置为根据手术方案生成导航指令,根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,得到髋关节实体模型,根据髋关节实体模型,确定患者骨骼手术位置;机械臂控制模块(3),被配置为将末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作。通过骨科手术机器人执行术前规划,高水准的完成手术操作,能大大减低医师的作业强度,节约手术时间,提高作业精度。

Description

关于置换手术机器人导航定位系统及方法
相关申请的交叉引用
本申请要求于2020年12月18日提交的申请号为2020115065733,发明名称为“关于置换手术机器人导航定位系统及方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及医疗技术领域,具体涉及一种关节置换手术机器人导航定位系统及方法。
背景技术
近年来,髋关节置换术作为治疗髋关节疾病较有效的治疗方法,在国内外得到了广泛的开展。我国是髋关节疾病的高发国家,亚洲预计将新增近千万罹患各类髋关节相关疾病的患者。然而,传统关节置换手术术前规划不完善,术前准备不充分,缺乏术中精准导航定位,严重依赖医生的手术经验,操作繁琐,可重复性差,造成较高的术后并发症发生率,严重制约了髋关节置换手术的效果。
发明内容
(一)要解决的技术问题
由于现有方法存在上述问题,本申请实施例提供一种关节置换手术机器人导航定位系统及方法。
(二)发明内容
第一方面,本申请实施例提供了一种关节置换手术机器人导航定位系统,包括:术前规划模块、光学导航定位模块和机械臂控制模块;
术前规划模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
光学导航定位模块,被配置为根据手术方案生成导航指令,以及,根 据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
机械臂控制模块,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本申请的一个实施例中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计划确定子模块和计划方案确认子模块;
其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;
所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型;
所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角以及髋臼外展角,综合考虑髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;
所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;
所述计划方案确认子模块,被配置为确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若否,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若是,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
在本申请的一个实施例中,所述光学导航定位模块,可以被配置为:
根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准, 得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿。
在本申请的一个实施例中,所述光学导航定位模块包括光学跟踪子模块;
所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的髋关节实体模型对机械臂模型位置进行校准。
在本申请的一个实施例中,所述光学跟踪子模块在根据机械臂与骨盆参考架和股骨参考架的空间位置关系对所述髋关节实体模型进行配准时,被配置为:
以三角形为配准过程中的最小单元,若医生术中标记的点为A、B、C三点,对应的术前规划点为a、b、c,其中,医生标记的点都在人体组织表面上;
在a、b、c分别对应的邻域空间点集中筛选出对应的点a’、b’、c’,使三角形ABC和三角形a’b’c’全等,其中,a’b’c’三点都在人体组织表面上;其中,由a’、b、’c’组成的三角形与A、B、C组成的三角形是全等三角形;
将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用配准方法将术中标记的点和术前规划的点进行配准,以实现股骨侧和髋臼侧表面的精确配准。
在本申请的一个实施例中,所述机械臂控制模块包括机械臂位置定位子模块;
所述机械臂位置定位子模块,被配置为将机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使光学跟踪子模块实时获取机械臂的空间位置信息。
在本申请的一个实施例中,所述机械臂控制模块在进行磨锉操作时,被配置为:
确定安全操作范围和锥形立体定向边界;
当机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;
在本实施例中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示边界的横截面进行机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当机械臂在锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作,机械臂支持动力完成高速磨钻操作,若机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
在本申请的一个实施例中,所述机械臂控制模块在进行压配操作时,被配置为:
在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;
其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界;
其中,在操作过程中,实时监测患者是否发生体位移动,如果监测到体位移动,机械臂将会进行位置实时补偿,在补偿模式下提供引导操作辅助完成操作。
在本申请的一个实施例中,所述关节置换手术机器人导航定位系统还包括显示模块;
所述显示模块与所述光学导航定位模块通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
在本申请的一个实施例中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型。
在本申请的一个实施例中,所述光学导航定位模块还包括术后验证子模块;
所述术后验证子模块被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
第二方面,本申请实施例还提供了一种关节置换手术机器人导航定位方法,包括:
根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
第三方面,本申请实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如第二方面所述关节置换手术机器人导航定位方法的步骤。
(三)有益效果
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位系统及方法,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些图获得其他的附图。
图1是本申请一实施例提供的一种关节置换手术机器人导航定位系统的结构示意图;
图2是本申请一实施例提供的一种关节置换手术机器人导航定位系统光学定位模块的结构示意图;
图3是本申请一实施例提供的一种关节置换手术机器人导航定位系统机械臂控制模块的结构示意图;
图4是本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图;
图5是本申请一实施例提供的一种关节置换手术机器人导航定位方法的流程图;
图6是本申请一实施例提供的另一种关节置换手术机器人导航定位方法的流程图;
图7是本申请一实施例提供的一种关节置换手术机器人导航定位系统髋臼杯植入计划示意图;
图8是本申请一实施例提供的一种关节置换手术机器人导航定位系统股骨柄植入计划示意图;
图9是本申请一实施例提供的一种关节置换手术机器人导航定位系统截骨操作示意图;
图10是本申请一实施例提供的一种关节置换手术机器人导航定位系统磨锉操作示意图;
图11是本申请一实施例提供的一种关节置换手术机器人导航定位系统压配操作示意图;
图12是本申请一实施例提供的另一种关节置换手术机器人导航定位系统在锥形立体定向边界内进行安全磨锉的操作示意图;
图13是本申请一实施例提供的一种关节置换手术机器人导航定位系统复位操作示意图;
图14是本申请一实施例提供的一种关节置换手术机器人导航定位系统的配准过程示意图;
图15是本申请一实施例提供的一种骨科手术机器人的应用场景示意图;
图16是本申请一实施例提供的一种关节置换手术机器人导航定位系统磨锉场景示意图;
图17是本申请一实施例提供的一种关节置换手术机器人导航定位系统压配场景示意图;
图18是本申请一实施例的电子设备的结构示意图。
具体实施方式
下面结合附图,对本申请的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本申请的技术方案,而不能以此来限制本申请的保护范围。
图1示出了本申请一实施例提供的一种关节置换手术机器人导航定位系统的结构示意图,下面结合图1对本申请实施例提供的关节置换手术机器人导航定位系统进行详细解释和说明。
如图1所示,本申请一实施例提供的一种关节置换手术机器人导航定位系统,包括:术前规划模块1、光学导航定位模块2和机械臂控制模块3;
术前规划模块1,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
光学导航定位模块2,被配置为根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
机械臂控制模块3,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本实施例中,可以通过成像设备(CT/MRI/X线)对病人的骨盆及双下肢进行术前扫描,生成术前骨盆及双下肢的三维视图。可选的,手术导航系统在术前读入DICOM格式CT图像,并对髋关节图像进行分割处 理得到多个分割图像,根据多个分割图像对应的图像数据重建个体化复杂髋关节三维模型(这一步可以根据现有算法实现),包括虚拟骨盆和股骨,以使手术人员通过髋关节三维模型在术前充分评估病人情况、利用系统软件规划手术入路和模拟髋关节(股骨侧、髋臼侧)手术方案。所述手术方案包括假体植入的位置、大小和角度等手术信息。本申请实施例可以在普通计算机上实现医学图像处理,使医生可以对可视化三维图像任意剖分。在手术导航系统中,病灶信息在视觉上清晰可见,而且便于手术操作。
在本实施例中,通过计算机系统导入手术导航系统,包括测量髋臼形态、骨量、髋臼外展角及前倾角、腿长差异和偏心距。术中可根据实际测量数据并及时在电脑中显示对所有数据进行模板化,以确定假体的大小和位置。
在本实施例中,如图7本申请一实施例提供的一种关节置换手术机器人导航定位系统髋臼杯植入计划示意图和图8本申请一实施例提供的一种关节置换手术机器人导航定位系统股骨柄植入计划示意图所示,术前规划确定假体植入的方案,包括:模拟髋臼杯和股骨柄植入后的实况,并显示假体相关信息。
在本实施例中,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的髋关节的骨盆和股骨的空间位置。相应的,在手术探针进行采点时导航相机跟踪手术探针尾部的示踪元件,通过算法计算出所采集点的空间位置,进而将手术探针与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中会显示出相应的采集点,通过点云配准算法,分别实现股骨侧和髋臼侧表面的精确配准。可以理解的是,术中导航模块2需要将术中病人体位与术前扫描数据(如CT和MRI)进行坐标系配准,从而找到术前扫描数据与术中病人体位的转换关系,进而根据术中病人体位对术前规划生成的髋关节三维模型进行修正,以降低术前规划过程中标记点空间位置的误差,从而极大的提高配准精度。
基于上述实施例的内容,在本实施例中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计 划确定子模块和计划方案确认子模块;
其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;
所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型;
所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,以及髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;
举例来说,当髋关节三维模型髋臼直径为50mm,确定相应的髋臼侧植入假体的大小型号约为50mm,当髋臼前倾角为20°,髋臼外展角为40°,根据髋臼旋转中心位置及保证髋臼杯覆盖率大于70%情况,确定髋臼植入假体的具体位置。
所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴和股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴和股骨颈干角,确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;
可选地,可以根据股骨头旋转中心,确定股骨侧假体旋转中心,并根据股骨髓腔解剖轴确定股骨侧假体轴线,根据股骨髓腔形态及颈干角确定股骨侧假体大小号。
所述计划方案确认子模块,被配置为确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若否,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若是,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
在本实施例中,在确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适时,包括:
髋臼侧假体大小型号合适标准:髋臼杯直径近似于髋臼直径相等,髋 臼杯与髋臼前后径贴合但又不过多磨损骨质,保证髋臼杯覆盖率大于70%。髋臼杯位置合适的标准:髋臼杯放置在安全区。股骨合适的标准:股骨侧假体与股骨贴合。
在本申请实施例中,采用一种优选的实施方式,将术前在扫描数据上选定的点云与术中医生标定的点云进行拟合,找出最合适的旋转矩阵,其中医生在病人人体上标定的点会参照术前选定的点,当医生标定的点和术前选定的点在人体上不在同一位置时,需要根据医生标记的点云的空间位置关系和结构来实时修正术前选定的点云的位置,使最终配准结果达到较高的精度。其中,点云配准算法如下:
以使用手术探针采集至少三个病人解剖结构上的点为例,此时配准算法的最小单元为三角形,假设医生术中标记的点为A B C三点,对应的术前规划点为a b c,可以默认医生标记的点都在人体组织表面上,则我们需要在a b c的邻域中找到点a’,b’,c’,使三角形ABC和三角形a’b’c’全等,其中a’b’c’点都在人体组织表面上,这样a’b’c’三点与ABC三点在人体组织上的位置重合度极高,因为三角形具有唯一性。如图14所示,本申请一实施例提供的一种关节置换手术机器人导航定位系统的配准过程示意图。图中左侧A、B、C为医生术中标记的点,右侧a、b、c为术前规划的点,可以看出,(A、B、C)和(a、b、c)有明显的空间位置误差,右侧空白标记点为a、b、c邻域空间的点集。在大量空白标记点中筛选出a’、b、’c’,由a’、b、’c’组成的三角形与A、B、C组成的三角形基本上是全等三角形,此时将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用ICP配准方法即可将术中标记的点和术前规划的点进行配准,以实现股骨侧和髋臼侧表面的精确配准。
可以理解的是,由于三角形具有唯一性和足够的稳定性,因此在配准时采用三角形作为配准最小单元能够有效提高配准的准确性,从而可以实现股骨侧和髋臼侧表面的精确配准。
在本实施例中,在完成股骨侧和髋臼侧表面的精确配准后,操纵机械臂实现对骨骼的定位,机械臂结合配套的手术工具完成操作,为髋关节置换的精准操作提供保障,同时术中还能进行手术计划的微调,突破传统的手术工具的限制,实现患者的个性化设计,完成假体置换,以恢复关节的 自然运动。可选地,将机械臂的末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作,如图9、图10、图11和图12所示。其中,导航指令匹配术前规划模块1制定的手术方案。
在本实施例中,机械臂控制模块3涉及的机器人本体包括可移动基座、七自由度机械臂和机器人末端执行器。其中,可移动基座作为整个装置的基座,七自由度机械臂固定安装于可移动基座的上方,通过信号电缆与控制器相连并接受其控制信号,机器人末端执行器固定安装于机械臂末端的机械接口上,并通过导线与控制器相连以接收控制信号,机器人末端执行器作为机器人的作业工具,包括手术用的骨锯、骨钻和夹持工具。
在本实施例中,本申请实施例的性能指标包括定位误差、重复定位精度、机械臂距离测量误差、机械臂工作范围、机械臂负载位移、机械臂头端受力方向移动、软件功能(含患者序列管理、三维浏览、图像配准、三维重建、手术计划制定、患者注册、术中定向定位),可辅助完成髋关节置换的骨科手术,完成截骨、磨搓、固定等操作。
基于上述实施例的内容,在本实施例中,所述机械臂控制模块在进行磨锉操作时,被配置为:
确定安全操作范围和锥形立体定向边界;
当机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;
其中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示边界的横截面进行机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当机械臂在锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作(同轴的设置能够有效保证手术操作的一致性以及安全性),机械臂支持动力完成高速磨钻操作,若机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
在本实施例中,髋臼侧在机械臂的引导下进行可视化磨锉,保留骨量较少出血,如图12所示,系统设置了安全范围及立体定向边界来指导机 械臂操作,如果用户试图在计划外进行操作,系统会出现加力产生一个锥形壁垒(立体定向边界),当髋臼锉足够靠近计划的髋臼内的髋臼杯位置时,边界会自动出现,边界设计为特定形状,当髋臼锉靠近靶点位时候会显示边界的横截面进行机械臂的限制,当髋臼锉偏离立体定向边界,系统会进行引导用户回到计划的边界内,同时当机械臂时在立体定向边界应用时候,在定位控制范围内需要依据同轴完成操作,机械臂支持动力完成高速磨钻操作,如果机械臂移出定位控制以外5度,钻的电源会被切断停止磨锉操作,对于立体定向边界没有应用的时候,用户可以任意倾斜和偏转角度进行扩锉。由此可见,本实施例通过锥形立体定向边界来约束机械臂的操作过程,有效保证了通过机械臂进行手术操作的安全性。本实施例能够很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
在本实施例中,可以理解的是,锥形立体定向边界的角度范围大约在10-15°,这里的角度是指偏离髋臼轴的角度,以保证患者的安全。
基于上述实施例的内容,在本实施例中,所述机械臂控制模块在进行压配操作时,被配置为:
在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;
其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界。
在本实施例中,机械臂引导下定位髋臼杯位置,通过视觉效果及力反馈辅助医生准确植入,在进行压配髋臼时,将压配杆移入髋臼位置时,立体定向边界将会启动,实时对齐前倾角、外展角使之与屏幕计划的角度匹配并进行效果展示(例如:前倾20度、外展40度),即髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时用户停止操作,系统同时更新压配图和立体定向边界,在用户操作过程中,利用术中导航系统能够实时监测患者是否发生体位移动,如果监测体位移动机械臂将会进行位置的实时补偿,在补偿模式下提供引导操作辅助医生完成操作。在本申请中,机械臂为7自由度活动关节,在使用操作过程中存在两种状态, 包含:“自由臂”状态,机械臂不受约束能够进行机械臂的自由移动,不受立体定向边界的限制、“固定臂”状态,机械臂在约定的范围内进行移动,同时也为机械臂提供了一个安全静息状态,较自由臂相比存在更多的阻力。同时,系统设定了多重控制及保护机制,显示器进行压配前倾20外展40的实时效果展示引导用户操作同时设定边界保护,模型动力可根据在边界保护范围内实现自动停止及声音提示,同时可支持用户完成急停,机械保护、断电保护等功能操作。
在本实施例中,采用一种优选的实施方式,本申请实施例还可以包括以下几部分——机械臂系统、光学导航定位系统、计算机控制系统及配套辅助工具组成。通过“机械臂+导航”模式实现光学导航下的机械臂实时定位和操作。对机器人辅助导航系统的全空间坐标转换技术,研究了图像中规划的工具投影变换到患骨坐标系下的方法,并基于光学定位系统建立了患骨坐标系与机器人基坐标系之间的映射关系,从而建立图像坐标系到机器人坐标系的变换。可选地,术前/术中获取患者损伤部位的影像并上传到主控台完成识别,医生通过主控台规划手术路径设计。医生将机械臂拖动至术区后,机械臂按照规划好的手术路径进行精准定位,并完成术中操作。在本实施例中,计算机系统可针对CT数据进行重建、分割完成术前计划,同时具有自动识别3D图像的体表特征标记点的功能,并通过标志点配准实现患者空间、机器人空间、图像空间的坐标映射,利用七自由度机构的运动控制算法,包括快速定位的点位控制及精确轨迹控制,实现控制机器人运动,并依据设定的参考位置调整机器人运动轨迹规划。光学导航定位系统一般是由测量仪器、传感器、光学定位仪等计算机软件构成。建模与规划阶段主要依靠影像系统完成图像的采集、处理与特征分析,确定手术实施策略,此阶段主要由机器人的规划导航定位部分来确保手术的操作与运行。在本实施例中,计算机系统的中央控制模块通过局域网络与光学跟踪系统相连接,接受来自导航装置的导航指令,并将机器人位置、姿态等自身信息输出到光学跟踪系统,中央控制模块通过PCI总线与多轴运动控制模块相连接,中央控制模块完成机器人运动规划,并将指令发送到多轴运动控制模块,由后者具体实现机器人运动控制。机械臂为多自由度臂,依靠机械臂配合专用手术器械,根据术前规划参数无需更改机位即 可完全覆盖整个全髋关节置换手术所涉及的空间范围,完成精准定位。
在本实施例中,本申请实施例涉及的手术辅助机器人能自主实现手术术前规划的操作动作,并可在手术中由医师随时进行调整,并且机械手的定位准确、稳定且有力,可以避免外科医生长时间手术而带来的疲劳,以及可能造成医生手臂颤动,从而提高了手术的精度、稳定性以及安全性。此外,本申请实施例自由度高,适用性强。现有骨科手术辅助机器人系统都是为特定手术作业设计的,而本申请实施例涉及的手术辅助机器人有7自由度,灵活性高,还具有冗余自由度,便于与医师协同作业。
在本实施例中,功能模块之间采用快速接口技术(数据接口及机械接口),以方便组装框架及连接驱动电机和线缆。
在本实施例中,采用一种优选的实施方式,本申请实施例可以采用上下位机的控制结构,上位机采用计算机系统,根据术前计划内容向下位机发送运动控制信号;下位机是7自由度机械臂,接收上位机传来的控制指令,从而实现机器人的连接与运动。在系统控制同时使用了自动控制和手动控制两种不同的控制方式:采用自动控制时,用计算机系统作为上位机,完成和医生的人机交互工作,并将控制信息发送给下位机器人;采用手动控制时,用手控面板作为上位机,由医生直接通过按钮来控制导航单元和牵引单元的运动。这样的设计实现了控制系统的冗余:在通常情况下可以使用计算机系统自动控制来方便的控制导航单元和机器人定位单元的运动:一旦计算机系统出现故障,还可以使用手控面板,这样就提高了控制系统的可靠性和稳定性。
在本实施例中,本申请实施例结构开放,能够作为基础平台与导航系统完美结合。操作方式灵活,既可以与自动导航装置连接,在导航装置的引导下作为执行机构完成术前规划的操作,也可以作为独立的手术辅助器械在医师的操作下实现截骨、磨削等手术操作,并且极大提高了实时跟踪数据流的质量和防抖动功能。
在本实施例中,如图15,本申请一实施例提供的一种骨科手术机器人的应用场景示意图所示,a表示主控台车显示器,被设置为完成术前规划和显示整个手术过程的实况信息;b表示主控台车,被设置为承载主控台车显示器a,可任意移动;i表示光学导航仪,被设置为追踪机械臂d、探 针c、股骨参考架l和髋臼参考架m的空间位置;c表示手术探针,被设置为收集患者解剖结构上的一些点;d表示骨科手术机器人的机械臂,所述机械臂为7自由度机械臂,固定安装于可移动基座的上方,通过信号电缆与控制器相连并接受其控制信号。e表示磨锉杆,被设置为通过机械臂d实现磨锉操作;f表示机械臂标定支架,被设置为承载机械臂d;g表示机械臂动力,可根据头端受力方向移动,完成截骨和固定等操作;h表示手术床,被设置为承载手术患者;m表示髋臼参考架,被设置为定位患者髋臼侧位置;l表示股骨参考架,被设置为定位患者股骨位置;j表示光学导航仪显示器,被设置为显示由光学导航仪i捕捉到的机械臂d、探针c、股骨参考架l和髋臼参考架m的空间姿态;k表示光学导航底座,被设置为承载光学导航仪i和光学导航仪显示器j,可任意移动。如图16和图17所示,本申请实施例先进行磨锉操作,后进行压配操作。
在本实施例中,采用一种优选的实施方式,本申请实施例在假体植入后,还可以包括被配置为确认是否进行手术复位的复位确定子模块,参见图13,本申请一实施例提供的一种关节置换手术机器人导航定位系统复位操作示意图。
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位系统,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块,被配置为:
根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿。
在本实施例中,如图2本申请一实施例提供的一种关节置换手术机器人导航定位系统光学定位模块的结构示意图所示,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的骨盆和股骨的空间位置。相应的,在机械臂进入系统导航相机追踪范围时,通过机械臂上的示踪元件确定机械臂所在空间位置,进而将机械臂与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中可以实时显示机械臂的姿态和位置信息。由此可见,本申请实施例通过术前/术中获得的待手术区的基准位置与机械臂所在的实时位置进行比对和标定,从而实现对机械臂的追踪和导航。而现有的髋关节置换技术,术中将影像与患者实际骨组织进行实际空间位置配准注册的过程操作难度系数大,不能对机械臂进行位置校准,存在机械臂位置误差的情况。
在本实施例中,由于骨组织附着有皮肤、肌肉且处于较深处,手术中难以充分暴露,肉眼难以透视,为获取准确施术位置,传统手术需要借助术中多次CT扫描,通过结合图像、人眼观察及医生经验才能确定手术位点,造成误差较大且对医生经验依赖较重。骨科机器人需要通过术前/术中获得的待手术区的基准位置与手术器械所在的实时位置进行比对和标定,从而实现对手术器械的追踪和导航。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块包括光学跟踪子模块4;
所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的髋关节实体模型对机械臂模型位置进行校准;
在本实施例中,如图15本申请一实施例提供的一种关节置换手术机器人导航定位系统的机械臂标定示意图所示,在根据患者髋关节和机械臂 的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置和机械臂的实时位姿后,对机械臂模型的位置进行校准。光学跟踪子模块4负责术中实时定位监测,对定位误差进行实时动态调整,引导机械臂自动调整。而现有技术有关导航机器人系统的涉及,还无法满足手术计划的微调,无法突破传统的手术工具带来的限制。由此可见,本申请实施例可以对机械臂及手术器械进行位置校准,精准计算不同手术器械的工具坐标系,通过软件实现标志点的识别和不同坐标系的转换。
基于上述实施例的内容,在本实施例中,如图3本申请一实施例提供的一种关节置换手术机器人导航定位系统机械臂控制模块的结构示意图所示,所述机械臂控制模块包括机械臂位置定位子模块5;
所述机械臂位置定位子模块5,被配置为将机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使光学跟踪子模块实时获取机械臂的空间位置信息。
在本实施例中,机械臂位置定位子模块5可以将获取的有关机械臂的位置和姿态信息发送至光学跟踪子模块4,以使光学跟踪子模块实时获取机械臂的空间位置信息,从而根据机械臂的空间位置信息对机械臂进行误差校准。
基于上述实施例的内容,在本实施例中,如图4本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图所示,所述关节置换手术机器人导航定位系统还包括显示模块6;
所述显示模块6与所述光学导航定位模块2通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
在本实施例中,显示模块6被配置为通过人机交互显示屏将髋关节书中的实体模型的即时状态进行显示,以便医生进行参考和把控。
基于上述实施例的内容,在本实施例中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以使根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型。
在本实施例中,术中利用手术探针的针尖点触髋臼侧和股骨测上至少 三个不同位置,以使根据手术探针采集股骨解剖结构上至少三个点的空间位置和股骨参考架的空间位置关系,对髋关节三维模型中的股骨进行配准,以及,根据手术探针采集髋臼侧结构上至少三个点的空间位置和骨盆参考架的空间位置关系,对髋关节三维模型中的髋臼侧进行配准。
基于上述实施例的内容,在本实施例中,如图4本申请一实施例提供的另一种关节置换手术机器人导航定位系统的结构示意图所示,所述关节置换手术机器人导航定位系统还包括术后验证子模块6;
所述术后验证子模块6被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
在本实施例中,在髋臼侧和股骨侧配准完成后,根据配准后的采集点距离骨表面的距离验证配准是否正确。
基于相同的发明构思,本申请另一实施例提供了一种关节置换手术机器人导航定位方法,如图5本申请一实施例提供的一种关节置换手术机器人导航定位方法的流程图和图6本申请一实施例提供的另一种关节置换手术机器人导航定位方法的流程图所示,所述方法包括:
步骤501:根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
在本步骤中,可以通过成像设备(CT/MRI/X线)对病人的骨盆及双下肢进行术前扫描,生成术前骨盆及双下肢的三维视图。可选的,手术导航系统在术前读入DICOM格式CT图像,并对髋关节图像进行分割处理得到多个分割图像,根据多个分割图像对应的图像数据重建个体化复杂髋关节三维模型,包括虚拟骨盆和股骨,以使手术人员通过髋关节三维模型在术前充分评估病人情况、利用系统软件规划手术入路和模拟髋关节(股骨侧、髋臼侧)手术方案。所述手术方案包括假体植入的位置、大小和角度等手术信息。本申请实施例可以在普通计算机上实现医学图像处理,使医生可以对可视化三维图像任意剖分。在手术导航系统中,病灶信息在视觉上清晰可见,而且便于手术操作。
步骤502:根据手术方案生成导航指令,以及,根据光学定位仪,患 者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
在本步骤中,骨盆参考架和股骨参考架可手动安置在髋臼侧和股骨侧,利用系统的导航相机跟踪骨盆参考架和股骨参考架上的示踪元件,确定患者的髋关节的骨盆和股骨的空间位置。相应的,在手术探针进行采点时导航相机跟踪手术探针尾部的示踪元件,通过算法计算出所采集点的空间位置,进而将手术探针与骨盆参考架和股骨参考架的空间位置集成到一个共同的坐标系统中,对髋关节三维模型进行配准。此时,在髋关节三维模型中会显示出相应的采集点,通过点云配准算法,分别实现股骨侧和髋臼侧表面的精确配准。可以理解的是,术中需要术中病人体位与术前扫描数据(如CT和MRI)进行坐标系配准,从而找到术前扫描数据与术中病人体位的转换关系,进而根据术中病人体位对术前规划生成的髋关节三维模型进行修正,以降低术前规划过程中标记点空间位置的误差,从而极大的提高配准精度。
步骤503:将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
在本步骤中,在完成股骨侧和髋臼侧表面的精确配准后,操纵机械臂实现对骨骼的定位,机械臂结合配套的手术工具完成操作,为髋关节置换的精准操作提供保障,同时术中还能进行手术计划的微调,突破传统的手术工具的限制,实现患者的个性化设计,完成假体置换,以恢复关节的自然运动。具体的,将机械臂的末端执行器移动至患者骨骼手术位置,并控制末端执行器根据导航指令对髋关节进行截骨、磨锉和压配操作。其中,导航指令匹配术前规划制定的手术方案。
由上面技术方案可知,本申请实施例提供的一种关节置换手术机器人导航定位方法,术前根据髋关节医学图像数据得到髋关节的三维模型,进而根据髋关节三维模型进行手术规划,确定手术方案,术中根据手术方案生成导航指令,并根据患者髋关节和手术探针的空间位置关系,对髋关节三维模型进行配准,使得通过髋关节三维模型能准确反映患者髋关节的结 构构造,进而准确定位患者骨骼手术位置,以使手术机器人根据导航指令和手术位置进行手术操作。由此可见,本申请实施例通过三维模型进行术前规划,以及,利用空间定位方法进行术中导航定位,以使手术机器人借助其高精度的三维模型进行最优化手术路径规划,并通过高自由度机械臂操作进行路径实现,从而辅助骨科手术医师完成截骨、磨削、固定等操作。本申请实施例在提高手术成功率的同时,很大程度减少软组织和骨组织的损伤,使得患者出血少、创伤小,术后髋关节功能的康复会更快。
本实施例所述的关节置换手术机器人导航定位方法可以用于执行上述方法实施例,其原理和技术效果类似,此处不再赘述。
基于相同的发明构思,本申请又一实施例提供了一种电子设备,参见图18所述电子设备的结构示意图,包括如下内容:处理器1901、存储器1902、通信接口1903和通信总线1904;
其中,所述处理器1901、存储器1902、通信接口1903通过所述通信总线1904完成相互间的通信;所述通信接口1903被配置为实现各设备之间的信息传输;
所述处理器1901被配置为调用所述存储器1902中的计算机程序,所述处理器执行所述计算机程序时实现上述一种关节置换手术机器人导航定位方法的全部步骤,例如,根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;根据手术方案生成导航指令,以及,根据患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置;将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
基于相同的发明构思,本申请又一实施例提供了一种非暂态计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述一种关节置换手术机器人导航定位方法的全部步骤,例如,根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;根据手术方案生成导航指令,以及,根据患者髋关节和手术探针的 空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定患者骨骼手术位置;将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的关节置换手术机器人导航定位方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种关节置换手术机器人导航定位系统,包括:术前规划模块、光学导航定位模块和机械臂控制模块;
    所述术前规划模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
    所述光学导航定位模块,被配置为根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将所述髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
    所述机械臂控制模块,被配置为将末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
  2. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述术前规划模块包括:数据获取子模块、三维模型重建子模块、髋臼侧计划确定子模块、股骨侧计划确定子模块和计划方案确认子模块;
    其中,所述数据获取子模块,被配置为获取髋关节医学图像数据;
    所述三维模型重建子模块,被配置为根据获取的髋关节医学图像数据进行髋关节的分割和重建得到所述髋关节三维模型;
    所述髋臼侧计划确定子模块,被配置为根据所述髋关节三维模型确定髋臼旋转中心,髋臼直径,髋臼前倾角,髋臼外展角,并根据髋臼旋转中心,髋臼直径,髋臼前倾角以及髋臼外展角,综合考虑髋臼杯覆盖率,确定髋臼侧植入假体的大小型号以及位置;
    所述股骨侧计划确定子模块,被配置为根据所述髋关节三维模型确定股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角,并根据股骨头旋转中心,股骨髓腔形态,股骨髓腔解剖轴以及股骨颈干角确定股骨侧假体植入大小型号及位置,同时考虑腿长差和股骨联合偏心距;
    所述计划方案确认子模块,被配置以确认所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划是否合适,若所述髋臼侧计划确定子模块确定的髋臼侧假 体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划不合适,则触发所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块重新确定髋臼侧假体植入计划和股骨侧假体植入计划,若所述髋臼侧计划确定子模块确定的髋臼侧假体植入计划以及所述股骨侧计划确定子模块确定的股骨侧假体植入计划合适,则将所述髋臼侧计划确定子模块和所述股骨侧计划确定子模块确定的髋臼侧假体植入计划和股骨侧假体植入计划作为术前规划方案。
  3. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块,被配置为:
    根据骨盆参考架和股骨参考架确定患者髋关节的空间位置,以及,根据患者髋关节和机械臂的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,并根据所述髋关节实体模型,确定所述患者骨骼手术位置和机械臂的实时位姿。
  4. 根据权利要求3所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块包括光学跟踪子模块;
    所述光学跟踪子模块,被配置为根据机械臂与骨盆参考架和股骨参考架的空间位置关系,对所述髋关节实体模型进行配准,并根据配准后的所述髋关节实体模型对机械臂模型位置进行校准。
  5. 根据权利要求4所述的关节置换手术机器人导航定位系统,其中,所述光学跟踪子模块在根据机械臂与骨盆参考架和股骨参考架的空间位置关系对所述髋关节实体模型进行配准时,被配置为:
    以三角形为配准过程中的最小单元,若医生术中标记的点为A、B、C三点,对应的术前规划点为a、b、c,其中,医生标记的点都在人体组织表面上;
    在a、b、c分别对应的邻域空间点集中筛选出对应的点a’、b’、c’,使三角形ABC和三角形a’b’c’全等,其中,a’b’c’三点都在人体组织表面上;其中,由a’、b、’c’组成的三角形与A、B、C组成的三角形是全等三角形;
    将术前规划的a、b、c的空间位置修正到a’、b、’c’的空间位置,并运用配准方法将术中标记的点和术前规划的点进行配准,以实现股骨侧 和髋臼侧表面的精确配准。
  6. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块包括机械臂位置定位子模块;
    所述机械臂位置定位子模块,被配置为将所述机械臂的位置和姿态信息发送至所述光学跟踪子模块,以使所述光学跟踪子模块实时获取机械臂的空间位置信息。
  7. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块在进行磨锉操作时,被配置为:
    确定安全操作范围和锥形立体定向边界;
    当所述机械臂的操作超过所述安全操作范围时,控制加力产生所述锥形立体定向边界以控制所述机械臂在所述锥形立体定向边界内进行磨锉;
    其中,当髋臼锉靠近计划的髋臼内的髋臼杯位置时,所述锥形立体定向边界出现,边界设计为特定的锥形形状,当髋臼锉靠近靶点位时显示所述边界的横截面进行所述机械臂的限制,当髋臼锉偏离所述锥形立体定向边界,引导回到所述锥形立体定向边界内,同时当所述机械臂在所述锥形立体定向边界应用时,在定位控制范围内依据同轴完成操作,所述机械臂支持动力完成高速磨钻操作,若所述机械臂移出所述锥形立体定向边界以外预设角度,控制髋臼锉的电源切断停止磨锉操作。
  8. 根据权利要求7所述的关节置换手术机器人导航定位系统,其中,所述机械臂控制模块在进行所述压配操作时,被配置为:
    在进行压配髋臼时,将压配杆移入髋臼位置时,所述锥形立体定向边界将启动,实时对齐前倾角、外展角使之与术前规划的前倾角、外展角匹配并进行效果展示;
    其中,髋臼锉头端和靶深度在上下、内外、前后方向的距离在各方向都是0mm时停止操作,同时更新压配图和所述锥形立体定向边界;
    其中,在操作过程中,实时监测患者是否发生体位移动,如果监测体位移动所述机械臂将会进行位置实时补偿,在补偿模式下提供引导操作辅助完成操作。
  9. 根据权利要求1所述的关节置换手术机器人导航定位系统,还包括显示模块;
    所述显示模块与所述光学导航定位模块通信连接,被配置为将所述髋关节实体模型的即时状态显示于人机交互显示屏。
  10. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块通过手术探针采集患者骨骼上至少三个标识点的空间位置,以使根据患者骨骼上标识点和患者髋关节的空间位置关系,对所述髋关节三维模型进行配准,得到所述髋关节实体模型。
  11. 根据权利要求1所述的关节置换手术机器人导航定位系统,其中,所述光学导航定位模块还包括术后验证子模块;
    所述术后验证子模块被配置为,在所述髋关节三维模型完成配准后,通过手术探针再次采集患者骨骼上至少三个标识点的空间位置,验证配准后的标识点位置是否正确。
  12. 一种关节置换手术机器人导航定位方法,包括:
    根据获取的髋关节医学图像数据进行髋关节的分割和重建得到髋关节三维模型,并根据所述髋关节三维模型进行术前规划,确定手术方案;
    根据手术方案生成导航指令,以及,根据光学定位仪,患者髋关节和手术探针的空间位置关系,对所述髋关节三维模型进行配准,得到髋关节实体模型,将所述髋关节实体模型与术前规划模型相匹配,并根据所述髋关节实体模型,确定患者骨骼手术位置;
    将机械臂的末端执行器移动至所述患者骨骼手术位置,并控制所述末端执行器根据所述导航指令对髋关节进行截骨、磨锉和压配操作。
  13. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求12所述关节置换手术机器人导航定位方法的步骤。
  14. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求12所述关节置换手术机器人导航定位方法的步骤。
PCT/CN2021/073209 2020-12-18 2021-01-22 关于置换手术机器人导航定位系统及方法 WO2022126827A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21904774.3A EP4265213A4 (en) 2020-12-18 2021-01-22 NAVIGATION AND POSITIONING SYSTEM AND METHOD FOR SURGICAL JOINT REPLACEMENT ROBOT
US18/258,160 US11950859B2 (en) 2020-12-18 2021-01-22 Navigation and positioning system and method for joint replacement surgery robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011506573.3A CN112641510B (zh) 2020-12-18 2020-12-18 关节置换手术机器人导航定位系统及方法
CN202011506573.3 2020-12-18

Publications (2)

Publication Number Publication Date
WO2022126827A1 WO2022126827A1 (zh) 2022-06-23
WO2022126827A9 true WO2022126827A9 (zh) 2023-06-22

Family

ID=75355290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073209 WO2022126827A1 (zh) 2020-12-18 2021-01-22 关于置换手术机器人导航定位系统及方法

Country Status (4)

Country Link
US (1) US11950859B2 (zh)
EP (1) EP4265213A4 (zh)
CN (1) CN112641510B (zh)
WO (1) WO2022126827A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3484398A1 (en) 2016-07-15 2019-05-22 MAKO Surgical Corp. Systems for a robotic-assisted revision procedure
CN113270166B (zh) * 2021-05-07 2022-02-22 北京长木谷医疗科技有限公司 一种髋臼窝的磨挫计算方法、装置、磨挫工具及存储介质
CN113400305B (zh) * 2021-06-07 2023-01-17 北京长木谷医疗科技有限公司 磨挫工具的控制方法、装置、电子设备及存储介质
CN113349933A (zh) * 2021-07-08 2021-09-07 杭州柳叶刀机器人有限公司 一种机器人系统
CN115381557A (zh) * 2021-07-09 2022-11-25 武汉联影智融医疗科技有限公司 末端工具位姿的实时修正方法、系统以及手术机器人
CN113679447B (zh) * 2021-07-20 2023-02-28 国家康复辅具研究中心 一种用于股骨远端截骨术的导航模板及其设计方法
CN113808163A (zh) * 2021-08-30 2021-12-17 中科尚易健康科技(北京)有限公司 机械臂位置的动图动态展示方法和控制终端
CN113850851B (zh) * 2021-09-03 2022-10-21 北京长木谷医疗科技有限公司 手术机器人骨骼的配准方法及系统
CN114010321B (zh) * 2021-10-20 2022-08-23 中科智博(珠海)科技有限公司 一种骨科导航手术机器人设备
CN113893035A (zh) * 2021-10-27 2022-01-07 杭州柳叶刀机器人有限公司 一种关节置换手术导航系统及计算机可读存储介质
CN114305688A (zh) * 2021-12-22 2022-04-12 杭州键嘉机器人有限公司 一种基于柔性法兰的髋关节置换手术导航定位方法
CN116327360A (zh) * 2021-12-24 2023-06-27 北京天智航医疗科技股份有限公司 用于髋关节置换手术的机器人辅助导航系统及手术系统
CN114533277A (zh) * 2022-02-24 2022-05-27 上海电气集团股份有限公司 机械臂的控制方法、电子设备和存储介质
CN114681058B (zh) * 2022-03-02 2023-02-28 北京长木谷医疗科技有限公司 用于关节置换术的导航定位系统精度验证方法及装置
CN116831731A (zh) * 2022-03-23 2023-10-03 北京天智航医疗科技股份有限公司 用于髋关节置换手术的机械臂辅助导航系统及手术系统
CN115300038B (zh) * 2022-07-15 2023-06-09 北京和华瑞博医疗科技有限公司 控制装置、髋关节置换系统、可读存储介质及电子设备
CN115381554B (zh) * 2022-08-02 2023-11-21 北京长木谷医疗科技股份有限公司 一种骨科手术机器人智能位置调整系统及方法
CN115300041B (zh) * 2022-08-10 2023-03-14 骨圣元化机器人(深圳)有限公司 髋臼截骨矫形手术定位工具、系统及计算机设备
CN115444565B (zh) * 2022-08-22 2024-01-30 北京长木谷医疗科技股份有限公司 手术机器人系统及其执行末端的反馈控制系统和方法
CN116725684A (zh) * 2022-09-27 2023-09-12 北京和华瑞博医疗科技有限公司 关节手术装置及外科手术系统
CN115553923A (zh) * 2022-09-19 2023-01-03 重庆生物智能制造研究院 踝关节手术机器人系统及其控制方法
CN115607281B (zh) * 2022-11-15 2023-05-12 北京市春立正达医疗器械股份有限公司 髋关节骨科手术导航系统
CN115830247B (zh) * 2023-02-14 2023-07-14 北京壹点灵动科技有限公司 髋关节旋转中心的拟合方法和装置、处理器及电子设备
CN116098707B (zh) * 2023-04-13 2023-07-11 青岛大学附属医院 无线电磁波引导的远程手术系统
CN116342672B (zh) * 2023-05-26 2023-10-03 杭州三坛医疗科技有限公司 髋关节实际位置配准方法、装置、电子设备及存储介质
CN116473678B (zh) * 2023-06-21 2023-09-29 杭州键嘉医疗科技股份有限公司 一种虚拟墙引导末端执行器移动的方法及装置
CN116942310B (zh) * 2023-06-29 2024-04-02 北京长木谷医疗科技股份有限公司 基于强化学习的智能骨科手术机器人系统
CN116619393B (zh) * 2023-07-24 2023-11-14 杭州键嘉医疗科技股份有限公司 基于svm的机械臂变导纳控制方法、装置及设备
CN117064557B (zh) * 2023-08-24 2024-03-29 春风化雨(苏州)智能医疗科技有限公司 用于骨科手术的手术机器人
CN117064550B (zh) * 2023-08-31 2024-04-30 中日友好医院(中日友好临床医学研究所) 一种体外冲击波治疗股骨头坏死的虚拟仿真系统及装置
CN116942312B (zh) * 2023-09-20 2023-12-22 中南大学 一种关节置换手术辅助定位方法及系统
CN116983086B (zh) * 2023-09-26 2024-01-09 北京长木谷医疗科技股份有限公司 一种自主关节置换手术机器人导航定位系统
CN117379184A (zh) * 2023-10-26 2024-01-12 北京长木谷医疗科技股份有限公司 基于强化学习的关节手术机器人智能压配控制方法及装置
CN117671215B (zh) * 2024-01-04 2024-05-28 北京长木谷医疗科技股份有限公司 关节置换手术机器人虚拟安全墙约束方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281465A1 (en) 2004-02-04 2005-12-22 Joel Marquart Method and apparatus for computer assistance with total hip replacement procedure
US20070073133A1 (en) 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US9008757B2 (en) * 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
JP6442472B2 (ja) * 2013-03-13 2018-12-19 ストライカー・コーポレイション 外科処置に備えて手術室内で複数の対象物を手配するためのシステム
US10758198B2 (en) 2014-02-25 2020-09-01 DePuy Synthes Products, Inc. Systems and methods for intra-operative image analysis
CN112370159A (zh) * 2016-02-26 2021-02-19 思想外科有限公司 用于指导用户定位机器人的系统
EP3463153A4 (en) * 2016-05-27 2020-01-15 MAKO Surgical Corp. PRE-OPERATIVE PLANNING AND RELATED INTRAOPERATIVE REGISTRATION FOR A SURGICAL SYSTEM
CN107468351A (zh) 2016-06-08 2017-12-15 北京天智航医疗科技股份有限公司 一种手术定位装置、定位系统及定位方法
CN109890281B (zh) * 2016-08-30 2020-10-16 马科外科公司 用于术中骨盆配准的系统和方法
AU2019261299A1 (en) * 2018-04-23 2020-10-29 Mako Surgical Corp. System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment
CN110974426A (zh) * 2019-12-24 2020-04-10 上海龙慧医疗科技有限公司 骨科关节置换手术机器人系统
CN111179350B (zh) 2020-02-13 2022-04-08 张逸凌 髋关节图像处理系统
CN111345895B (zh) * 2020-03-13 2021-08-20 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助系统、控制方法及电子设备
CN111467036B (zh) * 2020-04-15 2023-12-26 上海电气集团股份有限公司 手术导航系统、髋臼截骨的手术机器人系统及其控制方法
CN111938813A (zh) * 2020-07-21 2020-11-17 南京市第一医院 一种髋关节翻修手术的术前规划方法

Also Published As

Publication number Publication date
WO2022126827A1 (zh) 2022-06-23
CN112641510A (zh) 2021-04-13
EP4265213A4 (en) 2024-03-27
US20240065771A1 (en) 2024-02-29
CN112641510B (zh) 2021-08-17
EP4265213A1 (en) 2023-10-25
US11950859B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2022126827A9 (zh) 关于置换手术机器人导航定位系统及方法
WO2022126828A1 (zh) 关节置换手术导航系统及方法
US11844577B2 (en) System and method for verifying calibration of a surgical system
JP7280967B2 (ja) 手術位置合わせ用のシステム及び方法
US8979859B2 (en) Depth of Impaction
JP4815054B2 (ja) 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法
US20170112508A1 (en) Computer-assisted hip joint resurfacing method and system
WO2023029363A1 (zh) 一种手术机器人导航定位系统及方法
US20070016008A1 (en) Selective gesturing input to a surgical navigation system
US20200054421A1 (en) Methods for conducting guided oral and maxillofacial procedures, and associated system
JP2022546381A (ja) オーグメント式股関節形成術手順のためのロボット外科システム
WO2023116076A1 (zh) 用于髋关节置换手术的机器人辅助导航系统及手术系统
Jaramaz et al. Precision freehand sculpting for unicondylar knee replacement: design and experimental validation
CN117064557B (zh) 用于骨科手术的手术机器人
CN219579025U (zh) 全功能骨科手术控制系统
WO2022138495A1 (ja) 手術支援ロボット、手術支援システムおよび手術支援ロボットの制御方法
US11826056B2 (en) Lockable surgical system
Zixiang et al. Robot-assisted orthopedic surgery
Jakopec et al. Acrobot: a" hands-on" robot for total knee replacement surgery
Wurm et al. A novel robot system for fully automated paranasal sinus surgery
Handini et al. System integration of NeuroBot: a skull-base surgical robotic system
WO2023178944A1 (zh) 用于髋关节置换手术的机械臂辅助导航系统及手术系统
EP4201364A1 (en) Method for indicating an incision trajectory by a laser of an intraoperative imaging system
JP2022550532A (ja) 触覚ガイダンスを提供するためのシステム及び方法
Davies et al. Robotic surgery at imperial college london

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021904774

Country of ref document: EP

Effective date: 20230718