JP4811147B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP4811147B2
JP4811147B2 JP2006166469A JP2006166469A JP4811147B2 JP 4811147 B2 JP4811147 B2 JP 4811147B2 JP 2006166469 A JP2006166469 A JP 2006166469A JP 2006166469 A JP2006166469 A JP 2006166469A JP 4811147 B2 JP4811147 B2 JP 4811147B2
Authority
JP
Japan
Prior art keywords
vehicle
probability
lane
specified
existence probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166469A
Other languages
English (en)
Other versions
JP2007331608A (ja
Inventor
剛 名波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006166469A priority Critical patent/JP4811147B2/ja
Publication of JP2007331608A publication Critical patent/JP2007331608A/ja
Application granted granted Critical
Publication of JP4811147B2 publication Critical patent/JP4811147B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、例えば車間距離制御(Adaptive Cruise Control:ACC)を行う際に、先行車両を選択するために、他車が自車と同一車線(即ち、自車線)上を走行している確率である自車線確率を導出する車両制御装置に関する。
この種の車両制御装置において、自車線確率は、自車及び他車の走行状況、或いは道路状況等によって刻々と変化する。それ故、この確率は、定期的又は不定期的に最新のものが導出される。例えば、瞬時の自車線確率と自車線確率の前回値とを夫々フィルタ定数で重み付けして各々を足し合わせることで時間平均をとる処理(以下、「フィルタ処理」とも言う)を行うことで今回の自車線確率、即ち最新の自車線確率が導出される(特許文献1参照)。この際、他車に係る瞬時の自車線確率は、自車の旋回半径で補正された自車に対する他車の相対位置をマップに照らし合わせることで導出される。
特開平8−279099号公報
しかしながら、例えば前述の特許文献1に開示されている技術によれば、次の技術的問題を生じ得る。具体的には、道路形状によっては、瞬時の自車線確率の導出精度が低下する虞がある。加えて、他車が急な割り込みをしてくる場合の反応が比較的遅い、或いはカーブに進入する際に、他車を見失う虞もある。即ち、自車線確率の導出精度に改善の余地がある。
本発明は、例えば上述した問題点に鑑みてなされたものであり、自車線確率の導出精度を向上して、より安全な車間距離制御を実現するための車両制御装置を提供することを課題とする。
本発明の車両制御装置は上記課題を解決するために、道路上における一の車線上を走行する自車に先行して前記道路上を走行する他車の相対位置を所定座標上で特定する他車特定手段と、該特定された相対位置が前記一の車線上に存在する存在確率を、前記所定座標上に設定されたクロソイド曲線に基づいて、特定する存在確率特定手段とを備える。
本発明の車両制御装置によると、その動作時には先ず、道路上における一の車線上を走行する自車に先行して前記道路上を走行する他車の相対位置が、例えばレーダセンサ等を有してなる他車特定手段によって、所定座標上で特定される。ここでの「道路」は、特に、高速道路、有料道路のように、クロソイド曲線に従って建設されているものをいう。尚、その他の幹線道路、県道、市道など、路地や私道等を除く一般道路も、このクロソイド曲線に従って建設されている場合が多い。また「所定座標」は、典型的には、自車が走行中の曲線路が直進路へ変換されてなる、即ち道路の曲率半径に応じた補正が施された変換座標である。但し、このような直進路への変換や補正が施されていない、曲線路を含む2次元座標であってもよい。
そして、該特定された相対位置が前記一の車線上に存在する存在確率が、前記所定座標上に設定されたクロソイド曲線に基づいて、例えばプロセッサ、メモリ等を有してなる存在確率特定手段によって、特定される。ここで典型的な場合における、クロソイド曲線が「所定座標上に設定された」とは、所定座標が上述した直進路への変換や補正が施されている変換座標であれば、クロソイド曲線がその形状のまま、係る所定座標上に設定されていることを意味する。但し、所定座標が上述した直進路への変換や補正が施されていない2次元座標であれば、クロソイド曲線の形状に対して自車が走行中の曲線路への変換が施された後に、この変換後のクロソイド曲線が、係る所定座標上に設定されていることを意味する。そして「クロソイド曲線に基づいて」とは、前記存在確率を特定する際に用いられる所定座標上のマップ、関数等を規定する上で、上述の如く所定座標上に設定されたクロソイド曲線が少なくとも部分的に考慮されることを示し、クロソイド曲線に基づく形態を特に限定する趣旨ではない。例えば、前記所定座標上において、前記存在確率が10、20……、100%であることを示す領域の各々の境界線が、クロソイド曲線を少なくとも部分的に含む形状で規定され、各領域と前記特定された相対位置との包含関係に基き、前記存在確率が特定されることになる。この際、仮にクロソイド曲線ではなく、放物線に基づいて前記存在確率が特定されるとする。すると、放物線とクロソイド曲線に従って建設されている実際の道路との形状が不一致である分、前記存在確率の特定精度が低下する虞がある。然るに、本発明の車両制御装置によれば、クロソイド曲線に基づくので形状の不一致が回避され、もって、前記存在確率を好適に特定可能となる。
以上の結果、自車が走行する一の車線上に他車が存在する存在確率(即ち、自車線確率)を精度良く特定可能となる。
本発明に係る車両制御装置の他の態様では、前記一の車線の曲率半径を特定する曲率半径特定手段を更に備え、前記他車特定手段は、前記所定座標として、前記一の車線を含む2次元座標が前記特定された曲率半径に応じて直進路に変換されてなる変換座標上で、前記相対位置を特定し、前記在確率特定手段は、前記存在確率を、前記変換座標上に設定された前記クロソイド曲線に基づいて、特定する。
この態様によれば、先ず、例えばプロセッサ、メモリ等を有してなる曲率半径特定手段によって、一の車線の曲率半径が特定される。続いて、他車特定手段によって、この一の車線を含む2次元座標が前記特定された曲率半径に応じて直進路に変換されてなる変換座標上で、相対位置が特定される。そして、在確率特定手段によって、変換座標上に設定された前記クロソイド曲線に基づいて、存在確率が特定される。即ち、一の車線が曲線であっても、その曲率半径が考慮された変換座標上に設定されたクロソイド曲線に基づくので、比較的精度良く存在確率が特定されることになる。
この曲率半径特定手段が更に備る態様では、前記自車の車速を検出する車速検出手段、前記自車の横加速度を検出する横加速度検出手段、及び前記自車の操舵角を検出する操舵角検出手段のうち少なくとも一つを更に備え、前記曲率半径特定手段は、前記検出される車速、横加速度及び操舵角のうち少なくとも一つに基いて、前記曲率半径を特定するようにしてもよい。
この態様によれば、車両制御装置は、例えば車速センサ等を有してなる車速検出手段、ヨーレートセンサ等を有してなる横加速度検出手段、及び操舵角センサ等を有してなる操舵角検出手段のうち少なくとも一つを更に備える。そして、各検出手段によって具体的に検出可能な物理量(即ち、自車の車速、横加速度、及び操舵角)に基いて、比較的精度良く曲率半径が特定される。こうして特定された曲率半径が考慮された変換座標上に設定されたクロソイド曲線に基づくので、前記存在確率を一段と好適に特定可能となる。
本発明に係る車両制御装置の他の態様では、前記自車の速度を検出する速度検出手段及び前記自車の横加速度を検出する横加速度検出手段のうち少なくとも一方を備え、前記存在確率特定手段は、前記クロソイド曲線の形状を、前記検出された速度及び横加速度のうち少なくとも一方に応じて可変に設定し、該形状が設定されたクロソイド曲線に基づいて、前記存在確率を特定する。
この態様によれば、クロソイド曲線の形状が、前記検出された速度及び横加速度のうち少なくとも一方に応じて可変に設定される。具体的に例えば、検出された速度が低下するに従い、クロソイド曲線の形状が、自車の車幅方向に広がるように設定される。速度が低下するに従い、或いは横加速度が増加するに従い、自車が走行する前記一の車線の曲率半径も相対的に低下する、言い換えれば、急カーブを走行している可能性が高まるからである。このようにして、検出された速度及び横加速度のうち少なくとも一方に応じて、自車の走行状態に一段と適したクロソイド曲線の形状が設定されることとなる。
本発明に係る車両制御装置の他の態様では、前記存在確率特定手段は、各瞬時において、前記特定された相対位置が前記一の車線上に存在する瞬時の確率を特定し、今回特定された前記瞬時の確率及び前回特定された前記瞬時の確率の時間平均により、前記存在確率を特定する。
この態様によれば、存在確率特定手段によって、定期に又は不定期に、各瞬時において、上述のように特定された相対位置が一の車線上に存在する瞬時の確率が、特定される。そして、今回特定された瞬時の確率及び前回特定された瞬時の確率の時間平均により、存在確率が特定される。言い換えれば、今回の特定結果のみならず、それまでに積算された特定結果を総合的に考慮するので、瞬間的な状況のみに囚われず、存在確率の信頼性が向上する。
このように時間平均による態様では、前記存在確率特定手段は、前記時間平均として重み付け時間平均により、前記存在確率を特定し、前記存在確率が増大する場合には、前記存在確率が減少する場合に比べて、前記重み付け時間平均に対する、前記今回特定された前記瞬時の確率の寄与率を増大させてもよい。
この態様によれば、一の車線上に急な割り込みをしてきた他車に対しても好適に反応して、存在確率の信頼性を向上させることが可能となる。例えば、存在確率が増大する場合には、言い換えれば、今回特定された瞬時の確率が前回特定された瞬時の確率と比べて高い場合には、他車が急に一の車線上に割り込みをしてきた可能性が高い。それにも関わらず、割り込みが無い場合と同様な重み付けを行うと、割り込みをしてきた他車への反応が鈍る虞がある。然るに、本態様では存在確率が増大することを受けて、他車の割り込みを間接的に察知し、重み付け時間平均に対する、今回特定された瞬時の確率の寄与率を増大させる。従って、割り込みをしてきた他車に対しても好適に反応して、存在確率の信頼性を向上させることが可能となる。
或いは、このように時間平均による態様では、前記存在確率特定手段は、前記時間平均として重み付け時間平均により、前記存在確率を特定し、前記存在確率が減少する場合には、前記存在確率が増大する場合に比べて、前記重み付け時間平均に対する、前記今回特定された前記瞬時の確率の寄与率を減少させてもよい。
この態様によれば、カーブに進入した他車を見失うことを回避し、存在確率の信頼性を向上させることが可能となる。例えば、存在確率が減少する場合には、言い換えれば、今回特定された瞬時の確率が前回特定された瞬時の確率と比べて低い場合には、他車がカーブにさしかかっている可能性が高い。それにも関わらず、直進路と同様の重み付けを行うと、他車に追随できない虞がある。然るに、本態様では、存在確率が増大する場合に比べて、重み付け時間平均に対する、今回特定された瞬時の確率の寄与率を減少させる。従って、カーブのために低下した今回特定された瞬時の確率の影響を極力抑えて、存在確率の信頼性を向上させることが可能となる。即ち、他車への追従性を向上させることとなる。
尚、上述の如く、重み付け時間平均により存在確率を特定することで、各種の利益が得られるが、重み付けすることなく単純平均により(即ち、均等なる重み付けにより)、存在確率を特定してもよい。その場合、存在確率の演算処理が簡易になるという利益が得られる。
本発明に係る車両制御装置の他の態様では、前記特定された存在確率が所定値以上である場合に、前記特定された相対位置に対応する他車のうち、前記自車から最も近くに存在するものを、前記自車に先行する先行車として選択する選択手段を更に備える。
この態様によれば、上述の各種態様に基づいて特定された存在確率が所定値以上である場合には、例えばプロセッサ等を有してなる選択手段によって、前記特定された相対位置に対応する他車のうち、自車から最も近くに存在するものが、自車に先行する先行車として、選択される。ここで「所定値」とは、その他車を先行車として選択する上で、最低限求められる存在確率として実験或いはシミュレーションによって予め求められる値であり、具体的に例えば75%である。この所定値は、若干のマージンを持たせる他、事後的な学習によって可変とされてもよい。こうして存在確率に条件が課せられることで、ただ単に自車から最も近くに存在する、別の車線上の車両を、誤って先行車として選択することを回避できる。
この選択手段が更に備わる態様では、前記選択された先行車に応じて、前記自車の前記一の車線上における走行状態を制御する制御手段を更に備えてもよい。
この態様によれば、上述のように好適に選択された先行車に応じて、例えばプロセッサ等を有してなる制御手段によって、一の車線上における自車の走行状態が好適に制御される。従って、典型的には、車間距離制御ACCの性能が向上する。
本発明の作用及び他の利得は、次に説明する実施するための最良の形態から明らかにされよう。
以下、発明を実施するための最良の形態として本発明の実施形態を、図面に基いて詳細に説明する。
(1)第1実施形態
第1実施形態に係る車両制御装置の構成及び動作処理を、図1から図6を参照して説明する。ここに図1は、第1実施形態に係る、車両制御装置のブロック図である。
図1において、本実施形態に係る、車両制御装置は、レーダセンサ11、車速センサ12、ヨーレートセンサ13、操舵角センサ14、曲率半径特定部21、マップ作成部31、他車座標変換部41、自車線確率導出部51、先行車選択部71及び走行制御ユニット81を備え、自車1に搭載されている。
レーダセンサ11は、本発明に係る「他車特定手段」の一例であり、自車1に対する他車2の相対座標(X,Y)を特定し、電気的に接続された他車座標変換部41に伝達する。
車速センサ12は、本発明に係る「車速検出手段」の一例であり、自車1の車速Vを導出し、電気的に接続された曲率半径特定部21及びマップ作成部31に伝達する。
ヨーレートセンサ13及び操舵角センサ14は、本発明に係る「横加速度検出手段」の一例であり、ヨーレート及び操舵角を夫々検出し、電気的に接続された曲率半径特定部21に伝達する。
曲率半径特定部21は、本発明に係る「曲率半径特定手段」の一例であり、伝達されてきた車速V、ヨーレート及び操舵角に基いて、自車1が走行する車線の曲率半径Rnを導出すると共に、電気的に接続された他車座標変換部41及びマップ作成部31に伝達する。
ここで、マップ作成部31以降について説明をするのに先立ち、図2から図5を参照して、クロソイド曲線に基いて建設された道路の形状、及びクロソイド曲線に基いて作成されたマップについて詳細に説明する。ここに図2は、本発明の第1実施形態に係る、自車及び他車がカーブに進入する様子を示す模式的な平面図である。
図2において、自車1及び他車2が走行している車線は、直線からカーブへ徐々に切り替わる際、クロソイド曲線によって曲率半径が徐変するよう連結されている。
ここに自車1は、典型的には、自動車であり、車速V、横加速度Gで走行している。他車2は、自車1と同一の車線上を走行している。点Oは、クロソイド原点を示す。X軸は、クロソイド曲線のクロソイド原点Oにおける接線方向を示す。Y軸は、X軸と直交する方向を示す。点Qは、クロソイド曲線上の任意の点を示す。Rは、点Qにおける曲率半径を示す。点Mは、点Qにおいてクロソイド曲線と接する曲率半径Rの円の中心を示す。τは、点Qにおける接線とX軸とのなす接線角を示す。
以上、図2に示すようなクロソイド曲線を少なくとも部分的に含む車線上を、自車1及び他車2が走行しているので、自車線確率を導出する際に用いられるマップの領域をクロソイド曲線以外の曲線(例えば、放物線)で描くことは、現実の車線の形状に則さず、自車線確率の導出精度が低下する虞がある。
そこで、現実の車線がクロソイド曲線で少なくとも部分的に規定されていることを考慮すべく、先ずは、図2を参照してクロソイド曲線を表す数式1から数式17について順に説明する。
このクロソイド曲線は、曲率半径Rが曲線長Lに比例して一様に増大する曲線であり、その基本式は、数式1のように表される。
Figure 0004811147
ここに、L:点Oから点Qまでの曲線長、A:クロソイドのパラメータである。
ここで、図2のクロソイド曲線において、LがdL微量変化したとすれば、それに伴いτ、X、Yも夫々dτ、dX、dY微量変化するので、数式2から数式4の関係が成立する。
Figure 0004811147
Figure 0004811147
Figure 0004811147
数式1及び数式2からRを消去して、数式5を得る。
Figure 0004811147
続いて、数式3及び数式4を数式5に代入し、積分をした後に級数展開を行うことで、数式6及び数式7を得る。
Figure 0004811147
Figure 0004811147
数式6及び数式7を夫々近似することで、数式8及び数式9を得る。
Figure 0004811147
Figure 0004811147
数式8、数式9、及び数式1よりτ及びAを消去して、数式10を得る。
Figure 0004811147
更に、車速と時間と距離との関係から、数式11を得る。
Figure 0004811147
ここに、V:自車1の車速[km/h]、T:点Oから点Qまでの走行時間[s]である。
更に、点Mを中心とした円運動の方程式より、数式12を得る。
Figure 0004811147
ここに、G:自車の横加速度[m/s]である。
以上の計算より得た数式10、数式11及び数式12で表されるクロソイド曲線に基いて、瞬間の自車線確率を導出するためのマップの領域が規定される。
次に、上記数式10、数式11及び数式12に加えて、図3を用いて、実際にマップの領域を規定する。ここに図3は、第1実施形態に係る、クロソイド曲線を少なくとも部分的に含んだ形状で領域が規定されたマップである(この際V=20km/h)。
先ず、実際に図3に示すようなマップの領域を規定する際には、数式10、数式11及び数式12を応用した下記の数式13、数式14、数式15及び数式16を用いる。
Figure 0004811147
Figure 0004811147
Figure 0004811147
Figure 0004811147
ここに、MAPは、クロソイド曲線により求めた値であり、他車2がいずれの領域内に存在するかを判定することで、他車2に係る瞬時の自車線確率を定める。尚、領域が重複する際には、より確率の高い方が採用される。Wは、各領域ごとに設定された横位置の設定値[m]を示す。Rは、領域の横加速度の設定値Gと自車の速度Vより求まる想定旋回半径値[m]を示す。Gは、各領域ごとに設定された横加速度の設定値[m]を示す。Xは、自車に対する他車の車間距離[m]を示す。Yは、自車に対する他車の横位置[m]を示す。尚、添え字のnは、典型的には整数であり、マップ上に規定される複数の領域の各々に対応づけられるかたちで、数式13から数式16に係るXに対するMAPnが夫々算出されることを意味する。
そして、図3のマップにおいて、例えば以下のようにして各領域が規定される。ここに、Pは瞬時の自車線確率である。
領域aは、数式16でW=0.9、G=0.5として規定される。他車2が領域a内に少しでもかかる場合、P=100%とする。
領域bは、数式16でW=1.3、G=0.15として規定される。他車2の中心が領域b内に位置する場合、P=90%とする。
領域cは、数式16でW=1.5、G=0.05として規定される。他車2の中心が領域c内に位置する場合、P=80%とする。
領域dは、数式16でWn=1.75、G=0.01として規定される。他車2の中心が領域d内に位置する場合、P=75%とする。
領域eは、数式15でWn=1.75として規定される。他車2の中心が領域e内に位置する場合、P=72%とする。
領域fは、数式14でWn=1.5、G=0.05として規定される。他車2の中心が領域f内に位置する場合、P=65%とする。
領域gは、数式14でWn=1.3、G=0.15として規定される。他車2の中心が領域g内に位置する場合、P=50%とする。
領域hは、数式14でWn=0.9、G=0.05として規定される。他車2の中心が領域h内に位置する場合、P=30%とする。
領域iは、数式15でWn=6.0として規定される。他車2の中心が領域i内に位置する場合、P=10%とする。
上記領域以外に他車の中心が位置する場合、P=0%とする。
尚、斜線の領域は、瞬時の自車線確率が75%以上の領域を示す。
以上のようにして、図3に示す、マップ(この際V=20km/h)の領域が規定される。この際、数式14によると、車間距離Xの3乗に比例してMAPが非常に大きな値となり得るので、各領域毎のMAPの変域に制限(例えば、6[m]以下)を設ける。加えて、数式16によると、MAPが0以下となりうるので、更にMAPの変域に制限(例えば、0[m]以上)を設ける。このようにして、MAPの変域に制限が設けられた曲線(例えば、0[m]以上且つ6[m]以下の変域)と、その曲線をX軸に関して対象な形状とすることで得られた曲線(例えば、−6[m]以上且つ0[m]以下の変域)を統合することで、マップ(この際V=20km/h)が規定される。
尚、数式14から数式16によると、MAPは自車1の車速Vに依存する。従って、例えば自車1の車速Vが異なると、マップの領域の形状も図4に示すように異なる。ここに図4は、第1実施形態に係る、クロソイド曲線を少なくとも部分的に含んだ形状で境域が規定されたマップ(この際V=70km/h)である。
図3と図4とを比較すると、より低速な図3(この際V=20km/h)に係る領域の方が、図4(この際V=70km/h)に係る領域に比べて、自車1に近い場所で、Y軸方向(即ち、車幅方向)へ広がっている。つまり、自車1の車速Vが下がる場合に走行する傾向が高まる急カーブにも対応できるように、各領域は規定されているのである。
そして、この図3に係る複数の領域のうち、他車2(具体的には、自車1に対する他車2の相対座標を、直進路相当に変換した座標)が含まれる領域に対応付けられた瞬時の自車線確率に従って、当該他車2に係る瞬時の自車線確率Pが導出される。そして、導出された瞬時の自車線確率Pに数式17で示すフィルタ処理を施して、他車に係る自車線確率Pが導出され、先行車を選択するための判断材料とされる。この様子を図5に示す。ここに図5は、第1実施形態に係る、先行車が選択された様子を示すマップである。
図5において、マップ中には他車2及び他車3という複数台(例えば、この場合は2台)の他車が存在する。各々の瞬時の自車線確率Pを図5により求める。具体的には、他車2の瞬時の自車線確率Pは、他車2の中心が領域i内に位置するので、10%である。他方で他車3の瞬時の自車線確率Pは、他車3の中心が領域d内に位置するので、75%である。
そして、マップより導出された、瞬時の自車線確率P0を、フィルタ処理として以下の数式17に代入し、今回の自車線確率Pを得る。
Figure 0004811147
ここにPは、今回の自車線確率を示し、Ppreは、前回導出された自車線確率を示し、P0は、今回の瞬時の自車線確率を示し、αは、フィルタ値を示す。
数式17によるフィルタ処理は、換言すると、今回の自車線確率Pを、前回導出された自車線確率Ppreと今回の瞬時の自車線確率P0との時間平均して求める処理であり、この際、どちらの確率を重視して時間平均するかの調整役として、フィルタ定数αがある。
極端な例として、α=0とするとP=P0となる。この場合、先に図5で求めた瞬時の自車線確率Pを用いると、他車2の今回の自車線確率P=P0=10%である。他方で他車3の今回の自車線確率P=P0=75%である。
従って、例えば先行車の最低限の条件として、今回の自車線確率が75%以上であるとし、他に他車が存在しなければ、たとえ他車2が他車3に比べて車間距離が短くとも、他車2でなく他車3が先行車として選択される。即ち、単に車間距離に基いて先行車を選択するのでは、すれ違う対向車を選びかねないので自車線確率が考慮され、単に放物線に基くだけのマップからは、自車線確率の精度が十分でないのでクロソイド曲線が考慮され、もって、自車線確率の精度が向上し、ひいては先行車の選択精度が向上するのである。
以上説明した数式1から数式17に基いて、マップを作成し、自車線確率を導出することで、先行車を好適に選択でき、例えば他車に追従する走行制御が行われる。
再び、図1に戻り、マップ作成部31は、本発明に係る「存在確率特定手段」の一例であり、伝達されてきた自車1の車速V及び曲率半径Rnと、クロソイド曲線に基く数式11及び数式14から数式16とから、複数の瞬時の自車線確率に夫々対応付けられた複数の領域を、クロソイド曲線を少なくとも部分的に含んだ形状で規定し、もってマップを作成すると共に、このマップをメモリ等に保存する(図3及び図4を参照)。係るマップの作成は、予め用意された、複数種類のマップから、車速V等に対応付けられたものを選択する態様でもよい。
他車座標変換部41は、本発明に係る「他車特定手段」の一例であり、伝達されてきた曲率半径Rnに少なくとも基いて、レーダセンサ11で特定された他車2の相対座標を、直進路の相対座標に変換し、電気的に接続された自車線確率導出部51及び先行車選択部71に伝達する。
自車線確率導出部51は、本発明に係る「存在確率特定手段」の一例であり、他車2に係る直進路の相対座標が、作成されたマップにおける複数の領域(図3から図5に示す領域を参照)のうち何れの領域に含まれるかを判定し、判定された領域に対応付けられた複数の瞬時の自車線確率のうち最も大きい確率をもって、他車2に係る瞬時の自車線確率Pを導出する。そして、該導出された瞬時の自車線確率Pに、例えば数式17を利用したフィルタ処理を施すことで、他車2に係る自車線確率Pを導出し、この自車線確率Pを、電気的に接続された先行車選択部71に伝達する。
先行車選択部71は、本発明に係る「選択手段」の一例であり、伝達されてきた自車線確率P及び他車2に係る直進路の相対座標に基いて、他車2が先行車であるか否かを判断し、先行車であると判断された場合には他車2の相対座標等を、電気的に接続された走行制御ユニット81に伝達する(図5を参照)。
走行制御ユニット81は、本発明に係る「制御手段」の一例であり、伝達されてきた他車2の相対座標等に基いて、例えば車間距離制御を行う。
以上、図1の構成によると、実際の道路形状に即したクロソイド曲線で作成されたマップに基いて自車線確率Pが導出されるので、クロソイド曲線以外の曲線で作成されたマップに基く場合に比べて、自車線確率Pの導出精度を上げることができる。加えて、この自車線確率Pに基いて先行車が選択されるので、信頼性の比較的高い車間距離制御を行うことが可能となる。
続いて、図1のように構成された車両制御装置の、動作処理について、図6を用いて説明する。ここに図6は、第1実施形態に係る、車両制御装置による先行車選択の処理を示すフローチャートである。
図6において、自車1の走行時には、以下の処理が定期又は不定期的に繰り返し行われ、先行車がその都度選択される。
先ず、レーダセンサ11によって、他車2がスキャンされ、自車1に対する他車2の車間距離X,横位置Yが取得される(ステップS1)。
これと同時に又は相前後して、車速センサ12によって、自車1の車速Vが導出され(ステップS2)、他方でヨーレートセンサ13及び操舵角センサ14によって、ヨーレート及び操舵角が導出される(ステップS3)。
こうして導出された自車1の車速V及びヨーレート及び操舵角に基き、曲率半径特定部21によって、曲率半径Rnが導出される(ステップS4)。
この曲率半径R等が、マップ作成部31によって、上述の数式11並びに数式14から数式16に代入され、クロソイド曲線でマップが作成される(ステップS5)。具体的には、マップ中に、複数の瞬時の自車線確率に夫々対応付けられた複数の領域が、クロソイド曲線を少なくとも部分的に含んだ形状で規定される(図3を参照)。
このマップ上で、他車2の位置を確認することで、以下の如く他車2の自車線確率が求められる。具体的には先ず、マップ上で他車2の位置を確認するために、他車座標変換部41によって、直線相当の横位置の補正値が導出される。即ち、実際にはある曲率で曲がっている車線を直線(即ち、マップのX軸)であると見立てた際の、他車2の横位置が導出される(ステップS6)。
この補正された他車2の位置がマップ上のどの領域に含まれるかが、自車線確率導出部51によって確認され、該当領域に対応付けられた値が今回の瞬時の自車線確率Pであるとされる(ステップS7)。
そして、この今回の瞬時の自車線確率Pが、上述の数式17に代入され、前回導出された自車線確率Ppreを加味する処理としてフィルタ処理が施され、今回の自車線確率Pが導出される(ステップS8)。
このようにして導出された今回の自車線確率Pに基いて、自車線上を走行している確率が比較的高い他車が例えば複数台いることが判明し、その中で最も車間距離Xが小さいものが先行車であるとして、先行車選択部71によって選択される(ステップS9)。
以上、図6に基く処理が、例えば0.016ms毎に行われるので、比較的精度の高い自車線確率が随時導出され、それに基いて、好適に先行車を選択可能となる。
(2)第1実施形態の変形形態
続いて、第1実施形態に係る図6の処理の、部分的な変形形態を、図7から図10を用いて説明する。
先ず、図7を用いて、図6に係る自車の車速の導出処理の変形形態を説明する。この変形形態は、自車の車速を適正範囲に収め、自車線確率の導出精度を向上するためのものである。ここに図7は、変形形態に係る、自車の車速を導出する処理示すフローチャートである。
図7において、先ず、車速センサ12の出力値を自車1の車速Vとする(ステップS2)。そして、この自車1の車速Vの値に、道路構造上の観点から上下限を設けるべく、以下の判定を行う(ステップS21)。
具体的には、自車1の車速Vが所定最小車速閾値(例えば、5km/h)より小さい場合、車速センサ12の出力値に代えて、所定最小車速閾値を自車1の車速Vとする(ステップS22)。他方で、自車1の車速Vが所定最大車速閾値(例えば、120km/h)より大きい場合、車速センサ12の出力値に代えて、所定最大車速閾値を自車1の車速Vとする(ステップS23)。それ以外の場合、即ち、自車1の車速Vが所定最小車速閾値以上、且つ所定最大車速閾値以下の場合には、自車1の車速Vについて特に値の変更はない。
以上、図7の処理によると、例えば200km/hといった、通常の道路構造上想定されていない車速に対して、マップを不必要に対応させることを回避できる。仮に、自車が車速200km/hで走行している高速道路であるとしても、そもそもの設計上は、例えば120km/hで走行すると想定された形状ないし構造である可能性が比較的高いからである。このようにして、マップの領域を規定する精度を向上し、もって自車線確率の導出精度を向上できる。
尚、本処理において自車1の車速Vに制限を上下限を設けたが、これは、あくまで他車2に係る自車線確率を導出するための処理であり、他の処理に用いられる趣旨ではない。例えば、車速センサ12の出力値、即ち実際の車速に基く必要がある制御では、上記上下限を考慮しないことは言うまでもない。
次に、図8及び図9を用いて、図6に係る曲率半径Rnの導出処理の変形形態を説明する。この変形形態は、曲率半径Rnを適正範囲に収め、自車線確率の導出精度を向上するためのものである。ここに図8は、変形形態に係る、曲率半径Rnを導出する処理を示すフローチャートであり、図9は、変形形態に係る、自車及び他車がカーブに進入する様子を示す模式的な平面図である(但し、R2<所定曲率半径閾値)。
図8において、先ず、曲率半径特定部21によって自車1の車速V、ヨーレート及び操舵角から曲率半径Rnが導出される(ステップS4)。そして、導出された曲率半径Rnと所定曲率半径閾値との大小が比較される(ステップS41)。ここで、曲率半径Rnが所定曲率半径閾値よりも小さい場合(ステップS41:Yes)、曲率半径Rnに所定曲率半径閾値が代入される(ステップS42)。他方、曲率半径Rnが所定曲率半径閾値以上である場合(ステップS41:No)、そのまま導出された曲率半径Rnが用いられる。
以上、図8の処理によると、曲率半径Rnが不当に小さい値として導出された場合に、図9に示すような道路構造上或いは旋回性能上ありえない程に小さい曲率半径(例えば、図9の曲率半径R2)を想定することを回避し、マップの形状が適正なものに補正され、もって自車線確率の導出精度を向上できる。
次に、図10を用いて、図6に係るフィルタ処理の変形形態を説明する。この変形形態は、自車線確率の経時変化に基いて、他車の割り込みやカーブを察知し、それによってフィルタ値αを適宜変更するものである。ここに図10は、第1実施形態に係る、車両制御装置によるフィルタ処理を示すフローチャートである。
図10において、先ず、前回導出された自車線確率Ppreと今回の瞬時の自車線確率Pとの大小が比較される(ステップS81)。
ここで、例えば他車が急に自車線上に割り込んでくる場合のように、今回の瞬時の自車線確率Pが前回導出された自車線確率Ppreよりも大きい場合(ステップS81:Yes)、フィルタ処理1として、例えば式17でα=0.88とした式18に基き、今回の自車線確率Pが導出される(ステップS82)。
Figure 0004811147
他方で、例えば一度先行車として選択された他車がカーブに進入する場合のように、今回の瞬時の自車線確率Pが前回導出された自車線確率Ppre以下の場合(ステップS81:No)、フィルタ処理2として、例えば式17でα=0.97とした式19に基き、今回の自車線確率Pが導出される(ステップS83)。
Figure 0004811147
以上、図10の処理によると、フィルタ処理1に係る今回の瞬時の自車線確率Ppreの係数(1−0.88)の方が、フィルタ処理2に係る今回の瞬時の自車線確率Ppreの係数(1−0.97)に比べて大きいので、フィルタ処理1の方がフィルタ処理2に比べて今回の瞬時の自車線確率P0を重視することになり、割り込んでくる他車に対して早期に対応可能となる。加えて、フィルタ処理1に係る前回導出された自車線確率Ppreの係数0.88に比べてフィルタ処理2に係る前回導出された自車線確率Ppreの係数0.97の方が大きいので、フィルタ処理1に比べてフィルタ処理2の方が前回導出された自車線確率Ppreを重視することになり、一度先行車として選択された他車に対する追従性を高めることができるのである。
以上、図1から図10を用いて説明したように、本実施形態に係る車両制御装置によると、自車線確率の精度を向上して、より安全な車間距離制御を実現可能となる。特に、クロソイド曲線に基いて設計された道路を走行する際の、瞬時の自車線確率の導出精度が向上し、加えて、他車が急な割り込みをしてくる場合には早急に反応すると共に、既に先行車として選択された他車2をカーブに進入する際に見失う可能性も低減するので、実践上極めて有効である。
尚、クロソイド曲線以外の他の緩和曲線に基いてカーブが設計されている場合には、当該他の緩和曲線に基いてマップの領域が規定されても良い。例えば、他の緩和曲線として、サイン半波長逓減曲線(即ち、進んだ距離に対して曲率半径がサイン状に変化する曲線)を用いることも可能である。更に、実際の道路の形状を、GPS或いはカーナビゲーションシステムから受け取って、係る形状をもとにしてマップの領域の形状を補正してもよい。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う車両制御装置も又、本発明の技術的範囲に含まれるものである。
本発明の第1実施形態に係る、車両制御装置のブロック図である。 第1実施形態に係る、自車及び他車がカーブに進入する様子を示す模式的な平面図である。 第1実施形態に係る、クロソイド曲線を少なくとも部分的に含んだ形状で領域が規定されたマップである(この際V=20km/h)。 第1実施形態に係る、クロソイド曲線を少なくとも部分的に含んだ形状で境域が規定されたマップである(この際V=70km/h)。 第1実施形態に係る、先行車が選択された様子を示すマップである。 第1実施形態に係る、車両制御装置による先行車選択の処理を示すフローチャートである。 変形形態に係る、自車の車速を導出する処理示すフローチャートである。 変形形態に係る、曲率半径を導出する処理を示すフローチャートである。 変形形態に係る、自車及び他車がカーブに進入する様子を示す模式的な平面図である(但し、R2<所定曲率半径閾値)。 変形形態に係る、車両制御装置によるフィルタ処理を示すフローチャートである。
符号の説明
1…自車、2…他車、3…他車、11…レーダセンサ、12…車速センサ、13…ヨーレートセンサ、14…操舵角センサ、21…曲率半径特定部、31…マップ作成部、41…他車座標変換部、51…自車線確率導出部、71…先行車選択部、81…走行制御ユニット

Claims (9)

  1. 道路上における一の車線上を走行する自車に先行して前記道路上を走行する他車の相対位置を所定座標上で特定する他車特定手段と、
    該特定された相対位置が前記一の車線上に存在する存在確率を、前記所定座標上に設定されたクロソイド曲線に基づいて、特定する存在確率特定手段と
    を備えることを特徴とする車両制御装置。
  2. 前記一の車線の曲率半径を特定する曲率半径特定手段を更に備え、
    前記他車特定手段は、前記所定座標として、前記一の車線を含む2次元座標が前記特定された曲率半径に応じて直進路に変換されてなる変換座標上で、前記相対位置を特定し、
    前記在確率特定手段は、前記存在確率を、前記変換座標上に設定された前記クロソイド曲線に基づいて、特定する
    ことを特徴とする請求項1に記載の車両制御装置。
  3. 前記自車の車速を検出する車速検出手段、前記自車の横加速度を検出する横加速度検出手段、及び前記自車の操舵角を検出する操舵角検出手段のうち少なくとも一つを更に備え、
    前記曲率半径特定手段は、前記検出される車速、横加速度及び操舵角のうち少なくとも一つに基いて、前記曲率半径を特定する
    ことを特徴とする請求項2に記載の車両制御装置。
  4. 前記自車の速度を検出する速度検出手段及び前記自車の横加速度を検出する横加速度検出手段のうち少なくとも一方を備え、
    前記存在確率特定手段は、前記クロソイド曲線の形状を、前記検出された速度及び横加速度のうち少なくとも一方に応じて可変に設定し、該形状が設定されたクロソイド曲線に基づいて、前記存在確率を特定する
    ことを特徴とする請求項1から3のいずれか一項に記載の車両制御装置。
  5. 前記存在確率特定手段は、
    各瞬時において、前記特定された相対位置が前記一の車線上に存在する瞬時の確率を特定し、
    今回特定された前記瞬時の確率及び前回特定された前記瞬時の確率の時間平均により、前記存在確率を特定する
    ことを特徴とする請求項1から4のいずれか一項に記載の車両制御装置。
  6. 前記存在確率特定手段は、
    前記時間平均として重み付け時間平均により、前記存在確率を特定し、
    前記存在確率が増大する場合には、前記存在確率が減少する場合に比べて、前記重み付け時間平均に対する、前記今回特定された前記瞬時の確率の寄与率を増大させる
    ことを特徴とする請求項5に記載の車両制御装置。
  7. 前記存在確率特定手段は、
    前記時間平均として重み付け時間平均により、前記存在確率を特定し、
    前記存在確率が減少する場合には、前記存在確率が増大する場合に比べて、前記重み付け時間平均に対する、前記今回特定された前記瞬時の確率の寄与率を減少させる
    ことを特徴とする請求項5又は6に記載の車両制御装置。
  8. 前記特定された存在確率が所定値以上である場合に、前記特定された相対位置に対応する他車のうち、前記自車から最も近くに存在するものを、前記自車に先行する先行車として選択する選択手段を更に備える
    ことを特徴とする請求項1から7のいずれか一項に記載の車両制御装置。
  9. 前記選択された先行車に応じて、前記自車の前記一の車線上における走行状態を制御する制御手段を更に備える
    ことを特徴とする請求項8に記載の車両制御装置。
JP2006166469A 2006-06-15 2006-06-15 車両制御装置 Expired - Fee Related JP4811147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166469A JP4811147B2 (ja) 2006-06-15 2006-06-15 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166469A JP4811147B2 (ja) 2006-06-15 2006-06-15 車両制御装置

Publications (2)

Publication Number Publication Date
JP2007331608A JP2007331608A (ja) 2007-12-27
JP4811147B2 true JP4811147B2 (ja) 2011-11-09

Family

ID=38931488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166469A Expired - Fee Related JP4811147B2 (ja) 2006-06-15 2006-06-15 車両制御装置

Country Status (1)

Country Link
JP (1) JP4811147B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136657B2 (ja) 2009-01-22 2013-02-06 トヨタ自動車株式会社 カーブ半径推定装置
JP6131813B2 (ja) 2013-10-03 2017-05-24 株式会社デンソー 先行車選択装置
JP6480101B2 (ja) * 2013-11-29 2019-03-06 トヨタ自動車株式会社 車両制御装置
JP6507525B2 (ja) * 2014-08-22 2019-05-08 株式会社アドヴィックス 車両制御装置
JP6487208B2 (ja) 2014-12-26 2019-03-20 株式会社Soken レーダ装置、及びカバー部材
JP6363517B2 (ja) 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
JP6363516B2 (ja) 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
JP6404722B2 (ja) 2015-01-21 2018-10-17 株式会社デンソー 車両の走行制御装置
DE112016003758T5 (de) * 2015-08-19 2018-05-03 Honda Motor Co., Ltd. Fahrzeugsteuervorrichtung, Fahrzeugsteuerverfahren und Fahrzeugsteuerprogramm
JP6663835B2 (ja) * 2016-10-12 2020-03-13 本田技研工業株式会社 車両制御装置
JP2018158689A (ja) * 2017-03-23 2018-10-11 日野自動車株式会社 先行車判定装置及び車両制御システム
JP6805105B2 (ja) * 2017-09-28 2020-12-23 株式会社デンソー 制御対象車両設定装置、制御対象車両設定システムおよび制御対象車両設定方法
JP7090136B2 (ja) * 2020-10-29 2022-06-23 成典 田中 道路特徴決定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328451A (ja) * 2000-05-18 2001-11-27 Denso Corp 進行路推定装置、先行車認識装置、及び記録媒体
JP3695296B2 (ja) * 2000-07-28 2005-09-14 株式会社デンソー クルーズ制御装置、車間警報装置及び記録媒体
JP3975922B2 (ja) * 2003-01-17 2007-09-12 トヨタ自動車株式会社 カーブ半径推定装置

Also Published As

Publication number Publication date
JP2007331608A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4811147B2 (ja) 車両制御装置
CN109313857B (zh) 周边环境识别装置
CN109318981B (zh) 车辆的行驶控制系统
JP7422661B2 (ja) 走行軌跡補正方法、走行制御方法、及び走行軌跡補正装置
JP5522157B2 (ja) 先行車判定装置および車間制御装置
KR100654142B1 (ko) 능동형 운전의도 추정방법 및 그 장치
JP4114587B2 (ja) 自車走行位置検出装置及びプログラム
US11377145B2 (en) Vehicle control device and control method for vehicle
CN113498519B (zh) 用于识别拐入车辆或拐出车辆的方法及控制单元
CN107207008B (zh) 车辆控制装置以及车辆控制方法
JP6396645B2 (ja) 走行経路生成装置
US10162361B2 (en) Vehicle control device
JP2015132996A (ja) 車両制御装置、及びプログラム
JP7112658B2 (ja) 車両運転支援システム及び方法
US9878712B2 (en) Apparatus and program for assisting drive of vehicle
CN104044587A (zh) 用于提高处于自主驾驶模式下的车辆的传感器可视性的系统和方法
US11449058B2 (en) Traveling track determination processing and automated drive device
US20120277955A1 (en) Driving assistance device
JP6638531B2 (ja) 周辺物体検出装置
CN114126940B (zh) 电子控制装置
US20050251332A1 (en) Method for correlating altitude and/or grade information with route points of a digital map
JPWO2018047292A1 (ja) 車両の走行制御方法および走行制御装置
JP2020111302A (ja) 車両運転支援システム及び方法
JP2020111300A (ja) 車両運転支援システム及び方法
JP2017100657A (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4811147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees