JP4806866B2 - Vacuum RTM molding method - Google Patents

Vacuum RTM molding method Download PDF

Info

Publication number
JP4806866B2
JP4806866B2 JP2001215210A JP2001215210A JP4806866B2 JP 4806866 B2 JP4806866 B2 JP 4806866B2 JP 2001215210 A JP2001215210 A JP 2001215210A JP 2001215210 A JP2001215210 A JP 2001215210A JP 4806866 B2 JP4806866 B2 JP 4806866B2
Authority
JP
Japan
Prior art keywords
resin
molding method
injection
vacuum
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001215210A
Other languages
Japanese (ja)
Other versions
JP2003025347A (en
JP2003025347A5 (en
Inventor
俊英 関戸
浩樹 大背戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001215210A priority Critical patent/JP4806866B2/en
Publication of JP2003025347A publication Critical patent/JP2003025347A/en
Publication of JP2003025347A5 publication Critical patent/JP2003025347A5/ja
Application granted granted Critical
Publication of JP4806866B2 publication Critical patent/JP4806866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空RTM(Vacuum Resin Transfer Molding )成形方法に関し、とくに、樹脂含浸不良の発生のない、優れた品質のFRP(繊維強化プラスチック)成形品を得ることができるようにした真空RTM成形方法に関する。
【0002】
【従来の技術】
FRP、とくにCFRP(炭素繊維強化プラスチック)は、軽量で高い機械特性を発揮できる複合材料であり、各種分野に使用されている。FRPの代表的な成形方法の一つとして、真空RTM成形方法が知られている。真空RTM成形方法は、型内に強化繊維基材を配置し、その型のキャビティ内を減圧し、樹脂を、減圧されたキャビティ内圧力と外部圧力との差圧を利用してキャビティ内に注入し、注入した樹脂を強化繊維基材に含浸させた後、樹脂を硬化させ、硬化後に脱型してFRP成形品を得る方法である。
【0003】
このような真空RTM成形方法において、キャビティ内を減圧し、キャビティ内外の圧力差(最大、1kg/cm2 )で樹脂を注入し、強化繊維基材に含浸するが、注入初期の段階では基材にまだ樹脂が十分に含浸されていないので流動抵抗が低く、速い流速で勢いよく流れる。しかし、基材は場所によって、流動抵抗に差があり、流動抵抗にばらつきが生じている。たとえば、基材がオーバーラップしている部分と、それ以外の部分での流動抵抗の差は、倍以上になることもある。そのような場合、オーバーラップ部分では大きな流動抵抗のために、樹脂含浸に比較的長時間を要するが、オーバーラップしていない部分では、流動抵抗が低いことから速やかに含浸が進行する。そのため、それらの部分間に、樹脂流動および含浸に時間的な差が生じ、流動抵抗の低い部分に樹脂が先回りして、流動抵抗の高い、未だ樹脂が十分に含浸されていない部分からの真空吸引経路を塞いでしまうことがある。このような状態が生じると、その樹脂未含浸部分からの真空吸引が阻害され、その部分における樹脂の流動速度が急激に低下し、やがて、樹脂が十分に含浸できないうちに樹脂がゲル化してしまい、その部分が未含浸状態のままになってしまうという問題を招く。
【0004】
【発明が解決しようとする課題】
そこで本発明の課題は、上記のような真空RTM成形方法における問題点に着目し、注入樹脂がキャビティ内に局部的に流動しすぎないようにし、とくに注入開始初期の段階で局部的に流動しすぎないようにし、含浸すべき強化繊維基材の全体にわたって、未含浸部の発生を防止できるようにした、真空RTM成形方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る真空RTM成形方法は、強化繊維基材を配置した型のキャビティ内を減圧し、樹脂を、減圧されたキャビティ内圧力と外部圧力との差圧を利用してキャビティ内に注入し強化繊維基材に含浸する真空RTM成形方法において、前記差圧による樹脂の注入速度を、少なくとも注入開始初期の段階でキャビティ内を減圧したまま、樹脂注入ラインのバルブを絞ることにより、何ら制御を行わない自然流速よりも低い流速に減速制御して、樹脂を注入することを特徴とする方法からなる。
【0006】
この本発明に係る真空RTM成形方法は、前述したような流動抵抗が高い部分にも十分に樹脂が含浸されるまで、流動抵抗の低い部分への樹脂流動、含浸が進みすぎないよう全体の流速を抑制するもので、とくに、流動開始初期(注入開始初期)の段階での流速を抑えるよう樹脂の注入速度を、何ら制御を行わない自然流速よりも低い流速に抑制する制御を行うものである。
【0007】
樹脂注入速度の制御としては、樹脂の初期注入流速Vcを、上記自然流速における初期注入流速Vnの2/3以下に制御することが好ましい。このような制御により、とくに注入開始後の初期の段階で有効に、流動抵抗の低い部分への樹脂流動、含浸が進みすぎないようにでき、真空吸引経路が局部的に塞がれるのを防止して、基材全体への良好な樹脂含浸を達成でき、未含浸部の発生を防止できるようになる。
【0008】
ただし、樹脂注入速度を低く抑えると、樹脂注入工程に要する時間が長くなり、樹脂注入工程を含めた成形工程全体のサイクル時間が長くなって生産性を低下させるおそれが生じる。そこで、樹脂注入工程の時間が長くなりすぎないようにするために、樹脂の粘度を下げて、樹脂の流動速度、含浸しやすさとしては比較的高い水準を保ち、その条件下において、局部的な未含浸部が発生しないようにすることが好ましい。そのためには、樹脂注入温度を、問題が生じない程度に高くして樹脂の粘度を下げることが好ましい。たとえば、樹脂を型温度50℃以上で注入することが好ましい。また、同様に成形サイクルを短くする観点から、強化繊維基材に含浸した樹脂を型温度70℃以上で硬化させることが好ましい。
【0009】
このような要求を満たす注入樹脂として、ポリアミン硬化剤と液状エポキシ樹脂とからなる樹脂組成物を用いることができる。
【0010】
また、本発明に係る真空RTM成形方法においては、樹脂の拡散や基材への含浸をより促進し、局部的な未含浸部の発生をより確実に防止するために、強化繊維基材の表面上に、樹脂の流動抵抗を下げる樹脂拡散媒体を配置することができる。また、強化繊維基材間に、表面に樹脂流路としての溝を有するコア材を配置することもできる。
【0011】
【発明の実施の形態】
以下に、本発明について、望ましい実施の形態とともに詳細に説明する。
図1は、本発明の真空RTM成形方法の基本的なプロセスを示している。図1に示す基本プロセスは、材料準備工程101、材料配置工程102、真空吸引工程103、樹脂注入含浸工程104、樹脂硬化工程105、脱型工程106を有している。これら各工程について以下に説明する。
【0012】
(1)材料準備工程
▲1▼強化繊維基材:炭素繊維やガラス繊維の織布を用いることが好ましく、それを所定の寸法に裁断する。必要によっては、製品形状に賦形し、固着材で形状保持させる。更に、所定の枚数、積層する。
▲2▼樹脂:とくに熱硬化性樹脂を使用し、主剤と硬化剤を個別に真空(加熱)脱泡させることが好ましい。中でも、ポリアミン硬化剤と液状エポキシ樹脂とからなる樹脂組成物を用いることが好ましい。
▲3▼コア材:コア材とその両面に強化繊維基材を配したサンドイッチ構造を成形する場合に使用する。コア材としては、主に、フォームコア(発泡体コア材)を用いることが、軽量化等の観点から望ましい。場合によっては、バルサコアや木材も用いることもできる。コア材の表面には、必要に応じて、樹脂流路用の溝を加工しておく。
▲4▼副資材:樹脂注入用や真空吸引用チューブや、必要に応じて樹脂拡散媒体や離型用織布、押圧板などを準備する。
【0013】
(2)材料配置(レイアツプ)工程
▲1▼離型剤が塗布された成形型面上に、上記材料を所定の位置に配置する。
▲2▼配置する際、非成形面にマーキングされた基準線などを基準に、織物基材の繊維配向やコア材の向き等をセットするとよい。
【0014】
(3)真空吸引工程
▲1▼強化繊維基材を配置した下型のキャビティを、上型で閉じてキャビティ内をシールするか、あるいは、下型のキャビティを可撓性材料からなるバッグ材(たとえば、フィルムやゴム材などからなるバッグ材)でバギングし、内部を外部に対してシールする。また、該可撓性材料からなるバッグ材と強化繊維基材の間に押圧板を配置する場合もある。
▲2▼上型で閉じた、あるいはバッグ材でバギングしたキャビティ内を真空吸引して減圧状態にする。
▲3▼真空吸引は、少なくとも20torr以下、望ましくは10torr以下にする。
▲4▼真空吸引は、吸引し続ける場合と20torr以下に達した時点で、吸引口を閉鎖する場合がある。
【0015】
(4)樹脂注入含浸工程
▲1▼成形型を加熱し、樹脂をキャビティ内に注入する。成形型は予め材料配置工程より加熱状態にあってもよい。
▲2▼樹脂注入は、大気圧による自然流速よりも遅い速度でゆっくり注入する。望ましくは、自然注入時の自然流速よりも2/3以下の速度に制御する。これは、初期の流速を自然流入のようにコントロールせずに注入すると、キャビティ内に流入した樹脂は先ず樹脂流動抵抗の低い部位を主体に流れ、例えば基材のオーバーラップ部や極端な変曲部などの高流動抵抗部分では流れが悪くなり(流れやすい部分との差が大きくなり)、流れの方向に流れが不揃いになって未含浸部が生じ、そのままボイドとして残る場合が多い。このような現象は流速の速い注入初期に生じやすいため、樹脂注入の開始直後から樹脂流動速度(注入速度)を抑制する必要がある。
▲3▼樹脂を注入して、含浸し終えたか否かの判断は、真空吸引口より樹脂が排出したか否かで行う。
【0016】
上記の樹脂注入流速の減速は、樹脂注入ラインの配置されたバルブを絞ること等によって制御でき、たとえば図2に示すような流速パターンに制御できる。図2において、流速パターンAは、減速しないで自然流速のまま樹脂を注入したばあいの流速を示しており、これに対し、たとえば樹脂注入ラインの配置されたバルブを、ある一定量絞り、絞ったままにすると、たとえば流速パターンB1のような流速特性になる。このパターンB1のような流速特性でもよいが、ある程度注入が進行した段階では、それほど流速を低下させないでも、すでに樹脂がキャビティ内に十分に良好に流動している場合が多いので、そのような場合には、成形サイクルを極力短縮する観点から、流速特性を途中で流速パターンAに近づけ、たとえば流速パターンB2のような流速特性にすることができる。
【0017】
(5)樹脂硬化工程
▲1▼樹脂注入含浸後、樹脂注入口を閉鎖する(空気の流入を防ぐ)。
▲2▼真空吸引側については、吸引し続ける場合と閉鎖する場合がある。特に、樹脂に溶媒を含む場合には吸引し続け、できるだけ発生ガスをキャビティ内より排出するようにする。
【0018】
(6)脱型工程
▲1▼基本的には、型温度を殆ど下げずに成形品を型より取り出すことが好ましい。
▲2▼脱型が難しい場合は、故意に型温を下げて型の収縮力を利用し、脱型を助けることもある。
【0019】
【実施例】
以下に、成形方法のより具体的な例を含めて、本発明を実施例に基づいて説明する。
実施例1
図3は、本発明の実施例1に係る真空RTM成形方法を示している。図3においては、金属製の上型1と下型2の両面成形型によって、内部にキャビティ3が成形されている。上型1、下型2内には、型加熱様の熱媒流路4、5がそれぞれ内蔵されている。
【0020】
型面上に離型剤を塗布し、予め熱媒流路5に温水を流して約40℃に加熱した下型成形面上に強化繊維基材6(東レ(株)製、炭素繊維織物:”トレカ”T300×200g/m2 ×8ply)をレイアップした。その上に、離型用織布7(ナイロン製タフタ)と樹脂拡散媒体8(#200メッシュのポリエチレン製網状体)を配置した。
【0021】
下型2と同様に、予め約40℃に加熱した上型1を下型2上にガイドピンに沿って押圧して固定状態を保持し、型締めした。
【0022】
キャビティ3の幅方向に形成された台形状の溝である減圧吸引部9に連通した吸引口より、バルブ10、真空トラップ11(樹脂の真空ポンプへの流入を阻止するためのトラップ)を介して真空ポンプ12により真空吸引した。
【0023】
キャビティ3内が10torr以下に達した後、真空吸引用溝である上記減圧吸引部9と基材6が配置された成形部分を介して対比関係にある位置に、該減圧吸引部9と同様に幅方向に形成された台形状の溝である樹脂注入部13に連通する樹脂注入ラインのバルブ14を開いて、タンク15に貯蔵されていた樹脂16を大気圧でキャビティ3内に流入させた。真空吸引ライン上のバルブ10は開いたままで真空吸引を続行した。樹脂及び真空シールは、型面上の全周にわたって配置したOリング17で行った。このとき、樹脂注入ラインのバルブ14の開度を調整し、通常全開で注入している自然流速の約1/2の流速まで注入流速を低下させた。熱硬化性樹脂16には、東レ(株)製ポリアミン硬化型エポキシ樹脂:TR−C32(ポリアミン硬化剤とエポキシ樹脂からなる樹脂組成物)を使用した。
【0024】
大気圧で加圧された樹脂16は、一旦幅方向に溝が形成された樹脂注入部13に到達して充満した後、キャビティ3との連通路である上下型の間隙で形成されたフィルムゲート18(隙間=約0.5mm)を通ってキャビティ3内に到達する。その後、基材6より流動抵抗が遙かに低い樹脂拡散媒体8に流れ込む。そして、その樹脂拡散媒体8内を主体に樹脂は流れながら、少しずつ厚み方向の基材6内に含浸して行き、やがて幅方向に溝が形成された減圧吸引部9に到達する。その後、真空吸引ライン上に樹脂が見えだした時点で樹脂注入ラインのバルブ14を閉鎖し、樹脂注入をストップした。樹脂注入開始から真空吸引ライン上に樹脂が見えるまでの時間は約20分であり、その20分間に型温度を80℃に昇温させた。樹脂注入流速を抑制したので、後述の成形品でチェックした結果、樹脂はキャビティ内、つまり、樹脂を含浸すべき部位に隈なく回り込んでおり、未含浸部の発生はなかった。
【0025】
樹脂がキャビティ3内に充満し、型温度が80℃の状態で基材6内に含浸したまま約1時間40分保持した。該樹脂はやがて型からの加熱により脱型可能なまでに硬化した。
【0026】
樹脂が硬化した後、型温度を降温し、上型1を上昇させて下型2から離型して成形品を型内より脱型させた。
【0027】
脱型した成形品は自動車部材であるフェンダーであり、成形品に未含浸部位の発生はなく、表面状態は光沢があり、全くボイドやピンホールなどは見られない良品であった。
【0028】
このように、熱硬化性樹脂の注入速度を適切に低下させることにより、成形サイクルを大幅に増加させることなく、成形部位の全体にわたって樹脂の良好な含浸性を確保でき、FRP製品の良好な品質を得ることができた。
【0029】
実施例2
本実施例では、片面型として下型21を用い、上型は用いずにシート状のバッグ材22で覆った。金属製の下型21には、型加熱用の熱媒流路23を形成されている。離型剤を型面上に塗布し、温水が通った熱媒流路23によって型温度は約40℃に加熱した。
【0030】
その型面上に強化繊維基材24(東レ(株)製、炭素繊維織物:”トレカ”T700×300g/m2 ×2ply)をレイアップした。更にその上にアクリル系のフォームコア材25(厚さ:10mm)を配置した後、その上に強化繊維基材24(東レ(株)製、炭素繊維織物:”トレカ”T700×300g/m2 ×2ply)を配置した。そして、その上には、該フォームコア材25と外寸が殆ど同一で厚さが3mmのFRP製押圧板26を載せ、下型表面の全体をナイロン製バッグ材22で覆った。そのバッグ材22と下型21とのシールは、粘着性シール材で行った。更に、該バッグ材22の上にヒータ線を内蔵したシリコン製ラバーヒータ28を被せた。なお、上記フォームコア材25には上下面共に、樹脂流入路用としての細溝(幅1.5mm×深さ3mm)を樹脂注入部29から減圧吸引部30方向に加工してある。
【0031】
キャビティ31の幅方向に形成された台形状の溝である減圧吸引部30に連通した吸引口よりバルブ32、真空トラップ33を介して真空ポンプ34によって真空吸引した。このときよりラバーヒータ28を70℃に昇温開始した。そして、キャビティ31内が6torr以下に達した後、真空吸引用溝である上記減圧吸引部30と基材24が配置された成形部分を介して対比関係にある位置に、該減圧吸引部30と同様に幅方向に形成された台形状の溝である樹脂注入部29に連通する樹脂注入ラインのバルブ35を開いてタンク36に貯蔵された樹脂37を大気圧でキャビティ31内に流入させた。このとき、バルブ35の開度を調整し、通常全開で注入している自然流速の約1/2の流速まで注入流速を低下させた。真空吸引ライン上のバルブ32は開いたままで、真空吸引し続けた。なお、樹脂及び真空シールは、型面上の全周に連通したOリング27で行った。また、ここで用いた熱硬化性樹脂37は、東レ(株)製ポリアミン硬化型エポキシ樹脂:TR−C32であり、70℃での粘度は約50mPa・sである。
【0032】
大気圧で加圧された樹脂37は、前記図2記載の実施例1と同様に一旦樹脂注入部29に到達し充満した後、キャビティ31から延長して樹脂注入部29まで配置された基材24内を通ってキャビティ31内に達する。但し、上記基材の延長部分には樹脂抵抗を下げる為に図3に記載したのと同様の樹脂拡散媒体を基材の上に配置した(図4では省略)。その後、基材24より流動抵抗が遙かに低いコア材25に形成された上記細溝内に流れ込む。そして樹脂39は、コア材25の上下面の細溝内を中心に流れながら少しずつ厚み方向の基材24内に含浸していき、やがて減圧吸引部30に到達する。その後、真空吸引ライン上に樹脂が見えだした時点で型温度を80℃に上昇させるとともに、樹脂注入ラインのバルブ35を閉鎖し、樹脂注入をストップした。
【0033】
上記樹脂が80℃に達した成形型のキャビティ31内に充満し、基材24内に含浸した状態で約1時間40分保持した。該樹脂はやがて型からの加熱により硬化した。
【0034】
樹脂が硬化した後、下型21からラバーヒータ28とバッグ材22を剥奪して成形品を型内より脱型させた。この場合、型温度は80℃から50℃に降温している途中で行い、できるだけ成形サイクルの短縮化をはかった。
【0035】
脱型した成形品は自動車部材であるボンネット・フードであり、樹脂の未含浸部の発生は全く見られなかった。意匠面はゲルコートによって一層光沢があり、塗装無しで基材の織物の織り目が外面に現われ、それによって商品価値を高めることができた。
【0036】
【発明の効果】
以上説明したように、本発明に係る真空RTM成形方法によれば、樹脂の注入速度を適切に小さく抑えることにより、注入樹脂のキャビティ内での望ましくない流動を防止して未含浸部やボイドが発生するのを効果的に防止でき、FRP成形品の優れた品質を確保することができる。
【図面の簡単な説明】
【図1】本発明の真空RTM成形方法の基本プロセスを示す工程フロー図である。
【図2】樹脂注入流速の特性図である。
【図3】本発明の実施例1に係る真空RTM成形方法を示す概略構成図である。
【図4】本発明の実施例2に係る真空RTM成形方法を示す概略構成図である。
【符号の説明】
1 上型
2、21 下型
3、31 キャビティ
4、5、23 熱媒流路
6、24 強化繊維基材
7 離型用織布
8 樹脂拡散媒体
9、30 減圧吸引部
10、14、32、35 バルブ
11、33 真空トラップ
12、34 真空ポンプ
13、29 樹脂注入部
15、36 タンク
16、37 熱硬化性樹脂
17、27 シール用Oリング
22 バッグ材
25 コア材
26 押圧板
28 ラバーヒータ
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a vacuum RTM (Vacuum Resin Transfer Molding) molding method, and in particular, a vacuum RTM molding method capable of obtaining an excellent quality FRP (fiber reinforced plastic) molded product without occurrence of defective resin impregnation. About.
[0002]
[Prior art]
FRP, especially CFRP (carbon fiber reinforced plastic) is a composite material that is lightweight and can exhibit high mechanical properties, and is used in various fields. A vacuum RTM molding method is known as one of typical FRP molding methods. In the vacuum RTM molding method, a reinforcing fiber substrate is placed in a mold, the inside of the mold cavity is decompressed, and the resin is injected into the cavity using the pressure difference between the decompressed cavity pressure and external pressure. Then, the impregnated resin is impregnated into the reinforcing fiber base, the resin is cured, and the mold is removed after curing to obtain an FRP molded product.
[0003]
In such a vacuum RTM molding method, the inside of the cavity is decompressed, the resin is injected with a pressure difference between the inside and outside of the cavity (maximum, 1 kg / cm 2 ), and the reinforcing fiber substrate is impregnated. Since the resin is not sufficiently impregnated, the flow resistance is low, and the resin flows vigorously at a high flow rate. However, the flow resistance varies depending on the location of the base material, and the flow resistance varies. For example, the difference in flow resistance between the overlapping part of the base material and the other part may be double or more. In such a case, the resin impregnation takes a relatively long time due to the large flow resistance in the overlap portion, but the impregnation proceeds promptly in the non-overlap portion because the flow resistance is low. Therefore, there is a time difference in resin flow and impregnation between these parts, the resin is advanced to the part with low flow resistance, and the vacuum from the part with high flow resistance that has not been sufficiently impregnated with resin. The suction path may be blocked. When such a state occurs, vacuum suction from the unimpregnated portion of the resin is hindered, and the flow rate of the resin in the portion is rapidly reduced, and the resin gels before the resin can be sufficiently impregnated. , This causes a problem that the part remains in the unimpregnated state.
[0004]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to focus on the problems in the vacuum RTM molding method as described above, so that the injected resin does not flow too much locally in the cavity, and particularly flows locally at the initial stage of injection. It is an object of the present invention to provide a vacuum RTM molding method capable of preventing the occurrence of unimpregnated portions throughout the reinforcing fiber base material to be impregnated.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the vacuum RTM molding method according to the present invention reduces the pressure in the cavity of the mold in which the reinforcing fiber base material is disposed, and the resin has a differential pressure between the reduced pressure in the cavity and the external pressure. In the vacuum RTM molding method of injecting into the cavity and impregnating the reinforcing fiber base by utilizing the resin injection speed, the resin injection speed is reduced at least at the initial stage of the injection while the pressure in the cavity is reduced. This is a method characterized in that the resin is injected by decelerating to a flow rate lower than the natural flow rate without any control.
[0006]
The vacuum RTM molding method according to the present invention is configured so that the resin flow and impregnation to the portion with low flow resistance do not proceed excessively until the portion with high flow resistance as described above is sufficiently impregnated with resin. In particular, the resin injection speed is controlled to be lower than the natural flow speed without any control so as to suppress the flow speed at the initial stage of flow start (initial injection start). .
[0007]
As control of the resin injection rate, it is preferable to control the initial injection flow rate Vc of the resin to 2/3 or less of the initial injection flow rate Vn at the natural flow rate. By such control, it is possible to prevent the resin flow and impregnation in the part with low flow resistance from proceeding excessively, especially in the initial stage after the start of injection, and prevent the vacuum suction path from being blocked locally. Thus, good resin impregnation of the entire base material can be achieved, and generation of unimpregnated portions can be prevented.
[0008]
However, if the resin injection speed is kept low, the time required for the resin injection process becomes longer, and the cycle time of the entire molding process including the resin injection process becomes longer, which may reduce productivity. Therefore, in order not to make the resin injection process time too long, the viscosity of the resin is lowered, and the flow rate of the resin and the ease of impregnation are kept at a relatively high level. It is preferable that no unimpregnated part is generated. For this purpose, it is preferable to raise the resin injection temperature to such an extent that no problem occurs, thereby lowering the viscosity of the resin. For example, it is preferable to inject the resin at a mold temperature of 50 ° C. or higher. Similarly, from the viewpoint of shortening the molding cycle, it is preferable to cure the resin impregnated in the reinforcing fiber base at a mold temperature of 70 ° C. or higher.
[0009]
As an injection resin that satisfies such requirements, a resin composition comprising a polyamine curing agent and a liquid epoxy resin can be used.
[0010]
Further, in the vacuum RTM molding method according to the present invention, in order to further promote the diffusion of the resin and the impregnation into the base material and more reliably prevent the occurrence of the local non-impregnated part, the surface of the reinforcing fiber base material is used. A resin diffusion medium that lowers the flow resistance of the resin can be disposed thereon. Moreover, the core material which has the groove | channel as a resin flow path on the surface can also be arrange | positioned between reinforcement fiber base materials.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with preferred embodiments.
FIG. 1 shows the basic process of the vacuum RTM molding method of the present invention. The basic process shown in FIG. 1 includes a material preparation step 101, a material placement step 102, a vacuum suction step 103, a resin injection impregnation step 104, a resin curing step 105, and a demolding step 106. Each of these steps will be described below.
[0012]
(1) Material preparation step (1) Reinforcing fiber substrate: It is preferable to use a woven fabric of carbon fiber or glass fiber, which is cut into a predetermined dimension. If necessary, it is shaped into a product shape and held in shape with an adhesive. Further, a predetermined number of sheets are stacked.
(2) Resin: It is preferable to use a thermosetting resin, and to vacuum (heat) defoaming the main agent and the curing agent separately. Among these, it is preferable to use a resin composition comprising a polyamine curing agent and a liquid epoxy resin.
(3) Core material: Used for forming a sandwich structure in which a core material and reinforcing fiber bases are arranged on both sides thereof. As the core material, it is mainly desirable to use a foam core (foam core material) from the viewpoint of weight reduction and the like. In some cases, balsacore or wood can also be used. On the surface of the core material, a groove for a resin flow path is processed as necessary.
(4) Auxiliary materials: Prepare a resin injection tube or vacuum suction tube, and a resin diffusion medium, a release woven fabric, a pressing plate, etc. as necessary.
[0013]
(2) Material placement (layup) step (1) The material is placed at a predetermined position on the mold surface to which the release agent is applied.
{Circle around (2)} When arranging, it is preferable to set the fiber orientation of the woven base material, the orientation of the core material, etc. with reference to the reference line marked on the non-molded surface.
[0014]
(3) Vacuum suction step (1) The lower mold cavity in which the reinforcing fiber base material is disposed is closed with the upper mold and the inside of the cavity is sealed, or the lower mold cavity is made of a bag material made of a flexible material ( For example, bagging is performed with a bag material made of a film or rubber material, and the inside is sealed from the outside. Moreover, a pressing plate may be disposed between the bag material made of the flexible material and the reinforcing fiber base material.
(2) The inside of the cavity closed with the upper mold or bagged with the bag material is sucked into a reduced pressure state.
(3) Vacuum suction is at least 20 torr or less, preferably 10 torr or less.
{Circle around (4)} Vacuum suction may be performed when the suction is continued or when the suction port reaches 20 torr or less.
[0015]
(4) Resin injection impregnation step (1) The mold is heated and the resin is injected into the cavity. The mold may be in a heated state in advance from the material placement step.
(2) Resin is injected slowly at a speed slower than the natural flow rate due to atmospheric pressure. Desirably, the speed is controlled to 2/3 or less than the natural flow rate during natural injection. This is because when the initial flow rate is injected without being controlled like natural inflow, the resin that flows into the cavity first flows mainly in the part where the resin flow resistance is low. In a part with high flow resistance such as a part, the flow becomes worse (the difference from the part that tends to flow easily becomes larger), the flow becomes uneven in the direction of the flow, an unimpregnated part is generated, and remains as a void in many cases. Since such a phenomenon is likely to occur at the beginning of injection with a high flow rate, it is necessary to suppress the resin flow rate (injection rate) immediately after the start of resin injection.
(3) Determination of whether or not the resin has been injected and impregnated has been made based on whether or not the resin has been discharged from the vacuum suction port.
[0016]
The deceleration of the resin injection flow rate can be controlled by, for example, restricting the valve where the resin injection line is arranged, and can be controlled to a flow rate pattern as shown in FIG. 2, for example. In FIG. 2, the flow rate pattern A shows the flow rate when the resin is injected with the natural flow rate without being decelerated. On the other hand, for example, the valve in which the resin injection line is arranged is throttled by a certain amount. If it is left as it is, flow velocity characteristics such as a flow velocity pattern B1 are obtained. Flow rate characteristics such as this pattern B1 may be used. However, at a stage where the injection has progressed to some extent, the resin already flows sufficiently well in the cavity even if the flow rate is not lowered so much. From the viewpoint of shortening the molding cycle as much as possible, the flow velocity characteristic can be brought close to the flow velocity pattern A on the way, and the flow velocity characteristic such as the flow velocity pattern B2 can be obtained.
[0017]
(5) Resin curing step (1) After impregnation with resin injection, the resin injection port is closed (preventing inflow of air).
(2) The vacuum suction side may be closed or closed. In particular, when the resin contains a solvent, the suction is continued and the generated gas is discharged from the cavity as much as possible.
[0018]
(6) Demolding step {circle around (1)} Basically, it is preferable to remove the molded product from the mold almost without lowering the mold temperature.
(2) When it is difficult to remove the mold, the mold temperature is intentionally lowered to use the contraction force of the mold to help the mold removal.
[0019]
【Example】
Hereinafter, the present invention will be described based on examples, including more specific examples of molding methods.
Example 1
FIG. 3 shows a vacuum RTM molding method according to Embodiment 1 of the present invention. In FIG. 3, a cavity 3 is formed inside by a double-sided mold of a metal upper mold 1 and a lower mold 2. In the upper mold 1 and the lower mold 2, heating medium channels 4 and 5 like mold heating are built in, respectively.
[0020]
A mold release agent is applied onto the mold surface, and a reinforcing fiber base 6 (manufactured by Toray Industries, Inc., carbon fiber fabric: "Torayca" T300 × 200 g / m 2 × 8 ply) was laid up. On top of that, a release woven fabric 7 (nylon taffeta) and a resin diffusion medium 8 (# 200 mesh polyethylene mesh) were placed.
[0021]
Similarly to the lower mold 2, the upper mold 1 heated in advance to about 40 ° C. was pressed onto the lower mold 2 along the guide pins to maintain the fixed state, and the mold was clamped.
[0022]
Via a valve 10 and a vacuum trap 11 (a trap for preventing the resin from flowing into the vacuum pump) from a suction port communicating with the vacuum suction unit 9 which is a trapezoidal groove formed in the width direction of the cavity 3. Vacuum suction was performed by the vacuum pump 12.
[0023]
After the inside of the cavity 3 reaches 10 torr or less, the vacuum suction part 9 that is a vacuum suction groove and the molding part where the base material 6 is disposed are placed in a contrasting position in the same manner as the vacuum suction part 9. The valve 14 of the resin injection line communicating with the resin injection part 13 which is a trapezoidal groove formed in the width direction was opened, and the resin 16 stored in the tank 15 was allowed to flow into the cavity 3 at atmospheric pressure. Vacuum suction was continued with the valve 10 on the vacuum suction line open. Resin and vacuum sealing were performed with an O-ring 17 arranged over the entire circumference on the mold surface. At this time, the opening degree of the valve 14 of the resin injection line was adjusted, and the injection flow rate was lowered to a flow rate of about ½ of the natural flow rate that was normally injected fully open. As the thermosetting resin 16, polyamine curable epoxy resin: TR-C32 (resin composition comprising a polyamine curing agent and an epoxy resin) manufactured by Toray Industries, Inc. was used.
[0024]
The resin 16 pressurized at atmospheric pressure once reaches and fills the resin injecting portion 13 having grooves formed in the width direction, and then a film gate formed by an upper and lower mold gap that is a communication path with the cavity 3. It reaches the cavity 3 through 18 (gap = about 0.5 mm). Then, it flows into the resin diffusion medium 8 whose flow resistance is much lower than that of the substrate 6. Then, while the resin flows mainly in the resin diffusion medium 8, the resin is gradually impregnated in the base material 6 in the thickness direction, and eventually reaches the vacuum suction part 9 in which grooves are formed in the width direction. Thereafter, when the resin started to appear on the vacuum suction line, the valve 14 of the resin injection line was closed to stop the resin injection. The time from the start of resin injection until the resin was seen on the vacuum suction line was about 20 minutes, and the mold temperature was raised to 80 ° C. during the 20 minutes. Since the flow rate of the resin injection was suppressed, as a result of checking with a molded product to be described later, the resin wraps around the cavity, that is, the portion to be impregnated with the resin, and no unimpregnated portion was generated.
[0025]
The cavity 3 was filled with the resin, and the base material 6 was impregnated at a mold temperature of 80 ° C. for about 1 hour and 40 minutes. The resin was cured until it could be removed by heating from the mold.
[0026]
After the resin was cured, the mold temperature was lowered, the upper mold 1 was raised and released from the lower mold 2 to release the molded product from the mold.
[0027]
The demolded molded product was a fender as an automobile member, and the molded product was a non-impregnated portion, the surface state was glossy, and no voids or pinholes were found at all.
[0028]
Thus, by appropriately reducing the injection rate of the thermosetting resin, it is possible to ensure good impregnation of the resin throughout the molding site without significantly increasing the molding cycle, and good quality of the FRP product. Could get.
[0029]
Example 2
In this example, the lower mold 21 was used as a single-sided mold, and the upper mold was not used, and the sheet-shaped bag material 22 was used for the covering. The metal lower mold 21 is provided with a heat medium passage 23 for heating the mold. A mold release agent was applied on the mold surface, and the mold temperature was heated to about 40 ° C. by the heat medium passage 23 through which hot water passed.
[0030]
Reinforced fiber base material 24 (manufactured by Toray Industries, Inc., carbon fiber fabric: “Torayca” T700 × 300 g / m 2 × 2 ply) was laid up on the mold surface. Further, an acrylic foam core material 25 (thickness: 10 mm) is disposed thereon, and then a reinforcing fiber base material 24 (manufactured by Toray Industries, Inc., carbon fiber fabric: “Torayca” T700 × 300 g / m 2). X2ply). On top of that, an FRP pressing plate 26 having the same outer dimensions as the foam core material 25 and a thickness of 3 mm was placed, and the entire lower mold surface was covered with a nylon bag material 22. The bag material 22 and the lower mold 21 were sealed with an adhesive seal material. Further, a silicon rubber heater 28 incorporating a heater wire was placed on the bag material 22. The foam core material 25 is formed with a narrow groove (width 1.5 mm × depth 3 mm) for the resin inflow path from the resin injection portion 29 toward the decompression suction portion 30 on both the upper and lower surfaces.
[0031]
Vacuum suction was performed by a vacuum pump 34 through a valve 32 and a vacuum trap 33 from a suction port communicating with the vacuum suction unit 30 which is a trapezoidal groove formed in the width direction of the cavity 31. At this time, the temperature of the rubber heater 28 was started to 70 ° C. Then, after the inside of the cavity 31 reaches 6 torr or less, the reduced pressure suction part 30 and the reduced pressure suction part 30 are located at a position in a contrasting relationship via the molding part where the base material 24 is disposed with the reduced pressure suction part 30 serving as a vacuum suction groove. Similarly, the valve 35 of the resin injection line communicating with the resin injection portion 29 which is a trapezoidal groove formed in the width direction was opened, and the resin 37 stored in the tank 36 was allowed to flow into the cavity 31 at atmospheric pressure. At this time, the opening degree of the valve 35 was adjusted, and the injection flow rate was lowered to a flow rate of about ½ of the natural flow rate that was normally injected with the valve fully open. The valve 32 on the vacuum suction line was kept open and vacuum suction was continued. Resin and vacuum sealing were performed with an O-ring 27 communicating with the entire circumference on the mold surface. Further, the thermosetting resin 37 used here is a polyamine curable epoxy resin: TR-C32 manufactured by Toray Industries, Inc., and its viscosity at 70 ° C. is about 50 mPa · s.
[0032]
The resin 37 pressurized at atmospheric pressure once reaches and fills the resin injection portion 29 in the same manner as in the first embodiment shown in FIG. 2, and then extends from the cavity 31 to the resin injection portion 29. 24 to reach into the cavity 31. However, in order to lower the resin resistance, the same resin diffusion medium as described in FIG. 3 was disposed on the base material (not shown in FIG. 4) in the extended portion of the base material. After that, it flows into the narrow groove formed in the core material 25 whose flow resistance is much lower than that of the base material 24. Then, the resin 39 gradually impregnates the base material 24 in the thickness direction while flowing mainly in the narrow grooves on the upper and lower surfaces of the core material 25, and eventually reaches the vacuum suction part 30. Thereafter, when the resin began to appear on the vacuum suction line, the mold temperature was raised to 80 ° C., and the valve 35 of the resin injection line was closed to stop the resin injection.
[0033]
The resin was filled in the cavity 31 of the mold that reached 80 ° C., and held in the base material 24 for about 1 hour and 40 minutes. The resin was eventually cured by heating from the mold.
[0034]
After the resin was cured, the rubber heater 28 and the bag material 22 were stripped from the lower mold 21 to remove the molded product from the mold. In this case, the mold temperature was lowered from 80 ° C. to 50 ° C., and the molding cycle was shortened as much as possible.
[0035]
The demolded molded product was a bonnet hood, which is an automobile member, and no unimpregnated portion of resin was observed. The design surface was more glossy due to the gel coat, and the texture of the base fabric woven appeared on the outer surface without painting, thereby increasing the commercial value.
[0036]
【The invention's effect】
As described above, according to the vacuum RTM molding method of the present invention, by suppressing the injection rate of the resin appropriately, undesired flow in the cavity of the injected resin can be prevented and unimpregnated portions and voids can be prevented. Generation | occurrence | production can be prevented effectively and the outstanding quality of a FRP molded product can be ensured.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing a basic process of a vacuum RTM molding method of the present invention.
FIG. 2 is a characteristic diagram of a resin injection flow rate.
FIG. 3 is a schematic configuration diagram showing a vacuum RTM molding method according to Embodiment 1 of the present invention.
FIG. 4 is a schematic configuration diagram showing a vacuum RTM molding method according to Embodiment 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper mold | type 2,21 Lower mold | type 3,31 Cavity 4,5,23 Heat-medium flow path 6,24 Reinforcement fiber base material 7 Weaving cloth 8 Resin diffusion medium 9,30 Vacuum suction part 10,14,32, 35 Valve 11, 33 Vacuum trap 12, 34 Vacuum pump 13, 29 Resin injection part 15, 36 Tank 16, 37 Thermosetting resin 17, 27 Sealing O-ring 22 Bag material 25 Core material 26 Press plate 28 Rubber heater

Claims (7)

強化繊維基材を配置した型のキャビティ内を減圧し、樹脂を、減圧されたキャビティ内圧力と外部圧力との差圧を利用してキャビティ内に注入し強化繊維基材に含浸する真空RTM成形方法において、前記差圧による樹脂の注入速度を、少なくとも注入開始初期の段階でキャビティ内を減圧したまま、樹脂注入ラインのバルブを絞ることにより、何ら制御を行わない自然流速よりも低い流速に減速制御して、樹脂を注入することを特徴とする真空RTM成形方法。Vacuum RTM molding in which the inside of the mold cavity where the reinforcing fiber substrate is placed is decompressed, and the resin is injected into the cavity using the pressure difference between the decompressed cavity pressure and the external pressure to impregnate the reinforcing fiber substrate. In the method, the resin injection speed due to the differential pressure is reduced to a flow rate lower than the natural flow rate without any control by narrowing the valve of the resin injection line while reducing the inside of the cavity at least at the initial stage of injection. A vacuum RTM molding method characterized by controlling and injecting resin. 樹脂の初期注入流速Vcを、前記自然流速における初期注入流速Vnの2/3以下に制御する、請求項1の真空RTM成形方法。The vacuum RTM molding method according to claim 1, wherein the initial injection flow rate Vc of the resin is controlled to be 2/3 or less of the initial injection flow rate Vn at the natural flow rate. 樹脂を型温度50℃以上で注入する、請求項1または2の真空RTM成形方法。The vacuum RTM molding method according to claim 1 or 2, wherein the resin is injected at a mold temperature of 50 ° C or higher. 強化繊維基材に含浸した樹脂を型温度70℃以上で硬化させる、請求項1〜3のいずれかに記載の真空RTM成形方法。The vacuum RTM molding method according to claim 1, wherein the resin impregnated in the reinforcing fiber base is cured at a mold temperature of 70 ° C. or higher. 注入樹脂としてポリアミン硬化剤と液状エポキシ樹脂とからなる樹脂組成物を用いる、請求項1〜4のいずれかに記載の真空RTM成形方法。The vacuum RTM molding method according to any one of claims 1 to 4, wherein a resin composition comprising a polyamine curing agent and a liquid epoxy resin is used as the injection resin. 強化繊維基材の表面上に、樹脂の流動抵抗を下げる樹脂拡散媒体を配置する、請求項1〜5のいずれかに記載の真空RTM成形方法。The vacuum RTM shaping | molding method in any one of Claims 1-5 which arrange | positions the resin diffusion medium which lowers the flow resistance of resin on the surface of a reinforced fiber base material. 強化繊維基材間に、表面に樹脂流路としての溝を有するコア材を配置する、請求項1〜5のいずれかに記載の真空RTM成形方法。The vacuum RTM shaping | molding method in any one of Claims 1-5 which arrange | positions the core material which has the groove | channel as a resin flow path on the surface between reinforcement fiber base materials.
JP2001215210A 2001-07-16 2001-07-16 Vacuum RTM molding method Expired - Fee Related JP4806866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215210A JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215210A JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Publications (3)

Publication Number Publication Date
JP2003025347A JP2003025347A (en) 2003-01-29
JP2003025347A5 JP2003025347A5 (en) 2008-08-14
JP4806866B2 true JP4806866B2 (en) 2011-11-02

Family

ID=19049892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215210A Expired - Fee Related JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Country Status (1)

Country Link
JP (1) JP4806866B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378687B2 (en) * 2004-02-17 2009-12-09 東レ株式会社 Fiber reinforced resin and method for producing the same
EP1721719B1 (en) 2004-02-17 2014-10-01 Toray Industries, Inc. Rtm molding method and device
JP4769045B2 (en) * 2005-08-10 2011-09-07 積水化学工業株式会社 Vacuum injection molding method for fiber reinforced resin molded products
US8038920B2 (en) * 2006-01-25 2011-10-18 Carticept Medical, Inc. Methods of producing PVA hydrogel implants and related devices
BRPI0717132A2 (en) * 2006-09-29 2013-11-12 Toray Industries TRAINING-MOLDING TOOL AND PROCESS TO PRODUCE FIBER-REINFORCED PLASTIC ER FORMS WITH THE TOOL.
AU2008227492B2 (en) * 2007-03-20 2013-02-14 Mitsubishi Heavy Industries, Ltd. Method of vacuum-assisted RTM
JP4961244B2 (en) * 2007-03-30 2012-06-27 本田技研工業株式会社 Fiber reinforced composite material manufacturing apparatus and method
JP5240754B2 (en) * 2007-10-16 2013-07-17 独立行政法人物質・材料研究機構 Method for producing fiber reinforced composite
US8487052B2 (en) 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
JP5553206B2 (en) * 2010-02-22 2014-07-16 東レ株式会社 RTM molding method
KR101997778B1 (en) * 2017-12-18 2019-07-08 울산과학기술원 Method for measuring the curing behavior, flow and impregnation degree of a resin in the production of a resin composite by VARTM
CN110549529A (en) * 2019-07-22 2019-12-10 中国石油大学(华东) Vacuum tank capable of being rapidly filled and used for vacuum bubble discharge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796235B2 (en) * 1990-03-30 1995-10-18 東レ株式会社 Injection device for undiluted solution for plastics molding
JPH06210644A (en) * 1992-09-28 1994-08-02 Takeda Chem Ind Ltd Method and apparatus for molding fiber reinforced plastic
JP3526166B2 (en) * 1997-03-25 2004-05-10 株式会社神戸製鋼所 Mold for resin injection and molding method using the mold
JPH1142647A (en) * 1997-07-28 1999-02-16 Taiei Shoko Kk Plastic molding method and mold
JPH1148351A (en) * 1997-08-08 1999-02-23 Yokohama Rubber Co Ltd:The Method for molding fiber-reinforced resin
JP3885848B2 (en) * 1998-06-03 2007-02-28 社団法人日本航空宇宙工業会 Composite material molding method and molding die therefor

Also Published As

Publication number Publication date
JP2003025347A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US9463587B2 (en) Methods of RTM molding
EP2123431B1 (en) Method for manufacturing a composite
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
JP4806866B2 (en) Vacuum RTM molding method
JP3904833B2 (en) Vacuum assisted resin impregnation method for reinforcing materials using uniform pressure
WO2012039409A1 (en) Method for producing fiber-reinforced plastic
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
CN107521124A (en) Carbon fiber dual platen reinforced structure part and its manufacture method
JP4663174B2 (en) Method for forming honeycomb sandwich structure composite material
CN110884167B (en) Polyurethane resin pouring structure and forming method for wind power generation blade
JP4542588B2 (en) RTM molding method
JP5223505B2 (en) Manufacturing method of FRP
JP4432563B2 (en) Manufacturing method of FRP
JP4752147B2 (en) RTM molding method
JP4104413B2 (en) RTM molding method
RU2579380C2 (en) Method of moulding components from polymer composite materials with application of double vacuum pack
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
JP2005001306A (en) Manufacturing method and device for fiber-reinforced resin molded body
JP4035464B2 (en) Manufacturing method and manufacturing apparatus of composite material
KR20240109463A (en) manufacturing apparatus for integrated solid frame using high vacuum continuous infusion forming
CN117067628A (en) Method for manufacturing blade and blade
CN112981694A (en) VARTM process reinforcing material and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees