JP2005271248A - Frp manufacturing method - Google Patents

Frp manufacturing method Download PDF

Info

Publication number
JP2005271248A
JP2005271248A JP2004084313A JP2004084313A JP2005271248A JP 2005271248 A JP2005271248 A JP 2005271248A JP 2004084313 A JP2004084313 A JP 2004084313A JP 2004084313 A JP2004084313 A JP 2004084313A JP 2005271248 A JP2005271248 A JP 2005271248A
Authority
JP
Japan
Prior art keywords
resin
preform
suction port
vacuum suction
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004084313A
Other languages
Japanese (ja)
Other versions
JP4432563B2 (en
Inventor
Koji Kotani
浩司 小谷
Kazuaki Kitaoka
一章 北岡
Masumi Mizobata
真澄 溝端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004084313A priority Critical patent/JP4432563B2/en
Publication of JP2005271248A publication Critical patent/JP2005271248A/en
Application granted granted Critical
Publication of JP4432563B2 publication Critical patent/JP4432563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FRP manufacturing method capable of allowing a resin to flow through a normal resin flow channel in a normal flow rate by preventing the short pass of the resin toward a vacuum suction port to prevent the non-impregnation of a molded product with the resin. <P>SOLUTION: The FRP manufacturing method is composed of at least a setting process (A) for installing a preform 2 comprising a reinforced fiber base material, a vacuum suction port 6 and a resin injection port 4 on a mold 1, a hermetically closing process (B) of a suction part for connecting the preform 2 and the vacuum suction port 6 by a ventilation material 7 and subsequently sealing the whole of the vacuum suction port and at least a part of the ventilation material 7 by an airtight material 9 to cover them, a hermetically sealing process (C) for sealing and covering the whole of the preform 2 on the mold, the vacuum suction port 6, the resin injection port 4, the ventilation material 7 and the suction port covering molding part with a bag material 10 to hermetically close the same, a vacuum process (D) for evacuating the whole of the molding part sealed and covered with the bag material 10 by the suction from the vacuum suction port 6 and a resin impregnating and curing process (E) for injecting a resin from the resin injection port 4 to impregnate the reinforcing fiber base material 2 with resin to cure the resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空Resin Transfer Molding(以下、RTMと言う。)成形法による繊維強化プラスチック(以下、FRPと言う。)の製造方法の改良に関し、詳しくは、樹脂のショートパスを防止して、樹脂の未含浸部の発生を無くし、成形体の品質の安定性を高めることが可能なFRPの製造方法に関する。   The present invention relates to an improvement in a method for producing a fiber reinforced plastic (hereinafter referred to as FRP) by a vacuum resin transfer molding (hereinafter referred to as RTM) molding method. It is related with the manufacturing method of FRP which can eliminate generation | occurrence | production of the unimpregnated part of this and can improve the stability of the quality of a molded object.

周知のように、FRPは軽量で高い機械特性を発揮できる材料であり、各種分野に使用されている。FRPの代表的な製造方法の一つとして、真空RTM成形方法が知られている。真空RTM成形方法は、型内に少なくとも強化繊維基材からなるプリフォームを配置し、その型のキャビティ内を減圧して、樹脂を減圧されたキャビティ内圧力と外部圧力との差圧を利用してキャビティ内に注入し、注入した樹脂を強化繊維基材に含浸させた後、樹脂を硬化させ、硬化後に脱型してFRPを得る方法である。真空RTM法には、上下セットになった金型を使う成形方法と、下金型の上にプリフォームを設置し、フィルムやゴムシートのようなバッグ材で覆って成形する方法等がある。   As is well known, FRP is a lightweight material that can exhibit high mechanical properties, and is used in various fields. As one of typical methods for producing FRP, a vacuum RTM molding method is known. In the vacuum RTM molding method, a preform composed of at least a reinforcing fiber base is placed in a mold, the inside of the mold cavity is decompressed, and the pressure difference between the cavity internal pressure and the external pressure is reduced. Then, the resin is injected into the cavity, the injected resin is impregnated into the reinforcing fiber base, the resin is cured, and the mold is demolded after the curing to obtain FRP. The vacuum RTM method includes a molding method using a mold set in an upper and lower set, a method in which a preform is placed on a lower mold and covered with a bag material such as a film or a rubber sheet.

特許文献1では、型内にプリフォームとその上に樹脂拡散媒体を配置し、プリフォームと連通した樹脂注入口と減圧吸引口を設置して、それら全体をバッグ材で覆って減圧して、樹脂を注入して硬化させる方法が開示されている。しかしながら、この方法のみでは、プリフォーム全体に樹脂が含浸するのに時間がかかる場合、例えばプリフォームの厚みが厚い場合などには、注入された樹脂がプリフォーム全体に含浸する前に、正規の樹脂含浸経路から外れて、例えばバッグ材のしわのようなキャビティ内の隙間をショートパスして減圧吸引口に到達して、減圧吸引経路を塞ぐ問題が生じる。その場合、プリフォームの減圧吸引を充分に行うことが出来なくなり、強化繊維内を通過する樹脂の流速が維持されず、樹脂の未含浸部を残す問題があった。   In Patent Document 1, a preform and a resin diffusion medium are placed on the preform in the mold, a resin inlet and a vacuum suction port communicating with the preform are installed, and the whole is covered with a bag material and decompressed, A method for injecting and curing a resin is disclosed. However, with this method alone, when it takes time for the entire preform to be impregnated with the resin, for example, when the thickness of the preform is thick, before the injected resin impregnates the entire preform, A problem arises in that the pressure-removing suction path is closed by short-passing a gap in the cavity such as a wrinkle of the bag material and arriving at the pressure-reducing suction port by deviating from the resin impregnation path. In that case, there is a problem that the preform cannot be sufficiently sucked under reduced pressure, the flow rate of the resin passing through the reinforcing fibers is not maintained, and an unimpregnated portion of the resin remains.

特許文献2では、真空RTM成形法の改良方法として、成形部全体を加熱することにより高品位なFRPが製造できる方法が開示されている。すなわち、加熱により樹脂の粘度が下がり、プリフォームへの樹脂の含浸が改善して、高品位な成形品が得られる方法である。しかしながら、樹脂の粘度が下がると、樹脂のショートパスがより起こりやすくなる場合があった。   In Patent Document 2, as a method for improving the vacuum RTM molding method, a method is disclosed in which high-quality FRP can be produced by heating the entire molding part. That is, it is a method in which the viscosity of the resin is lowered by heating, the impregnation of the resin into the preform is improved, and a high-quality molded product is obtained. However, when the viscosity of the resin decreases, a short pass of the resin may occur more easily.

特許文献3では、バッグ材を使用した真空RTM成形法の改良として、プリフォームをバッグする通常のシングルバッグの上に、さらにダブルバギングをして、その中を減圧吸引することにより、シングルバッグ内にエアーのリークが無いようにするという技術が開示されている。しかしながら、この方法においても、先述の通り、プリフォームから減圧吸引口に樹脂がショートパスする問題が依然としてあった。
米国特許第4,902,215号明細書 特開2003−48223号公報(図2) 米国特許出願公開第2002/0022422号明細書
In Patent Document 3, as an improvement of a vacuum RTM molding method using a bag material, double bagging is further performed on a normal single bag for bagging a preform, and the inside of the single bag is sucked under reduced pressure. Discloses a technique for preventing air leakage. However, this method still has a problem that the resin short-passes from the preform to the vacuum suction port as described above.
U.S. Pat. No. 4,902,215 Japanese Patent Laying-Open No. 2003-48223 (FIG. 2) US Patent Application Publication No. 2002/0022422

本発明の課題は、FRPの製造方法における上記従来技術の問題点を解決し、注入樹脂の減圧吸引口側への樹脂のショートパスを防止することにより、樹脂を正規の樹脂流路で正規の流量で流動させて、成形品における未含浸樹脂部の発生を防止することが可能なFRP製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art in the FRP manufacturing method and prevent the resin from passing through to the vacuum suction port side of the injected resin so that the resin can be properly An object of the present invention is to provide an FRP manufacturing method capable of preventing generation of an unimpregnated resin portion in a molded product by flowing at a flow rate.

本発明は、上記課題を達成するために、少なくとも次の(A)〜(E)の工程からなることを特徴とするFRPの製造方法。   In order to achieve the above object, the present invention comprises at least the following steps (A) to (E).

(A)強化繊維基材からなるプリフォーム、減圧吸引口および樹脂注入口を成形型の上に設置するセット工程。   (A) A setting step in which a preform made of a reinforcing fiber base, a vacuum suction port, and a resin injection port are installed on a mold.

(B)前記プリフォームと減圧吸引口とを通気材料で繋ぎ、次に前記減圧吸引口全体と通気材料の少なくとも一部を気密材料でシールして覆う吸引部の密閉工程。   (B) A sealing step of a suction part that connects the preform and the vacuum suction port with a ventilation material, and then seals and covers the entire vacuum suction port and at least a part of the ventilation material with an airtight material.

(C)前記成形型上のプリフォーム、減圧吸引口、樹脂注入口、通気材料および前記吸引部を覆う成形部の全体を、バッグ材でシールし、覆って密閉する成形部全体の密閉工程。   (C) A sealing step for the entire molding unit, in which the preform, the vacuum suction port, the resin injection port, the ventilation material, and the molding unit that covers the suction unit on the molding die are sealed with a bag material, and are covered and sealed.

(D)前記バッグ材でシールして覆われた成形部全体を、減圧吸引口から吸引により減圧する減圧工程。   (D) A depressurization step of depressurizing the entire molded part covered with the bag material by suction from the depressurization suction port.

(E)前記樹脂注入口から樹脂を注入し、前記強化繊維基材に樹脂を含浸させてから、樹脂をキュアさせる樹脂の含浸・キュア工程。   (E) A resin impregnation and curing step in which a resin is injected from the resin injection port and the reinforcing fiber base material is impregnated with the resin, and then the resin is cured.

本発明に係るFRPの製造方法によれば、プリフォームと減圧吸引口と通気材料で繋ぎ、それを気密材料で覆うので、正規流路からショートパスする樹脂に起因する吸引口の真空度低下を防ぐことができる。よって、FRP製成形体における樹脂未含浸部の発生を防止することができ、品質を安定させることができる。   According to the FRP manufacturing method of the present invention, the preform, the vacuum suction port, and the ventilation material are connected and covered with an airtight material, so that the vacuum degree of the suction port is reduced due to the resin short-passing from the regular flow path. Can be prevented. Therefore, generation | occurrence | production of the resin non-impregnation part in a FRP molded object can be prevented, and quality can be stabilized.

以下、本発明の最良の実施の形態を一実施例の図面を参照しながら工程順に説明する。   Hereinafter, the best mode of the present invention will be described in the order of steps with reference to the drawings of one embodiment.

図1は本発明の製造方法に係る第1の実施の形態を説明するための真空RTM装置の断面図であり、プリフォーム2内を減圧しつつ、樹脂ポット5内の樹脂を注入している様子を示している。図2は図1に示している真空RTM装置の平面図である。
1.セット工程
図1において、まず、表面に離型剤が塗布された片面型1上にプリフォーム2を配置する。プリフォーム2は少なくとも強化繊維基材から構成されている。プリフォーム2の強化繊維基材は、厚い方が後記5の含浸・キュア工程で説明する板厚方向への含浸時間がより長くなるので、本発明の特徴が発揮できる。
FIG. 1 is a cross-sectional view of a vacuum RTM apparatus for explaining the first embodiment of the manufacturing method of the present invention, in which the resin in the resin pot 5 is injected while the inside of the preform 2 is decompressed. It shows a state. FIG. 2 is a plan view of the vacuum RTM apparatus shown in FIG.
1. Setting Step In FIG. 1, first, a preform 2 is placed on a single-sided mold 1 having a surface on which a release agent is applied. The preform 2 is composed of at least a reinforcing fiber base material. The thicker the reinforcing fiber substrate of the preform 2, the longer the impregnation time in the plate thickness direction described in the impregnation / curing step 5 described later, the characteristics of the present invention can be exhibited.

プリフォーム2を構成する強化繊維基材としては、特に限定されないが、例えば炭素繊維、ガラス繊維、アラミド繊維などを用いることができる。また、プリフォーム2の断面形状は、例えば矩形、C型、I型、L型、Z型、T型、またはハット型のように複雑形状であるほど、よりキャビティ内に隙間が出来やすく、本発明の特徴が発揮できる。樹脂を素早く、かつまんべんなくプリフォーム2内に流動させる必要性から、プリフォーム2上に離型性のあるピールプライ15と樹脂拡散媒体3を配置することが好ましい。ピールプライ15は、硬化後に樹脂拡散媒体3が硬化板から容易に離型できれば特に材質を限定するものではなく、例えばナイロン製織布を使用することが好ましい。樹脂拡散媒体3としては、樹脂流動抵抗がプリフォーム2より低ければ特に限定するものではないが、例えば網目状のシートや樹脂流路としての溝を付けた平板を使用することが好ましい。必要に応じて樹脂拡散媒体3の上に押圧板を設置しても良い。   Although it does not specifically limit as a reinforced fiber base material which comprises the preform 2, For example, carbon fiber, glass fiber, an aramid fiber etc. can be used. In addition, the cross-sectional shape of the preform 2 is more complicated as a rectangular shape, a C shape, an I shape, an L shape, a Z shape, a T shape, or a hat shape. The features of the invention can be exhibited. It is preferable to dispose the peel ply 15 and the resin diffusion medium 3 having releasability on the preform 2 because it is necessary to quickly and evenly flow the resin into the preform 2. The material of the peel ply 15 is not particularly limited as long as the resin diffusion medium 3 can be easily released from the cured plate after curing. For example, a nylon woven fabric is preferably used. The resin diffusion medium 3 is not particularly limited as long as the resin flow resistance is lower than that of the preform 2. For example, it is preferable to use a mesh sheet or a flat plate with grooves as a resin flow path. You may install a press plate on the resin diffusion medium 3 as needed.

次に、プリフォーム2に樹脂を注入する注入口4とプリフォーム2を減圧する吸引口6を配置する。図1に示すように、樹脂拡散媒体3の左側に樹脂の注入口4を配置する。樹脂の注入口4は、図2に示すように、プリフォーム2の幅方向に拡散しやすいように開口している型材を使用することが好ましく、例えばアルミ製のCチャンネルを使用することができる。また、プリフォーム2の幅方向に樹脂を流動させる溝を片面型1に加工しても良い。樹脂ポット5は樹脂注入口4の近くに設置して、注入ライン16で連通させる。注入ライン16は特に限定するものでは無いが、圧力損失を小さくするためには、内径が大きい方が好ましい。   Next, an injection port 4 for injecting resin into the preform 2 and a suction port 6 for decompressing the preform 2 are arranged. As shown in FIG. 1, a resin inlet 4 is disposed on the left side of the resin diffusion medium 3. As shown in FIG. 2, it is preferable to use a mold material that is open so as to be easily diffused in the width direction of the preform 2, and for example, an aluminum C channel can be used as the resin injection port 4. . Further, the groove for allowing the resin to flow in the width direction of the preform 2 may be processed into the single-sided mold 1. The resin pot 5 is installed near the resin injection port 4 and communicated with the injection line 16. The injection line 16 is not particularly limited, but a larger inner diameter is preferable in order to reduce pressure loss.

一方、プリフォーム2の右側には、左側の一部をプリフォーム2と接触させ、右側を吸引口6と連通させて減圧吸引できるように通気材料7を配置する。減圧吸引口6は減圧吸引ライン11で真空トラップ12、真空ポンプ13の順に連通させる。減圧吸引口6は、前記の4と同様に、下部が開口していれば良い。   On the other hand, a ventilation material 7 is arranged on the right side of the preform 2 so that a part of the left side is in contact with the preform 2 and the right side is connected to the suction port 6 so as to be sucked under reduced pressure. The vacuum suction port 6 is communicated with a vacuum trap 12 and a vacuum pump 13 in this order through a vacuum suction line 11. The vacuum suction port 6 only needs to be open at the bottom as in 4 above.

通気材料7は、プリフォーム2の減圧吸引が可能であれば、特に形態を限定するものではない。少なくとも一部がプリフォーム2と接触していれば良く、プリフォームの端部全体に渡って配置することもできる。   The form of the ventilation material 7 is not particularly limited as long as the preform 2 can be sucked under reduced pressure. It suffices that at least a part is in contact with the preform 2, and it can be arranged over the entire end of the preform.

通気材料7の材質としては、特に限定するものでは無いが、有機繊維布帛、無機繊維布帛、メッシュ材などを使用することができる。例えば、目付が低いガラス繊維織物あるいはマット材、合成繊維の不織布のような通気抵抗が低い材料が減圧吸引をする点からは好ましい。もしくは樹脂拡散媒体3として使用される網状のシート材が樹脂拡散抵抗、通気抵抗が低い点で好ましい形態である。もしくは、通気抵抗・流動抵抗が大きい材料を用いて、後述の5の含浸・キュア工程で、樹脂がプリフォーム全体に含浸した後、通気材料に到達した時に、減圧吸引口までの通気材料内を低流速で流動させて、プリフォーム内の樹脂圧を安定させることもできる。例えば、前記プリフォームを構成する繊維強化基材の一部を通気材料として扱うことも本発明の実施の態様である。
2.減圧吸引口6の密閉工程
次に、減圧吸引口6と、通気材料7の少なくともプリフォーム2と接触していない部分を囲んでシール8aを配置し、気密材料9でシール8aのところで減圧吸引口6と通気材料7を覆う。気密材料9としては、樹脂を透過しない機能があれば、特に限定はしないが、バッグ材10で使用するような気密性の高いフィルム材が、形状の追従性を持っている点から好ましい。気密性の高い樹脂製のシート、例えば、弾性シート、テフロン(登録商標)シートなどを使用しても良い。また、形状の追従性は無いが、金属性や樹脂製の加工品を使用しても良い。
The material of the ventilation material 7 is not particularly limited, and organic fiber cloth, inorganic fiber cloth, mesh material, and the like can be used. For example, a glass fiber woven fabric or mat material having a low basis weight, or a material having low ventilation resistance such as a synthetic fiber nonwoven fabric is preferable from the viewpoint of performing vacuum suction. Alternatively, a net-like sheet material used as the resin diffusion medium 3 is a preferable form in terms of low resin diffusion resistance and ventilation resistance. Alternatively, using a material having high ventilation resistance and flow resistance, when the resin reaches the ventilation material in the impregnation / curing process of 5 described later, the inside of the ventilation material up to the vacuum suction port is reached when it reaches the ventilation material. The resin pressure in the preform can be stabilized by flowing at a low flow rate. For example, it is also an embodiment of the present invention to treat a part of the fiber reinforced base material constituting the preform as a ventilation material.
2. Step of sealing the vacuum suction port 6 Next, a seal 8a is disposed so as to surround the vacuum suction port 6 and at least a portion of the ventilation material 7 that is not in contact with the preform 2, and the vacuum suction port is sealed at the seal 8a with the airtight material 9. 6 and the ventilation material 7 are covered. The airtight material 9 is not particularly limited as long as it has a function of not allowing the resin to permeate. However, a highly airtight film material used in the bag material 10 is preferable from the viewpoint of shape followability. A highly airtight resin sheet such as an elastic sheet or a Teflon (registered trademark) sheet may be used. Moreover, although there is no shape follow-up property, a metallic or resin processed product may be used.

シール8aとしては、粘着性のテープや弾性体のシールを利用しても良いし、よりシール性を高めるためにはシーラントテープを使用することが好ましい。また、それらを機能的に使い分けて、2種類以上のシールを使用することも可能である。   As the seal 8a, an adhesive tape or an elastic seal may be used, and a sealant tape is preferably used to further improve the sealing performance. It is also possible to use two or more types of seals by using them functionally.

また、気密材料9として、例えばポリエチレン製の粘着テープなどのテープ材を使用することにより、テープの端部でシール8aの機能を兼ねて、全体を密閉することが作業の簡略化の点で好ましい。また、減圧吸引口9を、例えば気密材料9と同じような開口部が広い形状にして、気密材料9の機能を合わせ持たせるようにしても良く、例えば、金属製、あるいは、ナイロンやポリエチレンなどの機密性のある樹脂材料でできたパイプ材、チャンネル材を使用して、周囲をシール8aで密閉することもできる。または、シリコンなどの弾性材料を用いて、減圧吸引口6、気密材料9の機能に加えて、シール8aの機能を合わせ持った形態とすることも可能である。   Further, by using a tape material such as an adhesive tape made of polyethylene, for example, as the airtight material 9, it is preferable in terms of simplifying the operation that the end portion of the tape also serves as the seal 8a and is hermetically sealed. . Further, the vacuum suction port 9 may have a wide opening, for example, similar to the airtight material 9 so as to have the function of the airtight material 9, for example, made of metal, nylon, polyethylene, etc. It is also possible to seal the periphery with a seal 8a using a pipe material or a channel material made of a resin material having a high sensitivity. Alternatively, an elastic material such as silicon can be used to have the function of the seal 8 a in addition to the functions of the vacuum suction port 6 and the airtight material 9.

図1に示すように、シール8aは、プリフォーム2の右側の側面に配置する方が、プリフォーム2の右側の強化繊維の毛羽やフィルムの隙間を通るショートパスを防止することができるため、より好ましい。また、図1に示す構造とした場合には、シール8aが通気材料7の隙間を埋めて、吸引減圧経路を塞ぐことを防止するために、気密材料をシールと通気材料の間に配置するか、シールの下に気密材料を配置することがより好ましい。   As shown in FIG. 1, the seal 8a can be disposed on the right side surface of the preform 2 to prevent a short path that passes through the fuzz of reinforcing fiber on the right side of the preform 2 or the gap between the films. More preferred. Further, in the case of the structure shown in FIG. 1, in order to prevent the seal 8a from filling the gap of the ventilation material 7 and closing the suction pressure reducing path, is the airtight material disposed between the seal and the ventilation material? More preferably, an airtight material is placed under the seal.

本工程で、減圧吸引口6と通気材料7が、後述の成形部全体のバギング工程3で形成されるバッグ内のキャビティから完全に遮断され、プリフォーム2とのみ減圧吸引・樹脂流動流路として繋がる構造となる。
3.成形部全体のバギング工程
次に、前記工程まででセットした成形部全体の周りにシーラント8bを配置して、バッグ材10で全体を覆う。バッグ材10は気密性、可撓性の高い材料であれば特に限定はしないが、例えば、ナイロン製のフィルム材などを使用すると良い。
4.減圧工程
次に吸引側のバルブ14aを開き、減圧吸引口6よりバッグ内を減圧する。成形体内に空気を残存させないためには、10torr以下まで減圧することが好ましい。なお、バッグ内への空気のリークを防止するために、1重目のバッグをさらにダブルバギングしてキャビティ内を減圧しても良い。
5.樹脂の含浸・キュア工程
次に注入側のバルブ14bを開放して、樹脂ポット5の樹脂が、大気圧とプリフォーム2内の真空度の差圧により樹脂注入口4から流入する。樹脂はまず注入口4の全長方向(プリフォーム2の幅方向)に充填して、その次に図の矢印の方向に樹脂拡散媒体3内を拡散する。ここで、従来技術の場合には、拡散媒体3内を拡散した後に、樹脂のフローフロントが、例えばバッグ材10のしわ、あるいはプリフォーム2側面の繊維毛羽のようなキャビティ内の隙間があると、これらは一般的に流動抵抗がプリフォーム2より低いため、正規の樹脂の含浸経路から外れ波線矢印で示す経路106を通り、減圧吸引口6にショートパスする結果、減圧吸引口6を塞いで、減圧吸引口6側の真空度が低下する問題があった。そのことにより、プリフォーム2内の含浸速度が遅くなり、最終的に未含浸部を残す場合があった。
In this process, the vacuum suction port 6 and the ventilation material 7 are completely cut off from the cavity in the bag formed in the bagging process 3 for the entire molded part described later, and only the preform 2 serves as a vacuum suction / resin flow channel. It becomes a connected structure.
3. Next, the sealant 8b is disposed around the entire molded portion set up to the above-described steps, and the bag material 10 covers the entire bagging process. The bag material 10 is not particularly limited as long as it is a highly airtight and flexible material. For example, a nylon film material may be used.
4). Depressurization Step Next, the suction side valve 14 a is opened, and the inside of the bag is depressurized from the depressurization suction port 6. In order not to leave air in the molded body, the pressure is preferably reduced to 10 torr or less. In order to prevent air leakage into the bag, the inside of the cavity may be decompressed by double bagging the first bag.
5). Resin impregnation / curing step Next, the injection side valve 14 b is opened, and the resin in the resin pot 5 flows in from the resin injection port 4 due to the differential pressure between the atmospheric pressure and the degree of vacuum in the preform 2. The resin is first filled in the full length direction of the injection port 4 (the width direction of the preform 2), and then diffuses in the resin diffusion medium 3 in the direction of the arrow in the figure. Here, in the case of the prior art, after diffusion in the diffusion medium 3, the resin flow front has a gap in the cavity such as wrinkles of the bag material 10 or fiber fluff on the side of the preform 2. Since these generally have lower flow resistance than the preform 2, they pass through the path 106 indicated by the broken line arrow from the regular resin impregnation path, and as a result of a short path to the vacuum suction port 6, the vacuum suction port 6 is blocked. There was a problem that the degree of vacuum on the vacuum suction port 6 side was lowered. As a result, the impregnation speed in the preform 2 is slowed down, and an unimpregnated part may remain in the end.

しかるに、本発明の方法では、樹脂のショートパスを気密材料9で防止するため、減圧吸引口6側の真空度が維持されて、拡散媒体3内の樹脂はプリフォーム2内をフローフロント101,102,103の順に正規の経路を正規の流量で含浸することが可能となり、成形体の未含浸部の発生を防止することができる。   However, in the method of the present invention, in order to prevent a short path of the resin with the airtight material 9, the degree of vacuum on the decompression suction port 6 side is maintained, and the resin in the diffusion medium 3 flows inside the preform 2 through the flow front 101, It becomes possible to impregnate a regular path | route with a regular flow volume in order of 102,103, and generation | occurrence | production of the non-impregnation part of a molded object can be prevented.

なお、使用する樹脂としては、エポキシ、不飽和ポリエステル、フェノール、ビニルエステルなどの熱硬化性樹脂が、成形性、コストの面で好ましい。   In addition, as resin to be used, thermosetting resins, such as an epoxy, unsaturated polyester, phenol, and vinyl ester, are preferable in terms of moldability and cost.

プリフォーム2への樹脂含浸が完了したら、注入側のバルブ14bを閉鎖する。吸引側のバルブ14aについては、揮発性のガスを抜きたい場合や成形体の繊維体積含有率を上げたい場合には開放させたままで良いが、表面の平滑性が必要な場合は閉止しても良い。次に、必要に応じて成形部の温度を硬化温度まで上げて、成形体を固化させる。   When the resin impregnation into the preform 2 is completed, the injection side valve 14b is closed. The valve 14a on the suction side may be left open when volatile gas is desired to be removed or when the fiber volume content of the molded body is desired to be increased, but may be closed if surface smoothness is required. good. Next, if necessary, the temperature of the molded part is raised to the curing temperature to solidify the molded body.

本発明により、すなわち、減圧吸引側をシールして樹脂のショートパスを防止することにより、減圧吸引口6側の真空度が維持されるため、樹脂は正規経路を含浸して、成形体に未含浸部の無いFRPを製造することが可能となった。   According to the present invention, that is, the degree of vacuum on the side of the vacuum suction port 6 is maintained by sealing the vacuum suction side and preventing the short path of the resin. It became possible to manufacture FRP without an impregnation part.

実施例1
図1において、まず、表面に離型材が塗布されたアルミニューム製の平型1上に、東レ株式会社製の一方向炭素繊維織物(“トレカ”T800S×190g/m2目付、サイズ300mm×100mm)を32ply積層させたプリフォーム2を配置した。次に、プリフォーム2上に離型性のあるピールプライ15(ナイロン製のタフタ)と樹脂拡散媒体3として#400メッシュのポリプロピレン製網状体を配置した。
Example 1
In FIG. 1, first, a unidirectional carbon fiber woven fabric ("Torayca" T800S × 190 g / m 2 basis weight, size 300 mm × 100 mm, manufactured by Toray Industries, Inc.) on an aluminum flat mold 1 whose surface is coated with a release material. ) 32 ply laminated Preform 2 was placed. Next, a peelable ply 15 (nylon taffeta) having releasability and a # 400 mesh polypropylene mesh as the resin diffusion medium 3 were placed on the preform 2.

次に樹脂拡散媒体3の左側にアルミ製のCチャンネル材の開口部を下にした樹脂の注入口4を配置した。樹脂ポット5は樹脂注入口4の近くに設置して、ナイロン製の内径φ6mmの注入チューブ16で連通させた。一方、右側には、左端部の20mm分をプリフォーム2の型側に敷いた#400メッシュのポリプロピレン製網状体を通気材料7として配置し、通気材料7の右側にアルミ製のCチャンネル材の開口部を下にした減圧吸引口6を配置した。減圧吸引口6は、ナイロン製の内径φ6mmのチューブを使用した減圧吸引ライン11で真空トラップ12と真空ポンプ13と連通させた。   Next, on the left side of the resin diffusion medium 3, a resin injection port 4 with an opening of an aluminum C-channel material positioned downward is disposed. The resin pot 5 was installed near the resin injection port 4 and communicated with an injection tube 16 made of nylon having an inner diameter of φ6 mm. On the other hand, on the right side, a # 400 mesh polypropylene net with 20 mm of the left end laid on the mold side of the preform 2 is arranged as the ventilation material 7, and an aluminum C channel material is placed on the right side of the ventilation material 7. A vacuum suction port 6 with the opening portion down was disposed. The vacuum suction port 6 communicated with the vacuum trap 12 and the vacuum pump 13 through a vacuum suction line 11 using a nylon tube having an inner diameter of φ6 mm.

次に、減圧吸引口6と、通気材料7のプリフォーム2と接触していない部分を囲んで、プリフォーム2の右側の側面に沿ってシーラント8aを配置して、気密材料9としてナイロン製フィルムを用いて、シーラント8aから減圧吸引口6と通気材料7の一部を覆った。   Next, a sealant 8a is disposed along the right side surface of the preform 2 so as to surround the decompression suction port 6 and the portion of the ventilation material 7 that is not in contact with the preform 2, and a nylon film is used as the airtight material 9. Was used to cover a part of the vacuum suction port 6 and the ventilation material 7 from the sealant 8a.

上記工程で、減圧吸引口6と通気材料7がバッグ内のキャビティから遮断されて、プリフォーム2とのみ繋がる構造となった。   In the above process, the reduced pressure suction port 6 and the ventilation material 7 are cut off from the cavity in the bag and connected to the preform 2 only.

次に、前記工程まででセットした成形部の周りにシーラント8bを配置して、バッグ材10としてナイロン製フィルムで全体を覆った。吸引側のバルブ14aを開き、減圧吸引口よりバッグ内を1torrまで減圧した。   Next, the sealant 8b was disposed around the molded portion set up to the above-described steps, and the bag material 10 was entirely covered with a nylon film. The suction side valve 14a was opened, and the pressure in the bag was reduced to 1 torr from the reduced pressure suction port.

次にプリフォーム2の温度を60℃まで加熱した後、注入側のバルブ14bを開放して、樹脂ポット5の樹脂を樹脂注入口4より注入した。樹脂は東レ製RTM用エポキシ樹脂TR−A36を使用した。樹脂は瞬時に樹脂注入口4に充填され、樹脂拡散媒体3内を5分あまりで拡散した後、プリフォーム2の板厚方向に含浸して、30分で通気材料7にプリフォーム2からの樹脂の流出(到達)を確認した。樹脂がプリフォーム2全体に含浸を完了したため、注入側のバルブ14bを閉鎖した。   Next, after the temperature of the preform 2 was heated to 60 ° C., the injection side valve 14 b was opened, and the resin in the resin pot 5 was injected from the resin injection port 4. As the resin, Toray RTM epoxy resin TR-A36 was used. The resin is instantaneously filled in the resin injection port 4 and diffused in the resin diffusion medium 3 in about 5 minutes, and then impregnated in the plate thickness direction of the preform 2. The outflow (arrival) of the resin was confirmed. Since the resin was completely impregnated into the preform 2, the injection side valve 14b was closed.

次に、吸引側のバルブ14aは開放させたまま、プリフォーム2の温度を130℃まで上昇させて、プリフォーム2内の樹脂を硬化させた。樹脂の硬化を確認した後に、成形品を脱型した。脱型した成形品は、樹脂の未含浸部のない良品が得られた。   Next, the temperature of the preform 2 was raised to 130 ° C. while the suction side valve 14a was opened, and the resin in the preform 2 was cured. After confirming the curing of the resin, the molded product was demolded. The molded product which was removed from the mold was a non-impregnated resin-free product.

本発明の製造方法の第1実施例に係る真空RTM装置の断面図であり、プリフォーム2内を減圧しつつ、樹脂ポット5内の樹脂を注入している様子を示したものである。It is sectional drawing of the vacuum RTM apparatus which concerns on 1st Example of the manufacturing method of this invention, and shows a mode that resin in the resin pot 5 is inject | poured, depressurizing the inside of the preform 2. FIG. 図1の真空RTM装置の平面図である。It is a top view of the vacuum RTM apparatus of FIG.

符号の説明Explanation of symbols

1:型
2:プリフォーム
3:樹脂拡散媒体
4:注入口
5:樹脂ポット
6:吸引口
7:通気材料
8a:シール(吸引側を密閉するシール)
8b:シーラント
9:気密材料
10:バッグ材
11:吸引ライン
12:真空トラップ
13:真空ポンプ
14a:吸引側バルブ
14b:注入側バルブ
15:ピールプライ
16:注入ライン
101:フローフロント1
102:フローフロント2
103:フローフロント3
106:ショートパス経路
1: Mold 2: Preform 3: Resin diffusion medium 4: Injection port 5: Resin pot 6: Suction port 7: Ventilation material 8a: Seal (seal that seals the suction side)
8b: Sealant 9: Airtight material 10: Bag material 11: Suction line 12: Vacuum trap 13: Vacuum pump 14a: Suction side valve 14b: Injection side valve 15: Peel ply 16: Injection line 101: Flow front 1
102: Flow front 2
103: Flow front 3
106: Short path route

Claims (6)

少なくとも次の(A)〜(E)の工程からなることを特徴とするFRPの製造方法。
(A)強化繊維基材からなるプリフォーム、減圧吸引口および樹脂注入口を成形型の上に設置するセット工程。
(B)前記プリフォームと減圧吸引口とを通気材料で繋ぎ、次に前記減圧吸引口全体と通気材料の少なくとも一部を気密材料でシールして覆う吸引部の密閉工程。
(C)前記成形型上のプリフォーム、減圧吸引口、樹脂注入口、通気材料および前記吸引部を覆う成形部の全体を、バッグ材でシールし、覆って密閉する成形部全体の密閉工程。
(D)前記バッグ材でシールして覆われた成形部全体を、減圧吸引口から吸引により減圧する減圧工程。
(E)前記樹脂注入口から樹脂を注入し、前記強化繊維基材に樹脂を含浸させてから、樹脂をキュアさせる樹脂の含浸・キュア工程。
A method for producing FRP, comprising at least the following steps (A) to (E):
(A) A setting step in which a preform made of a reinforcing fiber base, a vacuum suction port, and a resin injection port are installed on a mold.
(B) A sealing step of a suction part that connects the preform and the vacuum suction port with a ventilation material, and then seals and covers the entire vacuum suction port and at least a part of the ventilation material with an airtight material.
(C) A sealing step for the entire molding unit, in which the preform, the vacuum suction port, the resin injection port, the ventilation material, and the molding unit that covers the suction unit on the molding die are sealed with a bag material, and are covered and sealed.
(D) A depressurization step of depressurizing the entire molded part covered with the bag material by suction from the depressurization suction port.
(E) A resin impregnation and curing step in which a resin is injected from the resin injection port and the reinforcing fiber base material is impregnated with the resin, and then the resin is cured.
前記(B)の吸引部の密閉工程における気密材料として、減圧吸引口の機能を有しているものを用いることを特徴とする請求項1に記載のFRPの製造方法。 2. The method for producing FRP according to claim 1, wherein a material having a function of a vacuum suction port is used as an airtight material in the sealing step of the suction part of (B). 前記通気材料として、有機繊維布帛、無機繊維布帛、メッシュ材、樹脂の拡散媒体、または前記プリフォームを構成する繊維強化基材の一部を用いることを特徴とする請求項1または2に記載のFRPの製造方法。 The organic fiber fabric, inorganic fiber fabric, mesh material, resin diffusion medium, or a part of a fiber reinforced base material constituting the preform is used as the ventilation material. FRP manufacturing method. 前記プリフォームの少なくとも一部をシールすることを特徴とする請求項1〜3のいずれかに記載のFRPの製造方法。 The method for producing FRP according to claim 1, wherein at least a part of the preform is sealed. 前記プリフォームと通気材料の間の少なくとも一部に、気密材料を挿入することを特徴とする請求項1〜4のいずれかに記載のFRPの製造方法。 The method for producing FRP according to any one of claims 1 to 4, wherein an airtight material is inserted into at least a part between the preform and the ventilation material. プリフォームの断面形状として、矩形、C型、I型、L型、Z型、T型、またはハット型のものを用いることを特徴とする請求項1〜5のいずれかに記載のFRPの製造方法。 6. The FRP production according to any one of claims 1 to 5, wherein a cross-sectional shape of the preform is rectangular, C-type, I-type, L-type, Z-type, T-type, or hat-type. Method.
JP2004084313A 2004-03-23 2004-03-23 Manufacturing method of FRP Expired - Lifetime JP4432563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084313A JP4432563B2 (en) 2004-03-23 2004-03-23 Manufacturing method of FRP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084313A JP4432563B2 (en) 2004-03-23 2004-03-23 Manufacturing method of FRP

Publications (2)

Publication Number Publication Date
JP2005271248A true JP2005271248A (en) 2005-10-06
JP4432563B2 JP4432563B2 (en) 2010-03-17

Family

ID=35171418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084313A Expired - Lifetime JP4432563B2 (en) 2004-03-23 2004-03-23 Manufacturing method of FRP

Country Status (1)

Country Link
JP (1) JP4432563B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102395A1 (en) * 2006-03-08 2007-09-13 Toray Industries, Inc. Process for producing fiber-reinforced resin
JP2007269015A (en) * 2006-03-08 2007-10-18 Toray Ind Inc Production method of fiber-reinforced resin
JP2008299735A (en) * 2007-06-01 2008-12-11 Sharp Corp Image-forming system, program for the image forming system, and computer-readable storage medium storing program for the image-forming system
JP2009045924A (en) * 2007-07-24 2009-03-05 Toray Ind Inc Frp production method
WO2012039409A1 (en) * 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
JP2012507416A (en) * 2008-11-05 2012-03-29 スピリット アエロシステムズ,アイエヌシー. Reusable infusion bag
KR101463410B1 (en) 2012-09-19 2014-11-19 엠케이플랜텍주식회사 Method for manufacturing insulation pipe
US9162397B2 (en) 2009-06-22 2015-10-20 Toyota Jidosha Kabushiki Kaisha Fiber reinforced resin, manufacturing method for fiber reinforced resin, and manufacturing system for fiber reinforced resin
JP2018024229A (en) * 2016-05-20 2018-02-15 ザ・ボーイング・カンパニーThe Boeing Company Method and system for resin-infusing composite preform

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741198B2 (en) 2006-03-08 2014-06-03 Toray Industries, Inc. Process for producing fiber reinforced resin
JP2007269015A (en) * 2006-03-08 2007-10-18 Toray Ind Inc Production method of fiber-reinforced resin
WO2007102395A1 (en) * 2006-03-08 2007-09-13 Toray Industries, Inc. Process for producing fiber-reinforced resin
JP2008299735A (en) * 2007-06-01 2008-12-11 Sharp Corp Image-forming system, program for the image forming system, and computer-readable storage medium storing program for the image-forming system
JP2009045924A (en) * 2007-07-24 2009-03-05 Toray Ind Inc Frp production method
JP2012507416A (en) * 2008-11-05 2012-03-29 スピリット アエロシステムズ,アイエヌシー. Reusable infusion bag
US9162397B2 (en) 2009-06-22 2015-10-20 Toyota Jidosha Kabushiki Kaisha Fiber reinforced resin, manufacturing method for fiber reinforced resin, and manufacturing system for fiber reinforced resin
JP2012086547A (en) * 2010-09-24 2012-05-10 Toray Ind Inc Method of producing fiber-reinforced plastic
CN103097099A (en) * 2010-09-24 2013-05-08 东丽株式会社 Method for producing fiber-reinforced plastic
WO2012039409A1 (en) * 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
US9205602B2 (en) 2010-09-24 2015-12-08 Toray Industries, Inc. Method for producing fiber-reinforced plastic
EP2620265A4 (en) * 2010-09-24 2016-12-28 Toray Industries Method for producing fiber-reinforced plastic
KR101463410B1 (en) 2012-09-19 2014-11-19 엠케이플랜텍주식회사 Method for manufacturing insulation pipe
JP2018024229A (en) * 2016-05-20 2018-02-15 ザ・ボーイング・カンパニーThe Boeing Company Method and system for resin-infusing composite preform
JP2022062727A (en) * 2016-05-20 2022-04-20 ザ・ボーイング・カンパニー Method and system for resin injection into composite preform

Also Published As

Publication number Publication date
JP4432563B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
CA2803229C (en) Mold for production of fiber-reinforced components
CN1193870C (en) Method and device for producing fibre-reinforced components using injection method
US8420002B2 (en) Method of RTM molding
US5665301A (en) Apparatus and method for forming fiber reinforced composite articles
WO2012039409A1 (en) Method for producing fiber-reinforced plastic
EP1038656A1 (en) Vacuum resin impregnation process
CA2453513A1 (en) Apparatus for making composite structures and method for making same
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
US8118961B2 (en) Method of manufacturing a Z-section component from composite material
US10052826B2 (en) Bulk resin infusion
JP4432563B2 (en) Manufacturing method of FRP
JP5223505B2 (en) Manufacturing method of FRP
JP4542588B2 (en) RTM molding method
JP4806866B2 (en) Vacuum RTM molding method
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
JP4752147B2 (en) RTM molding method
JP4104413B2 (en) RTM molding method
JP2013154494A (en) Vacuum forming method and fiber reinforced resin product formed by the same
JP5637780B2 (en) Vacuum impregnation molding method of FRP product and manufacturing apparatus thereof
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
JP2009248552A (en) Method for producing fiber-reinforced resin molding
JP5738061B2 (en) FRP structure manufacturing method and manufacturing apparatus
JP2005262560A (en) Method and apparatus for producing fiber-reinforced composite material
JPH0399833A (en) Method of molding fiber reinforced plastic
CN108724760A (en) Manufacturing device and method for wind electricity blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4432563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4