JP5223505B2 - Manufacturing method of FRP - Google Patents

Manufacturing method of FRP Download PDF

Info

Publication number
JP5223505B2
JP5223505B2 JP2008176564A JP2008176564A JP5223505B2 JP 5223505 B2 JP5223505 B2 JP 5223505B2 JP 2008176564 A JP2008176564 A JP 2008176564A JP 2008176564 A JP2008176564 A JP 2008176564A JP 5223505 B2 JP5223505 B2 JP 5223505B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
diffusion medium
frp
fiber base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008176564A
Other languages
Japanese (ja)
Other versions
JP2009045924A (en
Inventor
悟 長岡
浩司 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008176564A priority Critical patent/JP5223505B2/en
Publication of JP2009045924A publication Critical patent/JP2009045924A/en
Application granted granted Critical
Publication of JP5223505B2 publication Critical patent/JP5223505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、真空Resin Transfer Molding(以下、真空RTMと言う)成形法による繊維強化プラスチック(以下、FRPと言う)の製造方法に関し、詳しくは、材料収率の向上に寄与するFRPの製造方法に関する。   The present invention relates to a method for producing a fiber reinforced plastic (hereinafter referred to as FRP) by a vacuum Resin Transfer Molding (hereinafter referred to as vacuum RTM) molding method, and more particularly to a method for producing FRP that contributes to an improvement in material yield. .

FRPは軽量で高い力学特性を発揮できる材料であり、各種分野に使用されている。FRPの代表的な製造方法として、真空RTM成形法が知られている。真空RTM成形法は、型内に強化繊維基材を配置した後、その型内のキャビティを減圧して、減圧されたキャビティ内圧力と外部圧力との差圧を利用してキャビティ内に樹脂を注入し、注入した樹脂を強化繊維基材に含浸させた後、樹脂を硬化させ、硬化後に脱型してFRPを得る方法である。真空RTM成形法には、上下セットになった金型を使う成形法と、下金型の上に強化繊維基材を設置し、フィルムやゴムシートなどのバッグ材で覆って成形する方法等がある。   FRP is a lightweight material that can exhibit high mechanical properties, and is used in various fields. As a typical manufacturing method of FRP, a vacuum RTM molding method is known. In the vacuum RTM molding method, after a reinforcing fiber base is placed in a mold, the cavity in the mold is depressurized, and the resin is put into the cavity using the pressure difference between the reduced pressure in the cavity and the external pressure. In this method, the reinforcing fiber substrate is impregnated with the injected resin, and then the resin is cured, and then demolded after the curing to obtain FRP. The vacuum RTM molding method includes a molding method using upper and lower molds, a method in which a reinforcing fiber base is placed on a lower mold and covered with a bag material such as a film or rubber sheet. is there.

特許文献1では、型内に強化繊維基材と樹脂拡散媒体を配置し、それら全体をバッグ材で覆って減圧して樹脂を注入・硬化させる方法が開示されている。しかしながら、この方法では、強化繊維基材全体に樹脂が含浸するのに時間がかかる場合、例えば、強化繊維基材の厚みが厚い場合などには、注入された樹脂が強化繊維基材全体に含浸する前に、正規の樹脂含浸経路から外れて、バッグ材のしわのようなキャビティ内の隙間をショートパスして減圧吸引口に到達して、減圧吸引経路を塞ぐなどの問題が生じる。その場合、強化繊維基材の減圧吸引を充分に行うことが出来なくなり、樹脂の未含浸部を残すという問題などがあった。   Patent Document 1 discloses a method in which a reinforcing fiber base material and a resin diffusion medium are arranged in a mold, the whole is covered with a bag material, and the pressure is reduced to inject and cure the resin. However, in this method, when it takes time to impregnate the entire reinforcing fiber substrate, for example, when the reinforcing fiber substrate is thick, the injected resin impregnates the entire reinforcing fiber substrate. Before the operation, the normal resin impregnation path is deviated, and a gap in the cavity such as a wrinkle of the bag material is short-passed to reach the vacuum suction port to cause a problem such as blocking the vacuum suction path. In that case, the suction of the reinforcing fiber base cannot be sufficiently performed, and there is a problem of leaving an unimpregnated portion of the resin.

特許文献2、3では、真空RTM成形法の改良方法として、強化繊維基材の端部に流動抵抗の高い領域(樹脂拡散媒体がない領域)を設けて、樹脂のショートパスを防ぐ技術が開示されている。しかしながら、該領域は品位が悪く、成形後のトリミングが必要なため材料収率が低下する問題があった。
米国特許第4,902,215号明細書 特開2005−271248号公報 国際公開第03/101708号パンフレット
Patent Documents 2 and 3 disclose a technique for preventing a short path of resin by providing a region having a high flow resistance (a region without a resin diffusion medium) at the end of a reinforcing fiber base as an improved method of the vacuum RTM molding method. Has been. However, the quality of the region is poor, and there is a problem that the material yield decreases because trimming after molding is required.
U.S. Pat. No. 4,902,215 JP 2005-271248 A International Publication No. 03/101708 Pamphlet

本発明の目的は、かかる従来の問題点を解決し、材料収率の向上に寄与するFRPの製造方法を提供することにある。   An object of the present invention is to solve the conventional problems and provide a method for producing FRP that contributes to an improvement in material yield.

上記課題を達成するために、本発明は、以下の構成を採用する。   In order to achieve the above object, the present invention adopts the following configuration.

(1)樹脂拡散媒体を用いて強化繊維基材に樹脂を注入する工程を有するFRPの製造方法において、前記樹脂拡散媒体は、少なくとも一端部が密閉されており、かつ、該密閉されている部分の全部または一部を、前記強化繊維基材の端部と重ねて配置するFRPの製造方法。   (1) In the FRP manufacturing method including a step of injecting a resin into a reinforcing fiber base using a resin diffusion medium, at least one end of the resin diffusion medium is sealed, and the sealed portion A method for producing FRP in which all or part of the above is overlapped with an end of the reinforcing fiber base.

(2)前記樹脂拡散媒体が前記強化繊維基材の最大外形よりも大きいかもしくは略同形状である、(1)に記載のFRPの製造方法。   (2) The method for producing FRP according to (1), wherein the resin diffusion medium is larger than or substantially the same in shape as the maximum outer shape of the reinforcing fiber substrate.

(3)一端部を密閉する手段としてフィルム材または充填材が用いられている、(1)または(2)に記載のFRPの製造方法。   (3) The method for producing FRP according to (1) or (2), wherein a film material or a filler is used as means for sealing one end.

(4)前記樹脂拡散媒体としてメッシュ材が用いられている、(1)〜(3)のいずれかに記載のFRPの製造方法。   (4) The method for producing FRP according to any one of (1) to (3), wherein a mesh material is used as the resin diffusion medium.

(5)樹脂拡散媒体を用いて強化繊維基材に樹脂を注入する工程を有するFRPの製造方法において、前記強化繊維基材の少なくとも一端部には、前記樹脂拡散媒体を配置せず、かつ、該一端部に板材を配置するFRPの製造方法。   (5) In the FRP manufacturing method including a step of injecting a resin into a reinforcing fiber base using a resin diffusion medium, the resin diffusion medium is not disposed at at least one end of the reinforcing fiber base; and A method for producing FRP, in which a plate material is disposed at the one end.

(6)前記板材が前記樹脂拡散媒体の厚みと同じである(5)に記載のFRPの製造方法。   (6) The manufacturing method of FRP as described in (5) whose said board | plate material is the same as the thickness of the said resin diffusion medium.

(7)前記樹脂拡散媒体の上にプレートを配置する、(1)〜(6)に記載のFRPの製造方法。   (7) The manufacturing method of FRP as described in (1)-(6) which arrange | positions a plate on the said resin diffusion medium.

本発明は、上記構成を採用することにより、材料収率を向上させることができ、かつ、品位の優れた成形品を得ることができる。   By adopting the above-described configuration, the present invention can improve the material yield and obtain a molded product with excellent quality.

以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明が、以下に説明する具体的な実施態様に限定される訳ではない。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. The present invention is not limited to the specific embodiments described below.

図1は本発明のFRPの製造方法に用いられる製造装置の一例を示す概略図であり、図2は図1のバッグ材内部を示す斜視図である。図1,2において、1は強化繊維基材、2は樹脂拡散媒体、4はピールプライ、9は通気材料、8は注入口、10は吸引口、12はシール材、11はバッグ材であり、それぞれツール板5上に配置されている。また、樹脂ポット6は注入ライン7で注入口8と、真空ポンプ14は吸引ライン13で吸引口10とそれぞれ接続されている。   FIG. 1 is a schematic view showing an example of a manufacturing apparatus used in the FRP manufacturing method of the present invention, and FIG. 2 is a perspective view showing the inside of the bag material of FIG. 1 and 2, 1 is a reinforcing fiber substrate, 2 is a resin diffusion medium, 4 is a peel ply, 9 is a ventilation material, 8 is an injection port, 10 is a suction port, 12 is a sealing material, 11 is a bag material, Each is arranged on the tool plate 5. The resin pot 6 is connected to the injection port 8 through the injection line 7, and the vacuum pump 14 is connected to the suction port 10 through the suction line 13.

本発明のFRPの製造方法は、図1に示すように、まず、ツール板5上に強化繊維基材1を配置する。強化繊維基材1としては、炭素繊維やガラス繊維、アラミド繊維やPBO(ポリパラフェニレンベンゾビスオキサゾール)繊維などの高強度繊維、高弾性率繊維が好ましい。中でも炭素繊維は、これらの繊維の中でも高強度、高弾性率な強化繊維であるため、優れた力学特性を有するFRPを得ることができるためより好ましい。また強化繊維基材1の断面形状は、特に限定されるものではなく、例えば、図6に示す(a)矩形、(b)C型、(c)I型のほか、L型、Z型、T型、またはハット型のいずれでもよい。   In the FRP manufacturing method of the present invention, as shown in FIG. 1, first, the reinforcing fiber base 1 is disposed on the tool plate 5. As the reinforcing fiber substrate 1, carbon fiber, glass fiber, aramid fiber, high strength fiber such as PBO (polyparaphenylene benzobisoxazole) fiber, and high elastic modulus fiber are preferable. Among these, carbon fiber is more preferable because it is a reinforcing fiber having high strength and high elastic modulus among these fibers, and therefore, FRP having excellent mechanical properties can be obtained. Further, the cross-sectional shape of the reinforcing fiber base 1 is not particularly limited. For example, in addition to (a) rectangle, (b) C type, (c) I type shown in FIG. 6, L type, Z type, Either T type or hat type may be used.

次に、マトリックス樹脂を注入するために必要な成形用副資材を配置する。ここでいう成形用副資材とは、真空RTM成形法において必要なピールプライ4や樹脂拡散媒体2、注入口8、吸引口10などのことである。該強化繊維基材1の上には、成形用副資材としてピールプライ4を配置する。ピールプライ4はナイロンやポリエステルなどの繊維からなる織布であることが好ましく、マトリックス樹脂の流路として配置する樹脂拡散媒体2などが、マトリックス樹脂を硬化した後に、成形品に接着一体化しないようにするために配置されるものである。   Next, the auxiliary molding material necessary for injecting the matrix resin is disposed. The molding auxiliary material here refers to the peel ply 4, the resin diffusion medium 2, the injection port 8, the suction port 10, and the like necessary in the vacuum RTM molding method. On the reinforcing fiber substrate 1, a peel ply 4 is disposed as a molding auxiliary material. The peel ply 4 is preferably a woven fabric made of a fiber such as nylon or polyester so that the resin diffusion medium 2 or the like disposed as a matrix resin flow path does not adhere to the molded product after the matrix resin is cured. It is arranged to do.

また、ツール板5の一端側にはマトリックス樹脂の注入口8が設けられているとともに、該注入口8に対応する他端側には強化繊維基材1およびバッグ材11内部を真空吸引する吸引口10が設けられている。注入口8、吸引口10は開口している型材を使用することが好ましく、例えば、アルミ製のCチャンネルを使用することができる。また、樹脂ポット6を注入口8の近くに設置して、注入ライン7で接続させる。注入ライン7は特に限定するものでは無いが、圧力損失を小さくできることから内径が大きい方が好ましい。   In addition, a matrix resin injection port 8 is provided on one end side of the tool plate 5, and suction is performed for vacuum suction of the inside of the reinforcing fiber base 1 and the bag material 11 on the other end side corresponding to the injection port 8. A mouth 10 is provided. For the inlet 8 and the suction port 10, it is preferable to use an open mold material. For example, an aluminum C channel can be used. Further, the resin pot 6 is installed near the injection port 8 and connected by the injection line 7. The injection line 7 is not particularly limited, but a larger inner diameter is preferable because pressure loss can be reduced.

さらに、マトリックス樹脂を注入口8から強化繊維基材1に導く樹脂拡散媒体2がピールプライ4の上に配置されている。樹脂拡散媒体2としては、樹脂流動抵抗が強化繊維基材1より低ければ特に限定されるものではないが、ポリプロピレン・ナイロンなどの樹脂製や鉄・アルミなどの金属製のメッシュ材を使用することが好ましい。ここでいうメッシュ材とは、網状の形態をしているものであり、例えばメッシュクロス、樹脂網、金網などのことをいう。   Further, a resin diffusion medium 2 that guides the matrix resin from the injection port 8 to the reinforcing fiber base 1 is disposed on the peel ply 4. The resin diffusion medium 2 is not particularly limited as long as the resin flow resistance is lower than that of the reinforcing fiber base 1, but a metal mesh material made of resin such as polypropylene or nylon or metal such as iron or aluminum should be used. Is preferred. The mesh material here has a net-like shape, and means, for example, a mesh cloth, a resin net, a metal net, or the like.

樹脂拡散媒体2としてメッシュ材を用いた場合、バッグ材11内部を真空吸引してバッグ材11を樹脂拡散媒体2に密着させても、樹脂の流路を確保し、注入されたマトリックス樹脂を強化繊維基材1の全体に導くことができる。また、図1では、強化繊維基材1の上にピールプライ4、樹脂拡散媒体2を配置しているが、含浸性や表面品位などの観点から、強化繊維基材1の下にピールプライ4、樹脂拡散媒体2を配置しても良い。なお、本発明に用いられる樹脂拡散媒体2は、後述のとおり、少なくとも一端部3が密閉されており、当該密閉された部分の全部または一部を、強化繊維基材1の端部3と重ねるように配置するが、強化繊維基材1の上にピールプライ4、樹脂拡散媒体2を配置する場合には、前記密閉された部分の全部または一部が、前記強化繊維基材1の端部3の上部に、また、強化繊維基材1の下にピールプライ4、樹脂拡散媒体2を配置する場合には、前記密閉された部分の全部または一部が、前記強化繊維基材1の端部3の下部に配置すると良い。   When a mesh material is used as the resin diffusion medium 2, a resin flow path is secured and the injected matrix resin is strengthened even if the bag material 11 is vacuum-sucked to bring the bag material 11 into close contact with the resin diffusion medium 2. The entire fiber substrate 1 can be guided. In FIG. 1, the peel ply 4 and the resin diffusion medium 2 are disposed on the reinforcing fiber base 1. However, from the viewpoint of impregnation property, surface quality, and the like, the peel ply 4 and the resin are disposed below the reinforcing fiber base 1. A diffusion medium 2 may be disposed. As will be described later, at least one end 3 of the resin diffusion medium 2 used in the present invention is sealed, and all or a part of the sealed portion is overlapped with the end 3 of the reinforcing fiber base 1. However, when the peel ply 4 and the resin diffusion medium 2 are arranged on the reinforcing fiber substrate 1, all or part of the sealed portion is the end portion 3 of the reinforcing fiber substrate 1. When the peel ply 4 and the resin diffusion medium 2 are disposed on the upper portion of the reinforcing fiber base material 1 and the resin diffusion medium 2, all or part of the sealed portion is the end portion 3 of the reinforcing fiber base material 1. It is good to place at the bottom of

また、樹脂拡散媒体として、図8に示すような溝を有した樹脂流路付きプレート17を使用したものを用いてもよい。樹脂流路付きプレート17に形成された樹脂流路用の溝18は、成形品に凹凸が転写されなければ特に限定されるものではなく、一方向やメッシュ状の溝を使用することができる。樹脂流路付きプレート17の材質は耐久性が高く再利用可能な点からアルミや鉄などの金属製のものやCFRP製のものが好ましい。   Moreover, you may use what uses the plate 17 with a resin flow path which has a groove | channel as shown in FIG. 8 as a resin diffusion medium. The groove 18 for the resin flow path formed in the plate 17 with the resin flow path is not particularly limited as long as the unevenness is not transferred to the molded product, and a unidirectional or mesh-shaped groove can be used. The material of the plate 17 with a resin flow path is preferably made of metal such as aluminum or iron or CFRP from the viewpoint of high durability and reusability.

また、上述のとおり、本発明の望ましい実施の形態の一つとして、樹脂拡散媒体2の少なくとも一端部3は密閉されていることが必要である。ここでいう密閉されているとは、図3に示すように、樹脂拡散媒体2を流れる樹脂が、樹脂拡散媒体2の端部3から強化繊維基材1に流れ出ないように構成されていることである。本発明のFRPの製造方法は、樹脂拡散媒体2の密閉された部分の全部または一部を、強化繊維基材1の端部3と重ねて配置するので、樹脂が樹脂拡散媒体2の端部3から強化繊維基材1に流れ出ること(ショートパス)を防ぐことができ、かつ、強化繊維基材1の厚み方向に効率よく樹脂を含浸させることが可能となり、成形品の未含浸発生を防止することができる。また、該樹脂拡散媒体2の端部3は、実質的に、樹脂拡散媒体2としての機能を有していないため、樹脂拡散媒体2が存在しない場合と同様に、強化繊維基材1の端部3の流動抵抗が高くなり、結果として樹脂のショートパスを防ぐことが可能になる。   As described above, as one of the preferred embodiments of the present invention, at least one end 3 of the resin diffusion medium 2 needs to be sealed. The term “sealed” as used herein means that the resin flowing through the resin diffusion medium 2 is configured not to flow out from the end 3 of the resin diffusion medium 2 to the reinforcing fiber base 1 as shown in FIG. It is. In the FRP manufacturing method of the present invention, all or part of the sealed portion of the resin diffusion medium 2 is disposed so as to overlap the end portion 3 of the reinforcing fiber base 1, so that the resin is the end portion of the resin diffusion medium 2. 3 can be prevented from flowing out into the reinforcing fiber substrate 1 (short path), and the resin can be efficiently impregnated in the thickness direction of the reinforcing fiber substrate 1, thereby preventing the occurrence of non-impregnation of the molded product. can do. In addition, since the end portion 3 of the resin diffusion medium 2 does not substantially have a function as the resin diffusion medium 2, the end of the reinforcing fiber base material 1 is the same as when the resin diffusion medium 2 is not present. The flow resistance of the portion 3 is increased, and as a result, it is possible to prevent a short path of the resin.

樹脂拡散媒体2の端部3を密閉する方法は、樹脂が樹脂拡散媒体2の端部3から強化繊維基材1に流れ出ないように構成されていれば特に限定されるものではないが、フィルム材やテープなどの密閉材15で樹脂拡散媒体2の端部3の表裏を覆って密閉することが好ましい。密閉材15の厚みは、成形品に段差が転写しにくいものであることが好ましく、かかる観点から、好ましくは0.15mm以下であり、より好ましくは0.1mm以下である。また密閉材15の材質は、樹脂に溶融しなければ特に限定されるものではないが、ナイロン製のものが好ましい。   The method for sealing the end portion 3 of the resin diffusion medium 2 is not particularly limited as long as the resin is configured not to flow out from the end portion 3 of the resin diffusion medium 2 to the reinforcing fiber base 1. It is preferable to cover and seal the front and back of the end portion 3 of the resin diffusion medium 2 with a sealing material 15 such as a material or a tape. The thickness of the sealing material 15 is preferably such that the level difference is not easily transferred to the molded product. From this viewpoint, it is preferably 0.15 mm or less, and more preferably 0.1 mm or less. The material of the sealing material 15 is not particularly limited as long as it does not melt into the resin, but is preferably made of nylon.

また、樹脂拡散媒体2の端部3を密閉する別の好ましい方法としては、図8に示すように充填材19で端部を密閉することが例示される。ここでいう充填材とは、成形品の表面品質に影響を与えず、かつ、樹脂が樹脂拡散媒体2の端部3から強化繊維基材1に流れ出ないように構成されていれば特に限定されるものではなく、ゴム状の詰め物(シーラントテープ、シリコンなど)や金属製のスペーサーを使用することができる。樹脂拡散媒体への充填材の充填は、強化繊維基材の大きさなどに応じて、後から行うのが好ましいが、前もって充填されたものを使用してもよい。   Another preferred method for sealing the end 3 of the resin diffusion medium 2 is to seal the end with a filler 19 as shown in FIG. The filler here is not particularly limited as long as it does not affect the surface quality of the molded product and the resin does not flow out from the end 3 of the resin diffusion medium 2 to the reinforcing fiber base 1. It is not a thing, but rubber-like stuffing (sealant tape, silicone, etc.) and metal spacers can be used. The filling of the resin diffusion medium with the filler is preferably performed later depending on the size of the reinforcing fiber substrate, but a previously filled material may be used.

また、ここでいう一端部とは、図2に示すように強化繊維基材1に配置された樹脂拡散媒体2の端部のことであり、強化繊維基材1への含浸性に応じて、適宜吸引口側、側面部側などを端部に設定し、密閉するのが望ましい。また、樹脂拡散媒体2の密閉された部分と強化繊維基材1の端部3とが重なっている部分の大きさ(強化繊維基材1のエッジから密閉材15の端部の距離D:図3−a、図3−b参照)は、成形品に未含浸が発生しなければ特に限定されるものではないが、効率良く端部の流動抵抗を高くして、強化繊維基材1の端部3まで効率よく樹脂を含浸させるとともに、樹脂のショートパスを防げる点から、好ましくは5〜35mmであり、より好ましくは15〜25mmである。   In addition, the one end portion referred to here is an end portion of the resin diffusion medium 2 arranged on the reinforcing fiber base 1 as shown in FIG. 2, and according to the impregnation property to the reinforcing fiber base 1, It is desirable that the suction port side, the side surface side, etc. are appropriately set at the ends and sealed. Further, the size of the portion where the sealed portion of the resin diffusion medium 2 and the end portion 3 of the reinforcing fiber substrate 1 overlap (distance D from the edge of the reinforcing fiber substrate 1 to the end portion of the sealing material 15: FIG. 3-a, see FIG. 3-b) is not particularly limited as long as no unimpregnation occurs in the molded product. However, the end of the reinforcing fiber substrate 1 can be efficiently increased by increasing the flow resistance of the end portion. The thickness is preferably 5 to 35 mm, more preferably 15 to 25 mm from the viewpoint of efficiently impregnating the resin up to the portion 3 and preventing a short path of the resin.

また、その密閉された部分の全部または一部が、強化繊維基材1の端部3と重ねて配置された樹脂拡散媒体2は、強化繊維基材1の最大外形よりも小さくない(つまり、大きいかもしくは略同形状である)ことが好ましく、最大外形と略同形状であることがより好ましい。樹脂拡散媒体2を強化繊維基材1の最大外形よりも大きいか、もしくは略同形状にすることにより、成形品の表面全体に渡って凹凸のない均一な面を得ることができ、成形後に端部をトリミングする必要がないため、材料収率も向上させることができる。また、最大外形と略同形状とすることにより、これらの利点に加えて、樹脂拡散媒体2のハンドリング性や、樹脂拡散媒体2を配置する精度の向上が期待できる。   In addition, the resin diffusion medium 2 in which all or a part of the sealed portion is arranged so as to overlap with the end 3 of the reinforcing fiber base 1 is not smaller than the maximum outer shape of the reinforcing fiber base 1 (that is, It is preferably large or substantially the same shape), and more preferably substantially the same shape as the maximum outer shape. By making the resin diffusion medium 2 larger than or substantially the same as the maximum outer shape of the reinforcing fiber substrate 1, a uniform surface without unevenness can be obtained over the entire surface of the molded product, and the end after molding Since it is not necessary to trim the portion, the material yield can be improved. In addition to these advantages, an improvement in the handling property of the resin diffusion medium 2 and the accuracy of arranging the resin diffusion medium 2 can be expected by making the shape substantially the same as the maximum outer shape.

また、本発明の望ましい別の実施の形態は、図7に示すように強化繊維基材1の少なくとも一端部3には、前記樹脂拡散媒体2を配置せず、かつ、該一端部に板材16を配置することである。   Further, another desirable embodiment of the present invention is that, as shown in FIG. 7, the resin diffusion medium 2 is not disposed at least at one end portion 3 of the reinforcing fiber base 1, and the plate material 16 is disposed at the one end portion. Is to arrange.

ここでいう一端部とは、図7に示すように強化繊維基材1の端部のことであり、強化繊維基材1への含浸性に応じて、適宜吸引口側、側面部側などを端部に設定するのが望ましい。また、板材16と強化繊維基材1の端部3とが重なっている部分の大きさ(強化繊維基材1のエッジから板材16端部の距離)は、成形品に未含浸が発生しなければ特に限定されるものではないが、効率良く端部の流動抵抗を高くして、強化繊維基材1の端部3まで効率よく樹脂を含浸させるとともに、樹脂のショートパスを防げる点から、好ましくは5〜35mmであり、より好ましくは15〜25mmである。   The one end referred to here is the end of the reinforcing fiber base 1 as shown in FIG. 7, and the suction port side, the side surface side, etc. are appropriately selected according to the impregnation property of the reinforcing fiber base 1. It is desirable to set it at the end. Further, the size of the portion where the plate material 16 and the end portion 3 of the reinforcing fiber base material 1 overlap (the distance from the edge of the reinforcing fiber base material 1 to the end portion of the plate material 16) must be unimpregnated in the molded product. Although not particularly limited, it is preferable from the viewpoint of efficiently increasing the flow resistance of the end portion and efficiently impregnating the resin up to the end portion 3 of the reinforcing fiber base 1 and preventing a short path of the resin. Is 5 to 35 mm, more preferably 15 to 25 mm.

該端部に密閉された部分を有さない樹脂拡散媒体2を配置すると、樹脂が強化繊維基材1の端部3から流れ出し、樹脂がショートパスする点から好ましくない。また、該端部3に板材16を配置しないと、樹脂拡散媒体2の厚みの段差が成形品に転写されることから好ましくない。かかる観点から、本発明の望ましい別の実施の形態として、強化繊維基材1の少なくとも一端部3には、前記樹脂拡散媒体2を配置せず、かつ、該一端部に板材16を配置するのである。なお、板材16の厚みは、成形品の表面が平滑になれば特に限定されるものではないが、表面全体に均一な圧力がかかる点から、樹脂拡散媒体2の厚みと同じであることが好ましい。具体的には樹脂拡散媒体2の厚み±0.15mmの範囲であれば、板材16の厚みと樹脂拡散媒体2の厚みを同じと評価でき、本発明の効果をより発揮することができる。   If the resin diffusion medium 2 that does not have a sealed portion at the end portion is disposed, the resin flows out from the end portion 3 of the reinforcing fiber base 1 and is not preferable because the resin short-passes. Further, if the plate material 16 is not disposed at the end portion 3, it is not preferable because a step in the thickness of the resin diffusion medium 2 is transferred to the molded product. From this point of view, as another desirable embodiment of the present invention, the resin diffusion medium 2 is not disposed at least at one end portion 3 of the reinforcing fiber base 1, and the plate material 16 is disposed at the one end portion. is there. The thickness of the plate material 16 is not particularly limited as long as the surface of the molded product becomes smooth, but is preferably the same as the thickness of the resin diffusion medium 2 from the point that a uniform pressure is applied to the entire surface. . Specifically, if the thickness of the resin diffusion medium 2 is within a range of ± 0.15 mm, the thickness of the plate material 16 and the thickness of the resin diffusion medium 2 can be evaluated to be the same, and the effects of the present invention can be further exhibited.

また、板材16は樹脂拡散媒体よりも樹脂流動抵抗が高ければ特に限定されるものではないが、耐久性が高く再利用可能な点からアルミや鉄などの金属製のものやCFRP製のものが好ましい。   The plate material 16 is not particularly limited as long as the resin flow resistance is higher than that of the resin diffusion medium, but it is made of a metal such as aluminum or iron or a CFRP because of its high durability and reusability. preferable.

さらに、本発明にかかるFRPの製造方法においては、図9に示すように樹脂拡散媒体2の上にプレート(金属製またはCFRP製)を配置すると、プレートの平滑製を成形品表面に転写させることができ、また、強化繊維基材全体に均一に圧力をかけることができるため、端部の段差の影響もより小さくできるなど、本発明の効果(表面品位の向上)をより発現することができる。   Furthermore, in the FRP manufacturing method according to the present invention, when a plate (made of metal or CFRP) is disposed on the resin diffusion medium 2 as shown in FIG. 9, the smooth product of the plate is transferred to the surface of the molded product. In addition, since the pressure can be uniformly applied to the entire reinforcing fiber substrate, the effect of the present invention (improvement of surface quality) can be further exhibited, such as the influence of the step difference at the end portion can be reduced. .

一方、強化繊維基材1の吸引口10側には、左側の一部を強化繊維基材1と接触させ、右側を吸引口10と接続させて減圧吸引できるように通気材料9を配置することが好ましい。また吸引口10は吸引ライン13で真空ポンプ14に接続させることが好ましい。   On the other hand, the ventilation material 9 is disposed on the suction port 10 side of the reinforcing fiber base material 1 so that a part of the left side is in contact with the reinforcing fiber base material 1 and the right side is connected to the suction port 10 so that the suction can be performed under reduced pressure. Is preferred. The suction port 10 is preferably connected to a vacuum pump 14 through a suction line 13.

通気材料9は、強化繊維基材1の減圧吸引が可能であれば、特に形態を限定するものではない。少なくとも一部が強化繊維基材1と接触していれば良く、強化繊維基材1の端部全体に渡って配置することもできる。通気材料9の材質としては、特に限定するものでは無いが、有機繊維布帛、無機繊維布帛、メッシュ材などを使用することができる。例えば、目付が低いガラス繊維織物あるいはマット材、合成繊維の不織布のような通気抵抗が低い材料が減圧吸引をする点からは好ましい。もしくは、樹脂拡散媒体2として使用されるメッシュ状のシート材やピールプライが、樹脂拡散抵抗、通気抵抗が低い点で好ましい形態である。通気材料9の上には、必要に応じて、マトリックス樹脂がショートパスを形成して、また強化繊維基材1に含浸する前に吸引口10から吸引されることを防ぐために、フィルム材を配置するのも好ましい形態の一つである。フィルム材はナイロン製のバッギングフィルムなどを使用することができる。   The form of the ventilation material 9 is not particularly limited as long as the suction of the reinforcing fiber base 1 is possible. It is sufficient that at least a part is in contact with the reinforcing fiber substrate 1, and the reinforcing fiber substrate 1 can be disposed over the entire end portion. The material of the ventilation material 9 is not particularly limited, and organic fiber cloth, inorganic fiber cloth, mesh material, and the like can be used. For example, a glass fiber woven fabric or mat material having a low basis weight, or a material having low ventilation resistance such as a synthetic fiber nonwoven fabric is preferable from the viewpoint of performing vacuum suction. Alternatively, a mesh-like sheet material or peel ply used as the resin diffusion medium 2 is a preferable form in terms of low resin diffusion resistance and ventilation resistance. If necessary, a film material is disposed on the ventilation material 9 to prevent the matrix resin from forming a short path and being sucked from the suction port 10 before impregnating the reinforcing fiber base 1. This is also a preferred form. A nylon bagging film or the like can be used as the film material.

次に、成形用副資材の周りにシール材12を配置して、バッグ材11で全体を覆う。バッグ材11は気密性、可撓性の高い材料であれば特に限定はしないが、例えば、ナイロン製のフィルム材を使用すると良い。シール材12としては、所望のシール性が得られれば特に限定されるものではないが、シール性と耐熱性を兼ねそろえたシーラントテープを使用することが好ましい。   Next, the sealing material 12 is disposed around the auxiliary material for molding, and the whole is covered with the bag material 11. The bag material 11 is not particularly limited as long as the material is highly airtight and flexible. For example, a nylon film material may be used. The sealing material 12 is not particularly limited as long as a desired sealing property is obtained, but it is preferable to use a sealant tape having both sealing property and heat resistance.

次に、吸引口10よりバッグ材11内を減圧する。強化繊維基材1内に空気を残存させないためには、10torr以下まで減圧することが好ましい。なお、バッグ材11内への空気のリークを防止するために、1重目のバッグをさらに2重にバッグしてキャビティ内を減圧しても良い。次に、樹脂ポット6の樹脂を、大気圧と強化繊維基材1内の真空度の差圧により注入口8から流入する。なお、使用する樹脂としては、エポキシ、不飽和ポリエステル、フェノール、ビニルエステルなどの熱硬化性樹脂が、成形性、コストの面で好ましい。   Next, the pressure inside the bag material 11 is reduced from the suction port 10. In order not to leave air in the reinforcing fiber substrate 1, it is preferable to reduce the pressure to 10 torr or less. In addition, in order to prevent air leakage into the bag material 11, the first bag may be further doubled to reduce the pressure in the cavity. Next, the resin in the resin pot 6 flows in from the inlet 8 due to the differential pressure between the atmospheric pressure and the degree of vacuum in the reinforcing fiber base 1. In addition, as resin to be used, thermosetting resins, such as an epoxy, unsaturated polyester, phenol, and vinyl ester, are preferable in terms of moldability and cost.

強化繊維基材1への樹脂含浸が完了したら、注入側のライン7を閉鎖する。吸引側のライン13については、揮発性のガスを抜きたい場合や成形品の繊維体積含有率を上げたい場合には開放させたままで良いが、表面の平滑性が必要な場合は閉止しても良い。次に、必要に応じて強化繊維基材1の温度を硬化温度まで上げて硬化させる。硬化後、成形用副資材を取り除くことにより、成形品を得ることができる。   When the resin impregnation to the reinforcing fiber base 1 is completed, the line 7 on the injection side is closed. The suction side line 13 may be left open if it is desired to remove volatile gas or increase the fiber volume content of the molded product, but may be closed if surface smoothness is required. good. Next, if necessary, the temperature of the reinforcing fiber base 1 is raised to the curing temperature and cured. A molded product can be obtained by removing the auxiliary molding material after curing.

そして、本発明により、上述のとおり、材料収率の高いFRPを製造することが可能となるのである。   And as above-mentioned by this invention, it becomes possible to manufacture FRP with a high material yield.

以下に、実施例と比較例を用いて、本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

(実施例1)
図1において、まず、表面に離型材が塗布されたアルミ製のツール板5上に、東レ株式会社製の強化繊維基材1(“トレカ”T800SC:190g/m目付)、サイズ300mm×300mm)を24ply配置した。次に、強化繊維基材1上に離型性のあるピールプライ4(ナイロン製)と樹脂拡散媒体2として、図2に示すように、注入口側を除く端部3をナイロン製フィルムで密閉した、ピッチ2.5mmのポリプロピレン製樹脂拡散媒体2を該密閉部分と前記強化繊維基材の端部が重なるように配置した(強化繊維基材1のエッジからフィルムの端部までの距離Dは20mm)。次に、樹脂拡散媒体2の左側に、アルミ製のCチャンネル材の開口部を下にした樹脂の注入口8を配置した。樹脂ポット6は樹脂注入口8の近くに設置して、ナイロン製の内径φ6mmの注入ライン7で接続した。一方、樹脂拡散媒体2の右側には、強化繊維基材1にナイロン繊維からピールプライを通気材料9として配置し、通気材料9の右側にアルミ製のCチャンネル材の開口部を下にした吸引口10を配置した。吸引口10は、ナイロン製の内径φ6mmのチューブを使用した減圧吸引ライン13で真空ポンプ14と接続させた。
Example 1
In FIG. 1, first, a reinforcing fiber substrate 1 manufactured by Toray Industries, Inc. (“Torayca” T800SC: 190 g / m 2 basis weight), size 300 mm × 300 mm on an aluminum tool plate 5 having a release material coated on the surface. ) Was arranged in 24 ply. Next, as shown in FIG. 2, as the peel ply 4 (made of nylon) and the resin diffusion medium 2 having releasability on the reinforcing fiber base 1, the end 3 except the inlet side is sealed with a nylon film. The resin diffusion medium 2 made of polypropylene having a pitch of 2.5 mm was disposed so that the sealed portion and the end of the reinforcing fiber base overlap (the distance D from the edge of the reinforcing fiber base 1 to the end of the film was 20 mm). ). Next, on the left side of the resin diffusion medium 2, a resin injection port 8 with an opening of an aluminum C-channel material facing down was disposed. The resin pot 6 was installed near the resin injection port 8 and connected by an injection line 7 made of nylon and having an inner diameter of 6 mm. On the other hand, on the right side of the resin diffusion medium 2, a suction ply in which a peel ply from nylon fiber is disposed as a ventilation material 9 on the reinforcing fiber base 1 and an opening of an aluminum C channel material is placed on the right side of the ventilation material 9. 10 was placed. The suction port 10 was connected to a vacuum pump 14 through a vacuum suction line 13 using a nylon tube having an inner diameter of φ6 mm.

次に、セットした成形用副資材の周りにシール材12(シーラントテープ)を配置して、バッグ材11としてナイロン製フィルムで全体を覆った。吸引口よりバッグ材11内を1torrまで減圧した。   Next, a sealing material 12 (sealant tape) was placed around the set molding auxiliary material, and the bag material 11 was entirely covered with a nylon film. The inside of the bag material 11 was depressurized to 1 torr from the suction port.

次に、強化繊維基材1の温度を60℃まで加熱した後、樹脂ポット6の樹脂を樹脂注入口8より注入した。樹脂は、東レ製RTM用エポキシ樹脂TR−A36を使用した。樹脂は瞬時に樹脂注入口8に充填され、樹脂拡散媒体2内を5分あまりで拡散した後、強化繊維基材1の板厚方向に含浸して、30分で通気材料9に強化繊維基材1からの樹脂の流出(到達)を確認した。樹脂が強化繊維基材1全体に含浸を完了したため、注入ライン7と吸引ライン13を閉鎖した。次に、強化繊維基材1の温度を130℃まで上昇させて、強化繊維基材1内の樹脂を硬化させた。樹脂の硬化を確認した後に、成形品を脱型した。脱型した成形品は、樹脂の未含浸部がなく、表面全体に凹凸のない平滑面を有する良品が得られた。   Next, after the temperature of the reinforcing fiber base 1 was heated to 60 ° C., the resin in the resin pot 6 was injected from the resin injection port 8. As the resin, Toray RTM epoxy resin TR-A36 manufactured by Toray was used. The resin is instantaneously filled into the resin injection port 8 and diffused in the resin diffusion medium 2 in about 5 minutes, and then impregnated in the thickness direction of the reinforcing fiber base 1, and the reinforcing fiber base is added to the ventilation material 9 in 30 minutes. The outflow (arrival) of the resin from the material 1 was confirmed. Since the resin completed the impregnation of the entire reinforcing fiber base 1, the injection line 7 and the suction line 13 were closed. Next, the temperature of the reinforcing fiber substrate 1 was raised to 130 ° C., and the resin in the reinforcing fiber substrate 1 was cured. After confirming the curing of the resin, the molded product was demolded. The demolded molded product was free from resin non-impregnated portions, and a good product having a smooth surface with no irregularities on the entire surface was obtained.

(比較例1)
樹脂拡散用媒体2の端部をナイロン製フィルムで密閉しない以外は、実施例1と同じ条件で成形した。成形品を脱型したところ、ツール面側に大きな未含浸が発生した。
(Comparative Example 1)
The resin diffusion medium 2 was molded under the same conditions as in Example 1 except that the end of the resin diffusion medium 2 was not sealed with a nylon film. When the molded product was removed from the mold, large unimpregnation occurred on the tool surface side.

(比較例2)
図4は比較例2に用いられる製造装置の一例を示す概略図であり、図5は図4のバッグ材内部を示す斜視図である。図5に示すように、強化繊維基材1の端部3(吸引口側、両側面部側、エッジからの距離は20mm)に樹脂拡散媒体がない以外は実施例1と同じ条件で成形した。また、後の端部のトリムを考慮して、強化繊維基材1のサイズ340mm×320mmを用いた。成形品を脱型したところ、樹脂の未含浸がないものが得られたが、端部3には樹脂拡散媒体2の厚み分の段差が生じた。最後に段差の端部3をトリミングしてサイズ300×300mmの成形品を得た。つまり、段差分の40mm×20mmのロスを発生させたことになる。
(Comparative Example 2)
4 is a schematic view showing an example of a manufacturing apparatus used in Comparative Example 2, and FIG. 5 is a perspective view showing the inside of the bag material of FIG. As shown in FIG. 5, the reinforcing fiber base material 1 was molded under the same conditions as in Example 1 except that the resin diffusion medium was not present at the end portion 3 (suction port side, both side surface portions side, distance from the edge was 20 mm). Moreover, the size 340 mm × 320 mm of the reinforcing fiber base 1 was used in consideration of the trim at the rear end. When the molded product was removed from the mold, a product that was not impregnated with resin was obtained. However, a step corresponding to the thickness of the resin diffusion medium 2 occurred at the end 3. Finally, the end 3 of the step was trimmed to obtain a molded product having a size of 300 × 300 mm. That is, a loss of 40 mm × 20 mm corresponding to the step is generated.

(実施例2)
樹脂拡散媒体に図8に示す樹脂流路付きプレート17を使用する以外は、実施例1と同じ条件で成形した。実施例1と同様に端部からの距離20mmを充填材(シーラントテープ)で樹脂流路を密閉(充填)し、その上からポリエステルテープで固定した。樹脂の未含浸がなく、表面全体に凹凸のない平滑面を有する良品が得られた。
(Example 2)
Molding was performed under the same conditions as in Example 1 except that the resin flow path-equipped plate 17 shown in FIG. In the same manner as in Example 1, the resin flow path was sealed (filled) with a filler (sealant tape) at a distance of 20 mm from the end, and fixed with a polyester tape from above. A non-impregnated resin was obtained, and a good product having a smooth surface with no irregularities on the entire surface was obtained.

(実施例3)
図9に示すように、樹脂拡散媒体2の上にプレート20(金属製またはCFRP製)を配置する以外は実施例1と同じ条件で成形した。脱型した成形品は未含浸がなく、また、端部の段差もない表面平滑性の良好な成形品を得ることができた。成形品表面の凹凸を測定したところ、Ra=12であった(実施例1は、Ra=22)。
(Example 3)
As shown in FIG. 9, molding was performed under the same conditions as in Example 1 except that a plate 20 (made of metal or CFRP) was placed on the resin diffusion medium 2. The demolded molded article was not impregnated, and a molded article having good surface smoothness with no step difference at the end could be obtained. When the unevenness of the surface of the molded product was measured, it was Ra = 12 (Example 1, Ra = 22).

本発明は自動車、航空機、船舶、産業用途のFRPの製造法に用いられるが、これに限定するものではない。   Although this invention is used for the manufacturing method of FRP of a motor vehicle, an aircraft, a ship, and an industrial use, it is not limited to this.

本発明のFRPの製造方法に用いられる製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus used for the manufacturing method of FRP of this invention. 図1のバッグ材内部を示す斜視図である。It is a perspective view which shows the bag material inside of FIG. 本発明の樹脂拡散媒体の端部(樹脂拡散媒体が強化繊維基材の最大外形よりも大きい場合)を説明する断面図である。It is sectional drawing explaining the edge part (when a resin diffusion medium is larger than the largest external shape of a reinforced fiber base material) of the resin diffusion medium of this invention. 本発明の樹脂拡散媒体の端部(樹脂拡散媒体が強化繊維基材の最大外形と略同形状の場合)を説明する断面図である。It is sectional drawing explaining the edge part (when the resin diffusion medium is substantially the same shape as the largest external shape of a reinforced fiber base material) of the resin diffusion medium of this invention. 比較例のFRPの製造方法に用いられる製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus used for the manufacturing method of FRP of a comparative example. 図4のバッグ材内部を示す斜視図である。It is a perspective view which shows the bag material inside of FIG. 強化繊維基材の断面形状の一例を示す概略図である。It is the schematic which shows an example of the cross-sectional shape of a reinforced fiber base material. 本発明の強化繊維基材の端部を説明する断面図である。It is sectional drawing explaining the edge part of the reinforced fiber base material of this invention. 樹脂流路付きプレートの端部密閉を説明する斜視図である。It is a perspective view explaining the edge part sealing of the plate with a resin flow path. 本発明の樹脂拡散媒体上に配置するプレートを説明する断面図である。It is sectional drawing explaining the plate arrange | positioned on the resin diffusion medium of this invention.

符号の説明Explanation of symbols

1:強化繊維基材
2:樹脂拡散媒体
3:端部
4:ピールプライ
5:ツール板
6:樹脂ポット
7:注入ライン
8:注入口
9:通気材料
10:吸引口
11:バッグ材
12:シール材
13:吸引ライン
14:真空ポンプ
15:密閉材
16:板材
17:樹脂流路付きプレート
18:樹脂流路用溝
19:充填材
20:プレート
D:強化繊維基材のエッジから密閉材の端部の距離
1: Reinforced fiber base material 2: Resin diffusion medium 3: End part 4: Peel ply 5: Tool plate 6: Resin pot 7: Injection line 8: Injection port 9: Venting material 10: Suction port 11: Bag material 12: Sealing material 13: suction line 14: vacuum pump 15: sealing material 16: plate material 17: plate 18 with resin flow path 18: groove for resin flow path 19: filler 20: plate D: edge of sealing material from edge of reinforcing fiber base Distance of

Claims (7)

樹脂拡散媒体を用いて強化繊維基材に樹脂を注入する工程を有するFRPの製造方法において、前記樹脂拡散媒体は、少なくとも一端部が密閉されており、かつ、該密閉されている部分の全部または一部を、前記強化繊維基材の端部と重ねて配置するFRPの製造方法。 In the method for producing FRP, which includes a step of injecting a resin into a reinforcing fiber base using a resin diffusion medium, the resin diffusion medium is sealed at least at one end, and all of the sealed portion or A method for producing FRP, wherein a part of the FRP is disposed so as to overlap with an end of the reinforcing fiber substrate. 前記樹脂拡散媒体が前記強化繊維基材の最大外形よりも大きいかもしくは略同形状である、請求項1に記載のFRPの製造方法。 The manufacturing method of FRP of Claim 1 whose said resin diffusion medium is larger than the largest external shape of the said reinforced fiber base material, or is substantially the same shape. 一端部を密閉する手段としてフィルム材または充填材が用いられている、請求項1または2に記載のFRPの製造方法。 The method for producing FRP according to claim 1 or 2, wherein a film material or a filler is used as means for sealing the one end. 前記樹脂拡散媒体としてメッシュ材が用いられている、請求項1〜3のいずれかに記載のFRPの製造方法。 The method for producing FRP according to claim 1, wherein a mesh material is used as the resin diffusion medium. 樹脂拡散媒体を用いて強化繊維基材に樹脂を注入する工程を有するFRPの製造方法において、前記強化繊維基材の少なくとも一端部には、前記樹脂拡散媒体を配置せず、かつ、該一端部に板材を配置するFRPの製造方法。 In the FRP manufacturing method including a step of injecting a resin into a reinforcing fiber base using a resin diffusion medium, the resin diffusion medium is not disposed at at least one end of the reinforcing fiber base, and the one end Manufacturing method of FRP which arrange | positions board | plate material in the. 前記板材が前記樹脂拡散媒体の厚みと同じである、請求項5に記載のFRPの製造方法。 The manufacturing method of FRP of Claim 5 whose said board | plate material is the same as the thickness of the said resin diffusion medium. 前記樹脂拡散媒体の上にプレートを配置する、請求項1〜6に記載のFRPの製造方法。 The manufacturing method of FRP of Claims 1-6 which arrange | positions a plate on the said resin diffusion medium.
JP2008176564A 2007-07-24 2008-07-07 Manufacturing method of FRP Active JP5223505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176564A JP5223505B2 (en) 2007-07-24 2008-07-07 Manufacturing method of FRP

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007191671 2007-07-24
JP2007191671 2007-07-24
JP2008176564A JP5223505B2 (en) 2007-07-24 2008-07-07 Manufacturing method of FRP

Publications (2)

Publication Number Publication Date
JP2009045924A JP2009045924A (en) 2009-03-05
JP5223505B2 true JP5223505B2 (en) 2013-06-26

Family

ID=40498598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176564A Active JP5223505B2 (en) 2007-07-24 2008-07-07 Manufacturing method of FRP

Country Status (1)

Country Link
JP (1) JP5223505B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533743B2 (en) 2010-09-24 2014-06-25 東レ株式会社 Manufacturing method of fiber reinforced plastic
JP5906082B2 (en) * 2011-12-27 2016-04-20 川崎重工業株式会社 Method for producing resin impregnated material
AU2016203289B2 (en) * 2016-05-20 2022-04-07 The Boeing Company A method and system for resin infusing a composite preform
CN109153197B (en) * 2016-05-27 2020-11-03 Rimtec株式会社 Method for producing composite material molded body
MA45359A (en) * 2016-06-14 2019-04-17 Lm Wp Patent Holding As WIND TURBINE BLADE MANUFACTURING PROCESS
WO2018030470A1 (en) 2016-08-09 2018-02-15 三菱重工業株式会社 Method for producing fiber-reinforced resin molded articles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869770A (en) * 1987-12-03 1989-09-26 The Boeing Company Method and apparatus for laminating composite materials
JP4856327B2 (en) * 2001-07-03 2012-01-18 富士重工業株式会社 Method for manufacturing composite panel
JP4160771B2 (en) * 2002-04-18 2008-10-08 三菱レイヨン株式会社 Fiber reinforced plastic molded body molding apparatus and molding method thereof
JP3986426B2 (en) * 2002-12-11 2007-10-03 三菱重工業株式会社 Manufacturing method of fiber reinforced plastic
JP4432563B2 (en) * 2004-03-23 2010-03-17 東レ株式会社 Manufacturing method of FRP

Also Published As

Publication number Publication date
JP2009045924A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5223505B2 (en) Manufacturing method of FRP
US8420002B2 (en) Method of RTM molding
JP5533743B2 (en) Manufacturing method of fiber reinforced plastic
CN103003057B (en) For the manufacture of the mould of fibre-reinforced component
JP4104422B2 (en) RTM molding method
US10052828B2 (en) Supporting profiled element, method for producing a supporting profiled element, and use of said supporting profiled element in a method for producing a reinforced vehicle fuselage component
JP4542588B2 (en) RTM molding method
JP4806866B2 (en) Vacuum RTM molding method
JP4432563B2 (en) Manufacturing method of FRP
JP2009073070A5 (en)
JP3874228B2 (en) Method for manufacturing FRP structure
JP4104413B2 (en) RTM molding method
JP4730637B2 (en) RTM molding method
EP1775109B1 (en) Composite moulding method and apparatus with a vacuum bag
JP2007176163A (en) Manufacturing process of fiber-reinforced plastic
JP2018192717A (en) Reinforcing fiber base material and preform
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP2009248552A (en) Method for producing fiber-reinforced resin molding
JP6786989B2 (en) Composite material molding method
JP6048967B2 (en) Manufacturing method and manufacturing apparatus for fiber-reinforced plastic molded body, and elevator wall
JP2018122523A (en) Bagging sheet
KR20120064779A (en) Reinforcement having fluidic network and method for fabricating plastic product using the same
JP5558323B2 (en) Fiber reinforced plastic and its manufacturing method
WO2023148503A1 (en) Concavity diaphragm forming
JP5229798B2 (en) Manufacturing method of hollow body product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R151 Written notification of patent or utility model registration

Ref document number: 5223505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3