JP5738061B2 - FRP structure manufacturing method and manufacturing apparatus - Google Patents

FRP structure manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5738061B2
JP5738061B2 JP2011106078A JP2011106078A JP5738061B2 JP 5738061 B2 JP5738061 B2 JP 5738061B2 JP 2011106078 A JP2011106078 A JP 2011106078A JP 2011106078 A JP2011106078 A JP 2011106078A JP 5738061 B2 JP5738061 B2 JP 5738061B2
Authority
JP
Japan
Prior art keywords
resin
molded body
manufacturing
deaeration
frp structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011106078A
Other languages
Japanese (ja)
Other versions
JP2012236304A (en
Inventor
山田 直樹
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Marine United Corp
Original Assignee
Japan Marine United Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Marine United Corp filed Critical Japan Marine United Corp
Priority to JP2011106078A priority Critical patent/JP5738061B2/en
Publication of JP2012236304A publication Critical patent/JP2012236304A/en
Application granted granted Critical
Publication of JP5738061B2 publication Critical patent/JP5738061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、舟艇、プラント、太陽電池パネル、太陽熱発電パネル等のような大型のFRP構造体の製造方法及び製造装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for a large FRP structure such as a boat, a plant, a solar battery panel, a solar thermal power generation panel, and the like.

従来より、大型のFRP構造体の製造方法としては、VARTM(Vacuum Assisted Resin Transfer Molding:真空補助含浸)成形法やRTM(Resin Transfer Molding)成形法が知られている(例えば、特許文献1、非特許文献1参照)。
RTM成形法は、一般に金属型などで形成した空洞に強化繊維布や心材等を配置しておき、これに樹脂を圧入して繊維強化プラスチック(以下、FRPという)を製造する方法である。
一方、VARTM成形法は、上記のような空洞を形成した金型等を用いるのではなく、強化繊維布や心材等を配置した被成形物を真空フィルムで覆い閉鎖空間を形成するとともに、その閉鎖空間を真空状態にして、供給部の樹脂溜まりにかかる大気圧により樹脂を閉鎖空間内に注入する方法である。
Conventionally, VARTM (Vacuum Assisted Resin Transfer Molding) molding method and RTM (Resin Transfer Molding) molding method are known as a manufacturing method of a large FRP structure (for example, Patent Document 1, Non-Patent Document 1, Patent Document 1).
The RTM molding method is a method of manufacturing a fiber reinforced plastic (hereinafter referred to as FRP) by placing a reinforced fiber cloth, a core material, or the like in a cavity generally formed of a metal mold or the like and press-fitting a resin therein.
On the other hand, the VARTM molding method does not use a mold or the like in which a cavity is formed as described above, but forms a closed space by covering a molding object on which a reinforcing fiber cloth or a core material is arranged with a vacuum film and forming a closed space. In this method, the space is evacuated and the resin is injected into the closed space by the atmospheric pressure applied to the resin reservoir in the supply unit.

上記のように、VARTM成形法では、成形型に樹脂の注入圧力がかからないので、大型でも成形型の構造強度を向上させる必要がなく、いわゆる手積み成形として用いられる従来のFRP成形型を用いることができる。
また、VARTM成形法は、クローズドモールド法であるので、大規模な成形でも有害なスチレンなど樹脂に含まれる揮発性有機物を空気中に発散することが極めて少ないのでクリーンな成形法である。
更に、この成形法は、ガラス繊維や炭素繊維などの強化材を織った布を成形型の上に積み重ねた後真空フィルムで覆い、周囲をシールして真空状態にした後樹脂を吸い上げて含浸させるので、FRPの品質管理で最も重要な強化繊維への樹脂含浸工程をかなり厳密に管理することができる。そのため、樹脂が過剰な領域や含浸が不十分な領域の発生や、更には気泡の混入なども防ぐことができるので、高品質なFRP構造体を安定して生産できるというメリットがある。
以上のような事情から、最近では大型のFRP構造体の製造にVARTM成形法が利用されるようになってきている。
As described above, in the VARTM molding method, the resin injection pressure is not applied to the molding die, so there is no need to improve the structural strength of the molding die even if it is large, and a conventional FRP molding die used as a so-called hand pile molding is used. Can do.
Further, since the VARTM molding method is a closed molding method, it is a clean molding method because volatile organic substances contained in the resin such as styrene, which are harmful even in a large-scale molding, are extremely rarely emitted into the air.
Furthermore, in this molding method, cloths woven with reinforcing materials such as glass fibers and carbon fibers are stacked on a mold, covered with a vacuum film, and the surroundings are sealed and vacuumed, and then the resin is sucked up and impregnated. Therefore, the resin impregnation step into the reinforcing fiber, which is the most important in the quality control of FRP, can be managed fairly strictly. Therefore, it is possible to prevent the generation of a region where the resin is excessive or the region where the impregnation is insufficient, and further the mixing of bubbles, which has an advantage that a high-quality FRP structure can be stably produced.
Due to the circumstances as described above, the VARTM molding method has recently been used for the production of large FRP structures.

VARTM成形法を利用した従来の成形方法を図6に示す。図6は、例えばFRPサンドイッチパネルを成形する場合を示す製造装置の概略上面図で、図7は図6のB−B断面図である。また、図8は溝付き心材を示す斜視図である。
これらの図において、1は定盤のように表面が平坦な成形型、2は被成形体で、図8に示すように上下両面に樹脂が流れる溝3aが縦横に設けられた心材(溝付き心材)3と、溝付き心材3の上下面に置かれた繊維強化布4a、4bとから構成されている。
A conventional molding method utilizing the VARTM molding method is shown in FIG. 6 is a schematic top view of a manufacturing apparatus showing, for example, a case where an FRP sandwich panel is formed, and FIG. 7 is a cross-sectional view taken along line BB of FIG. FIG. 8 is a perspective view showing a grooved core material.
In these figures, reference numeral 1 denotes a molding die having a flat surface such as a surface plate, 2 denotes a molded body, and a core material (grooved) having grooves 3a through which resin flows vertically and horizontally as shown in FIG. (Core material) 3 and fiber reinforced fabrics 4a and 4b placed on the upper and lower surfaces of the grooved core material 3.

そして、この被成形体2の上にピールプライ5(離型シート)を重ね、さらに樹脂タンク6に樹脂供給ホース7および開閉弁8を介して接続された樹脂供給用のスパイラルチューブ10a、10bを被成形体2の一方の辺の端縁部の上下にその辺と略平行に配置し、またこの被成形体2の対向する他方の辺の端縁部の上下には、真空ホース11を介して真空ポンプ(図示せず)に接続された脱気用のスパイラルチューブ12a、12bを同じくその辺と略平行に配置する。その上で、全体を真空フィルム13で覆い、周囲をシール部材14で気密にシールする。   Then, a peel ply 5 (release sheet) is stacked on the molded body 2, and the resin supply spiral tubes 10 a and 10 b connected to the resin tank 6 through the resin supply hose 7 and the on-off valve 8 are covered. The molded body 2 is arranged substantially vertically above and below the edge of one side of the molded body 2, and above and below the edge of the opposite side of the molded body 2 via a vacuum hose 11. The degassing spiral tubes 12a and 12b connected to a vacuum pump (not shown) are also arranged substantially parallel to the sides. Then, the whole is covered with the vacuum film 13 and the periphery is hermetically sealed with the seal member 14.

ついで、真空フィルム13内の空気を脱気用スパイラルチューブ12a、12bを通じて吸引し、内部空間を真空状態にしながら樹脂タンク6内の液状の樹脂を樹脂供給用スパイラルチューブ10a、10bより供給する。すると、樹脂は溝付き心材3の溝3aを縦横に流れて拡散し、被成形体2の上下両面の繊維強化布4a、4bに全面にわたって含浸する。その後、樹脂をゲル化、硬化させることで、溝付き心材3とその上下面の繊維強化布4a、4bとが一体に樹脂成形されたFRPサンドイッチパネルを製造することができる。   Next, air in the vacuum film 13 is sucked through the degassing spiral tubes 12a and 12b, and the liquid resin in the resin tank 6 is supplied from the resin supply spiral tubes 10a and 10b while the internal space is evacuated. Then, the resin flows vertically and horizontally in the groove 3a of the grooved core material 3 and diffuses, and is impregnated over the entire surface of the fiber reinforced fabrics 4a and 4b on the upper and lower surfaces of the molded body 2. Thereafter, the FRP sandwich panel in which the grooved core 3 and the fiber reinforced fabrics 4a and 4b on the upper and lower surfaces thereof are integrally molded can be manufactured by gelling and curing the resin.

特開平11−235776号公報JP-A-11-235776

鵜沢潔、「近年のFRP船建造のトピックから」、船艇技報、p.2−7、2009年4月発行、社団法人船艇協会Kiyoshi Serizawa, “From the topic of recent FRP ship construction”, Ship Technical Report, p. 2-7, April 2009, Ship Association of Japan

上記のように、従来のVARTM成形法によるFRP構造体の製造方法は、例えば四辺形のサンドイッチパネルでは樹脂を供給する端縁から脱気ラインを設けた対向する端縁に向けて樹脂を含浸させるので、含浸距離(樹脂の行路長)に従って要する含浸時間が決まっているため、製造を早めることは難しいという問題があった。
また、樹脂の粘度が高いために含浸するのに時間がかかったり、ゲル化時間が短くて長い距離を含浸できない樹脂を適用することが難しいという問題もある。
さらにまた、含浸距離を短くするために、対向する両縁から樹脂を含浸させようとしても、両側から含浸してきた樹脂が出合う領域で樹脂が未含浸となったり、エアの存在により含浸不足となる欠陥領域の発生を防止できないといった問題もある。
As described above, in the conventional method for manufacturing an FRP structure by the VARTM molding method, for example, in a quadrilateral sandwich panel, the resin is impregnated from the edge supplying the resin toward the opposite edge provided with the deaeration line. Therefore, since the required impregnation time is determined according to the impregnation distance (resin path length), there is a problem that it is difficult to speed up the production.
In addition, since the viscosity of the resin is high, it takes time to impregnate, and it is difficult to apply a resin that cannot be impregnated over a long distance due to a short gel time.
Furthermore, in order to shorten the impregnation distance, even if the resin is impregnated from both opposite edges, the resin is not impregnated in the region where the resin impregnated from both sides meets, or the impregnation is insufficient due to the presence of air. There is also a problem that the generation of a defective area cannot be prevented.

本発明は、上記のような問題を解決するためになされたもので、含浸距離を短くして製造時間の短縮を図るとともに、樹脂の未含浸やボイド等のない高品質のFRP構造体を製造することができるFRP構造体の製造方法及びその製造装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. The impregnation distance is shortened to shorten the production time, and a high-quality FRP structure free from resin non-impregnation and voids is produced. An object of the present invention is to provide a method for manufacturing an FRP structure and an apparatus for manufacturing the FRP structure.

本発明に係るFRP構造体の製造方法は、少なくとも一方の面に複数の樹脂流通溝を設けた心材と、前記心材の前記樹脂流通溝側の面に重ねて置かれた強化繊維布と、を有する被成形体を真空フィルムで気密に覆い、VARTM成形法により前記被成形体に樹脂を含浸してFRP構造体を製造する方法であって
前記被成形体の対向する辺のそれぞれの端縁部に、当該辺平行に樹脂供給部を配置し、
前記被成形体の一辺側に配置された前記樹脂供給部と前記被成形体の他辺側に配置された前記樹脂供給部との間の中間点を結んだ中間線に沿って、防水通気性の膜を有する布と通気手段とを有する脱気部を配置し、
前記脱気部により前記被成形体の前記中間線上から脱気しながら、両側の前記樹脂供給部より同時に樹脂を供給して樹脂含浸を進行させて成形することを特徴とするものである。
The manufacturing method of the FRP structure according to the present invention comprises a core material provided with a plurality of resin flow grooves on at least one surface, and a reinforcing fiber cloth placed on the surface of the core material on the resin flow groove side. A method of manufacturing an FRP structure by covering a molded object having a gas tightly with a vacuum film and impregnating the molded object with a resin by a VARTM molding method ,
A resin supply part is arranged in parallel with the side edge of each of the opposing sides of the molded body,
Waterproof and breathable along an intermediate line connecting intermediate points between the resin supply part disposed on one side of the molded body and the resin supply part disposed on the other side of the molded body A deaeration part having a cloth having a membrane and a ventilation means,
While degassing from the said intermediate line of the molded body by degassing unit, in which by supplying simultaneously the resin from both sides of the resin supply section allowed to proceed resin impregnation, characterized in that molding.

また、本発明のFRP構造体の製造方法においては、脱気部として、防水通気性の膜を有する布と通気手段とを有する脱気バッグを用いるものである。   Moreover, in the manufacturing method of the FRP structure of this invention, the deaeration bag which has the cloth which has a waterproof breathable film | membrane, and a ventilation means is used as a deaeration part.

また、複数の樹脂供給部として、螺旋状の樹脂供給用スリットを有するスパイラルチューブを用いるものである。   Further, a spiral tube having a spiral resin supply slit is used as the plurality of resin supply units.

また、心材を突き合わせ、その突き合わせ部に沿って脱気部を延在させて、心材の下面の空気を逃がす径路を確保するものとする。   Further, the core material is abutted, and the deaeration portion is extended along the abutting portion to secure a path for releasing the air on the lower surface of the core material.

また、脱気部に貫通孔付きの心材を配して、貫通孔により心材の下面の空気を逃がす径路を確保するものとする。   In addition, a core material with a through hole is arranged in the deaeration part, and a path through which air on the lower surface of the core material is released by the through hole is secured.

また、本発明に係るFRP構造体の製造装置は、上記のFRP構造体の製造方法を実施するための製造装置であって、
前記被成形体の両側の端縁部に配置される前記樹脂供給部として、螺旋状の樹脂供給用スリットを有するスパイラルチューブを用い、
前記被成形体の前記中間線に沿って配置される前記脱気部として、防水通気性の膜を有する布と通気手段とを有する脱気バッグを用いるものである。
An apparatus for manufacturing an FRP structure according to the present invention is a manufacturing apparatus for carrying out the above-described method for manufacturing an FRP structure,
Using the spiral tube having a spiral resin supply slit as the resin supply part disposed at the edge portions on both sides of the molded body,
As the deaeration part arranged along the intermediate line of the molded body, a deaeration bag having a cloth having a waterproof air permeable membrane and a ventilation means is used.

また、脱気バッグは、防水通気性の膜を有する布で通気手段を包囲した袋状に形成されているものである。   In addition, the deaeration bag is formed in a bag shape surrounding the ventilation means with a cloth having a waterproof and breathable membrane.

本発明によれば、被成形体の中心線上から脱気しながら両側の端縁部から樹脂を同時に供給するので、含浸距離が短くなるため、FRP構造体の製造時間を大幅に短縮することができる。また、気体は通過させるが液体は通過させない防水通気性の膜で構成された脱気部を被成形体の中心線に沿って設けることにより中心線上から脱気することができ、未含浸領域や、ボイド、含浸不足領域等の発生を防止することができる。   According to the present invention, since resin is simultaneously supplied from the edge portions on both sides while degassing from the center line of the molded body, the impregnation distance is shortened, so that the manufacturing time of the FRP structure can be greatly shortened. it can. In addition, by providing a degassing part made of a waterproof and breathable membrane that allows gas to pass but not liquid to pass along the center line of the molded body, it can be degassed from the center line, Generation of voids, impregnation deficient regions, etc. can be prevented.

本発明の実施の形態1におけるFRP構造体の製造装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the manufacturing apparatus of the FRP structure in Embodiment 1 of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 実施の形態1の脱気部の拡大断面図である。2 is an enlarged cross-sectional view of a deaeration unit according to Embodiment 1. FIG. 本発明の実施の形態2におけるFRP構造体の製造装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the manufacturing apparatus of the FRP structure in Embodiment 2 of this invention. 実施の形態2の脱気部の拡大断面図である。6 is an enlarged cross-sectional view of a deaeration unit according to Embodiment 2. FIG. 従来のFRP構造体の製造装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the manufacturing apparatus of the conventional FRP structure. 図6のB−B断面図である。It is BB sectional drawing of FIG. FRP構造体に使用する溝付き心材の一例を示す斜視図である。It is a perspective view which shows an example of the core material with a groove | channel used for a FRP structure.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
図1は本発明の実施の形態1におけるFRP構造体の製造装置の概略構成を示す上面図で、図2は図1のA−A断面図である。また、図3は脱気部の拡大断面図である。ここでは、一例として四辺形のFRPサンドイッチパネルを製造する方法について説明する。
図において、1は定盤のように表面(成形面)が平坦な成形型、2は被成形体で、例えば、図8に示すように上下両面に樹脂が流れる溝(樹脂流通溝)3aが縦横に設けられた心材(溝付き心材)3と、複数の溝付き心材3を突き合わせて上下面に重ねて置かれた1枚または複数枚の繊維強化布4a、4bとから構成されている。なお、成形型1の成形面は平坦な形状に限らず湾曲面とすることもできる。
Embodiment 1 FIG.
FIG. 1 is a top view showing a schematic configuration of an apparatus for manufacturing an FRP structure according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. FIG. 3 is an enlarged cross-sectional view of the deaeration part. Here, a method for manufacturing a quadrilateral FRP sandwich panel will be described as an example.
In the figure, reference numeral 1 denotes a molding die having a flat surface (molding surface), such as a surface plate, and 2 denotes a molded object. For example, as shown in FIG. It is comprised from the core material (groove core material) 3 provided vertically and horizontally, and the 1 or several fiber reinforcement cloth 4a, 4b which faced the several grooved core material 3 and was piled up on the upper and lower surfaces. Note that the molding surface of the mold 1 is not limited to a flat shape, and may be a curved surface.

上記のように構成された被成形体2を成形型1の上に置く。そして、この被成形体2をピールプライ5(離型シート)で覆い、さらに被成形体2の中心線に沿って脱気部9を配置し、また被成形体2の対向する辺の端縁部の上下に、樹脂供給部10をその辺と略平行に配置する。樹脂供給部10は、ここではスパイラルチューブ10a、10bで構成されている。スパイラルチューブ10a、10bは液状樹脂を貯留した樹脂タンク6に樹脂供給ホース7および開閉弁8を介して接続されている。なお、樹脂には、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂などの熱硬化性樹脂が用いられる。これらの樹脂は常温では液状であり、重合を開始させる硬化剤などを加えて所定の時間でゲル化させ硬化させる。   The molded body 2 configured as described above is placed on the mold 1. And this to-be-molded body 2 is covered with the peel ply 5 (release sheet), the deaeration part 9 is arrange | positioned along the centerline of the to-be-molded body 2, and the edge part of the side which the to-be-molded body 2 opposes The resin supply unit 10 is disposed substantially parallel to the sides of the resin supply unit 10. Here, the resin supply unit 10 includes spiral tubes 10a and 10b. The spiral tubes 10a and 10b are connected to a resin tank 6 storing a liquid resin via a resin supply hose 7 and an on-off valve 8. As the resin, a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, or an epoxy resin is used. These resins are liquid at room temperature, and are hardened by adding a curing agent or the like for initiating polymerization to gel for a predetermined time.

一方、被成形体2の中心線上には脱気部9がライン状又は帯状に配置される。脱気部9は、実施の形態1ではピールプライ5の上面に周囲をシールして設置されており、実施の形態2では、脱気バッグ9aが設置されている。脱気バッグ9aは、真空ホース11を介して樹脂トラップを経て真空ポンプ(いずれも図示せず)に接続されている。   On the other hand, the deaeration part 9 is arrange | positioned on the centerline of the to-be-molded body 2 in the shape of a line or a strip | belt. In the first embodiment, the deaeration unit 9 is installed with its periphery sealed on the upper surface of the peel ply 5, and in the second embodiment, a deaeration bag 9 a is installed. The deaeration bag 9a is connected to a vacuum pump (both not shown) through a resin trap via a vacuum hose 11.

ここで、実施の形態1の脱気部9は、図3に示すように、空気等の気体は通過させるが水等の液体(樹脂)は通過させない半透過性膜を有する防水通気性の布9bと、この防水通気性布9bの上面に通気手段である脱気用スパイラルチューブ9cと通気層9dとで構成されている。実施の形態2の脱気部9は、図5に示すように、通気層9dとスパイラルチューブ9cとの全体を防水通気性布9bで包んで袋状にした脱気バッグ9aで構成されている。脱気用スパイラルチューブ9cは上記の樹脂供給用スパイラルチューブ10a、10bと同様のものである。上記の真空ホース11の一端はこの脱気用スパイラルチューブ9cに接続されている。
上記の防水通気性布9bとしては、例えばレインウェアなどの生地として用いられている商品名「ゴアテックス」(登録商標)をあげることができる。そして、この脱気バッグ9aには、真空ホース11が真空フィルム13を貫通させて防水通気性布9b上の通気層9dに接続され、さらに防水通気性布9bの周囲を例えば粘着テープ9fでピールプライ5上に接着し固定している。
Here, as shown in FIG. 3, the deaeration unit 9 of Embodiment 1 is a waterproof and breathable cloth having a semipermeable membrane that allows gas such as air to pass but does not allow liquid (resin) such as water to pass. 9b, and a degassing spiral tube 9c as a ventilation means and a ventilation layer 9d on the upper surface of the waterproof breathable cloth 9b. As shown in FIG. 5, the deaeration unit 9 according to the second embodiment is configured by a deaeration bag 9a in which the entire air-permeable layer 9d and the spiral tube 9c are wrapped with a waterproof air-permeable cloth 9b to form a bag. . The deaeration spiral tube 9c is the same as the resin supply spiral tubes 10a and 10b. One end of the vacuum hose 11 is connected to the degassing spiral tube 9c.
As said waterproof breathable cloth 9b, the brand name "Gore-Tex" (trademark) used as cloths, such as rainwear, can be mention | raise | lifted, for example. In this deaeration bag 9a, a vacuum hose 11 penetrates the vacuum film 13 and is connected to a ventilation layer 9d on the waterproof breathable cloth 9b. Further, the waterproof breathable cloth 9b is peeled off with an adhesive tape 9f, for example. 5 is adhered and fixed.

樹脂供給部10は、樹脂の流れ方向に対して直角の方向に延びるように配置された管形状のものであり、例えば、スパイラルチューブ10a、10bが好適に使用することができる。スパイラルチューブというのは、真空下でも扁平になり難いように、ある程度硬いプラスチック製の帯板を螺旋状に巻いて螺旋状のスリットをもつようにチューブ状に形成したものである。このようなスパイラルチューブの内部に樹脂を供給すると、樹脂が螺旋状のスリットを通じて平面的に拡散しながら流出する。なお、樹脂供給部10としては、硬質の管体に多数の孔やスリット等を設けたものでもよい。
このような樹脂供給部10を被成形体2の対向する辺のそれぞれの端縁部にその辺に略平行になるように設置する。そして、被成形体2の全体を真空フィルム13で覆い周囲をシール部材14でシールする。
The resin supply part 10 is a tube-shaped thing arrange | positioned so that it may extend in the direction orthogonal to the flow direction of resin, for example, spiral tube 10a, 10b can use it conveniently. The spiral tube is formed in a tube shape having a spiral slit by spirally winding a plastic band plate that is hard to some extent so that it does not easily become flat even under vacuum. When the resin is supplied into such a spiral tube, the resin flows out while diffusing in a plane through the spiral slit. In addition, as the resin supply part 10, what provided many holes, slits, etc. in the hard pipe | tube may be used.
Such a resin supply part 10 is installed in each edge part of the opposing side of the to-be-molded body 2 so that it may become substantially parallel to the side. And the whole to-be-molded body 2 is covered with the vacuum film 13, and the circumference | surroundings are sealed with the sealing member 14. FIG.

そして、FRPサンドイッチパネルを成形するに際しては、上記脱気部9を通じて被成形体2の中心線上から脱気し真空フィルム13の内部空間を真空状態にしながら、被成形体2の両側の端縁部に設けられた樹脂供給用スパイラルチューブ10a、10bから同時に樹脂を供給する。そうすると、被成形体2の端縁部のスパイラルチューブ10a、10bから供給された樹脂は、溝付き心材3の樹脂流通溝3aを通じて繊維強化布4a及び4bに浸透しながら、被成形体2の中心部に向かって流れていく。その際の樹脂浸透部の先端ラインはスパイラルチューブ10a、10bに平行に近いラインとなっている。   When forming the FRP sandwich panel, the edge portions on both sides of the molded body 2 are evacuated from the center line of the molded body 2 through the degassing section 9 and the vacuum film 13 is evacuated. Resin is simultaneously supplied from the resin supply spiral tubes 10a and 10b provided in the slab. Then, the resin supplied from the spiral tubes 10a and 10b at the edge of the molded body 2 penetrates the fiber reinforced fabrics 4a and 4b through the resin flow grooves 3a of the grooved core material 3, and the center of the molded body 2 It flows toward the club. The tip line of the resin permeation part at that time is a line that is nearly parallel to the spiral tubes 10a and 10b.

被成形体2の中心線上には脱気部9ないし脱気バッグ9aが設けられており、脱気部9ないし脱気バッグ9aは上述のように空気等の気体は通過させるが水等の液体(樹脂)は通過させないように構成された防水通気性布9bと、この防水通気性布9bの上面に通気層9dとを設けたものであるので、被成形体2の両側から流れてきた樹脂は、中心線上で会合することになる。しかし、脱気部9ないし脱気バッグ9aの防水通気性布9bのために、空気のみが吸引され、樹脂は吸引されないため、両側からの樹脂が会合する線上に未含浸領域や、ボイド、含浸不足領域等は生じない。また、脱気部9ないし脱気バッグ9aは複数の溝付き心材3の突き合わせ部3bに沿って延在されているので、被成形体2の下面中心線上で会合した樹脂は、溝付き心材3の突き合わせ部3bの隙間を通じて上記脱気部9ないし脱気バッグ9aにより吸引されるため、上記同様に、下面における樹脂の会合線上に未含浸領域や、ボイド、含浸不足領域等は生じない。   A deaeration unit 9 or a deaeration bag 9a is provided on the center line of the molded body 2, and the deaeration unit 9 or the deaeration bag 9a allows a gas such as air to pass therethrough but a liquid such as water as described above. Since the (resin) is a waterproof breathable cloth 9b configured not to pass through and a breathable layer 9d is provided on the upper surface of the waterproof breathable cloth 9b, the resin flowing from both sides of the molded body 2 Will meet on the centerline. However, because of the waterproof breathable cloth 9b of the deaeration part 9 or the deaeration bag 9a, only air is sucked and resin is not sucked. Therefore, unimpregnated regions, voids, and impregnation are formed on the lines where the resin from both sides meet. Insufficient areas do not occur. Moreover, since the deaeration part 9 thru | or the deaeration bag 9a are extended along the abutting part 3b of the some grooved core material 3, the resin which met on the lower surface centerline of the to-be-molded body 2 is the grooved core material 3 As described above, no unimpregnated region, void, insufficiently impregnated region, or the like is generated on the resin associating line on the lower surface.

以上のように、本実施の形態によれば、次のような効果がある。
(1)例えば、四辺形の大型のパネルを成形する場合には、対向する長辺の両端縁部から同時に樹脂含浸を開始し、それら両端縁の中間線付近に脱気部9ないし脱気バッグ9aを配置することにより、未含浸領域の発生を防止することができる。その結果、樹脂の含浸距離は従来法に比べて半分程度ですみ、また含浸に必要な時間は1/4程度となり、製造時間の大幅な短縮が図れる。ちなみに従来法では含浸距離は5m程度であったが、本実施の形態では少なくともその2倍の10m以上にまで含浸距離を広げることが可能となる。
(2)含浸時間の短縮が図れる結果、粘度が高い樹脂や、ゲル化時間の短い樹脂を適用できるようになる。
(3)脱気ライン部分では心材の突き合わせ部を通して空気を吸引することができるので、被成形体2の下面に未含浸領域や、ボイド、含浸不足の領域が発生しない。
As described above, the present embodiment has the following effects.
(1) For example, in the case of forming a large quadrilateral panel, resin impregnation is started simultaneously from both end edges of the opposing long sides, and a deaeration unit 9 or a deaeration bag is located in the vicinity of the middle line between these both ends. By arranging 9a, it is possible to prevent the generation of the unimpregnated region. As a result, the resin impregnation distance is about half that of the conventional method, and the time required for the impregnation is about ¼, so that the production time can be greatly shortened. Incidentally, in the conventional method, the impregnation distance is about 5 m, but in the present embodiment, the impregnation distance can be extended to at least 10 m, which is twice as much.
(2) As a result of shortening the impregnation time, a resin having a high viscosity or a resin having a short gelation time can be applied.
(3) Since air can be sucked through the abutting portion of the core material in the degassing line portion, an unimpregnated region, void, or insufficiently impregnated region does not occur on the lower surface of the molded body 2.

実施の形態2.
図4は本発明の実施の形態2におけるFRP構造体の製造装置の概略構成を示す断面図で、図5は実施の形態2の脱気部の拡大断面図である。
この実施の形態2では、溝付き心材3の突き合わせ部3b付近にこの心材3を上下に貫通する貫通孔3cを設けた点と、脱気部9として、上述のように防水通気性の膜を有する布(防水通気性布)9bの中に通気メディア9eを包含する密閉された袋状の脱気バッグ9aを構成した点が上記の実施の形態1と相違するだけである。また、この脱気バッグ9aは、溝付き心材3の突き合わせ部3bに沿って心材3の貫通孔3c上に載置されている。その他の構成は実施の形態1と同じであるので同一の符号を用いるものとする。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing a schematic configuration of the FRP structure manufacturing apparatus according to Embodiment 2 of the present invention, and FIG. 5 is an enlarged cross-sectional view of a deaeration unit according to Embodiment 2.
In the second embodiment, a waterproof breathable membrane as described above is used as the deaeration unit 9 in that a through-hole 3c that vertically penetrates the core 3 is provided in the vicinity of the butted portion 3b of the grooved core 3. The only difference from Embodiment 1 is that the sealed bag-like deaeration bag 9a including the ventilation medium 9e is formed in the cloth (waterproof breathable cloth) 9b. The deaeration bag 9 a is placed on the through hole 3 c of the core material 3 along the butted portion 3 b of the grooved core material 3. Since other configurations are the same as those of the first embodiment, the same reference numerals are used.

この実施の形態2によれば、実施の形態1と同様の効果を有する上に、脱気部9として防水通気性布9bを配置した部分に貫通孔3c付きの心材3を配したので、被成形体2の下面からの空気の通過経路を十分に確保できるため、未含浸領域や、ボイド、含浸不足の領域をより確実に防止することができるという効果が得られる。   According to this second embodiment, in addition to having the same effect as the first embodiment, the core material 3 with the through-hole 3c is arranged in the portion where the waterproof breathable cloth 9b is arranged as the deaeration portion 9, so Since a sufficient passage path for air from the lower surface of the molded body 2 can be ensured, an effect of more reliably preventing an unimpregnated region, a void, and an insufficiently impregnated region can be obtained.

なお、以上の実施の形態1、2では、心材3と繊維強化布4a、4bとからなるFRPサンドイッチパネルを製造する例を説明したが、本発明は、サンドイッチ構造体だけでなく心材の片面に繊維強化布を設けたFRP構造体等にも広く適用することができる。この場合、心材には少なくとも一方の面に樹脂流通溝3aが形成してあればよい。
また、パネル形状は平面だけでなく凸または凹状に湾曲した形状にも本発明を適用できる。
In the first and second embodiments described above, the example of manufacturing the FRP sandwich panel made of the core material 3 and the fiber reinforced fabrics 4a and 4b has been described. However, the present invention is not limited to the sandwich structure, but on one side of the core material. The present invention can be widely applied to an FRP structure provided with a fiber reinforced cloth. In this case, it is only necessary that the resin flow groove 3a is formed on at least one surface of the core material.
Further, the present invention can be applied not only to a flat surface but also to a curved shape that is convex or concave.

1 成形型
2 被成形体
3 心材
3a 溝(樹脂流通溝)
3b 突き合わせ部
3c 貫通孔
4a、4b 繊維強化布
5 ピールプライ
6 樹脂タンク
7 樹脂供給ホース
8 開閉弁
9 脱気部
9a 脱気バッグ
9b 防水通気性布
9c 脱気用スパイラルチューブ
9d 通気層
9e 通気メディア
9f 粘着テープ
10 樹脂供給部
10a、10b スパイラルチューブ
11 真空ホース
12a、12b 脱気用スパイラルチューブ
13 真空フィルム
14 シール部材
DESCRIPTION OF SYMBOLS 1 Mold 2 Molding object 3 Core material 3a Groove (resin distribution groove)
3b butt portion 3c through hole 4a, 4b fiber reinforced cloth 5 peel ply 6 resin tank 7 resin supply hose 8 on-off valve 9 deaeration part 9a deaeration bag 9b waterproof breathable cloth 9c deaeration spiral tube 9d ventilation layer 9e ventilation medium 9f Adhesive tape 10 Resin supply unit 10a, 10b Spiral tube 11 Vacuum hose 12a, 12b Degassing spiral tube 13 Vacuum film 14 Sealing member

Claims (8)

少なくとも一方の面に複数の樹脂流通溝を設けた心材と、
前記心材の前記樹脂流通溝側の面に重ねて置かれた強化繊維布と、を有する被成形体を真空フィルムで気密に覆い、VARTM成形法により前記被成形体に樹脂を含浸してFRP構造体を製造する方法であって
前記被成形体の対向する辺のそれぞれの端縁部に、当該辺平行に樹脂供給部を配置し、
前記被成形体の一辺側に配置された前記樹脂供給部と前記被成形体の他辺側に配置された前記樹脂供給部との間の中間点を結んだ中間線に沿って、防水通気性の膜を有する布と通気手段とを有する脱気部を配置し、
前記脱気部により前記被成形体の前記中間線上から脱気しながら、両側の前記樹脂供給部より同時に樹脂を供給して樹脂含浸を進行させて成形する
ことを特徴とするFRP構造体の製造方法。
A core material provided with a plurality of resin flow grooves on at least one surface;
A molded object having a reinforcing fiber cloth placed on the resin flow groove side surface of the core material is hermetically covered with a vacuum film, and the molded object is impregnated with resin by a VARTM molding method to form an FRP structure. A method of manufacturing a body ,
A resin supply part is arranged in parallel with the side edge of each of the opposing sides of the molded body,
Waterproof and breathable along an intermediate line connecting intermediate points between the resin supply part disposed on one side of the molded body and the resin supply part disposed on the other side of the molded body A deaeration part having a cloth having a membrane and a ventilation means,
Wherein while degassing from the said intermediate line of the molded body by degassing unit, the FRP structure by supplying simultaneously the resin from both sides of the resin supply section allowed to proceed resin impregnation, characterized in that molded Production method.
前記脱気部として、防水通気性の膜を有する布と通気手段とを有する脱気バッグを用いることを特徴とする請求項1記載のFRP構造体の製造方法。   The method for producing an FRP structure according to claim 1, wherein a deaeration bag having a cloth having a waterproof and air permeable membrane and a ventilation means is used as the deaeration part. 前記複数の樹脂供給部として、螺旋状の樹脂供給用スリットを有するスパイラルチューブを用いることを特徴とする請求項1又は2記載のFRP構造体の製造方法。   3. The method of manufacturing an FRP structure according to claim 1, wherein a spiral tube having a spiral resin supply slit is used as the plurality of resin supply portions. 前記心材を突き合わせ、その突き合わせ部に沿って前記脱気部を延在させて、前記心材の下面の空気を逃がす径路を確保することを特徴とする請求項1〜3のいずれか一項に記載のFRP構造体の製造方法。 Butt the core, by extending the degassing unit along the butted portion, according to any one of claims 1 to 3, characterized in that to secure a path to escape the air in the lower surface of the core Manufacturing method of the FRP structure. 前記脱気部に貫通孔付きの心材を配して、前記貫通孔により該心材の下面の空気を逃がす径路を確保することを特徴とする請求項1〜3のいずれか一項に記載のFRP構造体の製造方法。 The FRP according to any one of claims 1 to 3, wherein a core material with a through hole is arranged in the deaeration part, and a path for escaping air on the lower surface of the core material is secured by the through hole. Manufacturing method of structure. 前記被成形体が前記真空フィルムで気密に覆われる際、前記被成形体は、成形型と前記真空フィルムとで挟まれるように配置され、  When the molded body is hermetically covered with the vacuum film, the molded body is disposed so as to be sandwiched between a molding die and the vacuum film,
前記脱気部は、前記被成形体の前記真空フィルム側に配置されることを特徴とする請求項1〜5のいずれか一項に記載のFRP構造体の製造方法。  The said deaeration part is arrange | positioned at the said vacuum film side of the said to-be-molded body, The manufacturing method of the FRP structure as described in any one of Claims 1-5 characterized by the above-mentioned.
請求項1〜のいずれか一項に記載のFRP構造体の製造方法を実施するための製造装置であって、
前記被成形体の両側の端縁部に配置される前記樹脂供給部として、螺旋状の樹脂供給用スリットを有するスパイラルチューブを用い、
前記被成形体の前記中間線に沿って配置される前記脱気部として、防水通気性の膜を有する布と通気手段とを有する脱気バッグを用いる
ことを特徴とするFRP構造体の製造装置。
It is a manufacturing apparatus for enforcing the manufacturing method of the FRP structure as described in any one of Claims 1-6 ,
Using the spiral tube having a spiral resin supply slit as the resin supply part disposed at the edge portions on both sides of the molded body,
An apparatus for manufacturing an FRP structure, wherein a deaeration bag having a cloth having a waterproof air permeable membrane and a ventilation means is used as the deaeration part disposed along the intermediate line of the molded body. .
前記脱気バッグは、前記防水通気性の膜を有する布で前記通気手段を包囲した袋状に形成されていることを特徴とする請求項記載のFRP構造体の製造装置。 8. The FRP structure manufacturing apparatus according to claim 7 , wherein the deaeration bag is formed in a bag shape surrounding the ventilation means with a cloth having the waterproof and breathable membrane.
JP2011106078A 2011-05-11 2011-05-11 FRP structure manufacturing method and manufacturing apparatus Expired - Fee Related JP5738061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106078A JP5738061B2 (en) 2011-05-11 2011-05-11 FRP structure manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106078A JP5738061B2 (en) 2011-05-11 2011-05-11 FRP structure manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012236304A JP2012236304A (en) 2012-12-06
JP5738061B2 true JP5738061B2 (en) 2015-06-17

Family

ID=47459673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106078A Expired - Fee Related JP5738061B2 (en) 2011-05-11 2011-05-11 FRP structure manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5738061B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058915A1 (en) * 2001-01-26 2002-08-01 Kaneka Corporation Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same
JP4833603B2 (en) * 2005-07-15 2011-12-07 富士重工業株式会社 Molding jig

Also Published As

Publication number Publication date
JP2012236304A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US8420002B2 (en) Method of RTM molding
CA2887194C (en) Apparatus and method for producing a rotor blade spar cap
JP5322920B2 (en) Vacuum RTM molding method
US8075277B2 (en) Method for casting a component and a component comprising at least partly of fibre-reinforced plastic laminate
JP5533743B2 (en) Manufacturing method of fiber reinforced plastic
US6565792B2 (en) Apparatus and method for use in molding a composite structure
MX2008011004A (en) Method and apparatus for providing polymer to be used at vacuum infusion.
US20180072005A1 (en) Method for manufacturing fiber-reinforced plastic products
EP2030763A1 (en) Evacuation process for use in a method for producing a composite structure
JP2011524275A (en) Method and apparatus for molding continuous fiber composite parts.
JP2011173322A (en) Method for repairing member made of fiber-reinforced resin
JP2012228800A (en) Method and apparatus for manufacturing frp panel
JP5738061B2 (en) FRP structure manufacturing method and manufacturing apparatus
JP4432563B2 (en) Manufacturing method of FRP
JP2012228824A (en) Method and apparatus for manufacturing frp structure
JP2012045863A (en) Method for vacuum impregnation molding of frp product and device for manufacturing the same
TW201022023A (en) Manufacturing method of composite with core of resin channels
JP2004090349A (en) Method for manufacturing fiber-reinforced resin structure and its manufacturing device
JP2005067089A (en) Method for molding molded product
JP7282890B2 (en) Method for manufacturing fiber reinforced polymer composite beams, in particular girder beams for wind turbine rotor blades
JP2009196234A (en) Fiber reinforced plastic structure and its manufacturing method
IL217477A (en) Resin infusion apparatus and method
JP2013067071A (en) Fiber reinforced plastic structure, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees