JP4752147B2 - RTM molding method - Google Patents

RTM molding method Download PDF

Info

Publication number
JP4752147B2
JP4752147B2 JP2001215209A JP2001215209A JP4752147B2 JP 4752147 B2 JP4752147 B2 JP 4752147B2 JP 2001215209 A JP2001215209 A JP 2001215209A JP 2001215209 A JP2001215209 A JP 2001215209A JP 4752147 B2 JP4752147 B2 JP 4752147B2
Authority
JP
Japan
Prior art keywords
resin
mold
temperature
molding method
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001215209A
Other languages
Japanese (ja)
Other versions
JP2003025346A (en
Inventor
俊英 関戸
浩樹 大背戸
真二 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001215209A priority Critical patent/JP4752147B2/en
Publication of JP2003025346A publication Critical patent/JP2003025346A/en
Application granted granted Critical
Publication of JP4752147B2 publication Critical patent/JP4752147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、RTM(Resin Transfer Molding)成形方法に関し、とくに、短い成形サイクルで優れた品質のFRP(繊維強化プラスチック)成形品を得ることができるようにしたRTM成形方法に関する。
【0002】
【従来の技術】
FRP、とくにCFRP(炭素繊維強化プラスチック)は、軽量で高い機械特性を発揮できる複合材料であり、各種分野に使用されている。FRPの代表的な成形方法の一つとして、RTM成形方法が知られている。RTM成形方法は、型内に強化繊維基材を配置し、その型内に熱硬化性樹脂を注入して樹脂を強化繊維基材に含浸させた後、樹脂を加熱硬化し、硬化後に脱型してFRP成形品を得る方法である。樹脂の注入に関しては、型内を減圧(真空吸引)し、注入樹脂槽側との差圧によって型内に樹脂を注入する方法や、単に型内に樹脂を加圧注入する方法などが知られている。
【0003】
このようなRTM成形方法において、とくに繰り返し成形を行う場合、つまり、大量生産を行う場合には、成形サイクルが長いという問題がある。すなわち、成形を繰り返し行う場合、その中の1回の成形に要する時間が長いという問題があり、大量生産における生産性を向上し製造コストを低減するために、品質を維持しつつ成形サイクルを短縮することが要求されている。
【0004】
熱硬化性樹脂を用いた複合材料の成形においては、一般に成形品の耐熱性と樹脂硬化温度との間に相関関係があり、成形後の成形品の耐熱性を確保するために、成形時の樹脂の硬化温度を室温よりも高い温度、好ましくは60℃以上の温度で硬化したいという要請がある。
【0005】
ところが、樹脂の硬化温度を高く設定すると、通常、室温やそれよりも若干高い温度に設定されている樹脂の注入温度との差が大きくなるので、成形を繰り返し行う場合、樹脂注入温度から樹脂硬化温度への昇温のための時間および樹脂硬化温度から次の成形のための樹脂注入温度への降温のための時間が長くかかり、成形サイクルが長くなって生産性が低下するという問題が生じる。
【0006】
また、熱硬化性樹脂は時間の経過とともに粘度が上昇するが、その上昇速度は温度が高いほど速い。したがって、上記の成形サイクルに関する問題に対処するために、単に樹脂注入温度を上げるだけでは、注入温度を高く設定した分、樹脂の粘度の上昇速度が速くなり、注入後比較的短時間のうちに、樹脂の粘度が拡散や含浸が行われにくい高い粘度(たとえば、500mPa・sを越える粘度)に到達してしまい、樹脂含浸不良が生じるおそれがある。高温にしても粘度上昇が遅い樹脂も存在するが、そのような樹脂では反応速度も遅いので、樹脂注入温度を硬化温度に近い高温域に設定できたとしても、硬化時間が長いため、結局、生産性を向上することができない。
【0007】
【発明が解決しようとする課題】
そこで本発明の課題は、上記のような従来のRTM成形方法における種々の問題点に着目し、とくに、良好な成形品質を確保しつつ、成形サイクルを大幅に短縮可能で、大量生産に好適な生産性に優れたRTM成形方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るRTM成形方法は、強化繊維基材を配置した型内に熱硬化性樹脂を注入して加熱硬化した後、脱型してFRP成形品を得るRTM成形方法において、前記熱硬化性樹脂としてポリアミン硬化型エポキシ樹脂を用い、該熱硬化性樹脂の注入温度と硬化温度との関係が下記条件を満足するように成形することを特徴とする方法からなる。
0℃≦Tc−Ti≦20℃
ここで、Tcは熱硬化性樹脂の硬化温度であり、硬化時の型の温度として規定され、Tiは熱硬化性樹脂の注入温度であり、注入時の型の温度として規定される。
【0009】
このRTM成形方法においては、とくに、強化繊維基材を型内に配置する時から成形品を脱型する時までの間にわたって、型の温度の変化を20℃以内に抑えることが好ましい。
【0010】
また、上記樹脂注入温度に10分保持したときの粘度が500mPa・s以下の熱硬化性樹脂を用いることが好ましい。粘度が500mPa・s以下であれば、注入樹脂の良好な拡散性と含浸性を確保でき、そのような粘度に少なくとも10分保持できることにより、含浸不良が発生することを確実に防止できる。
【0012】
また、本発明において使用する熱硬化性樹脂としては、硬化温度における硬化に要する時間が0.5〜2.5時間の熱硬化性樹脂を用いることが好ましい。このような樹脂を用いることにより、樹脂硬化時間を短く抑えて、成形サイクル全体の時間短縮に寄与させることが可能となる。
【0013】
また、本発明に係るRTM成形方法においては、前述したような成形品の耐熱性を確保するために、熱硬化性樹脂の硬化温度は60℃以上であることが好ましい。
【0014】
RTM成形方法としては、両面成形型を用い、熱硬化性樹脂を注入するときに型内を減圧する方法や、片面成形型上に強化繊維基材を配置した後成形型の成形面全体をバッグ材で覆い、熱硬化性樹脂を注入するときにバッグ材で覆われた型内を減圧する方法を用いることができる。また、注入樹脂の拡散性を確保するために、強化繊維基材の面方向に注入樹脂を拡散させる樹脂拡散媒体を用いることもできる。
【0015】
上記のような本発明に係るRTM成形方法においては、型内への熱硬化性樹脂の注入温度と、注入樹脂の硬化温度との差が20℃以内とされるので、注入温度から硬化温度への昇温時間および硬化温度から次の成形のための注入温度への降温時間が、従来の大きな温度差があった場合に比べ、大幅に短縮され、それによって成形サイクルが大幅に短縮される。
【0016】
そして、用いる熱硬化性樹脂としては、注入温度が高くなっても、比較的長時間低粘度に保つことができ、かつ、硬化温度に昇温後には、比較的速い硬化速度(速い反応時間)を確保できる特別な樹脂、とくに、ポリアミン硬化型エポキシ樹脂が使用されるので、低粘度による十分に良好な含浸性と、短い硬化時間とが、相反することなく、両方とも確保される。したがって、成形サイクルの短縮が達成されるとともに、成形品の優れた品質も同時に確保されることになる。
【0017】
【発明の実施の形態】
以下に、本発明について、望ましい実施の形態とともに詳細に説明する。
本発明に係るRTM成形方法は、強化繊維基材を型内に配置し、その型内に熱硬化性樹脂を注入し、注入された樹脂を強化繊維基材に対して拡散させるとともに含浸させ、しかる後に熱硬化性樹脂を加熱により硬化させ、樹脂硬化後に、脱型してFRP成形品を得るRTM成形方法である。そして、樹脂の注入温度Tiと硬化温度Tcとの関係が、
0℃≦Tc−Ti≦20℃
を満足するように成形される。すなわち、注入温度Tiと硬化温度Tcとの差を20℃以内として加熱硬化される。
【0018】
この樹脂の注入温度Tiと硬化温度Tcとの関係を、型温度の昇降温のプロファイルとして表すと、たとえば図1に示すようになる。図1には、従来方法による昇降温プロファイル(図1(a))と、本発明方法による昇降温プロファイル(図1(b))とを比較して示す。図1(a)に示す従来方法においては、強化繊維基材配置/樹脂注入時の区間Aにおける温度と樹脂硬化時の区間Bにおける温度との差が40℃程度あるので、注入温度から硬化温度への昇温、および、硬化温度から脱型Cを行う時の温度(繰り返し成形においては、一般に、次の成形のための注入温度に等しい温度で脱型)への降温に要する時間が長く、そのため成形サイクルは比較的長くなっている。これに対し図1(b)に示す本発明方法においては、注入温度Tiと硬化温度Tcとの差が20℃以内(図示例では10℃程度)とされているので、昇降温に要する時間が大幅に短縮され、それによって成形サイクルも大幅に短縮されている。成形サイクルが短縮される結果、成形を繰り返し行う大量生産において、生産性が著しく向上される。
【0019】
また、本発明においては、図1(a)と図1(b)の比較からわかるように、結果的に、比較的高い温度で樹脂注入が行われることになるが、後述するように、特別な樹脂、とくにポリアミン硬化型エポキシ樹脂を用いることにより、比較的高温で樹脂注入しても、その間に樹脂の粘度が急速に上昇しないようにすることが可能である。つまり、樹脂の粘度を、比較的長時間、含浸不良が生じないだけの低粘度領域に維持することが可能になる。その結果、含浸不良等の発生しない、成形品の優れた品質も同時に確保されることになる。
【0020】
【実施例】
以下に、成形方法のより具体的な例を含めて、本発明を実施例に基づいて説明する。
実施例1
図2は、本発明の実施例1に係るRTM成形方法を示している。図2においては、金属製の上型1と下型2の両面成形型によって、内部にキャビティ3が成形されている。上型1、下型2内には、型加熱用の熱媒流路4、5がそれぞれ内蔵されている。
【0021】
型面上に離型剤を塗布し、予め熱媒流路5に温水を流して75℃に加熱した下型成形面上に強化繊維基材6(東レ(株)製、炭素繊維織物:”トレカ”T300×200g/m2 ×8ply)をレイアップした。その上に、離型用織布7(ナイロン製タフタ)と樹脂拡散媒体8(#200メッシュのポリエチレン製網状体)を配置した。
【0022】
下型2と同様に、予め75℃に加熱した上型1を下型2上にガイドピンに沿って押圧して固定状態を保持し、型締めした。
【0023】
キャビティ3の幅方向に形成された台形状の溝である減圧吸引部9に連通した吸引口より、バルブ10、真空トラップ11(樹脂の真空ポンプへの流入を阻止するためのトラップ)を介して真空ポンプ12により真空吸引した。
【0024】
キャビティ3内が10torr以下に達した後、真空吸引用溝である上記減圧吸引部9と基材6が配置された成形部分を介して対比関係にある位置に、該減圧吸引部9と同様に幅方向に形成された台形状の溝である樹脂注入部13に連通する樹脂注入ラインのバルブ14を開いて、タンク15に貯蔵されていた樹脂16を大気圧でキャビティ3内に流入させた。真空吸引ライン上のバルブ10は開いたままで真空吸引を続行した。樹脂及び真空シールは、型面上の全周にわたって配置したOリング17で行った。
【0025】
ここで用いた熱硬化性樹脂16は、東レ(株)製ポリアミン硬化型エポキシ樹脂:TR−C32であり、粘度特性は表1に示した通りである。表1に示したデータは、東機産業(株)製E型粘度計:TVE−30型を用いて、70℃及び80℃における粘度変化を測定したものであり、それぞれの温度における粘度の経時変化をグラフ化すると図3に示すようになる。
【0026】
【表1】

Figure 0004752147
【0027】
大気圧で加圧された樹脂16は、一旦幅方向に溝が形成された樹脂注入部13に到達して充満した後、キャビティ3との連通路である上下型の間隙で形成されたフィルムゲート18(隙間=約0.5mm)を通ってキャビティ3内に到達する。その後、基材6より流動抵抗が遙かに低い樹脂拡散媒体8に流れ込む。そして、その樹脂拡散媒体8内を主体に樹脂は流れながら、少しずつ厚み方向の基材6内に含浸して行き、やがて幅方向に溝が形成された減圧吸引部9に到達する。その後、真空吸引ライン上に樹脂が見えだした時点で樹脂注入ラインのバルブ14を閉鎖し、樹脂注入をストップした。樹脂注入開始から真空吸引ライン上に樹脂が見えるまでの時間は約15分であり、その15分間に型温度を85℃に昇温させた。
【0028】
また、上記成形型を用いて上述とは異なる以下の様な成形方法での試作を行った。即ち、先ず上記基材の量を上述より1.3倍に増加させた。その為に樹脂流動抵抗が高くなり樹脂流動・含浸に時間を要することから、樹脂注入ラインに樹脂加圧装置(図2には記載せず)を連結し、真空吸引ライン上のバルブ10を閉鎖した状態で、該樹脂加圧装置で樹脂を圧力約3kg/m2 に加圧して樹脂を注入含浸した。この時は、樹脂加圧注入時に型温度を既に85℃に予め昇温していた。
【0029】
上記何れの場合でも、樹脂がキャビティ3内に充満し、型温度が85℃の状態で基材6内に含浸したまま約1.5時間保持した。該樹脂はやがて型からの加熱により脱型可能なまでに硬化した。
【0030】
樹脂が硬化した後、上型1を上昇させて下型2から離型して成形品を型内より脱型させた。この場合、型温度は10℃降温して75℃(次の成形サイクルにおける樹脂注入時温度と同じ温度)に戻した。
【0031】
何れの場合共、脱型した成形品は自動車部材であるフェンダーであり、表面状態は光沢があり、全くボイドやピンホールなどは見られない良品であった。
【0032】
このように、熱硬化性樹脂の注入温度(75℃)と硬化温度(85℃)との差を10℃(つまり、20℃以内)としたので、成形サイクルを大幅に短縮でき、しかも比較的高い樹脂注入温度とすることにより、樹脂の良好な含浸性を維持でき、FRP製品の良好な品質を得ることができた。
【0033】
実施例2
本実施例では、片面型として下型21を用い、上型は用いずにシート状のバッグ材22で覆った。金属製の下型21には、型加熱用の熱媒流路23を形成されている。離型剤を型面上に塗布し、温水が通った熱媒流路23によって型温度は約70℃に加熱した。
【0034】
その型面上に強化繊維基材24(東レ(株)製、炭素繊維織物:”トレカ”T700×300g/m2 ×2ply)をレイアップした。更にその上にアクリル系のフォームコア材25(厚さ:10mm)を配置した後、その上に強化繊維基材24(東レ(株)製、炭素繊維織物:”トレカ”T700×300g/m2 ×2ply)を配置した。そして、その上には、該フォームコア材25と外寸が殆ど同一で厚さが3mmのFRP製押圧板26を載せ、下型表面の全体をナイロン製バッグ材22で覆った。そのバッグ材22と下型21とのシールは、粘着性シール材で行った。更に、該バッグ材22の上にヒータ線を内蔵したシリコン製ラバーヒータ28を被せた。なお、上記フォームコア材25には上下面共に、樹脂流入路用としての細溝(幅1.5mm×深さ3mm)を樹脂注入部29から減圧吸引部30方向に加工してある。
【0035】
キャビティ31の幅方向に形成された台形状の溝である減圧吸引部30に連通した吸引口よりバルブ32、真空トラップ33を介して真空ポンプ34によって真空吸引した。このときよりラバーヒータ28を70℃に昇温開始した。そして、キャビティ31内が6torr以下に達した後、真空吸引用溝である上記減圧吸引部30と基材24が配置された成形部分を介して対比関係にある位置に、該減圧吸引部30と同様に幅方向に形成された台形状の溝である樹脂注入部29に連通する樹脂注入ラインのバルブ35を開いてタンク36に貯蔵された樹脂37を大気圧でキャビティ31内に流入させた。真空吸引ライン上のバルブ32は開いたままで、真空吸引し続けた。なお、樹脂及び真空シールは、型面上の全周に連通したOリング27で行った。また、ここで用いた熱硬化性樹脂37は、東レ(株)製ポリアミン硬化型エポキシ樹脂:TR−C32である。
【0036】
大気圧で加圧された樹脂37は、前記図2記載の実施例1と同様に一旦樹脂注入部29に到達し充満した後、キャビティ31から延長して樹脂注入部29まで配置された基材24内を通ってキャビティ31内に達する。但し、上記基材の延長部分には樹脂抵抗を下げる為に図2記載の樹脂拡散媒体を基材の上に配置した(図4では省略)。その後、基材24より流動抵抗が遙かに低いコア材25に形成された上記細溝内に流れ込む。そして樹脂39は、コア材25の上下面の細溝内を中心に流れながら少しずつ厚み方向の基材24内に含浸していき、やがて減圧吸引部30に到達する。その後、真空吸引ライン上に樹脂が見えだした時点で樹脂注入ラインのバルブ35を閉鎖し、樹脂注入をストップした。
【0037】
上記樹脂がキャビティ31内に充満し、基材24内に含浸した状態で約2時間保持した。該樹脂はやがて加熱により硬化した。
【0038】
樹脂が硬化した後、下型21からラバーヒータ28とバッグ材22を剥奪して成形品を型内より脱型させた。この場合、型温度は70℃に保持したままであり、全く降温しなかった。つまり、樹脂注入温度と硬化温度との差を0とした。したがって、成形サイクルは大幅に短縮された。
【0039】
脱型した成形品は自動車部材であるボンネット・フードである。意匠面は成形型の平滑性をそのまま転写して光沢があり、塗装無しで基材の織物の織り目が外面に現われ、それによって商品価値を高めることができた。
【0040】
【発明の効果】
以上説明したように、本発明のRTM成形方法によれば、熱硬化性樹脂の注入温度と硬化温度との差を20℃以内とすることにより、成形サイクルを大幅に短縮し、生産性を大幅に高めることができる。
【0041】
また、熱硬化性樹脂として、特別の樹脂、とくにポリアミン硬化型エポキシ樹脂を用いることで、比較的高温での樹脂注入を可能とし、注入時における樹脂含浸性を良好に維持して、最終的に得られる成形品の品質を向上することが可能となる。
【0042】
このような本発明に係るRTM成形方法は、とくに大量生産が要求されるものや、比較的大型の成形品を繰り返し成形することが要求されるものに好適である。たとえば、各種自動車用部材(フード、ルーフ、フェンダー、トランクリッド、バンパーなど)や、ヘリコプター用部材(ブレード、キャビンなど)、航空機用部材(一次構造部材:ウィング、リブ、キャビン、スパーなど、および、二次構造部材:フェアリング、コントロール、サーフェスなど)、風車用部材(ブレード、リブ、継手部材など)の成形に用いて好適なものである。
【図面の簡単な説明】
【図1】本発明方法の成形サイクルを従来方法と比較して示した、型温と経過時間との関係図である。
【図2】本発明の実施例1に係るRTM成形方法を示す概略構成図である。
【図3】実施例に用いた熱硬化性樹脂の粘度特性図である。
【図4】本発明の実施例2に係るRTM成形方法を示す概略構成図である。
【符号の説明】
1 上型
2、21 下型
3、31 キャビティ
4、5、23 熱媒流路
6、24 強化繊維基材
7 離型用織布
8 樹脂拡散媒体
9、30 減圧吸引部
10、14、32、35 バルブ
11、33 真空トラップ
12、34 真空ポンプ
13、29 樹脂注入部
15、36 タンク
16、37 熱硬化性樹脂
17、27 シール用Oリング
22 バッグ材
25 コア材
26 押圧板
28 ラバーヒータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an RTM (Resin Transfer Molding) molding method, and more particularly, to an RTM molding method in which an excellent quality FRP (fiber reinforced plastic) molded product can be obtained in a short molding cycle.
[0002]
[Prior art]
FRP, especially CFRP (carbon fiber reinforced plastic) is a composite material that is lightweight and can exhibit high mechanical properties, and is used in various fields. As one of typical FRP molding methods, an RTM molding method is known. In the RTM molding method, a reinforcing fiber base is placed in a mold, a thermosetting resin is injected into the mold, the resin is impregnated into the reinforcing fiber base, the resin is heat-cured, and demolded after curing. Thus, an FRP molded product is obtained. As for resin injection, there are known methods such as reducing the pressure in the mold (vacuum suction) and injecting the resin into the mold by the pressure difference from the injection resin tank, or simply injecting the resin into the mold under pressure. ing.
[0003]
In such an RTM molding method, there is a problem that a molding cycle is long particularly when molding is repeated, that is, when mass production is performed. In other words, when molding is repeated, there is a problem that the time required for one molding is long, and in order to improve productivity in mass production and reduce manufacturing costs, the molding cycle is shortened while maintaining quality. Is required to do.
[0004]
In the molding of composite materials using thermosetting resins, there is generally a correlation between the heat resistance of the molded product and the resin curing temperature, and in order to ensure the heat resistance of the molded product after molding, There is a demand for curing the resin at a temperature higher than room temperature, preferably 60 ° C. or higher.
[0005]
However, if the curing temperature of the resin is set high, the difference from the resin injection temperature, which is usually set at room temperature or slightly higher than that, becomes large. It takes a long time to raise the temperature and a time to lower the temperature from the resin curing temperature to the resin injection temperature for the next molding, which causes a problem that the molding cycle becomes longer and the productivity is lowered.
[0006]
In addition, the viscosity of the thermosetting resin increases with time, but the rate of increase is faster as the temperature is higher. Therefore, in order to cope with the above-mentioned problems related to the molding cycle, simply increasing the resin injection temperature increases the speed of the resin viscosity by setting the injection temperature higher, and within a relatively short time after injection. The viscosity of the resin reaches a high viscosity (for example, a viscosity exceeding 500 mPa · s) at which diffusion and impregnation are difficult to be performed, which may cause poor resin impregnation. Some resins have a slow increase in viscosity even at high temperatures, but such resins have a slow reaction rate, so even if the resin injection temperature can be set to a high temperature range close to the curing temperature, the curing time is long. Productivity cannot be improved.
[0007]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to pay attention to various problems in the conventional RTM molding method as described above. In particular, the molding cycle can be greatly shortened while ensuring good molding quality, which is suitable for mass production. An object of the present invention is to provide an RTM molding method excellent in productivity.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the RTM molding method according to the present invention is an RTM in which a thermosetting resin is injected into a mold in which a reinforcing fiber base material is placed, heat-cured, and then demolded to obtain an FRP molded product. in the molding method, using a polyamine curing type epoxy resin as the thermosetting resin, comprises a method for the relationship between the injection temperature and the curing temperature of the thermosetting resin, characterized in that the molding so as to satisfy the following condition .
0 ° C ≦ Tc-Ti ≦ 20 ° C
Here, Tc is the curing temperature of the thermosetting resin and is defined as the mold temperature during curing, and Ti is the injection temperature of the thermosetting resin and is defined as the mold temperature during injection.
[0009]
In this RTM molding method, it is particularly preferable to keep the temperature change of the mold within 20 ° C. from the time when the reinforcing fiber substrate is placed in the mold until the time when the molded product is removed.
[0010]
Moreover, it is preferable to use a thermosetting resin having a viscosity of 500 mPa · s or less when held at the resin injection temperature for 10 minutes. If the viscosity is 500 mPa · s or less, good diffusibility and impregnation of the injected resin can be secured, and by maintaining such a viscosity for at least 10 minutes, it is possible to reliably prevent impregnation.
[0012]
Moreover, as the thermosetting resin used in the present invention, it is preferable to use a thermosetting resin having a time required for curing at a curing temperature of 0.5 to 2.5 hours. By using such a resin, it is possible to keep the resin curing time short and contribute to shortening the entire molding cycle time.
[0013]
Moreover, in the RTM molding method according to the present invention, the curing temperature of the thermosetting resin is preferably 60 ° C. or higher in order to ensure the heat resistance of the molded product as described above.
[0014]
As the RTM molding method, a double-sided mold is used and the inside of the mold is depressurized when a thermosetting resin is injected, or the entire molding surface of the molding mold is placed on the bag after the reinforcing fiber base material is placed on the single-sided mold. It is possible to use a method in which the inside of the mold covered with a bag and covered with a bag is decompressed when a thermosetting resin is injected. Moreover, in order to ensure the diffusibility of injection resin, the resin diffusion medium which diffuses injection resin to the surface direction of a reinforced fiber base material can also be used.
[0015]
In the RTM molding method according to the present invention as described above, since the difference between the injection temperature of the thermosetting resin into the mold and the curing temperature of the injection resin is within 20 ° C., the injection temperature is changed to the curing temperature. The temperature rise time and the temperature drop time from the curing temperature to the injection temperature for the next molding are significantly shortened compared to the conventional large temperature difference, thereby greatly shortening the molding cycle.
[0016]
And as a thermosetting resin to be used, even if the injection temperature becomes high, it can be kept at a low viscosity for a relatively long time, and after raising the temperature to the curing temperature, a relatively fast curing speed (fast reaction time). In particular, since a special resin that can ensure the viscosity is used, in particular, a polyamine curable epoxy resin, a sufficiently good impregnation property due to a low viscosity and a short curing time can be ensured without conflict. Therefore, a shortening of the molding cycle is achieved, and an excellent quality of the molded product is simultaneously secured.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with preferred embodiments.
In the RTM molding method according to the present invention, a reinforcing fiber base is placed in a mold, a thermosetting resin is injected into the mold, and the injected resin is diffused and impregnated into the reinforcing fiber base. Thereafter, the thermosetting resin is cured by heating, and after the resin is cured, it is demolded to obtain an FRP molded product. The relationship between the resin injection temperature Ti and the curing temperature Tc is
0 ° C ≦ Tc-Ti ≦ 20 ° C
It is molded to satisfy That is, the heat curing is performed with the difference between the injection temperature Ti and the curing temperature Tc being within 20 ° C.
[0018]
If the relationship between the injection temperature Ti of the resin and the curing temperature Tc is expressed as a profile for raising and lowering the mold temperature, for example, it is as shown in FIG. FIG. 1 shows a comparison between a temperature raising / lowering profile (FIG. 1 (a)) obtained by a conventional method and a temperature raising / lowering profile (FIG. 1 (b)) obtained by the method of the present invention. In the conventional method shown in FIG. 1 (a), the difference between the temperature in the section A at the time of reinforcing fiber substrate arrangement / resin injection and the temperature in the section B at the time of resin curing is about 40 ° C. It takes a long time to lower the temperature to the temperature at which the mold is removed from the curing temperature and the temperature at which the demolding C is performed from the curing temperature (in general, in the repeated molding, the mold is demolded at a temperature equal to the injection temperature for the next molding) Therefore, the molding cycle is relatively long. On the other hand, in the method of the present invention shown in FIG. 1B, the difference between the injection temperature Ti and the curing temperature Tc is within 20 ° C. (about 10 ° C. in the illustrated example). It has been greatly shortened, and the molding cycle has also been significantly shortened. As a result of the shortening of the molding cycle, productivity is remarkably improved in mass production in which molding is repeated.
[0019]
Further, in the present invention, as can be seen from the comparison between FIG. 1A and FIG. 1B, as a result, the resin injection is performed at a relatively high temperature. By using such a resin, particularly a polyamine curable epoxy resin, even if the resin is injected at a relatively high temperature, it is possible to prevent the viscosity of the resin from rapidly increasing during that time. That is, the viscosity of the resin can be maintained in a low viscosity region that does not cause poor impregnation for a relatively long time. As a result, excellent quality of the molded product without impregnation failure is ensured at the same time.
[0020]
【Example】
Hereinafter, the present invention will be described based on examples, including more specific examples of molding methods.
Example 1
FIG. 2 shows an RTM molding method according to Example 1 of the present invention. In FIG. 2, a cavity 3 is formed inside by a double-sided mold of a metal upper mold 1 and a lower mold 2. In the upper mold 1 and the lower mold 2, heating medium flow paths 4 and 5 for heating the mold are incorporated.
[0021]
A release agent is applied onto the mold surface, and a reinforcing fiber base 6 (carbon fiber fabric manufactured by Toray Industries, Inc., carbon fiber fabric: “ Trading card “T300 × 200 g / m 2 × 8 ply) was laid up. On top of that, a release woven fabric 7 (nylon taffeta) and a resin diffusion medium 8 (# 200 mesh polyethylene mesh) were placed.
[0022]
Similar to the lower mold 2, the upper mold 1 heated in advance to 75 ° C. was pressed onto the lower mold 2 along the guide pins to maintain the fixed state, and the mold was clamped.
[0023]
Via a valve 10 and a vacuum trap 11 (a trap for preventing the resin from flowing into the vacuum pump) from a suction port communicating with the vacuum suction unit 9 which is a trapezoidal groove formed in the width direction of the cavity 3. Vacuum suction was performed by the vacuum pump 12.
[0024]
After the inside of the cavity 3 reaches 10 torr or less, the vacuum suction part 9 that is a vacuum suction groove and the molding part where the base material 6 is disposed are placed in a contrasting position in the same manner as the vacuum suction part 9. The valve 14 of the resin injection line communicating with the resin injection part 13 which is a trapezoidal groove formed in the width direction was opened, and the resin 16 stored in the tank 15 was allowed to flow into the cavity 3 at atmospheric pressure. Vacuum suction was continued with the valve 10 on the vacuum suction line open. Resin and vacuum sealing were performed with an O-ring 17 arranged over the entire circumference on the mold surface.
[0025]
The thermosetting resin 16 used here is a polyamine curable epoxy resin: TR-C32 manufactured by Toray Industries, Inc., and the viscosity characteristics are as shown in Table 1. The data shown in Table 1 was obtained by measuring changes in viscosity at 70 ° C. and 80 ° C. using an E-type viscometer manufactured by Toki Sangyo Co., Ltd .: TVE-30 type. The change is graphed as shown in FIG.
[0026]
[Table 1]
Figure 0004752147
[0027]
The resin 16 pressurized at atmospheric pressure once reaches and fills the resin injecting portion 13 having grooves formed in the width direction, and then a film gate formed by an upper and lower mold gap that is a communication path with the cavity 3. It reaches the cavity 3 through 18 (gap = about 0.5 mm). Then, it flows into the resin diffusion medium 8 whose flow resistance is much lower than that of the substrate 6. Then, while the resin flows mainly in the resin diffusion medium 8, the resin is gradually impregnated in the base material 6 in the thickness direction, and eventually reaches the vacuum suction part 9 in which grooves are formed in the width direction. Thereafter, when the resin started to appear on the vacuum suction line, the valve 14 of the resin injection line was closed to stop the resin injection. The time from the start of resin injection until the resin was seen on the vacuum suction line was about 15 minutes, and the mold temperature was raised to 85 ° C. during the 15 minutes.
[0028]
Further, a trial production was performed by the following molding method different from the above using the molding die. That is, first, the amount of the base material was increased 1.3 times from the above. Therefore, the resin flow resistance becomes high and it takes time to flow and impregnate the resin. Therefore, a resin pressurizing device (not shown in FIG. 2) is connected to the resin injection line, and the valve 10 on the vacuum suction line is closed. In this state, the resin was pressurized and impregnated with the resin pressure device to a pressure of about 3 kg / m 2 . At this time, the mold temperature was already raised to 85 ° C. at the time of resin pressure injection.
[0029]
In any of the above cases, the resin was filled in the cavity 3, and the substrate 6 was held for about 1.5 hours while being impregnated in the substrate 6 at a mold temperature of 85 ° C. The resin was cured until it could be removed by heating from the mold.
[0030]
After the resin was cured, the upper mold 1 was raised and released from the lower mold 2 to remove the molded product from the mold. In this case, the mold temperature was lowered by 10 ° C. and returned to 75 ° C. (the same temperature as the resin injection temperature in the next molding cycle).
[0031]
In any case, the molded product removed from the mold was a fender as an automobile member, the surface state was glossy, and it was a good product with no voids or pinholes.
[0032]
Thus, since the difference between the injection temperature of the thermosetting resin (75 ° C.) and the curing temperature (85 ° C.) is 10 ° C. (that is, within 20 ° C.), the molding cycle can be greatly shortened, and relatively By setting a high resin injection temperature, it was possible to maintain a good impregnation property of the resin and to obtain a good quality of the FRP product.
[0033]
Example 2
In this example, the lower mold 21 was used as a single-sided mold, and the upper mold was not used, and the sheet-shaped bag material 22 was used for the covering. The metal lower mold 21 is provided with a heat medium passage 23 for heating the mold. A mold release agent was applied onto the mold surface, and the mold temperature was heated to about 70 ° C. by the heat medium passage 23 through which hot water passed.
[0034]
Reinforced fiber base material 24 (manufactured by Toray Industries, Inc., carbon fiber fabric: “Torayca” T700 × 300 g / m 2 × 2 ply) was laid up on the mold surface. Further, an acrylic foam core material 25 (thickness: 10 mm) is disposed thereon, and then a reinforcing fiber base material 24 (manufactured by Toray Industries, Inc., carbon fiber fabric: “Torayca” T700 × 300 g / m 2). X2ply). On top of that, an FRP pressing plate 26 having the same outer dimensions as the foam core material 25 and a thickness of 3 mm was placed, and the entire lower mold surface was covered with a nylon bag material 22. The bag material 22 and the lower mold 21 were sealed with an adhesive seal material. Further, a silicon rubber heater 28 incorporating a heater wire was placed on the bag material 22. The foam core material 25 is formed with a narrow groove (width 1.5 mm × depth 3 mm) for the resin inflow path from the resin injection portion 29 toward the decompression suction portion 30 on both the upper and lower surfaces.
[0035]
Vacuum suction was performed by a vacuum pump 34 through a valve 32 and a vacuum trap 33 from a suction port communicating with the vacuum suction unit 30 which is a trapezoidal groove formed in the width direction of the cavity 31. At this time, the temperature of the rubber heater 28 was started to 70 ° C. Then, after the inside of the cavity 31 reaches 6 torr or less, the reduced pressure suction part 30 and the reduced pressure suction part 30 are located at a position in a contrasting relationship via the molding part where the base material 24 is disposed with the reduced pressure suction part 30 serving as a vacuum suction groove. Similarly, the valve 35 of the resin injection line communicating with the resin injection portion 29 which is a trapezoidal groove formed in the width direction was opened, and the resin 37 stored in the tank 36 was allowed to flow into the cavity 31 at atmospheric pressure. The valve 32 on the vacuum suction line was kept open and vacuum suction was continued. Resin and vacuum sealing were performed with an O-ring 27 communicating with the entire circumference on the mold surface. Moreover, the thermosetting resin 37 used here is Toray Industries, Inc. polyamine curable epoxy resin: TR-C32.
[0036]
The resin 37 pressurized at atmospheric pressure once reaches and fills the resin injection portion 29 in the same manner as in the first embodiment shown in FIG. 2, and then extends from the cavity 31 to the resin injection portion 29. 24 to reach into the cavity 31. However, the resin diffusion medium shown in FIG. 2 was disposed on the base material (not shown in FIG. 4) in order to lower the resin resistance at the extended portion of the base material. After that, it flows into the narrow groove formed in the core material 25 whose flow resistance is much lower than that of the base material 24. Then, the resin 39 gradually impregnates the base material 24 in the thickness direction while flowing mainly in the narrow grooves on the upper and lower surfaces of the core material 25, and eventually reaches the vacuum suction part 30. Thereafter, when the resin began to appear on the vacuum suction line, the valve 35 of the resin injection line was closed to stop the resin injection.
[0037]
The cavity 31 was filled with the resin and impregnated in the base material 24 and held for about 2 hours. The resin eventually cured by heating.
[0038]
After the resin was cured, the rubber heater 28 and the bag material 22 were stripped from the lower mold 21 to remove the molded product from the mold. In this case, the mold temperature was kept at 70 ° C. and the temperature was not lowered at all. That is, the difference between the resin injection temperature and the curing temperature was set to zero. Therefore, the molding cycle was greatly shortened.
[0039]
The demolded molded product is a bonnet hood that is an automobile member. The design surface is glossy as it is by transferring the smoothness of the mold as it is, and the texture of the woven fabric of the base material appears on the outer surface without painting, thereby increasing the commercial value.
[0040]
【The invention's effect】
As described above, according to the RTM molding method of the present invention, the difference between the injection temperature of the thermosetting resin and the curing temperature is within 20 ° C., thereby greatly shortening the molding cycle and greatly increasing the productivity. Can be increased.
[0041]
In addition, by using a special resin, especially a polyamine curable epoxy resin, as a thermosetting resin, it is possible to inject a resin at a relatively high temperature and maintain a good resin impregnation property at the time of injection. It becomes possible to improve the quality of the obtained molded product.
[0042]
Such an RTM molding method according to the present invention is particularly suitable for those requiring mass production and those requiring repeated molding of relatively large molded products. For example, various automotive parts (hoods, roofs, fenders, trunk lids, bumpers, etc.), helicopter parts (blades, cabins, etc.), aircraft parts (primary structural members: wings, ribs, cabins, spars, etc.), and Secondary structural members: fairings, controls, surfaces, etc.) and wind turbine members (blades, ribs, joint members, etc.) are suitable for molding.
[Brief description of the drawings]
FIG. 1 is a relationship diagram between mold temperature and elapsed time showing a molding cycle of a method of the present invention in comparison with a conventional method.
FIG. 2 is a schematic configuration diagram showing an RTM molding method according to Embodiment 1 of the present invention.
FIG. 3 is a viscosity characteristic diagram of a thermosetting resin used in Examples.
FIG. 4 is a schematic configuration diagram showing an RTM molding method according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper mold | type 2,21 Lower mold | type 3,31 Cavity 4,5,23 Heat-medium flow path 6,24 Reinforcement fiber base material 7 Weaving cloth 8 Resin diffusion medium 9,30 Vacuum suction part 10,14,32, 35 Valve 11, 33 Vacuum trap 12, 34 Vacuum pump 13, 29 Resin injection part 15, 36 Tank 16, 37 Thermosetting resin 17, 27 Sealing O-ring 22 Bag material 25 Core material 26 Press plate 28 Rubber heater

Claims (8)

強化繊維基材を配置した型内に熱硬化性樹脂を注入して加熱硬化した後、脱型してFRP成形品を得るRTM成形方法において、前記熱硬化性樹脂としてポリアミン硬化型エポキシ樹脂を用い、該熱硬化性樹脂の注入温度と硬化温度との関係が下記条件を満足するように成形することを特徴とするRTM成形方法。
0℃≦Tc−Ti≦20℃
(ここで、Tcは熱硬化性樹脂の硬化温度であり、硬化時の型の温度として規定され、Tiは熱硬化性樹脂の注入温度であり、注入時の型の温度として規定される。)
In the RTM molding method in which a thermosetting resin is injected into a mold in which a reinforcing fiber base material is arranged and heat-cured and then demolded to obtain an FRP molded product, a polyamine curable epoxy resin is used as the thermosetting resin. , RTM molding method wherein the relationship between the injection temperature and the curing temperature of the thermosetting resin is molded so as to satisfy the following condition.
0 ° C ≦ Tc-Ti ≦ 20 ° C
(Here, Tc is the curing temperature of the thermosetting resin and is defined as the mold temperature during curing, and Ti is the injection temperature of the thermosetting resin and is defined as the mold temperature during injection.)
強化繊維基材を型内に配置する時から成形品を脱型する時まで、型の温度の変化を20℃以内に抑える、請求項1のRTM成形方法。  The RTM molding method according to claim 1, wherein the temperature change of the mold is suppressed to within 20 ° C. from the time when the reinforcing fiber substrate is placed in the mold to the time when the molded product is demolded. 前記注入温度に10分保持したときの粘度が500mPa・s以下の熱硬化性樹脂を用いる、請求項1または2のRTM成形方法。  The RTM molding method according to claim 1 or 2, wherein a thermosetting resin having a viscosity of 500 mPa · s or less when held at the injection temperature for 10 minutes is used. 前記硬化温度における硬化に要する時間が0.5〜2.5時間の熱硬化性樹脂を用いる、請求項1〜のいずれかに記載のRTM成形方法。The time required for curing in the curing temperature is a thermosetting resin is used in 0.5 to 2.5 hours, RTM molding method according to any one of claims 1-3. 前記熱硬化性樹脂の硬化温度が60℃以上である、請求項1〜のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 4 , wherein a curing temperature of the thermosetting resin is 60 ° C or higher. 両面成形型を用い、前記熱硬化性樹脂を注入するときに型内を減圧する、請求項1〜のいずれかに記載のRTM成形方法。Using a double-sided mold, depressurizing the inside of the mold when injecting the thermosetting resin, RTM molding method according to any one of claims 1-5. 片面成形型上に強化繊維基材を配置した後成形型の成形面全体をバッグ材で覆い、前記熱硬化性樹脂を注入するときにバッグ材で覆われた型内を減圧する、請求項1〜のいずれかに記載のRTM成形方法。The reinforcing fiber base material is disposed on a single-sided mold, and then the entire molding surface of the mold is covered with a bag material, and the inside of the mold covered with the bag material is decompressed when the thermosetting resin is injected. The RTM molding method according to any one of to 5 . 強化繊維基材の面方向に注入樹脂を拡散させる樹脂拡散媒体を用いる、請求項1〜のいずれかに記載のRTM成形方法。A resin distribution medium to diffuse the injected resin in the surface direction of the reinforcing fiber substrate, RTM molding method according to any one of claims 1-7.
JP2001215209A 2001-07-16 2001-07-16 RTM molding method Expired - Fee Related JP4752147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215209A JP4752147B2 (en) 2001-07-16 2001-07-16 RTM molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215209A JP4752147B2 (en) 2001-07-16 2001-07-16 RTM molding method

Publications (2)

Publication Number Publication Date
JP2003025346A JP2003025346A (en) 2003-01-29
JP4752147B2 true JP4752147B2 (en) 2011-08-17

Family

ID=19049891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215209A Expired - Fee Related JP4752147B2 (en) 2001-07-16 2001-07-16 RTM molding method

Country Status (1)

Country Link
JP (1) JP4752147B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2591633A1 (en) 2004-12-06 2006-06-15 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP5440049B2 (en) * 2008-09-11 2014-03-12 東レ株式会社 RTM molding method
JP4825899B2 (en) * 2009-06-22 2011-11-30 トヨタ自動車株式会社 Manufacturing method of fiber reinforced resin, manufacturing apparatus of fiber reinforced resin
JP5791365B2 (en) * 2011-05-16 2015-10-07 三菱重工業株式会社 RTM molding method and RTM molding apparatus
WO2013125641A1 (en) * 2012-02-22 2013-08-29 東レ株式会社 Rtm method
JP7208751B2 (en) * 2018-09-25 2023-01-19 Ntn株式会社 Wind turbine blades for wind power generation
CN114103179A (en) * 2021-10-26 2022-03-01 湖北三江航天江北机械工程有限公司 RTM (resin transfer molding) method for thermal insulation layer of diffusion section of carbon fiber material spray pipe
CN114833736B (en) * 2022-05-12 2023-08-18 上海芯谦集成电路有限公司 Closed casting mold system and method for manufacturing polishing pad

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163028A (en) * 1987-11-07 1989-06-27 Mitsubishi Electric Corp Molding device
JPH04144723A (en) * 1990-10-08 1992-05-19 Mitsubishi Kasei Corp Manufacture of fiber-reinforced resin molded form
GB9321259D0 (en) * 1993-10-14 1993-12-01 Ciba Geigy Ag Moulded products
JP2000043173A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Core material, frp structure using the same and manufacture thereof

Also Published As

Publication number Publication date
JP2003025346A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
KR102231918B1 (en) Coated fiber-reinforced resin molding and process for producing same
US9120253B2 (en) Methods of RTM molding
US9643363B2 (en) Manufacture of a structural composites component
CN107521124A (en) Carbon fiber dual platen reinforced structure part and its manufacture method
CN108521016A (en) A kind of D shipborne radar cover and its manufacturing method
US5876546A (en) Method for forming inner mold line tooling without a part model
MX2012003153A (en) An improved method of and apparatus for making a composite material.
JP4752147B2 (en) RTM molding method
CN110027226A (en) A kind of P-RTM moulding process being used to prepare enhancing composite material
US20190202142A1 (en) Method for molding composite material, and composite material
US20040192137A1 (en) Surface material
JP4806866B2 (en) Vacuum RTM molding method
CN206999679U (en) Carbon fiber dual platen reinforced structure part
KR20170105667A (en) Composite laminate plate and manufacture method of it
JP2003071856A (en) Rtm method
JP4432563B2 (en) Manufacturing method of FRP
US20190143611A1 (en) Laminated Moulded Parts and Manufacture Thereof
EP2809502A2 (en) Device and method for producing a moulded part from a composite material
JP4104413B2 (en) RTM molding method
JP2007062150A (en) Reinforcing fiber preform and rtm molding method
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
KR102347729B1 (en) RTM Mold Structure for Rapid Impregnation of matrix resin
JP2002248694A (en) Method for molding fiber reinforced composite material
RU2723856C1 (en) Method of making composite bumper for ground vehicle
CN110154419A (en) A kind of production technology preparing bonnet using prepreg cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees