JP2003071856A - Rtm method - Google Patents

Rtm method

Info

Publication number
JP2003071856A
JP2003071856A JP2001263190A JP2001263190A JP2003071856A JP 2003071856 A JP2003071856 A JP 2003071856A JP 2001263190 A JP2001263190 A JP 2001263190A JP 2001263190 A JP2001263190 A JP 2001263190A JP 2003071856 A JP2003071856 A JP 2003071856A
Authority
JP
Japan
Prior art keywords
temperature
mold
thermosetting resin
fiber
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001263190A
Other languages
Japanese (ja)
Inventor
Hiroki Ooseto
浩樹 大背戸
Mariko Matsuda
満理子 松田
Shunei Sekido
俊英 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001263190A priority Critical patent/JP2003071856A/en
Publication of JP2003071856A publication Critical patent/JP2003071856A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the condition of an RTM (resin transfer molding) method suitable for manufacturing a fiber reinforced composite material excellent in heat resistance and mechanical physical properties with good productivity. SOLUTION: In the RTM method, a thermosetting resin is injected in a mold having a reinforcing fiber substrate arranged therein and held to a temperature Tm of 60-90 deg.C from a container of which the temperature is held to a range of (Tm-20) to (Tm+10) deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、航空機部材、宇宙
機部材、自動車部材、船舶部材などに好適に用いられる
繊維強化複合材料の製造技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing a fiber-reinforced composite material which is preferably used for aircraft members, spacecraft members, automobile members, ship members and the like.

【0002】[0002]

【従来の技術】ガラス繊維、炭素繊維、アラミド繊維な
どの強化繊維と不飽和ポリエステル樹脂、ビニルエステ
ル樹脂、エポキシ樹脂、フェノール樹脂、シアネート樹
脂、ビスマレイミド樹脂などのマトリックス樹脂からな
る繊維強化複合材料は、軽量でありながら、強度や剛性
や耐衝撃性などの機械物性に優れるため、航空機部材、
宇宙機部材、人工衛星部材、自動車部材、鉄道車両部
材、船舶部材、スポーツ用具部材などの数多くの分野に
応用されてきた。
2. Description of the Related Art Fiber-reinforced composite materials composed of reinforcing fibers such as glass fibers, carbon fibers and aramid fibers and matrix resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, cyanate resins and bismaleimide resins are known as Although it is lightweight, it has excellent mechanical properties such as strength, rigidity and impact resistance,
It has been applied to numerous fields such as spacecraft components, artificial satellite components, automobile components, railway vehicle components, ship components, and sports equipment components.

【0003】これらの繊維強化複合材料の製造には、炭
素繊維と未硬化のエポキシ樹脂からなる中間体であるプ
リプレグを作成し、これを積層し、加熱硬化する方法が
広く用いられてきた。
For the production of these fiber-reinforced composite materials, a method has been widely used in which a prepreg, which is an intermediate body composed of carbon fibers and an uncured epoxy resin, is prepared, laminated and heat-cured.

【0004】ところが、この方法はプリプレグという中
間体を作らなければならないため、生産性は必ずしもす
ぐれない。
However, this method is not necessarily excellent in productivity because an intermediate called prepreg must be produced.

【0005】これに対して、内部に強化繊維基材を設置
した型に液状の熱硬化性樹脂を注入し、加熱硬化して繊
維強化複合材料を得るRTM(レジン・トランスファー・
モールディング)は、より生産性のすぐれる繊維強化複
合材料の製造方法として近年注目されている。
On the other hand, a liquid thermosetting resin is injected into a mold in which a reinforcing fiber base material is installed and heat-cured to obtain a fiber-reinforced composite material.
(Molding) has recently been attracting attention as a method for producing a fiber-reinforced composite material having higher productivity.

【0006】基本的なRTM方法では、温度Aの熱硬化
性樹脂を、温度Bの型に注入し、型の温度を温度Cまで
昇温し、この温度で一定時間保持した後、温度Dまで降
温し、脱型して繊維強化複合材料を得る(図1)。得ら
れた繊維強化複合材料は、脱型後に再度昇温し、温度E
で一定時間保持する後硬化の工程を伴うこともある(図
2)。また、型内の硬化は多段階で行うこと(いわゆる
ステップキュア)も可能である。ステップキュアの一例
を示すと、注入終了後、型の温度を温度C1まで昇温
し、この温度で一定時間保持し、さらに温度C2まで昇
温し、この温度で一定時間保持し、温度Dまで降温して
脱型する方法を挙げることができる(図3)。
In the basic RTM method, a thermosetting resin at a temperature A is injected into a mold at a temperature B, the temperature of the mold is raised to a temperature C, and the temperature is maintained at this temperature for a certain period of time. The temperature is lowered and the mold is removed to obtain a fiber reinforced composite material (FIG. 1). The obtained fiber reinforced composite material is heated again after demolding,
It may be accompanied by a post-curing step of holding for a certain time (Fig. 2). Further, it is also possible to carry out curing in the mold in multiple stages (so-called step cure). As an example of step cure, after the injection is completed, the temperature of the mold is raised to a temperature C1, kept at this temperature for a certain period of time, further raised to a temperature C2, kept at this temperature for a certain period of time, and kept at a temperature D. A method of lowering the temperature to remove the mold can be mentioned (FIG. 3).

【0007】航空機部材、宇宙機部材に用いる繊維強化
複合材料は耐熱性が要求されるものが多い。熱硬化性樹
脂の硬化物は非晶質であり、ガラス転移温度をもつ。ガ
ラス転移温度以上では、熱硬化性樹脂の硬化物の剛性率
は大幅に低下し、これにともなって繊維強化複合材料の
機械物性も大幅に低下する。したがって、熱硬化性樹脂
硬化物のガラス転移温度は、繊維強化複合材料の耐熱性
の指標とされる。熱硬化性樹脂の硬化物のガラス転移温
度は硬化時に受けた最大の温度に相関する。先に挙げた
例では、図1におけるC、図2におけるE、図3におけ
るC2が最高温度に相当する。具体的には硬化温度が高
いほどガラス転移温度を高くしやすいため、耐熱性が要
求される用途では、150〜250℃の範囲から選ばれ
る温度を最高温度として硬化が行われることが多い。特
にマトリックス樹脂として最も多く用いられているエポ
キシ樹脂では、150℃〜180℃の範囲から選ばれる
を最高温度として硬化が行われることが多い。
Many of the fiber-reinforced composite materials used for aircraft members and spacecraft members are required to have heat resistance. The cured product of the thermosetting resin is amorphous and has a glass transition temperature. Above the glass transition temperature, the rigidity of the cured product of the thermosetting resin is significantly reduced, and along with this, the mechanical properties of the fiber-reinforced composite material are also significantly reduced. Therefore, the glass transition temperature of the thermosetting resin cured product is used as an index of the heat resistance of the fiber-reinforced composite material. The glass transition temperature of the cured product of the thermosetting resin correlates to the maximum temperature received during curing. In the example given above, C in FIG. 1, E in FIG. 2, and C2 in FIG. 3 correspond to the maximum temperature. Specifically, the higher the curing temperature is, the higher the glass transition temperature is likely to be. Therefore, in applications where heat resistance is required, the curing temperature is often set to a temperature selected from the range of 150 to 250 ° C. as the maximum temperature. In particular, in the case of the epoxy resin most often used as the matrix resin, the curing is often carried out with the highest temperature selected from the range of 150 ° C to 180 ° C.

【0008】後硬化を行わない方法(図1や図3)で
は、型を高温に加熱する必要がある。例えば、3M社の
技術資料にはエポキシ樹脂組成物PR500に関する推
奨製造条件として、66℃に予熱した樹脂を、160℃
に加熱した型に注入し、型を177℃まで昇温し、この
温度で4時間保持して硬化した後、脱型する手順が示さ
れている。このような場合は、型、副資材(製造工程で
使用するが、製品を構成する原材料ではないものであ
り、多くのものは使い捨てである。例えば、シーラン
ト、チューブ、バルブ、バグフィルム、ピールプライ、
離型フィルム、粘着テープ等が例示できる。)、熱源の
コストが高くなるという問題がある。
In the method without post-curing (FIGS. 1 and 3), it is necessary to heat the mold to a high temperature. For example, according to the technical data of 3M, as a recommended manufacturing condition for the epoxy resin composition PR500, a resin preheated to 66 ° C., 160 ° C.
The procedure is as follows: pour into a heated mold, raise the mold to 177 ° C., hold at this temperature for 4 hours to cure, and then demold. In such cases, molds, auxiliary materials (used in the manufacturing process but not the raw materials that make up the product, and many are disposable. For example, sealants, tubes, valves, bag films, peel plies,
A release film, an adhesive tape, etc. can be illustrated. ), There is a problem that the cost of the heat source becomes high.

【0009】これに対し、型内で相対的に低い温度で熱
硬化性樹脂を硬化させ、脱型した後に相対的に高い温度
で後硬化する図2のような方法では、型、副資材、熱源
のコストを高くせずに、耐熱性の高い繊維強化複合材料
を得られ経済性に優れる。例えば、SAMPE Journal 第3
4巻第4号17ページ所収の記事には、Cytec-Fiberite
社のエポキシ樹脂組成物 Cycom 875RTM に関する推奨製
造条件として、樹脂を60℃に加熱した型に注入し、型
を121℃まで昇温し、この温度で1時間保持して硬化
した後脱型し、さらに177℃で1時間後硬化する手順
が示されている。
On the other hand, in the method shown in FIG. 2, in which the thermosetting resin is cured in the mold at a relatively low temperature, and after the mold is removed, the resin is post-cured at a relatively high temperature. It is possible to obtain a fiber-reinforced composite material having high heat resistance without increasing the cost of a heat source, and it is excellent in economic efficiency. For example, SAMPE Journal 3rd
Volume 4, No. 4, page 17, Articles in the collection, Cytec-Fiberite
As a recommended manufacturing condition for the epoxy resin composition Cycom 875RTM of the company, the resin is poured into a mold heated to 60 ° C., the mold is heated to 121 ° C., held at this temperature for 1 hour to cure, and then demolded, An additional post-curing procedure at 177 ° C. for 1 hour is shown.

【0010】しかし、従来提唱されている条件は、生産
性と性能の両立を考える上では、必ずしも最適なもので
はなかった。
However, the conventionally proposed conditions have not always been optimum in terms of achieving both productivity and performance.

【0011】例えば、樹脂の予熱温度や、注入時の型温
が低いと低粘度の熱硬化性樹脂しか使えない。一般に熱
硬化性樹脂は低粘度になればなるほど、繊維強化複合材
料の様々な性能、特に耐熱性と主要な機械物性(引張強
度、圧縮強度、耐衝撃性など)を同時に高くすることが
困難になるため、これは不利である。(例えば、SAMPE
Journal 第34巻第4号17ページ所収の記事には、Cy
tec-Fiberite社のエポキシ樹脂組成物 Cycom 823RTM に
関する推奨製造条件として、樹脂を24℃の型に注入
し、121℃で1時間型内硬化する条件が示されてい
る。このような条件では、きわめて低粘度の熱硬化性樹
脂しか使用することができない。)また、注入時の型温
と型内での最高硬化温度の差が大きいと、昇温に要する
時間が大きくなるため、型占有時間が長くなり生産性が
良くない。
For example, if the preheating temperature of the resin and the mold temperature at the time of injection are low, only a thermosetting resin having a low viscosity can be used. Generally, the lower the viscosity of a thermosetting resin, the more difficult it is to simultaneously improve various properties of fiber-reinforced composite materials, especially heat resistance and main mechanical properties (tensile strength, compression strength, impact resistance, etc.). This is a disadvantage because (For example, SAMPE
Journal Vol. 34, No. 4, Page 17
As the recommended production conditions for the epoxy resin composition Cycom 823RTM of tec-Fiberite, the conditions are shown in which the resin is poured into a mold at 24 ° C. and is cured in the mold at 121 ° C. for 1 hour. Under such conditions, only a thermosetting resin having an extremely low viscosity can be used. ) Further, if the difference between the mold temperature at the time of injection and the maximum curing temperature in the mold is large, the time required to raise the temperature becomes long, so the mold occupying time becomes long and the productivity is not good.

【0012】型内での硬化温度が高い場合は、型、副資
材、熱源のコストを高くなり、後硬化を行う利点がなく
なる(例えば、Hexcel社の技術資料によると、エポキシ
樹脂組成物 RTM 6 の型内の硬化は160℃75分、後
硬化は180℃2時間である)。逆に型内での硬化温度
があまりに低いと、硬化に長時間を要するため型占有時
間が長くなり生産性が良くない(例えば、Ciba Special
ty Chemicals 社の1998年5月の技術資料によれば
エポキシ樹脂組成物 RESINFUSION 8605 の型内での硬化
条件は25℃24時間である。)。
When the curing temperature in the mold is high, the cost of the mold, auxiliary materials, and heat source becomes high, and the advantage of performing post-curing is lost (for example, according to the technical data of Hexcel, epoxy resin composition RTM 6 In-mold curing is 160 ° C. for 75 minutes, and post-curing is 180 ° C. for 2 hours). On the contrary, if the curing temperature in the mold is too low, it takes a long time to cure and the mold occupy time becomes long, resulting in poor productivity (for example, Ciba Special
According to the technical data of May 1998 by ty Chemicals, the curing condition of the epoxy resin composition RESINFUSION 8605 in a mold is 25 ° C. for 24 hours. ).

【0013】[0013]

【発明が解決しようとする課題】本発明の課題は、耐熱
性と機械物性の優れた繊維強化複合材料を生産性良く製
造するに適したRTM方法の条件を提供することにあ
る。
An object of the present invention is to provide conditions for an RTM method suitable for producing a fiber-reinforced composite material having excellent heat resistance and mechanical properties with high productivity.

【0014】[0014]

【課題を解決するための手段】本発明のRTM方法は、
内部に強化繊維基材を設置し、60〜90℃の範囲から
選ばれる温度Tmに保持した型内に、Tm−20〜Tm+
10℃の範囲から選ばれる温度に保持した容器から熱硬
化性樹脂を注入することを特徴とする。
The RTM method of the present invention comprises:
A reinforcing fiber base material is installed inside, and Tm-20 to Tm + is placed in a mold kept at a temperature Tm selected from the range of 60 to 90 ° C.
It is characterized in that the thermosetting resin is injected from a container kept at a temperature selected from the range of 10 ° C.

【0015】[0015]

【発明の実施の形態】本発明においてRTM方法とは、
型内に設置した強化繊維基材に液状の熱硬化性樹脂を注
入し、硬化して繊維強化複合材料を得る方法を意味す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the RTM method is
This means a method of injecting a liquid thermosetting resin into a reinforcing fiber base material placed in a mold and curing the resin to obtain a fiber-reinforced composite material.

【0016】強化繊維は、炭素繊維、ガラス繊維、アラ
ミド繊維、金属繊維など、あるいはこれらを組合せたも
のが使用される。航空機、宇宙機部材には炭素繊維が特
に好ましく使用される。強化繊維基材は強化繊維の織
物、ブレイド、マットなどをそのまま用いてもよく、こ
れらを積層、賦形し、結着剤やステッチなどの手段で形
態を固定しプリフォームとしたものを用いても良い。
As the reinforcing fiber, carbon fiber, glass fiber, aramid fiber, metal fiber, or the like, or a combination thereof is used. Carbon fibers are particularly preferably used for aircraft and spacecraft members. The reinforcing fiber base material may be a reinforced fiber woven fabric, a braid, a mat or the like as it is, and these are laminated and shaped, and the form is fixed by a means such as a binder or a stitch to form a preform. Is also good.

【0017】型は、剛体からなるクローズドモールドを
用いてもよく、剛体のオープンモールドと可撓性のフィ
ルム(バッグ)を用いる方法も可能である。後者の場
合、強化繊維基材は剛体オープンモールドと可撓性フィ
ルムの間に設置する。
The mold may be a closed mold made of a rigid body, or a method using a rigid open mold and a flexible film (bag) is also possible. In the latter case, the reinforcing fiber substrate is placed between the rigid open mold and the flexible film.

【0018】剛体型の材料としては、金属(スチール、
アルミニウムなど)、FRP、木材、石膏など既存の各
種のものが用いられる。可撓性のフィルムの材料、ナイ
ロン、フッ素樹脂、シリコーン樹脂などが用いられる。
As the rigid material, metal (steel,
Various existing materials such as aluminum), FRP, wood, plaster are used. A flexible film material, nylon, fluororesin, silicone resin, or the like is used.

【0019】剛体のクローズドモールドを用いる場合
は、加圧して型締めし、液状エポキシ樹脂組成物を加圧
して注入することが通常行われる。このとき、注入口と
は別に吸引口を設け、真空ポンプに接続して吸引するこ
とも可能である。吸引を行い、かつ、特別な加圧手段を
用いず、大気圧のみで液状エポキシ樹脂を注入すること
も可能である。
When a rigid closed mold is used, the liquid epoxy resin composition is usually injected by applying pressure and clamping. At this time, a suction port may be provided separately from the injection port and connected to a vacuum pump for suction. It is also possible to inject the liquid epoxy resin only by the atmospheric pressure without performing a suction and using a special pressurizing means.

【0020】剛体のオープンモールドと可撓性フィルム
を用いる場合は、通常、吸引と大気圧による注入を用い
る。大気圧による注入で、良好な含浸を実現するために
は、米国特許4902215号公報に示されるような、
樹脂拡散媒体を用いることが有効である。
When a rigid open mold and a flexible film are used, suction and injection at atmospheric pressure are usually used. In order to achieve good impregnation by injection at atmospheric pressure, as shown in US Pat. No. 4,902,215,
It is effective to use a resin diffusion medium.

【0021】また、型内には、強化繊維基材以外にフォ
ームコア、ハニカムコア、金属部品などを設置し、これ
らと一体化した複合材料を得ることも可能である。特に
フォームコアの両面に強化繊維基材を配置して成形して
得られるサンドイッチ構造体は、軽量で大きな曲げ剛性
を持つので、外板材料として有用である。
It is also possible to install a foam core, a honeycomb core, a metal part, etc. in the mold in addition to the reinforcing fiber base material to obtain a composite material integrated with these. In particular, a sandwich structure obtained by arranging reinforcing fiber substrates on both sides of a foam core and molding the same is useful as an outer plate material because it is lightweight and has large bending rigidity.

【0022】さらに、強化繊維基材の設置に先立って、
剛体型の表面にゲルコートを塗布することも好ましく行
われる。
Further, prior to the installation of the reinforcing fiber base material,
It is also preferable to apply a gel coat to the rigid body type surface.

【0023】本発明に用いる熱硬化性樹脂としては、耐
熱性が高く、硬化時に揮発分をほとんど生じない熱硬化
性樹脂が好ましい。具体的にはエポキシ樹脂、シアネー
ト樹脂、ビスマレイミド樹脂、ベンズオキサジン樹脂が
好ましく用いられる。これらのうち、価格と性能のバラ
ンスや、市販原料が豊富で設計の自由度が高いという点
でエポキシ樹脂がもっとも好ましい。
The thermosetting resin used in the present invention is preferably a thermosetting resin which has high heat resistance and produces almost no volatile matter during curing. Specifically, epoxy resins, cyanate resins, bismaleimide resins, and benzoxazine resins are preferably used. Of these, the epoxy resin is the most preferable in terms of the balance of price and performance, the abundance of commercially available raw materials, and the high degree of freedom in design.

【0024】熱硬化性樹脂の型への注入においては、熱
硬化性樹脂の容器、および型はそれぞれ予め定められた
温度に保持される。本発明のRTM方法では、このとき
の型の温度を、60〜90℃の範囲から選ばれる温度と
する。注入時の型の温度は、好ましくは65〜80℃で
ある。この範囲の温度は、比較的安価な熱源、具体的に
は熱水や熱風が利用できるため経済的に有利であり、高
性能の発現しやすい比較的粘度の高い熱硬化性樹脂の使
用が可能になるので高性能の繊維強化複合材料を得るた
めに有利である。
In injecting the thermosetting resin into the mold, the container of the thermosetting resin and the mold are each kept at a predetermined temperature. In the RTM method of the present invention, the mold temperature at this time is set to a temperature selected from the range of 60 to 90 ° C. The mold temperature during pouring is preferably 65 to 80 ° C. A temperature in this range is economically advantageous because a relatively inexpensive heat source, specifically, hot water or hot air can be used, and it is possible to use a thermosetting resin having a relatively high viscosity that easily exhibits high performance. Therefore, it is advantageous to obtain a high performance fiber reinforced composite material.

【0025】熱硬化性樹脂の容器の温度は、比較的粘度
の高い熱硬化性樹脂が十分流動するように、型の温度と
近いことが重要である。即ち、本発明のRTM方法にお
いては、前記の型の温度をTmとすると、熱硬化性樹脂
の容器の温度はTm−20〜Tm+10℃の範囲とする。
好ましくはTm−10〜Tm+10℃である。前記数値範
囲の下限値を下回ると容器中の熱硬化性樹脂の粘度が高
くなるため送液に不利になる。また、型に注入した熱硬
化性樹脂の温度が型の温度まで上がるまで粘度が高い状
態にあるため、強化繊維への含浸が不利になる。一方、
上限値を上回るとポットライフを短くするため、好まし
くない。熱硬化性樹脂は、単一の液体を注入する場合
と、2乃至3の容器に異なる液体を保持し、これらを一
定比率で混合しながら注入する場合がある。複数の容器
に異なる液体を保持する場合は、すべての容器の温度が
上記の範囲であることが好ましい。
It is important that the temperature of the thermosetting resin container is close to the temperature of the mold so that the thermosetting resin having a relatively high viscosity flows sufficiently. That is, in the RTM method of the present invention, when the temperature of the mold is Tm, the temperature of the thermosetting resin container is in the range of Tm-20 to Tm + 10 ° C.
It is preferably Tm-10 to Tm + 10 ° C. Below the lower limit of the above numerical range, the viscosity of the thermosetting resin in the container becomes high, which is disadvantageous for liquid transfer. Further, since the thermosetting resin injected into the mold has a high viscosity until the temperature rises to the temperature of the mold, impregnation into the reinforcing fiber is disadvantageous. on the other hand,
If the upper limit is exceeded, the pot life will be shortened, which is not preferable. The thermosetting resin may be injected with a single liquid, or may be injected with two or three containers holding different liquids and mixing them at a constant ratio. When different liquids are held in a plurality of containers, it is preferable that the temperature of all the containers be within the above range.

【0026】熱硬化性樹脂の容器と型を繋ぐ配管には、
断熱材あるいはヒーターを設けて送液中の温度の低下を
防ぐことができる。ただし、配管が短い場合は、これは
必須ではない。
For the pipe connecting the thermosetting resin container and the mold,
A heat insulating material or a heater can be provided to prevent a decrease in temperature during liquid transfer. However, this is not required if the piping is short.

【0027】このような注入を可能にするためには、温
度Tmにおける初期粘度が400mPa・s以下である熱硬化性
樹脂を用いることが好ましい。該初期粘度が、200mPa・s
以下であればさらに好ましい。初期粘度が上記の範囲よ
り高いと、含浸性が不十分になる。さらに温度Tmにお
いて十分なポットライフを持つ、具体的には調合後、3
0分間該温度Tmに保ったときの粘度が、Tmにおける
初期粘度の2倍以下である熱硬化性樹脂を用いることが
好ましい。調合後、60分間該温度Tmに保ったときの
粘度が、Tmにおける初期粘度の2倍以下である熱硬化
性樹脂を用いると、より好ましい。なお、前記におい
て、初期粘度とは熱硬化性樹脂の調合直後の粘度であ
り、又、前記調合とは、熱硬化性樹脂(乃至はその前駆
体)が実用的な熱硬化特性が発現できるように化学的乃
至は物理的条件を調製することであり、例えば、常温以
上の温度環境において熱可塑性樹脂(乃至はその前駆
体)に硬化剤を添加することである。ポットライフが不
十分であると、強化繊維体積含有率の高い(具体的には
50%以上)繊維強化複合材料、あるいは大型の繊維強
化複合材料(具体的には最長寸法が2m以上)の成形を
行う場合に不利になる。
To enable such injection, it is preferable to use a thermosetting resin having an initial viscosity of 400 mPa · s or less at the temperature Tm. The initial viscosity is 200 mPa · s
The following is more preferable. When the initial viscosity is higher than the above range, impregnation property becomes insufficient. Furthermore, it has a sufficient pot life at the temperature Tm, specifically, 3 after preparation.
It is preferable to use a thermosetting resin whose viscosity when kept at the temperature Tm for 0 minutes is not more than twice the initial viscosity at Tm. It is more preferable to use a thermosetting resin whose viscosity when kept at the temperature Tm for 60 minutes after compounding is not more than twice the initial viscosity at Tm. In the above, the initial viscosity is the viscosity of the thermosetting resin immediately after being mixed, and the mixing is such that the thermosetting resin (or its precursor) can exhibit practical thermosetting properties. First, it is to prepare chemical or physical conditions, for example, to add a curing agent to the thermoplastic resin (or its precursor) in a temperature environment of room temperature or higher. If the pot life is insufficient, molding of a fiber-reinforced composite material with a high reinforcing fiber volume content (specifically 50% or more) or a large fiber-reinforced composite material (specifically, the longest dimension is 2 m or more) You will be at a disadvantage if you do.

【0028】熱硬化性樹脂の注入が完了した後、型内で
硬化が行なわれる。この時の硬化温度は、注入時の型温
Tmとの差が小さいほど、昇温に要する時間が少ないた
め好ましい。具体的にはTm〜Tm+50℃の範囲から選
ばれる温度であることが好ましく、Tm〜Tm+30℃の
範囲から選ばれる温度であることが更に好ましい。この
温度を保持する時間、すなわち硬化時間は、0.5〜1
2時間の範囲から選ばれる時間であることが好ましく、
0.5〜4時間の範囲から選ばれる時間であることが型
占有時間が短くなるためさらに好ましい。硬化温度か注
入時型温より高い場合は、昇温途中で中間の温度で一旦
保持する過程を含まず(すなわちステップキュアを行わ
ず)硬化温度まで単調に昇温することが好ましい。
After the injection of the thermosetting resin is completed, curing is performed in the mold. As for the curing temperature at this time, the smaller the difference from the mold temperature Tm at the time of injection, the shorter the time required to raise the temperature, which is preferable. Specifically, the temperature is preferably selected from the range of Tm to Tm + 50 ° C., more preferably the temperature selected from the range of Tm to Tm + 30 ° C. The time for maintaining this temperature, that is, the curing time is 0.5 to 1
The time is preferably selected from the range of 2 hours,
It is more preferable that the time is selected from the range of 0.5 to 4 hours because the mold occupancy time becomes short. When the curing temperature is higher than the mold temperature at the time of injection, it is preferable to monotonically increase the temperature to the curing temperature without including the process of temporarily holding the intermediate temperature during the temperature increase (that is, without performing step cure).

【0029】上記のような条件を満たすためには、好ま
しくは60〜140℃(更に好ましくは100〜135
℃)の範囲から選ばれる温度で型内での硬化を行い、そ
れに適した反応性の熱硬化性樹脂を選べばよい。しか
し、前記した好ましいポットライフと前記反応性を両立
させることは、型内硬化の温度と注入時の型の温度Tm
が比較的近接しているので、必ずしも容易ではない。こ
れらを両立させるには、前記したようなTmにおけるポ
ットライフの要件を満たすような比較的反応の遅い熱硬
化性樹脂に、Tmでは不活性で、型内硬化温度では活性
となるような潜在性硬化促進剤を配合するという手法が
有効である。具体的には、エポキシ樹脂との反応が比較
的遅い芳香族アミンを含むエポキシ樹脂組成物にに三級
スルホニウム塩、スルホン酸エステル、ハロゲン化ホウ
素錯体などの潜在性硬化促進剤を配合したエポキシ樹脂
組成物を例示することができる。
In order to satisfy the above conditions, the temperature is preferably 60 to 140 ° C. (more preferably 100 to 135).
C.) is performed in the mold at a temperature selected from the range, and a reactive thermosetting resin suitable for it may be selected. However, in order to achieve both the preferable pot life and the reactivity described above, the temperature of the in-mold curing and the temperature Tm of the mold at the time of injection are required.
Are relatively close, so it is not always easy. In order to achieve both of these, a thermosetting resin having a relatively slow reaction that satisfies the above-mentioned pot life requirement in Tm, and a latent inactive at Tm and active at the in-mold curing temperature are used. A method of blending a curing accelerator is effective. Specifically, an epoxy resin composition in which a latent curing accelerator such as a tertiary sulfonium salt, a sulfonate ester, or a boron halide complex is added to an epoxy resin composition containing an aromatic amine that reacts relatively slowly with the epoxy resin. The composition can be exemplified.

【0030】型内での硬化が終了した後、脱型して繊維
強化複合材料を取り出す。脱型の温度は硬化温度から室
温までの任意の温度で良い。
After the curing in the mold is completed, the mold is removed and the fiber reinforced composite material is taken out. The demolding temperature may be any temperature from the curing temperature to room temperature.

【0031】脱型した繊維強化複合材料は、それ以上の
熱処理をせずに製品とすることも可能であるが、150
〜250℃の範囲から選ばれる温度で後硬化することが
好ましい。特に高度な耐熱性が要求される場合以外は、
150〜190℃の範囲から選ばれる温度で後硬化する
ことが、経済的であるためより好ましい。前記後硬化温
度に保持する時間は、0.5〜4時間の範囲から選ばれ
る時間であることが好ましい。
The demolded fiber-reinforced composite material can be made into a product without further heat treatment.
It is preferable to post-cure at a temperature selected from the range of to 250 ° C. Unless high heat resistance is required,
Post-curing at a temperature selected from the range of 150 to 190 ° C. is more preferable because it is economical. The time for maintaining the post-curing temperature is preferably a time selected from the range of 0.5 to 4 hours.

【0032】本発明のRTM方法は、軽量、高強度、高
剛性で耐熱性に優れた繊維強化複合材料が経済的に製造
するために極めて有効である。具体的には、胴体、主
翼、尾翼、動翼、フェアリング、カウル、ドア、座席、
内装材などの航空機部材、モーターケース、主翼などの
宇宙機部材、構体、アンテナなどの人工衛星部材、外
板、シャシー、空力部材、座席などの自動車部材、構
体、座席などの鉄道車両部材、船体、座席などの船舶部
材など多くの部材の製造に好適に用いることができる。
The RTM method of the present invention is extremely effective for economically producing a fiber-reinforced composite material which is lightweight, has high strength, high rigidity and is excellent in heat resistance. Specifically, fuselage, main wing, tail, rotor blade, fairing, cowl, door, seat,
Aircraft components such as interior materials, motor cases, spacecraft components such as main wings, structures, artificial satellite components such as antennas, skins, chassis, aerodynamic components, automobile components such as seats, structures, railway vehicle components such as seats, hulls It can be preferably used for manufacturing many members such as ship members such as seats.

【0033】[0033]

【実施例】以下、実施例によって本発明をさらに具体的
に説明する。 実施例1 (熱硬化性樹脂の粘度の評価)熱硬化性樹脂としては、
東レ株式会社製エポキシ樹脂組成物TR-A31を用いた。TR
-A31は、主としてエポキシ樹脂からなる主剤と硬化剤を
使用前に調合して使用する2液型エポキシ樹脂組成物で
ある。TR-A31の主剤と硬化剤を重量比100:38で調
合して得られたエポキシ樹脂組成物の粘度の測定を、測
定部温度を70℃に設定した東機産業製円錐−平板型回転
粘度計TVE−30Hを用いて行った。初期粘度は54mP
a・sであり、30分後の粘度は88mPa・sであった。 (繊維強化複合材料の製造)金型として、縦300mm、
横300mm、高さ2.2mmの直方体のキャビティーを備
え、かつ、前記キャビティーは上型と下型より構成さ
れ、下型の中央部に樹脂の注入口が備えられ、上型の4
つの角部に樹脂の注出口を有し、ヒーターを内蔵したス
チール製金型を用意した。前記金型のキャビティー内面
に離型剤を塗布した。
The present invention will be described in more detail with reference to the following examples. Example 1 (Evaluation of Viscosity of Thermosetting Resin) As the thermosetting resin,
An epoxy resin composition TR-A31 manufactured by Toray Industries, Inc. was used. TR
-A31 is a two-pack type epoxy resin composition which is prepared by mixing a base material mainly composed of an epoxy resin and a curing agent before use. The viscosity of the epoxy resin composition obtained by blending the main agent of TR-A31 and the curing agent at a weight ratio of 100: 38 was measured by measuring the temperature of the measuring part at 70 ° C. A total of TVE-30H was used. Initial viscosity is 54 mP
and the viscosity after 30 minutes was 88 mPa · s. (Manufacture of fiber reinforced composite material) As a mold, length 300mm,
It has a rectangular parallelepiped cavity with a width of 300 mm and a height of 2.2 mm, and the cavity is composed of an upper mold and a lower mold, and a resin injection port is provided in the center of the lower mold.
A steel mold with a resin outlet at each corner and a built-in heater was prepared. A mold release agent was applied to the inner surface of the cavity of the mold.

【0034】金型をプレス機に取り付け、炭素繊維平織
クロスCF6273H(T700GC−12K使用、190g/m2目付、東レ
株式会社製)を、一辺が経糸方向となるように1辺280m
mの正方形に切り出したものをキャビティー内に10枚重
ねた。プレスを閉じて型締めし、金型温度を70℃まで
昇温した。
The mold was attached to a pressing machine, and a carbon fiber plain weave cloth CF6273H (using T700GC-12K, 190 g / m 2 basis weight, manufactured by Toray Industries, Inc.) was placed 280 m on each side so that one side was in the warp direction.
Ten pieces cut out in a square of m were stacked in the cavity. The press was closed and the mold was clamped, and the mold temperature was raised to 70 ° C.

【0035】ジャケット付きの加圧容器に予め主剤と硬
化剤を調合した重量比100:38で調合したTR−A
31を入れ、ジャケットに70℃の温水を通じて加熱
し、加圧容器の注出口を金型の注入口にバルブを介して
ポリエチレンチューブで接続した。チューブには保温材
としてガラスクロスを巻いた。
TR-A prepared by mixing a main agent and a curing agent in a pressure vessel with a jacket in a weight ratio of 100: 38.
No. 31 was put into the jacket, and the jacket was heated by passing hot water of 70 ° C., and the outlet of the pressure vessel was connected to the inlet of the mold with a polyethylene tube through a valve. A glass cloth was wrapped around the tube as a heat insulating material.

【0036】金型の注入側バルブを閉じ、金型の注出口
をバルブとトラップを介してポリエチレンチューブを用
いて真空ポンプに接続し、型内を0.5kPa以下に減圧し
た。続いて、注入側バルブを開き、加圧容器を300kPaで
加圧し樹脂を注入した。トラップに流出する樹脂にほぼ
気泡がみられなくなった時点で、注出側バルブを閉じ、
加圧を10分継続した後、注入側バルブを閉じた。1℃
/minで金型を昇温し、100℃に達したところで、
この温度を4時間保持した後、加熱を終了し、金型温度
が60℃以下に下がったところでプレスを開いて脱型し
て繊維強化複合材料を得た。
The injection-side valve of the mold was closed, the injection port of the mold was connected to a vacuum pump using a polyethylene tube through the valve and the trap, and the pressure inside the mold was reduced to 0.5 kPa or less. Subsequently, the injection side valve was opened and the pressure vessel was pressurized at 300 kPa to inject the resin. When almost no bubbles are seen in the resin flowing out to the trap, close the pouring side valve,
After pressurization was continued for 10 minutes, the injection side valve was closed. 1 ° C
When the temperature of the mold is raised to 100 ° C./min,
After maintaining this temperature for 4 hours, the heating was terminated, and when the mold temperature dropped to 60 ° C. or lower, the press was opened to remove the mold to obtain a fiber-reinforced composite material.

【0037】この繊維強化複合材料を50℃に設定した
オーブンに投入し、1.5℃/minで180℃まで昇
温し、この温度で2時間保持した後加熱を終了し、オー
ブン温度が50℃以下に下がったところで、繊維強化複
合材料を取り出した。 (繊維強化複合材料の評価)SACMA SRM 1R-94に準拠し
て、インストロン4208型試験器(インストロン社製)を
用いて上記繊維強化複合材料の緯糸方向の圧縮強度測定
を行った。試験片寸法は、幅6.355mm、長さ25.4mm、緯
糸方向は長さ方向とし、環境温度は23℃、クロスヘッド
スピードは1.0mm/sとした。圧縮強度は604MPaで
あった。
This fiber-reinforced composite material was placed in an oven set at 50 ° C., heated to 180 ° C. at 1.5 ° C./min, held at this temperature for 2 hours, and then heating was completed. The fiber-reinforced composite material was taken out when the temperature fell to below ℃. (Evaluation of Fiber Reinforced Composite Material) Based on SACMA SRM 1R-94, the compressive strength of the above fiber reinforced composite material in the weft direction was measured using an Instron 4208 type tester (manufactured by Instron). The width of the test piece was 6.355 mm, the length was 25.4 mm, the weft direction was the length direction, the environmental temperature was 23 ° C., and the crosshead speed was 1.0 mm / s. The compressive strength was 604 MPa.

【0038】繊維強化複合材料の小片試料を切り出し、
示差走査熱量分析装置TA3000(メトラー社製)を用い
て、昇温速度40℃/minで昇温測定を行い、ガラス転移領
域の中点からガラス転移温度を求めたところ、210℃
であった。
Cut out a small sample of fiber reinforced composite material,
Using a differential scanning calorimeter TA3000 (manufactured by METTLER), temperature rise measurement was performed at a temperature rise rate of 40 ° C / min, and the glass transition temperature was determined from the midpoint of the glass transition region to be 210 ° C.
Met.

【0039】[0039]

【発明の効果】本発明によれば、耐熱性および機械物性
に優れた繊維強化複合材料を生産性良く製造することが
可能である。
According to the present invention, it is possible to produce a fiber reinforced composite material having excellent heat resistance and mechanical properties with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】基本的なRTM方法における熱硬化性樹脂の温
度履歴の模式図である。
FIG. 1 is a schematic diagram of a temperature history of a thermosetting resin in a basic RTM method.

【図2】アフターキュアを伴うRTM方法における熱硬
化性樹脂の温度履歴の模式図である。
FIG. 2 is a schematic diagram of a temperature history of a thermosetting resin in an RTM method involving after cure.

【図3】ステップキュアを行うRTM方法における熱硬
化性樹脂の温度履歴の模式図である。
FIG. 3 is a schematic diagram of a temperature history of a thermosetting resin in an RTM method performing step cure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 63:00 C08L 63:00 C Fターム(参考) 4F072 AA07 AB10 AB28 AD23 AE01 AH12 AH13 AH20 AH21 AJ37 AJ40 AK03 AK20 AL02 4F204 AA39 AD16 AH17 AH28 AH31 AR06 AR11 EB01 EB11 EF01 EF05 EF27 EW02 EW06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 63:00 C08L 63:00 CF term (reference) 4F072 AA07 AB10 AB28 AD23 AE01 AH12 AH13 AH20 AH21 AJ37 AJ40 AK03 AK20 AL02 4F204 AA39 AD16 AH17 AH28 AH31 AR06 AR11 EB01 EB11 EF01 EF05 EF27 EW02 EW06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内部に強化繊維基材を設置し、60〜90
℃の範囲から選ばれる温度Tmに保持した型内に、Tm−
20〜Tm+10℃の範囲から選ばれる温度に保持した
容器から熱硬化性樹脂を注入することを特徴とするRT
M方法。
1. A reinforcing fiber base material is installed inside, and 60 to 90
In a mold maintained at a temperature Tm selected from the range of ° C, Tm-
RT characterized by injecting a thermosetting resin from a container kept at a temperature selected from the range of 20 to Tm + 10 ° C
M method.
【請求項2】温度Tmにおける初期粘度が400mPa・s以下
である熱硬化性樹脂を用いることを特徴とする請求項1
に記載のRTM方法。
2. A thermosetting resin having an initial viscosity of 400 mPa · s or less at a temperature Tm is used.
RTM method described in.
【請求項3】調合後、30分間該温度Tmに保ったとき
の粘度が、Tmにおける初期粘度の2倍以下である熱硬
化性樹脂を用いるものである請求項1または2に記載の
RTM方法。
3. The RTM method according to claim 1 or 2, wherein a thermosetting resin whose viscosity when kept at the temperature Tm for 30 minutes after preparation is not more than twice the initial viscosity at Tm is used. .
【請求項4】該熱硬化性樹脂がエポキシ樹脂である請求
項1〜3のいずれかに記載のRTM方法。
4. The RTM method according to claim 1, wherein the thermosetting resin is an epoxy resin.
【請求項5】Tm〜Tm+50℃の範囲から選ばれる温
度、0.5〜12時間の範囲から選ばれる時間で型内に
おける硬化を行うものである請求項1〜4のいずれかに
記載のRTM方法。
5. The RTM according to claim 1, wherein the curing is carried out in the mold at a temperature selected from the range of Tm to Tm + 50 ° C. and a time selected from the range of 0.5 to 12 hours. Method.
【請求項6】該型内で硬化後に脱型した該繊維強化複合
材料を150〜250℃の範囲から選ばれる温度で後硬
化するものである請求項1〜4のいずれかに記載のRT
M方法。
6. The RT according to any one of claims 1 to 4, wherein the fiber-reinforced composite material demolded after being cured in the mold is post-cured at a temperature selected from the range of 150 to 250 ° C.
M method.
JP2001263190A 2001-08-31 2001-08-31 Rtm method Pending JP2003071856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263190A JP2003071856A (en) 2001-08-31 2001-08-31 Rtm method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263190A JP2003071856A (en) 2001-08-31 2001-08-31 Rtm method

Publications (1)

Publication Number Publication Date
JP2003071856A true JP2003071856A (en) 2003-03-12

Family

ID=19089978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263190A Pending JP2003071856A (en) 2001-08-31 2001-08-31 Rtm method

Country Status (1)

Country Link
JP (1) JP2003071856A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314315A (en) * 2003-04-11 2004-11-11 Toray Ind Inc Thin panel made of frp and its manufacturing method
JP2006070115A (en) * 2004-08-31 2006-03-16 Nippon Oil Corp Resin composition for fiber-reinforced composite material, method for producing fiber-reinforced composite material using the composition, and fiber-reinforced composite material
WO2007013544A1 (en) * 2005-07-27 2007-02-01 Mitsubishi Heavy Industries, Ltd. Rtm process
JP2011000847A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Fiber-reinforced resin, and manufacturing method and device therefor
JP2013504455A (en) * 2009-09-14 2013-02-07 ヘクセル コンポジット、リミテッド Process for extending the processing window of thermosetting resins
WO2013125641A1 (en) 2012-02-22 2013-08-29 東レ株式会社 Rtm method
CN105670012A (en) * 2014-11-21 2016-06-15 台山市爱达电器厂有限公司 Anti-impact resin product and processing method thereof
WO2017145872A1 (en) 2016-02-23 2017-08-31 東レ株式会社 Method for producing fiber reinforced composite material
US10800894B2 (en) 2015-02-27 2020-10-13 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
US10822463B2 (en) 2015-02-27 2020-11-03 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
EP3795617A2 (en) 2015-02-27 2021-03-24 Toray Industries, Inc. Resin supply material, preform, and method for producing fiber-reinforced resin

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314315A (en) * 2003-04-11 2004-11-11 Toray Ind Inc Thin panel made of frp and its manufacturing method
JP2006070115A (en) * 2004-08-31 2006-03-16 Nippon Oil Corp Resin composition for fiber-reinforced composite material, method for producing fiber-reinforced composite material using the composition, and fiber-reinforced composite material
WO2007013544A1 (en) * 2005-07-27 2007-02-01 Mitsubishi Heavy Industries, Ltd. Rtm process
JPWO2007013544A1 (en) * 2005-07-27 2009-02-12 三菱重工業株式会社 RTM molding method
US7785525B2 (en) 2005-07-27 2010-08-31 Mitsubishi Heavy Industries, Ltd. RTM molding method
US9162397B2 (en) 2009-06-22 2015-10-20 Toyota Jidosha Kabushiki Kaisha Fiber reinforced resin, manufacturing method for fiber reinforced resin, and manufacturing system for fiber reinforced resin
JP2011000847A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Fiber-reinforced resin, and manufacturing method and device therefor
JP2013504455A (en) * 2009-09-14 2013-02-07 ヘクセル コンポジット、リミテッド Process for extending the processing window of thermosetting resins
US9616622B2 (en) 2012-02-22 2017-04-11 Toray Industries, Inc. RTM method
KR20140126691A (en) 2012-02-22 2014-10-31 도레이 카부시키가이샤 Rtm method
CN104066564A (en) * 2012-02-22 2014-09-24 东丽株式会社 Rtm method
WO2013125641A1 (en) 2012-02-22 2013-08-29 東レ株式会社 Rtm method
CN105670012A (en) * 2014-11-21 2016-06-15 台山市爱达电器厂有限公司 Anti-impact resin product and processing method thereof
US10800894B2 (en) 2015-02-27 2020-10-13 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
US10822463B2 (en) 2015-02-27 2020-11-03 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
EP3795617A2 (en) 2015-02-27 2021-03-24 Toray Industries, Inc. Resin supply material, preform, and method for producing fiber-reinforced resin
US11034809B2 (en) 2015-02-27 2021-06-15 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
WO2017145872A1 (en) 2016-02-23 2017-08-31 東レ株式会社 Method for producing fiber reinforced composite material
KR20180117143A (en) 2016-02-23 2018-10-26 도레이 카부시키가이샤 Manufacturing method of fiber reinforced composite material
US11001011B2 (en) 2016-02-23 2021-05-11 Toray Industries, Inc. Method of producing fiber reinforced composite material

Similar Documents

Publication Publication Date Title
Kruckenberg et al. Resin transfer moulding for aerospace structures
EP1507647B1 (en) Controlled atmospheric pressure resin infusion process
EP1721719B1 (en) Rtm molding method and device
EP2440390B1 (en) Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
WO2016127521A1 (en) Method for manufacturing composite product made of short-fibre reinforced thermosetting resin by means of 3d printing
EP1808282B1 (en) Pressurized molding of composite parts
US20080182054A1 (en) Multi-function vacuum bag for composite part manufacture
US9114576B2 (en) Heat vacuum assisted resin transfer molding processes for manufacturing composite materials
EP2490883B1 (en) Method for producing a composite material
US10086563B2 (en) Method of producing composite material
JP2003071856A (en) Rtm method
JP2003048223A (en) Frp manufacturing method
CN106696309A (en) Method for preparing composite material with micro structures on surface through soft printing process and composite material prepared by method
WO1999038683A1 (en) Composite panels with class a surfaces
JP2003025346A (en) Rtm molding method
JP2003011136A (en) Method for manufacturing large-sized planar object made of frp
JP4333178B2 (en) Manufacturing method of fiber reinforced composite material
KR101237614B1 (en) Zipper lock type silicone bag for molding composite materials
WO2000053654A1 (en) Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same
CN111873485B (en) Damping intercalation with microstructure on surface, preparation method and composite material part
CN117841406A (en) Bow slice forming method of basalt fiber thermosetting composite material
JPH04268342A (en) Production of carbon fiber-reinforced composite material
JP2003026820A (en) Carbon fiber-reinforced composite material, and method for producing the same
Ghosh et al. Processability in Closed Mould Processing of Polymeric Composites
CN117702347A (en) Porous epoxy composite board and preparation method thereof