JP2003048223A - Frp manufacturing method - Google Patents

Frp manufacturing method

Info

Publication number
JP2003048223A
JP2003048223A JP2001238854A JP2001238854A JP2003048223A JP 2003048223 A JP2003048223 A JP 2003048223A JP 2001238854 A JP2001238854 A JP 2001238854A JP 2001238854 A JP2001238854 A JP 2001238854A JP 2003048223 A JP2003048223 A JP 2003048223A
Authority
JP
Japan
Prior art keywords
resin
frp
temperature
mold
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001238854A
Other languages
Japanese (ja)
Other versions
JP4639549B2 (en
Inventor
Eisuke Wadahara
英輔 和田原
Shunei Sekido
俊英 関戸
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001238854A priority Critical patent/JP4639549B2/en
Priority to ES02755853.5T priority patent/ES2596505T3/en
Priority to CNB028025970A priority patent/CN1319715C/en
Priority to EP02755853.5A priority patent/EP1415782B1/en
Priority to US10/398,147 priority patent/US7081218B2/en
Priority to PCT/JP2002/008019 priority patent/WO2003013820A1/en
Publication of JP2003048223A publication Critical patent/JP2003048223A/en
Application granted granted Critical
Publication of JP4639549B2 publication Critical patent/JP4639549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an FRP manufacturing method capable of obtaining FRP excellent in quality hard to form an unimpregnated part, voids or the like at a low cost in a high yield. SOLUTION: The FRP manufacturing method comprises at least a setting process (A) for arranging a preform comprising at least a reinforcing fiber substrate on the surface of a mold, a hermetically closing process (B) for covering at least the molding part of a mold with a bag material and providing at least a pressure reducing suction port and a resin injection port to hermetically close them, a pressure reducing process (C) for reducing the internal pressure of the molding part from the a pressure reducing suction port, a heating process (D) for heating the molding part inclusive of the mold, an injection process (E) for injecting a resin in the mold from the resin injection port when the temperature Tm of the mold and the temperature Tv of the bag material are together not less than room temperature and the temperature difference ΔT between both temperatures is 10 deg.C or lower to impregnate at least the reinforcing fiber substrate with the resin and a solidifying process (F) for holding the molding part to a predetermined temperature Tpc higher than room temperature inclusive of the mold to solidify the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、品質の優れた繊維
強化プラスチックス(以下、FRPと呼称)を生産性を
高くして製造するFRPの製造方法に関する。より詳し
くは、未含浸部分やボイドなどが形成されにくく、品質
の優れたFRPを低コストに歩留まりを高くして得るこ
とが可能なFRPの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber reinforced plastic (hereinafter referred to as "FRP") having excellent quality with high productivity. More specifically, the present invention relates to a method for producing an FRP, in which unimpregnated portions, voids and the like are less likely to be formed and FRP having excellent quality can be obtained at low cost and with high yield.

【0002】[0002]

【従来の技術】優れた力学的特性、軽量化などの要求か
らFRP、特に炭素繊維強化プラスチックス(以下、C
FRPと呼称)が、主に宇宙・航空分野、スポーツ分野
向けの部材に用いられてきた。以前までの前記分野での
技術的課題はFRPの力学特性の向上が主なものであっ
たが、近年の課題は徹底したFRPの製造コストダウン
となっている。また、FRPの用いられる用途分野が、
輸送機器全般(鉄道車輌、自動車、船舶など)や一般産
業(風力発電、土木・建築など)へ幅広く展開していく
に伴い、さらなるFRPの低コスト化が強く求められて
いる。
2. Description of the Related Art FRP, especially carbon fiber reinforced plastics (hereinafter C
FRP) has been mainly used for materials for space / aviation and sports fields. The technical problem in the above field has been mainly to improve the mechanical properties of FRP until now, but the recent problem is to thoroughly reduce the manufacturing cost of FRP. In addition, the field of application in which FRP is used is
Along with widespread use in general transportation equipment (rail cars, automobiles, ships, etc.) and general industries (wind power generation, civil engineering / construction, etc.), further cost reduction of FRP is strongly required.

【0003】これらFRPの代表的な製造方法として
は、オートクレーブ成形法が知られている。かかるオー
トクレーブ成形法では、予め強化繊維にマトリックス樹
脂を含浸させたプリプレグを、成形型に積み重ねて加熱
・加圧してFRPを成形する。ここで用いる中間基材で
あるプリプレグは、それを用いると極めて品質の高いF
RPが得られる利点があるが、プリプレグの製造・保管
に高いコストがかかるだけでなく、成形設備が大掛かり
なため、FRPが生産性高く得られなかった。
An autoclave molding method is known as a typical manufacturing method of these FRPs. In such an autoclave molding method, prepregs in which reinforcing fibers are impregnated with a matrix resin in advance are stacked in a molding die and heated and pressed to mold an FRP. The prepreg which is the intermediate base material used here has a very high quality F
Although there is an advantage that RP can be obtained, FRP cannot be obtained with high productivity because not only high cost is required for manufacturing and storing the prepreg, but also large molding equipment is required.

【0004】一方、FRPの生産性に優れる成形法とし
ては、レジン・トランスファー成形法(RTM)が挙げ
られる。かかるRTMでは、マトリックス樹脂が含浸さ
れていない(ドライな)強化繊維を複雑な成形型の中に
配置して、マトリックス樹脂を強制的に注入することに
より、強化繊維中にマトリックス樹脂を含浸させてFR
Pを成形する。
On the other hand, a resin transfer molding method (RTM) is mentioned as a molding method which is excellent in FRP productivity. In such an RTM, reinforcing fibers that are not impregnated with matrix resin (dry) are placed in a complicated mold and the matrix resin is forcibly injected to impregnate the reinforcing fibers with the matrix resin. FR
Mold P.

【0005】しかしながら、前記RTMによると、マト
リックス樹脂の粘度のバラツキや、ちょっとした製造条
件の差違により、未含浸部やボイドなどが発生する場合
があり、FRPの成形歩留まりが低く、生産性が逆に低
くなる問題があった。また、その未含浸部やボイドなど
の発生箇所がその僅かの差しかない製造条件毎に異なる
ため、製造したFRPの品質も低くなる問題をも引き起
こしていた。
However, according to the RTM, unimpregnated parts and voids may be generated due to variations in the viscosity of the matrix resin and slight differences in the manufacturing conditions, resulting in a low FRP molding yield and conversely in productivity. There was a problem of lowering. In addition, since the non-impregnated portion and the location where voids are generated are different for each manufacturing condition where there is no slight difference, the quality of the manufactured FRP is also lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、未含
浸部分やボイド等が形成されにくく、品質の優れたFR
Pを低コストに歩留まりを高くして得ることが可能なF
RPの製造方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an FR which is excellent in quality because it is difficult to form unimpregnated parts and voids.
It is possible to obtain P with low cost and high yield F
It is to provide a manufacturing method of RP.

【0007】[0007]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、(1)少なくとも次の(A)〜(F)の
工程からなることを特徴とするFRPの製造方法。
The present invention employs the following means in order to solve the above problems. That is, (1) a method for producing FRP, which comprises at least the following steps (A) to (F).

【0008】(A)少なくとも強化繊維基材からなるプ
リフォームを成形面型上に配置するセット工程、(B)
成形型の少なくとも成形部をバッグ材で覆い、少なくと
も減圧吸引口および樹脂注入口を設けて密閉する密閉工
程、(C)成形部を減圧吸引口から吸引により減圧する
減圧工程、(D)成形型を含め成形部を加熱する加熱工
程、(E)成形型の温度Tmとバッグ材の温度Tvとが
共に室温以上であり、かつその温度差ΔTが10℃以内
である時に、樹脂注入口から樹脂を注入し、少なくとも
強化繊維基材に樹脂を含浸させる注入工程、(F)成形
型を含め成形部を室温以上の所定の温度Tpcに保持
し、樹脂を固化(硬化または重合)させる固化工程。
(A) a setting step of arranging a preform comprising at least a reinforcing fiber base material on a molding surface mold; (B)
A sealing step of covering at least the molding part of the molding die with a bag material and at least providing a decompression suction port and a resin injection port for sealing, (C) a decompression process of decompressing the molding part by suction from the decompression suction port, (D) a molding die (E) When the temperature Tm of the mold and the temperature Tv of the bag material are both room temperature or higher and the temperature difference ΔT is within 10 ° C., the resin is injected from the resin injection port. Injecting at least the reinforcing fiber base material with a resin, and (F) a solidifying step of solidifying (curing or polymerizing) the resin by keeping the molding part including the molding die at a predetermined temperature Tpc higher than room temperature.

【0009】(2)前記プリフォームが、少なくとも強
化繊維基材と樹脂拡散通路形成部材とからなることを特
徴とする前記(1)に記載のFRPの製造方法。
(2) The method for producing an FRP as described in (1) above, wherein the preform comprises at least a reinforcing fiber base material and a resin diffusion passage forming member.

【0010】(3)前記樹脂拡散通路形成部材が樹脂通
路用溝が形成されたコア材であり、前記(F)の固化工
程後もコア材をFRP内に残すことを特徴とする前記
(2)に記載のFRPの製造方法。
(3) The resin diffusion passage forming member is a core material in which a groove for a resin passage is formed, and the core material is left in the FRP even after the solidifying step (F). The manufacturing method of FRP as described in 1).

【0011】(4)前記樹脂拡散通路形成部材が網目状
シートであり、前記(F)の固化工程後に網目状シート
の樹脂拡散通路形成部材をFRPから剥離除去すること
を特徴とする前記(2)または(3)に記載のFRPの
製造方法。
(4) The resin diffusion passage forming member is a mesh sheet, and the resin diffusion passage forming member of the mesh sheet is peeled off from the FRP after the solidifying step (F). ) Or the method for producing FRP according to (3).

【0012】(5)前記強化繊維基材が炭素繊維を含む
ことを特徴とする前記(1)〜(4)のいずれかに記載
のFRPの製造方法(6)前記(D)の加熱工程におい
て、加熱媒体が熱風であることを特徴とする前記(1)
〜(5)のいずれかに記載のFRPの製造方法。
(5) The method for producing an FRP according to any one of (1) to (4) above, wherein the reinforcing fiber base material contains carbon fibers (6) In the heating step of (D) The heating medium is hot air (1)
~ The method for producing an FRP according to any one of (5).

【0013】(7)前記(E)の注入工程において、前
記成形型の温度Tmまたはバッグ材の温度Tvが50〜
160℃の範囲内であり、前記(F)の固化工程におい
て、前記成形部の所定の温度Tpcが80〜180℃の
範囲内であることを特徴とする前記(1)〜(6)のい
ずれかに記載のFRPの製造方法。
(7) In the injection step (E), the temperature Tm of the mold or the temperature Tv of the bag material is 50 to 50.
Any of the above (1) to (6), wherein the temperature is in the range of 160 ° C., and the predetermined temperature Tpc of the molding portion is in the range of 80 to 180 ° C. in the solidifying step (F). A method for producing an FRP according to item 1.

【0014】(8)前記(E)の注入工程において、注
入される樹脂が、前記成形型の温度Tmまたはバッグ材
の温度Tvの低い方の温度における樹脂粘度ηpが50
0mPa・s以下であり、かつ前記成形型の温度Tmに
おける樹脂粘度と前記バッグ材の温度Tvにおける樹脂
粘度との差Δηが200mPa・s以内であることを特
徴とする前記(1)〜(7)のいずれかに記載のFRP
の製造方法。
(8) In the injection step of (E), the resin injected has a resin viscosity ηp of 50 at the lower temperature of the molding die temperature Tm or the bag material temperature Tv.
The difference Δη between the resin viscosity at the temperature Tm of the mold and the resin viscosity at the temperature Tv of the bag material is 200 mPa · s or less, and the difference (η) is within 200 mPa · s. ) Any one of FRP
Manufacturing method.

【0015】(9)前記(E)の注入工程において、注
入した樹脂がゲル化するまで前記減圧吸引口より吸引し
続けることを特徴とする前記(1)〜(8)のいずれか
に記載のFRPの製造方法。
(9) In the injection step (E), suction is continued from the reduced pressure suction port until the injected resin gels, and any one of the above (1) to (8) is provided. FRP manufacturing method.

【0016】(10)前記(F)の固化工程の後に、さ
らに少なくとも次の(G)および(H)の工程を有する
ことを特徴とする前記(1)〜(9)のいずれかに記載
のFRPの製造方法。
(10) The method according to any one of (1) to (9) above, which further comprises at least the following steps (G) and (H) after the solidification step (F). FRP manufacturing method.

【0017】(G)固化したFRPを取り出す取出工
程、(H)取り出したFRPをさらに前記成形部の所定
の温度Tpcの温度より高く、かつ100℃以上の所定
の温度Tacに保ち、樹脂を完全に固化(硬化または重
合)させる完全固化工程。
(G) Taking out the solidified FRP, (H) keeping the taken out FRP at a predetermined temperature Tac higher than the predetermined temperature Tpc of the molding part and not lower than 100 ° C. to completely remove the resin. Complete solidification process of solidifying (curing or polymerization).

【0018】(11)最大長さが3m以上のFRPを成
形することを特徴とする前記(1)〜(10)のいずれ
かに記載のFRPの製造方法。
(11) The method for producing an FRP according to any one of (1) to (10) above, which comprises molding an FRP having a maximum length of 3 m or more.

【0019】(12)航空機、自動車、または船舶の輸
送機器における一次構造部材、二次構造部材、外装部
材、内装部材もしくはそれらの部品として用いられるF
RPを成形することを特徴とする前記(1)〜(11)
のいずれかに記載のFRPの製造方法。
(12) F used as a primary structural member, a secondary structural member, an exterior member, an interior member or their parts in transportation equipment for aircraft, automobiles or ships
(1) to (11), characterized in that RP is molded
The method for producing FRP according to any one of 1.

【0020】[0020]

【発明の実施の形態】以下に、本発明を、望ましい実施
の形態に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail based on preferred embodiments.

【0021】本発明のFRPの製造方法は少なくとも次
の(A)〜(F)の工程からなる。 (A)セット工程 強化繊維基材を所定のサイズ、形状に裁断して、必要に
応じて積層してなるプリフォームを成形型面上に配置す
る工程である。
The method for producing FRP of the present invention comprises at least the following steps (A) to (F). (A) Setting step This is a step of cutting the reinforcing fiber base material into a predetermined size and shape, and arranging a preform, which is laminated as necessary, on the molding die surface.

【0022】ここでプリフォームは、成形型上で形成し
てそのまま配置したものでもよいし、成形型とは異なる
プリフォーム型で形成したものを運搬して成形型上に配
置したものでもよい。
Here, the preform may be formed on a forming die and arranged as it is, or may be formed by a preform die different from the forming die and transported and arranged on the forming die.

【0023】前記プリフォームは、各強化繊維基材のズ
レや乱れを防止するために、それらを固定、さらに高密
度化することもある。その固定手段としては、例えば、
ピンポイント的、ライン状または全体的に接着性粒子を
散布したり、接着性繊維を配置したりして、その後それ
らを熱接着する手段などを用いることができる。また、
高密度化手段としては、例えば、加熱しながらプレスに
て加圧したり、密閉した空間で吸引して大気圧にて加圧
する手段などを用いることができる。
The preform may be fixed and further densified in order to prevent displacement and disorder of each reinforcing fiber base material. As the fixing means, for example,
It is possible to use a means of spraying adhesive particles in a pinpoint manner, in a line shape or entirely, or by arranging adhesive fibers, and then thermally adhering them. Also,
As the densification means, it is possible to use, for example, a press while heating, a means for sucking in a closed space and pressurizing at atmospheric pressure, or the like.

【0024】また、前記プリフォームは、強化繊維基材
に加えて、樹脂拡散通路形成部材からなると、後述の
(E)注入工程での樹脂の含浸が容易になるため好まし
い。かかる樹脂拡散通路形成部材としては、例えば、所
定の溝加工を行ったコア材、樹脂流動抵抗の低い網目状
のシート材などが挙げられる。かかるコア材を用いて成
形後もコア材をFRP内に残すとサンドイッチ構造のF
RPが得られ、かかる網目状シートを用いて成形後に剥
離除去するとスキン構造のFRPが得られる。なお、後
者の場合は、樹脂拡散通路形成部材と強化繊維基材との
間に離型用織布(ピールプライ)を重ねて配置すると、
成形後にFRPから容易に樹脂拡散通路形成部材を剥離
除去できるため好ましい。
Further, it is preferable that the preform is made of a resin diffusion passage forming member in addition to the reinforcing fiber base material because the resin can be easily impregnated in the injection step (E) described later. Examples of the resin diffusion passage forming member include a core material having a predetermined groove processing, a mesh sheet material having low resin flow resistance, and the like. If the core material is left in the FRP even after molding using such a core material, the sandwich structure F
RP is obtained, and FRP having a skin structure is obtained by peeling and removing after molding using such a mesh sheet. In the latter case, when a release woven fabric (peel ply) is placed between the resin diffusion passage forming member and the reinforcing fiber base material,
It is preferable because the resin diffusion passage forming member can be easily peeled off from the FRP after molding.

【0025】かかるコア材としては、100℃加熱状態
(望ましくは120℃加熱状態)で真空圧が作用した時
の収縮率が5%以下の耐熱性があることが好ましい。コ
ア材としては多孔質やソリッド状のもののどちらでもよ
いが、外周面から樹脂が浸透しないことが重要であり、
フォーム材の場合は独立気泡発泡体であることが好まし
い。また、用途によっては、吸湿性の低い材料(例え
ば、吸湿後の膨潤率が5%以下)が求められる場合があ
る。具体的な材料としては、塩化ビニル製(たとえ
ば、”クレゲセル”(商品名))やポリメタクリルイミ
ド製(たとえば、”ロハセル”(商品名))のフォーム
コアや、それらのフォームコアが詰められたアルミ製や
アラミド製ハニカムコアなどが挙げられる。また、木製
コアやバルサコアなども適用可能である。
It is preferable that such a core material has heat resistance such that the shrinkage rate is 5% or less when a vacuum pressure is applied at 100 ° C. (preferably 120 ° C.). The core material may be either porous or solid, but it is important that the resin does not penetrate from the outer peripheral surface.
In the case of a foam material, it is preferably a closed cell foam. In addition, a material having low hygroscopicity (for example, a swelling ratio after moisture absorption is 5% or less) may be required depending on the application. As a specific material, a foam core made of vinyl chloride (for example, "Kreguesell" (trade name)) or polymethacrylimide (for example, "Rohacell" (trade name)), or a foam core thereof is packed. Examples include honeycomb cores made of aluminum or aramid. In addition, wooden cores and balsa cores are also applicable.

【0026】特にサンドイッチ構造のFRPを製造する
場合、強化繊維基材とバッグ材との間に比較的高い剛性
を有する押圧板(たとえば、ガラス繊維基材で補強した
厚さ1〜2mm程度の樹脂製プレート)を非型面側に配
置することにより、平滑性を発揮させることもできる。
その押圧板は複数枚設けて配置しながら繋ぎ合わせても
よい。
Particularly in the case of manufacturing a sandwich structure FRP, a pressing plate having a relatively high rigidity is provided between the reinforcing fiber base material and the bag material (for example, a resin having a thickness of about 1 to 2 mm reinforced with a glass fiber base material). It is also possible to exhibit smoothness by arranging the plate (made) on the non-mold surface side.
A plurality of pressing plates may be provided and connected while being arranged.

【0027】かかる強化繊維基材としては、例えば2次
元の一方向性、二方向性、それ以上の多方向性、もしく
は3次元の多方向性を有した織物、編物または組紐など
が挙げられ、それらはステッチ糸や結節糸などにより複
数が一体化しているものでもよい。特に輸送機器(特に
航空機や自動車)の構造部材として用いる場合には、一
方向性(または二方向性、多軸)の織物を選択するのが
好ましい。
Examples of such reinforcing fiber base material include woven fabrics, knitted fabrics, braids, etc. having two-dimensional unidirectionality, bidirectionality, more multidirectionality, or three-dimensional multidirectionality. A plurality of them may be integrated by stitch threads or knot threads. Particularly when used as a structural member of transportation equipment (particularly aircraft and automobiles), it is preferable to select a unidirectional (or bidirectional, multiaxial) woven fabric.

【0028】強化繊維としては、ガラス繊維、有機(ア
ラミド、PBO(パラフェニレンベンゾビスオキサゾー
ル)、PVA(ポリビニルアルコール)、PE(ポリエ
チレン)など)繊維、炭素繊維(PAN系、ピッチ系な
ど)などが使用できる。
Examples of the reinforcing fiber include glass fiber, organic (aramid, PBO (paraphenylenebenzobisoxazole), PVA (polyvinyl alcohol), PE (polyethylene), etc.) fiber, carbon fiber (PAN type, pitch type, etc.), etc. Can be used.

【0029】炭素繊維は比強度・比弾性率に優れ、殆ど
吸水しないので、航空機や自動車用の構造材の強化繊維
として好ましく用いられる。中でも、下記の高靭性炭素
繊維糸であると、FRPの衝撃吸収エネルギーが大きく
なるので、航空機の構造部材としても適用しやすくな
る。すなわち、JIS R7601に準拠して測定され
る引張弾性率E(GPa)が210GPa以上かつ破壊
歪エネルギーW(MJ/m3=106×J/m3)が40
MJ以上であると好ましい。より好ましくは引張弾性率
240を超え400GPa未満かつ破壊歪エネルギーが
50MJ/m3以上である。ここで、破壊歪エネルギー
とは、JIS R7601に準拠して測定される引張強
度σ(GPa)と、前記したE値とを用いて、次式(W
=σ2 /2E)に基づいて算出される値のことをいう。 (B)密閉工程 前記プリフォームと、場合によって樹脂拡散通路形成部
材や離型用織布などの副資材とを成形型面上に配置した
後、例えばそれらの外周の型面上にシール用粘着性テー
プやシーラントを貼り付け、その上にバッグ材として例
えばバギング用フィルムを配置して成形型上の少なくと
も成形部を覆って密閉する。また、強化繊維基材の体積
含有率をより向上させる場合には、樹脂注入後、バッグ
内の圧力上昇を防止する効果を発揮させるために、さら
に該バギング用フィルムの外側にもう一重バギング用フ
ィルムで覆ってもよいし、バギングしながら成形部を加
熱しながら適切な時間放置して大気圧を利用して圧縮し
てもよい。また、経済性を高めるためにバッグ材とし
て、再使用が可能なシリコーンゴム製などのラバーシー
トを用いてもよい。さらに、ヒータを内蔵したラバーシ
ートは加熱、保温上より効果的な場合もある。
Carbon fibers are excellent in specific strength and specific elastic modulus and hardly absorb water, so that they are preferably used as reinforcing fibers for structural materials for aircraft and automobiles. Among them, the following high-toughness carbon fiber yarn has a large impact absorption energy of FRP, and thus can be easily applied as a structural member of an aircraft. That is, the tensile elastic modulus E (GPa) measured according to JIS R7601 is 210 GPa or more and the fracture strain energy W (MJ / m 3 = 10 6 × J / m 3 ) is 40.
It is preferably MJ or more. More preferably, the tensile elastic modulus is more than 240 and less than 400 GPa, and the breaking strain energy is 50 MJ / m 3 or more. Here, the breaking strain energy is calculated by the following equation (W using the tensile strength σ (GPa) measured according to JIS R7601 and the above E value.
= Σ 2 / 2E). (B) Sealing Step After the preform and, if necessary, auxiliary materials such as a resin diffusion passage forming member and a release woven cloth are arranged on the molding die surface, for example, a sealing adhesive is applied on the outer periphery of the die surface. Adhesive tape or sealant is adhered, and a bagging film, for example, is disposed as a bag material on the adhesive tape or sealant, and at least the molding portion on the molding die is covered and sealed. Further, in the case of further improving the volume content of the reinforcing fiber base material, in order to exert the effect of preventing the pressure increase in the bag after the resin injection, another bagging film is provided outside the bagging film. It may be covered with or may be left standing for an appropriate time while heating the molding portion while bagging and compressing by utilizing atmospheric pressure. In addition, a reusable rubber sheet made of silicone rubber or the like may be used as the bag material in order to improve economy. In addition, a rubber sheet with a built-in heater may be more effective in heating and heat retention.

【0030】なお、密閉するに際し、減圧(真空)吸引
口および樹脂注入口をセットし、具体的には開口部を有
するライン状機材(例えば、アルミニウム製C型チャン
ネル材など)を強化繊維基材の端部周辺に配置し、該ラ
イン状機材の端部に例えば樹脂製チューブなどを連通さ
せる。 (C)減圧工程 成形部を前記減圧吸引口から、例えば油拡散タイプの真
空ポンプなどを用いて吸引により減圧する。かかる減圧
により、ボイドの原因となる空気を極力排出しておくと
ともに、大気圧によって基材を押圧して強化繊維基材の
強化繊維体積含有率Vpfを高めることが好ましく、そ
の繊維体積含有率Vpfが45%以上、望ましくは50
%以上となるようにすることが好ましい。なお、その際
には、後述の(D)加熱工程で前記接着性粒子や接着性
繊維が熱接着できる室温以上の温度に加熱して、一定の
時間保持しておくと、より安定してVpfを高くするこ
とができる。 (D)加熱工程 成形型を含め前記成形部を加熱する。かかる加熱におい
て、加熱媒体としては熱風を用いるのが好ましい。すな
わち、熱源として成形型全体を加熱する熱風を適用する
のが好ましい。例えば、成形型全体を加熱オーブン内に
投入して密閉し、オーブン内で熱風を循環させる方法が
熱効率が高く最も好ましいが、断熱材で簡易的な部屋を
作製して成形型全体を覆い、その中に熱風をブロアーで
送風する方法でもよい。何れにしても、熱風を加熱媒体
とすると成形型を後述の所定の温度Tmに対し±5℃以
下(望ましくは±2℃以下)の範囲に安価かつ容易に納
めることができる。熱風加熱により、オートクレーブに
比べ、高い経済性を達成できる。ただし、既設のオート
クレーブがそのまま利用できる場合には、温度斑の点で
優れるオートクレーブを利用してもよい。 (E)注入工程 成形型の温度Tmとバッグ材の温度Tvとが共に室温以
上であり、かつ前記Tmと前記Tvとの温度差ΔTが1
0℃以内(より好ましくは8℃以内、さらに好ましくは
5℃以内、とりわけ好ましくは3℃以内)であるとき
に、好ましくは予め脱泡しておいた容器に入れた液体状
の樹脂を、例えば減圧(真空)吸引を続行しながら樹脂
注入口に連通したチューブ端を前記容器の樹脂内に投入
し、強化繊維基材を配置した成形型の成形部内に樹脂を
注入する。場合によっては大気圧以上の機械的圧力を負
荷して強制的に注入してもよい。
Upon sealing, a decompression (vacuum) suction port and a resin injection port are set, and specifically, a line-shaped device having an opening (for example, an aluminum C-type channel material) is reinforced fiber base material. Is arranged around the end portion of, and a resin tube or the like is communicated with the end portion of the line-shaped equipment. (C) Pressure-reducing step The pressure of the molding portion is reduced by suction from the pressure-reducing suction port using, for example, an oil diffusion type vacuum pump. It is preferable to discharge the air that causes voids as much as possible by such decompression, and to press the base material by the atmospheric pressure to increase the reinforcing fiber volume content Vpf of the reinforcing fiber base. The fiber volume content Vpf Is 45% or more, preferably 50
It is preferable to set it to be at least%. In this case, in the heating step (D) described later, if the adhesive particles or the adhesive fibers are heated to a temperature of room temperature or higher at which they can be thermally adhered and kept for a certain period of time, Vpf becomes more stable. Can be higher. (D) Heating Step The molding section including the molding die is heated. In such heating, it is preferable to use hot air as the heating medium. That is, it is preferable to apply hot air that heats the entire mold as a heat source. For example, the method in which the entire molding die is put into a heating oven and hermetically sealed, and the method of circulating hot air in the oven has the highest thermal efficiency and is most preferable. However, a simple room is made of a heat insulating material to cover the entire molding die, A method of blowing hot air with a blower may be used. In any case, when hot air is used as the heating medium, the molding die can be inexpensively and easily placed within a range of ± 5 ° C or less (desirably ± 2 ° C or less) with respect to a predetermined temperature Tm described later. By heating with hot air, higher economic efficiency can be achieved compared to an autoclave. However, when the existing autoclave can be used as it is, an autoclave excellent in terms of temperature unevenness may be used. (E) Injection step The temperature Tm of the mold and the temperature Tv of the bag material are both room temperature or higher, and the temperature difference ΔT between Tm and Tv is 1
When the temperature is within 0 ° C. (more preferably within 8 ° C., further preferably within 5 ° C., particularly preferably within 3 ° C.), the liquid resin contained in a container which has been degassed in advance is preferably used, for example. While continuing the vacuum (vacuum) suction, the tube end communicating with the resin injection port is put into the resin of the container, and the resin is injected into the molding portion of the molding die in which the reinforcing fiber base material is arranged. In some cases, mechanical pressure higher than atmospheric pressure may be loaded to forcefully inject.

【0031】かかるTmおよびTvは50〜160℃の
範囲内であると、後述の樹脂が低粘度となり、より樹脂
の含浸が容易になるだけでなく、樹脂自体の選択の巾が
広がり、力学特性に優れるなどの高性能の樹脂を選択し
て使用できるため好ましい。
When the Tm and Tv are in the range of 50 to 160 ° C., the resin to be described later has a low viscosity, so that not only the impregnation of the resin becomes easier but also the range of selection of the resin itself is widened and the mechanical properties are improved. It is preferable because a high-performance resin having excellent properties can be selected and used.

【0032】前記ΔTについて、図面を参照しながら詳
細に説明する。図1は、本発明で使用する一例の樹脂に
おける樹脂粘度の温度依存性を示す模式図である。前記
ΔTが10℃を超えると、バッグ材面と成形型面との樹
脂粘度の差が大きくなりすぎ、樹脂の流動挙動に著しい
差が発現して流動バランスが崩れ、最悪の場合はプリフ
ォームに未含浸部が残るなどの欠陥を引き起こし、高品
質なFRPが生産性よく安定して得られない。特に、樹
脂拡散通路形成部材としてコア材を用いてサンドイッチ
構造のFRPを成形する場合、コア材は強化繊維基材よ
り熱伝導率が低い場合が多く、成形型とバグ材との伝熱
を阻害して強化繊維基材の温度が大きく異なり、この現
象がさらに顕著となる。
The ΔT will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the temperature dependence of resin viscosity in an example of resin used in the present invention. When ΔT exceeds 10 ° C., the difference in resin viscosity between the bag material surface and the molding die surface becomes too large, and a remarkable difference in the flow behavior of the resin appears to impair the flow balance, resulting in a preform in the worst case. This causes defects such as unimpregnated parts remaining, and high-quality FRP cannot be stably obtained with high productivity. In particular, when a FRP having a sandwich structure is molded using a core material as a resin diffusion passage forming member, the core material often has a lower thermal conductivity than the reinforced fiber base material, which impedes heat transfer between the molding die and the bag material. Then, the temperature of the reinforcing fiber base material is greatly different, and this phenomenon becomes more remarkable.

【0033】より具体的に前記ΔTの発生状況について
説明する。例えば熱風により加熱を行った場合、バッグ
材側に配置されている強化繊維基材はバッグ材を経由し
て加熱され、成形型側に配置されている強化繊維基材は
同様に成形型を経由して加熱される。しかしながら、成
形型とバッグ材とはその厚みや材質の違いから熱伝達率
および熱容量が大きく異なる事や、前記熱風の循環経路
に起因して、同時に加熱を開始した場合には所定の温度
に昇温されるまでの時間に予想外の大きな差違が生じ
る。一般的にはバッグ材の方が熱容量が小さいために、
バッグ材側の強化繊維基材の温度が早く所定の温度に達
してしまい、前記ΔTが発生してしまうのである。もち
ろん、熱風の循環経路によっては、成形型側の強化繊維
基材の温度が早く所定の温度に達っする場合もある。
The situation of occurrence of ΔT will be described more specifically. For example, when heated with hot air, the reinforcing fiber base material arranged on the bag material side is heated via the bag material, and the reinforcing fiber base material arranged on the molding die side also passes through the molding die. And then heated. However, due to the difference in thickness and material between the mold and the bag material, the heat transfer coefficient and the heat capacity are greatly different, and due to the circulation path of the hot air, when heating is started at the same time, the temperature rises to a predetermined temperature. Unexpectedly large difference occurs in the time to warm. Generally, the bag material has a smaller heat capacity,
The temperature of the reinforcing fiber base material on the bag material side quickly reaches a predetermined temperature, and the above ΔT occurs. Of course, depending on the circulation path of the hot air, the temperature of the reinforcing fiber base material on the molding die side may reach a predetermined temperature quickly.

【0034】すなわち、本発明は、成形型の温度Tmと
バッグ材の温度Tvとの実際の温度には加熱時における
熱の伝達経路の差違により比較的大きな温度差が存在
し、これに起因して高品質なFRPが生産性よく安定し
て得られないことを解明し、前記方法によってその問題
を解消したものである。
That is, according to the present invention, there is a relatively large temperature difference between the actual temperature Tm of the mold and the temperature Tv of the bag material due to the difference in the heat transfer path during heating. It was clarified that high quality FRP could not be obtained stably with high productivity, and the problem was solved by the above method.

【0035】ここで、前記Tmの測定は、成形型内の温
度を例えば熱電対などで測定すればよい。特に成形型が
熱伝導の悪いFRP型や木型である場合には、より厳密
に強化繊維基材の温度を反映させる意味では、成形部に
おける測定箇所は成形型表面から5mm以内、より好ま
しくは成形型表面で測定するのが好ましい。
Here, the Tm may be measured by measuring the temperature in the mold with a thermocouple or the like. In particular, when the mold is a FRP type or a wood type having poor heat conductivity, in the sense of more strictly reflecting the temperature of the reinforcing fiber base material, the measurement point in the molding part is within 5 mm from the surface of the mold, more preferably It is preferable to measure on the surface of the mold.

【0036】また、バッグ材の温度Tvの測定は、成形
部におけるバッグ材の表面温度を例えば熱電対などで測
定すればよい。バッグ材は成形型に比べると遙かに薄い
ため、熱伝導が悪くてもその外面の表面温度が強化繊維
基材の温度を比較的正確に反映する。もちろん、より厳
密に強化繊維基材の温度を反映させる意味では、成形部
におけるバッグ材内面の表面温度を測定するのが好まし
い。
Further, the temperature Tv of the bag material may be measured by measuring the surface temperature of the bag material in the molding portion with, for example, a thermocouple. Since the bag material is much thinner than the mold, the surface temperature of its outer surface relatively accurately reflects the temperature of the reinforcing fiber substrate even if the heat conduction is poor. Of course, in the sense of more strictly reflecting the temperature of the reinforcing fiber base material, it is preferable to measure the surface temperature of the inner surface of the bag material in the molding part.

【0037】なお、前記Tmおよび前記Tvの測定は、
厚み方向に対向して行われると、より正確に樹脂の流動
挙動を予想することができるため好ましい。この場合、
複数箇所で測定し、その各々の測定個所について前記Δ
Tの範囲内にすると更に正確に予想できるため、最も好
ましい態様の一つといえる。
The Tm and Tv are measured by
It is preferable that they are opposed to each other in the thickness direction because the flow behavior of the resin can be more accurately predicted. in this case,
Measure at multiple points, and use the Δ
It can be said to be one of the most preferable modes because it can be predicted more accurately within the range of T.

【0038】また、別の視点からは、前記TmまたはT
vの低い方の温度における樹脂粘度ηpが500mPa
・s以下であり、かつ前記Tmにおける樹脂粘度と前記
Tvにおける樹脂粘度との差Δηが200mPa・s以
内であるのが好ましい。より好ましい樹脂粘度ηpは3
50mPa・s以下、さらに好ましくは200mPa・
s以下であり、より好ましい粘度差Δηは150mPa
・s以内、さらに好ましくは100mPa・s以内であ
る。ここで前記範囲が好ましい理由は、上述の温度差Δ
Tの場合と同様である。ここで、樹脂粘度は、E型粘度
計(TOKIMEC製TVE30H)を用いて、同一の
剪断速度にて測定したものを指す。
From another point of view, the Tm or T
The resin viscosity ηp at the lower temperature of v is 500 mPa
It is preferable that the difference Δη between the resin viscosity at Tm and the resin viscosity at Tv be within 200 mPa · s. More preferable resin viscosity ηp is 3
50 mPa · s or less, more preferably 200 mPa · s
s or less, more preferable viscosity difference Δη is 150 mPa
· Within s, more preferably within 100 mPa · s. Here, the reason why the above range is preferable is that the above-mentioned temperature difference Δ
It is similar to the case of T. Here, the resin viscosity refers to that measured at the same shear rate using an E-type viscometer (TVE30H manufactured by TOKIMEC).

【0039】該キャビティ内に流入した樹脂は、特に樹
脂拡散通路形成部材を用いた場合、サンドイッチ構造の
場合はコア材に加工した溝内を、スキン構造の場合には
樹脂拡散通路形成部材内を面方向に流れて拡散するとと
もに、強化繊維基材内に厚み方向に浸透して行くことに
よって強化繊維基材内に含浸し、樹脂の含浸を効率的か
つ速やかに行うことができるため好ましい。強化繊維基
材への含浸が終了すると、やがて樹脂は真空吸引口へと
流出する。
The resin that has flowed into the cavity flows in the groove processed into the core material in the case of the sandwich structure, particularly in the case of using the resin diffusion passage forming member, and in the resin diffusion passage forming member in the case of the skin structure. It is preferable because the reinforcing fiber base material is impregnated into the reinforcing fiber base material by flowing in the surface direction and diffusing and penetrating into the reinforcing fiber base material in the thickness direction to impregnate the resin efficiently and quickly. When the impregnation of the reinforcing fiber base material is completed, the resin eventually flows out to the vacuum suction port.

【0040】本発明の製造方法によると、かかる効率的
かつ速やかな樹脂の含浸が可能なため、3m以上の大型
のFRPを製造するのに好適である。かかる3m以上も
の大型FRPを成形する場合、樹脂の注入速度を所定レ
ベルより低下させて、全体への樹脂の含浸が終了する前
に樹脂のゲル化が始まることが生じないように、樹脂の
注入ラインを複数にする場合が多い。また、同様に真空
吸引ラインも複数にする場合もある。そのように複数の
ラインを設ける場合、各樹脂注入ラインに樹脂を流すタ
イミングは必ずしも一定や同時ではなく、未含浸部分が
生じないように樹脂の流動状況を観察しながら判断する
ことが好ましい。バッグ材が透明または半透明のもので
あれば、樹脂の流動状況を容易に観察することができ
る。
According to the production method of the present invention, the resin can be impregnated efficiently and quickly, which is suitable for producing a large FRP having a length of 3 m or more. When molding such a large FRP having a length of 3 m or more, the resin injection speed is lowered below a predetermined level so that the resin does not start gelling before the impregnation of the resin into the whole is completed. Often there are multiple lines. Similarly, there may be a plurality of vacuum suction lines. When a plurality of lines are provided in such a manner, the timing of flowing the resin in each resin injection line is not necessarily constant or simultaneous, and it is preferable to make a judgment while observing the flow state of the resin so that an unimpregnated portion does not occur. If the bag material is transparent or translucent, the flow state of the resin can be easily observed.

【0041】なお、減圧(真空)吸引は、未含浸部やボ
イドなどの欠陥の発生を極力抑制するために、注入した
樹脂がゲル化するまで継続することが好ましい。
It is preferable that the vacuum (vacuum) suction is continued until the injected resin gels, in order to suppress the generation of defects such as unimpregnated portions and voids as much as possible.

【0042】本発明で用いる樹脂としては、耐熱性の高
い熱硬化性樹脂、特に加熱することによってガラス転移
温度Tgが100℃以上、望ましくは150℃以上の樹
脂を選定することが好ましい。また、その樹脂の常温時
引張り伸度は耐衝撃性や疲労特性の点から3%以上、望
ましくは4.5 %以上とすることが好ましい。そのよ
うな樹脂としては、エポキシ、フェノール(レゾール
型)、ポリベンゾイミダゾール、ベンゾオキサジン、シ
アネートエステル、不飽和ポリエステル、ビニルエステ
ル、ユリア・メラミン、ビスマレイミド、ポリイミド、
ポリアミドイミドなどや、これらの共重合体、変性体お
よび2種類以上ブレンドした樹脂、さらにエラストマー
やゴム成分、硬化剤、硬化促進剤、触媒などを添加した
樹脂などを使用することができる。前記のような熱硬化
性樹脂は、主剤と硬化剤に分けられるものがあるが、そ
の場合は注入直前にそれぞれを混合・撹拌して真空脱泡
することが好ましい。脱泡する際には、泡抜けを良くす
るために加熱したりすることができる。 (F)固化工程 含浸が終了した後には樹脂の注入を停止し、樹脂注入口
に空気が流入しないように樹脂注入口を完全に閉鎖する
ことが好ましい。その状態で、成形型を含め成形部を室
温以上の所定の温度Tpcに所定の時間保持し、含浸さ
せた樹脂を固化(硬化または重合)させる。かかるTp
cは80〜180℃の範囲内であると、効率的に樹脂の
固化が促進され、成形サイクルをより短くできるため好
ましい。
As the resin used in the present invention, it is preferable to select a thermosetting resin having a high heat resistance, particularly a resin having a glass transition temperature Tg of 100 ° C. or higher, preferably 150 ° C. or higher by heating. Further, the tensile elongation at room temperature of the resin is preferably 3% or more, more preferably 4.5% or more, from the viewpoint of impact resistance and fatigue characteristics. Examples of such resins include epoxy, phenol (resole type), polybenzimidazole, benzoxazine, cyanate ester, unsaturated polyester, vinyl ester, urea melamine, bismaleimide, polyimide,
It is possible to use polyamide imide and the like, copolymers, modified products thereof and resins prepared by blending two or more kinds thereof, and further resins containing an elastomer or rubber component, a curing agent, a curing accelerator, a catalyst and the like. The thermosetting resin as described above may be divided into a main component and a curing agent, but in that case, it is preferable to degas by vacuum mixing and stirring each of them immediately before injection. When defoaming, heating can be performed to improve the defoaming. (F) Solidification Step It is preferable to stop the resin injection after the impregnation is completed and completely close the resin injection port so that air does not flow into the resin injection port. In that state, the molding part including the molding die is maintained at a predetermined temperature Tpc of room temperature or higher for a predetermined time, and the impregnated resin is solidified (cured or polymerized). Such Tp
When c is in the range of 80 to 180 ° C., solidification of the resin is efficiently promoted and the molding cycle can be shortened, which is preferable.

【0043】ここで、加熱媒体としては熱風を用いるの
が好ましい。すなわち、熱源として成形型全体を加熱す
る熱風を適用するのが好ましい。ここで熱風が好ましい
理由は、上述の(D)加熱工程と同様である。
Here, it is preferable to use hot air as the heating medium. That is, it is preferable to apply hot air that heats the entire mold as a heat source. Here, the reason why hot air is preferable is the same as in the above-mentioned (D) heating step.

【0044】また、本発明のFRPの製造方法は、必要
に応じて、前記(F)固化工程の後に、次の工程を経て
もよい。 (G)取出工程 樹脂を固化した後に、脱型時に変形しないまでに剛性を
有していることを確認して、バギング用フィルムやラバ
ーシートを取り除いてFRP成形体を成形型上より脱型
して取り出す。樹脂拡散通路形成部材、特にコア材をそ
のまま成形品内に残すこともできるし、必要に応じて、
樹脂拡散通路形成部材、とくに網目状シートを成形後に
FRP成形体から剥離除去することもできる。後者の場
合は、強化繊維基材との間に予めピールプライ(使用す
る樹脂と相溶性の悪いもの、例えば樹脂としてエポキシ
樹脂を用いた場合にはポリエステル製の織布)を介装し
ておけば、容易に剥離除去することができる。 (H)完全固化工程 取り出したFRP成形体をさらに前記温度Tpcの温度
よりも高く、かつ100℃以上の所定の温度Tacに保
ち、完全に固化(硬化または重合)させる。かかる処理
により、樹脂を完全に硬化させてそのガラス転移温度T
gをさらに高くすることができ、耐熱性が必要な例えば
航空機用部材にFRPを用いることができるようになる
ため好ましい。
In the method for producing FRP of the present invention, the following steps may be carried out after the (F) solidification step, if necessary. (G) Take-out step After the resin is solidified, it is confirmed that the resin has rigidity until it is not deformed at the time of demolding, and the bagging film and the rubber sheet are removed, and the FRP molded body is demolded from the molding die. Take out. The resin diffusion passage forming member, especially the core material, can be left as it is in the molded product, or if necessary,
It is also possible to peel and remove the resin diffusion passage forming member, especially the mesh sheet, from the FRP molded body after molding. In the latter case, if a peel ply (having poor compatibility with the resin to be used, for example, a polyester woven cloth when an epoxy resin is used as the resin) is previously interposed between the reinforcing fiber base material and the reinforcing fiber base material. It can be easily peeled and removed. (H) Complete Solidification Step The FRP molded body taken out is further solidified (cured or polymerized) while being kept at a predetermined temperature Tac higher than the temperature Tpc and not lower than 100 ° C. By this treatment, the resin is completely cured and its glass transition temperature T
Since g can be further increased and FRP can be used for, for example, aircraft members that require heat resistance, it is preferable.

【0045】本発明のFRPの製造方法により得られる
FRPは、優れた品質だけでなく、高い力学特性を有
し、かつ軽量であるため、その用途が、航空機、自動
車、船舶の輸送機器における構造部材、外装部材、内装
部材もしくはそれらの部品の内のいずれかであることが
好適である。とりわけ航空機の構造部材に好適であり、
各種フェアリング、メインランデングギアドア、テイル
コーン、エンジンナセル、コントロールサーフェスなど
の2次構造材以外に、主翼、床支持桁、胴体、垂直尾
翼、水平尾翼、ウイング・ボックス 、キール等の1次
構造材を本発明のFRPの製造方法で成形することが好
ましい。
The FRP obtained by the method for producing an FRP of the present invention has not only excellent quality but also high mechanical properties and is lightweight, so that its application is a structure in transportation equipment for aircraft, automobiles and ships. It is preferable that the member is a member, an exterior member, an interior member, or any of these parts. Especially suitable for aircraft structural members,
In addition to secondary structural materials such as various fairings, main landing gear doors, tail cones, engine nacelles, control surfaces, etc., primary structures such as main wings, floor support girders, fuselage, vertical stabilizers, horizontal stabilizers, wing boxes, keels, etc. It is preferable that the material is molded by the FRP manufacturing method of the present invention.

【0046】[0046]

【実施例】以下に、より具体的な実施例について説明す
る。まず、成形条件と成形装置の構成仕様について、以
下のような実施例および比較例を実施した。 (1)構造 : ほぼ全体がサンドイッチ構造、全周の
端部100mmがスキン構造を有する長さが約5m、幅
が約3mの平面体(航空機用二次構造部材、例えばフェ
アリングを想定)。 (2)強化繊維基材の構成 : (2−1)サンドイッチ構造平面部分(上下側面共);
東レ(株)製”トレカ”二方向性織物(200g/m2
×6ply) (2−2)サンドイッチ構造ウェブ部分;東レ(株)
製”トレカ”二方向性織物(200g/m2 ×8pl
y) (2−3)周辺端部のスキン構造部;東レ(株)製”ト
レカ”二方向性織物(300g/m2 ×10ply) (3)コア材 : ポリメタクリルイミド製フォームコ
ア(”ロハセル”);15倍発泡×厚さ25mm幅方向
に樹脂流路用に矩形状溝(3mm×3mm、25mmピ
ッチ)をコアの上下面に千鳥状に形成させたもの。 (4)成形型 : 厚さ10mmで炭素繊維とエポキシ
樹脂とからなるCFRP製型を用い、架台はアングル材
による枠組み構造体を用いた。
EXAMPLE A more specific example will be described below. First, the following examples and comparative examples were carried out on the molding conditions and the configuration specifications of the molding apparatus. (1) Structure: A flat body having a sandwich structure almost entirely, a skin structure having 100 mm of end portions of the entire circumference, a length of about 5 m, and a width of about 3 m (secondary structural member for aircraft, for example, fairing is assumed). (2) Structure of reinforcing fiber base material: (2-1) Sandwich structure plane portion (both upper and lower side surfaces);
"Torayca" bi-directional fabric manufactured by Toray Industries, Inc. (200 g / m 2
X6ply) (2-2) Sandwich structure web portion; Toray Industries, Inc.
"Torayca" bidirectional fabric (200g / m 2 × 8pl
y) (2-3) Skin structure part at the peripheral edge; “Torayca” bidirectional woven fabric (300 g / m 2 × 10ply) manufactured by Toray Industries, Inc. (3) Core material: Polymethacrylimide foam core (“Rohacell”) "); 15 times foaming x thickness 25 mm A rectangular groove (3 mm x 3 mm, 25 mm pitch) is formed in a zigzag pattern in the width direction on the upper and lower surfaces of the core. (4) Mold: A CFRP mold having a thickness of 10 mm and made of carbon fiber and epoxy resin was used, and the frame was a frame structure made of an angle material.

【0047】<実施例>長さ5m、幅3m以上からな
り、周辺端部100mmだけはCFRPスキン層のCF
RPサンドイッチ構造からなる平面体を以下の方法で成
形した。 (a)強化繊維基材を前記構成になるように所定のサイ
ズ、形状に裁断して積層した後、特に形態安定が重要な
箇所において、強化繊維基材に予め塗布していた接着性
粒子(熱硬化性樹脂および硬化剤を混合して粉末化した
もの)を加熱により溶融させて、積層した強化繊維基材
同士を厚み方向に固着させた。それを2セット分準備し
た。かかる成形型の面上に強化繊維基材を積層したもの
を、長手方向と垂直な横断面を示す図2に示すように、
強化繊維基材11、コア材12、前記基材11の順に配
置した。そして、その上にガラス繊維強化プラスチック
製押圧板21(厚さ1.5mm)を配設した後、樹脂注
入口16a、16b、減圧吸引口17を形成した。 (b)その後、成形型20の成形部全体をバッグ材23
で覆い、周囲はシール用粘着性テープ22a 、22b
を用いて密閉した。 (c)そして、減圧吸引口17に連通した減圧吸引チュ
ーブ27や真空トラップ28を介して真空ポンプ29に
よって成形部を吸引した。内部は約0.8kPaの真空
度に達した。 (d)次に、架台31を含む成形型20の全体を、熱風
発生機33によって送風される150℃の熱風により加
熱した。成形型20の周囲は断熱効果の高い断熱ボード
とその支持用のスチール細管製支持枠体からなる保温ボ
ックス32で全体を覆っている。そして、熱風発生機3
3から発生して保温ボックス32内に送風される熱風の
熱量を有効に利用するために、保温ボックス32の排気
口34から出た熱風は、保温された排気ダクト(記載せ
ず)を通って熱風発生機33に戻る(熱風循環する)よ
うに構成されている。 (e)それから、熱電対14aおよび温度表示計15a
でモニタしているバッグ材の温度Tvが80℃に達し、
かつ熱電対14bおよび温度表示計15bでモニタして
いる成形型の温度Tmが75℃(すなわち、ΔTが5
℃)である時点で、主剤と硬化剤とを混合して予め脱泡
を済ませて注入可能な状態で樹脂槽内に準備されていた
エポキシ樹脂24aをバルブ26aを開いて大気圧によ
って注入開始した。ただし、樹脂24aは成形型20よ
り高い位置に配置し、正確には大気圧より高い圧力で注
入した。なお、熱電対14bは、成形部における成形型
面から3mm内部の位置であった。
<Example> A CFRP skin layer having a length of 5 m and a width of 3 m or more.
A flat body having an RP sandwich structure was molded by the following method. (A) After the reinforcing fiber base material is cut into a predetermined size and shape so as to have the above-mentioned structure and laminated, the adhesive particles (previously applied to the reinforcing fiber base material at a position where morphological stability is important) A thermosetting resin and a curing agent were mixed and powdered) to melt by heating, and the laminated reinforcing fiber base materials were fixed to each other in the thickness direction. I prepared two sets of it. As shown in FIG. 2, which shows a transverse cross section perpendicular to the longitudinal direction, one obtained by laminating a reinforcing fiber base material on the surface of such a mold is
The reinforcing fiber base material 11, the core material 12, and the base material 11 were arranged in this order. Then, a glass fiber reinforced plastic pressing plate 21 (thickness: 1.5 mm) was arranged thereon, and then resin injection ports 16a, 16b and a vacuum suction port 17 were formed. (B) After that, the entire molding portion of the molding die 20 is covered with the bag material 23.
Covered with adhesive tape 22a, 22b for sealing
It was sealed with. (C) Then, the molding portion was sucked by the vacuum pump 29 through the vacuum suction tube 27 and the vacuum trap 28 which communicated with the vacuum suction port 17. The inside reached a vacuum degree of about 0.8 kPa. (D) Next, the entire molding die 20 including the gantry 31 was heated by hot air of 150 ° C. blown by the hot air generator 33. The entire periphery of the molding die 20 is covered with a heat insulation box 32 including a heat insulation board having a high heat insulation effect and a supporting frame made of a steel thin tube for supporting the heat insulation board. And the hot air generator 3
In order to effectively use the amount of heat of the hot air generated from 3 and blown into the heat insulation box 32, the hot air emitted from the exhaust port 34 of the heat insulation box 32 passes through a heat insulation exhaust duct (not shown). It is configured to return (circulate hot air) to the hot air generator 33. (E) Then, the thermocouple 14a and the temperature indicator 15a
The temperature Tv of the bag material monitored at
Moreover, the temperature Tm of the mold monitored by the thermocouple 14b and the temperature indicator 15b is 75 ° C. (that is, ΔT is 5
(° C), the epoxy resin 24a prepared in the resin tank was mixed with the main agent and the curing agent, defoamed in advance, and was injected into the resin tank at the atmospheric pressure by opening the valve 26a. . However, the resin 24a was placed at a position higher than the molding die 20 and, more precisely, was injected at a pressure higher than atmospheric pressure. The thermocouple 14b was located 3 mm inside the molding surface of the molding part.

【0048】樹脂24aは、まず樹脂注入口16aから
コア材に加工した溝13を通って減圧吸引口17に向か
って流動しながら次第に強化繊維基材に含浸して、やが
てもう1つの樹脂注入口16bに達した頃には樹脂24
aの流速がかなり落ちた。そのため、次に樹脂注入口1
6a側のバルブ26aを閉じるのと殆ど同時に、バルブ
26bを開放して樹脂注入口16bから樹脂24bの注
入を開始した。そして、該樹脂注入口16bから流入し
た樹脂24bは、やがて減圧吸引口17を経て減圧吸引
チューブ28に到達した。それを確認した後、樹脂注入
口16b側のバルブ26bも閉じて、樹脂注入を停止し
た。 (f)それ以降は、減圧吸引口17から真空ポンプ29
により減圧を続けながら、成形型の温度Tpcが約13
0℃を保つように熱風温度を調節しながら約3時間保持
して、強化繊維基材に含浸した樹脂を硬化させた。 (g)樹脂が脱型可能な状態まで硬化していることを確
認して各チューブやバッグ材などの副資材を除去し、F
RP成形体を成形型から取り出した。
The resin 24a gradually flows from the resin injection port 16a through the groove 13 formed in the core material toward the decompression suction port 17, gradually impregnating the reinforcing fiber base material, and eventually another resin injection port. Resin 16 by the time it reaches 16b
The flow velocity of a dropped considerably. Therefore, next, resin injection port 1
Almost at the same time as closing the valve 26a on the 6a side, the valve 26b was opened to start the injection of the resin 24b from the resin injection port 16b. Then, the resin 24b flowing in from the resin injection port 16b eventually reached the reduced pressure suction tube 28 via the reduced pressure suction port 17. After confirming this, the valve 26b on the resin injection port 16b side was also closed and the resin injection was stopped. (F) After that, from the vacuum suction port 17 to the vacuum pump 29
The temperature Tpc of the mold is about 13 while continuing to reduce the pressure.
The resin with which the reinforcing fiber base material was impregnated was cured by maintaining the hot air temperature for about 3 hours while controlling the hot air temperature so as to maintain 0 ° C. (G) After confirming that the resin has hardened to a demoldable state, remove the secondary materials such as tubes and bag materials, and
The RP molded body was taken out from the molding die.

【0049】該FRP成形体を検査したところ、どこに
もピンホールやボイドが見当たらず、極めて良好な成形
が行われていたことが実証された。
When the FRP molded product was inspected, pinholes and voids were not found anywhere, demonstrating that extremely good molding was performed.

【0050】<比較例>前記(e)項において、バッグ
材が温度Tvが80℃に達したものの、成形型の温度T
mが65℃(すなわち、ΔTが15℃)である時点で、
樹脂を同様に注入開始したこと以外は実施例と同様に成
形を行った。
<Comparative Example> In the above item (e), although the temperature Tv of the bag material reached 80 ° C., the temperature T of the molding die was changed.
When m is 65 ° C. (that is, ΔT is 15 ° C.),
Molding was performed in the same manner as in the example except that the injection of the resin was started in the same manner.

【0051】該FRP成形体を検査したところ、未含浸
部およびボイドが数カ所発生し、品質は悪く、成形が良
好に行われたとはいえなかった。
When the FRP molded product was inspected, unimpregnated parts and voids were generated at several places, the quality was poor and it could not be said that molding was performed well.

【0052】[0052]

【発明の効果】以上説明したように、本発明のFRPの
製造方法によれば、未含浸部分やボイド等が形成されに
くく、品質の優れたFRPを低コストに歩留まりを高く
FRPを製造できる。このようなFRPは、航空機、自
動車、船舶等の輸送機器における構造部材、外装部材、
内装部材もしくはそれらの部品などに好適である。
As described above, according to the FRP manufacturing method of the present invention, unimpregnated portions, voids and the like are hardly formed, and FRP having excellent quality can be manufactured at low cost with high yield. Such FRP is used for structural members, exterior members, and the like in transportation equipment such as aircrafts, automobiles, and ships.
It is suitable for interior members or parts thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する一例の樹脂における樹脂粘度
の温度依存性を示す模式図である。
FIG. 1 is a schematic diagram showing the temperature dependence of resin viscosity in an example of resin used in the present invention.

【図2】本発明の一実施態様にかかるFRPの製造方法
を示す成形装置の概略横断面図である。
FIG. 2 is a schematic cross-sectional view of a molding apparatus showing a method for manufacturing an FRP according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

Tm:成形型の温度 Tv:バッグ材の温度 ΔT:成形型の温度とバッグ材の温度との差 ηp:TmまたはTvの低い方の温度における樹脂の粘
度 Δη:Tmにおける樹脂粘度とTvにおける樹脂粘度と
の差 11:強化繊維基材 12:コア材 13:溝 14a、14b:熱電対 15a、15b:温度表示計 16a、16b:樹脂注入口 17:減圧吸引口 20:成形型 21:押圧板 22a、22b:シール用粘着性テープ 23:バッグ材 24a、24b:液体状の樹脂 25a、25b:樹脂注入チューブ 26a、26b:バルブ 27:減圧吸引チューブ 28:真空トラップ 29:真空ポンプ 31:架台 32:保温ボックス 33:熱風発生機 34:排気口
Tm: Mold temperature Tv: Bag material temperature ΔT: Difference between mold temperature and bag temperature ηp: Viscosity of resin at lower temperature of Tm or Tv Δη: Resin viscosity at Tm and resin at Tv Difference from viscosity 11: Reinforcing fiber substrate 12: Core material 13: Grooves 14a, 14b: Thermocouples 15a, 15b: Temperature indicators 16a, 16b: Resin injection port 17: Decompression suction port 20: Mold 21: Press plate 22a, 22b: Adhesive tape for sealing 23: Bag materials 24a, 24b: Liquid resin 25a, 25b: Resin injection tubes 26a, 26b: Valve 27: Vacuum suction tube 28: Vacuum trap 29: Vacuum pump 31: Stand 32 : Heat insulation box 33: Hot air generator 34: Exhaust port

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 307:04 B29K 307:04 Fターム(参考) 4F204 AA36 AD16 AD23 AK01 AM26 AM28 AR06 EA03 EB01 EB11 EF01 EF05 EF27 EF30 EK09 EK13 EW02 EW06 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 307: 04 B29K 307: 04 F term (reference) 4F204 AA36 AD16 AD23 AK01 AM26 AM28 AR06 EA03 EB01 EB11 EF01 EF05 EF27 EF30 EK09 EK13 EW02 EW06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】少なくとも次の(A)〜(F)の工程から
なることを特徴とするFRPの製造方法。 (A)少なくとも強化繊維基材からなるプリフォームを
成形型面上に配置するセット工程、 (B)成形型の少なくとも成形部をバッグ材で覆い、少
なくとも減圧吸引口および樹脂注入口を設けて密閉する
密閉工程、 (C)成形部を減圧吸引口から吸引により減圧する減圧
工程、 (D)成形型を含め成形部を加熱する加熱工程、 (E)成形型の温度Tmとバッグ材の温度Tvとが共に
室温以上であり、かつその温度差ΔTが10℃以内であ
る時に、樹脂注入口から樹脂を注入し、少なくとも強化
繊維基材に樹脂を含浸させる注入工程、 (F)成形型を含め成形部を室温以上の所定の温度Tp
cに保持し、樹脂を固化させる固化工程。
1. A method for producing FRP, comprising at least the following steps (A) to (F): (A) A setting step of arranging a preform made of at least a reinforced fiber base material on the surface of the molding die, (B) at least the molding portion of the molding die is covered with a bag material, and at least a reduced pressure suction port and a resin injection port are provided and sealed. Sealing step, (C) depressurizing step of depressurizing the molding part by suction from the depressurizing suction port, (D) heating step of heating the molding part including the molding die, (E) temperature Tm of the molding die and temperature Tv of the bag material And are both room temperature or higher and the temperature difference ΔT is within 10 ° C., a step of injecting a resin from a resin injection port and impregnating at least the reinforcing fiber base with the resin, (F) including a mold Predetermined temperature Tp above room temperature
A solidification step in which the resin is solidified while being held at c.
【請求項2】前記プリフォームが、少なくとも強化繊維
基材と樹脂拡散通路形成部材とからなることを特徴とす
る請求項1に記載のFRPの製造方法。
2. The FRP manufacturing method according to claim 1, wherein the preform comprises at least a reinforcing fiber base material and a resin diffusion passage forming member.
【請求項3】前記樹脂拡散通路形成部材が樹脂通路用溝
が形成されたコア材であり、前記(F)の固化工程後も
コア材をFRP内に残すことを特徴とする請求項2に記
載のFRPの製造方法。
3. The resin diffusion passage forming member is a core material in which a groove for a resin passage is formed, and the core material is left in the FRP even after the solidifying step (F). A method for producing the described FRP.
【請求項4】前記樹脂拡散通路形成部材が網目状シート
であり、前記(F)の固化工程後に網目状シートの樹脂
拡散通路形成部材をFRPから剥離除去することを特徴
とする請求項2または3に記載のFRPの製造方法。
4. The resin diffusion passage forming member is a mesh sheet, and the resin diffusion passage forming member of the mesh sheet is peeled off from the FRP after the solidifying step (F). The method for producing FRP according to item 3.
【請求項5】前記強化繊維基材が炭素繊維を含むことを
特徴とする請求項1〜4のいずれかに記載のFRPの製
造方法
5. The method for producing an FRP according to claim 1, wherein the reinforcing fiber base material contains carbon fiber.
【請求項6】前記(D)の加熱工程において、加熱媒体
が熱風であることを特徴とする請求項1〜5のいずれか
に記載のFRPの製造方法。
6. The method for producing FRP according to claim 1, wherein the heating medium in the heating step (D) is hot air.
【請求項7】前記(E)の注入工程において、前記成形
型の温度Tmまたはバッグ材の温度Tvが50〜160
℃の範囲内であり、前記(F)の固化工程において、前
記成形部の所定の温度Tpcが80〜180℃の範囲内
であることを特徴とする請求項1〜6のいずれかに記載
のFRPの製造方法。
7. The temperature Tm of the molding die or the temperature Tv of the bag material is 50 to 160 in the step (E) of injecting.
It is in the range of 0 ° C, and the predetermined temperature Tpc of the forming part is in the range of 80 to 180 ° C in the solidifying step of (F), according to any one of claims 1 to 6. FRP manufacturing method.
【請求項8】前記(E)の注入工程において、注入され
る樹脂が、前記成形型の温度Tmまたはバッグ材の温度
Tvの低い方の温度における樹脂粘度ηpが500mP
a・s以下であり、かつ前記成形型の温度Tmにおける
樹脂粘度と前記バッグ材の温度Tvにおける樹脂粘度と
の差Δηが200mPa・s以内であることを特徴とす
る請求項1〜7のいずれかに記載のFRPの製造方法。
8. In the step (E) of injecting, the resin to be injected has a resin viscosity ηp of 500 mP at the lower temperature of the molding die Tm or the bag material temperature Tv.
8. The difference Δη between the resin viscosity at the temperature Tm of the mold and the resin viscosity at the temperature Tv of the bag material is 200 mPa · s or less, which is less than or equal to a · s. A method for producing an FRP according to item 1.
【請求項9】前記(E)の注入工程において、注入した
樹脂がゲル化するまで前記減圧吸引口より吸引し続ける
ことを特徴とする請求項1〜8のいずれかに記載のFR
Pの製造方法。
9. The FR according to claim 1, wherein in the step (E), the suction is continued from the reduced pressure suction port until the injected resin gels.
Manufacturing method of P.
【請求項10】前記(F)の固化工程の後に、さらに少
なくとも次の(G)および(H)の工程を有することを
特徴とする請求項1〜9のいずれかに記載のFRPの製
造方法。 (G)固化したFRPを取り出す取出工程、 (H)取り出したFRPをさらに前記成形部の所定の温
度Tpcの温度より高く、かつ100℃以上の所定の温
度Tacに保ち、樹脂を完全に固化させる完全固化工
程。
10. The method for producing FRP according to claim 1, further comprising at least the following steps (G) and (H) after the solidification step of (F). . (G) Step of taking out the solidified FRP, (H) Keeping the taken-out FRP at a predetermined temperature Tac higher than the predetermined temperature Tpc of the molding part and not less than 100 ° C. to completely solidify the resin Complete solidification process.
【請求項11】最大長さが3m以上のFRPを成形する
ことを特徴とする請求項1〜10のいずれかに記載のF
RPの製造方法。
11. The FRP according to claim 1, wherein an FRP having a maximum length of 3 m or more is molded.
RP manufacturing method.
【請求項12】航空機、自動車、もしくは船舶の輸送機
器における一次構造部材、二次構造部材、外装部材、内
装部材またはそれらの部品として用いられるFRPを成
形することを特徴とする請求項1〜11のいずれかに記
載のFRPの製造方法。
12. A FRP used as a primary structural member, a secondary structural member, an exterior member, an interior member, or a component thereof in a transportation device of an aircraft, an automobile, or a ship, is molded. The method for producing FRP according to any one of 1.
JP2001238854A 2001-08-07 2001-08-07 Manufacturing method of FRP Expired - Lifetime JP4639549B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001238854A JP4639549B2 (en) 2001-08-07 2001-08-07 Manufacturing method of FRP
ES02755853.5T ES2596505T3 (en) 2001-08-07 2002-08-06 Procedure for manufacturing a large PRF element
CNB028025970A CN1319715C (en) 2001-08-07 2002-08-06 Method for producing upsized FRP member
EP02755853.5A EP1415782B1 (en) 2001-08-07 2002-08-06 Method for producing upsized frp member
US10/398,147 US7081218B2 (en) 2001-08-07 2002-08-06 Method for producing upsized FRP member
PCT/JP2002/008019 WO2003013820A1 (en) 2001-08-07 2002-08-06 Method for producing upsized frp member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238854A JP4639549B2 (en) 2001-08-07 2001-08-07 Manufacturing method of FRP

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010231431A Division JP4645775B2 (en) 2010-10-14 2010-10-14 Manufacturing method of FRP

Publications (2)

Publication Number Publication Date
JP2003048223A true JP2003048223A (en) 2003-02-18
JP4639549B2 JP4639549B2 (en) 2011-02-23

Family

ID=19069707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238854A Expired - Lifetime JP4639549B2 (en) 2001-08-07 2001-08-07 Manufacturing method of FRP

Country Status (1)

Country Link
JP (1) JP4639549B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271247A (en) * 2004-03-23 2005-10-06 Toray Ind Inc Frp reinforcing and repairing method
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2007504029A (en) * 2003-05-26 2007-03-01 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2007261015A (en) * 2006-03-28 2007-10-11 Toray Ind Inc Method for producing fiber-reinforced composite material
JP2008524016A (en) * 2004-12-16 2008-07-10 スネクマ・プロピュルシオン・ソリド Densification of fiber structure by resin transfer molding to produce thick parts of composite materials
JP2009096035A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Method for producing fiber-reinforced composite
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms
WO2010087361A1 (en) * 2009-01-29 2010-08-05 東レ株式会社 Rtm method and method for manufacturing fiber-reinforced resin molded body
JP2010540294A (en) * 2007-10-04 2010-12-24 エアバス・ユ―ケ―・リミテッド Molding method of molding material
JP2011507739A (en) * 2008-05-21 2011-03-10 シーメンス アクチエンゲゼルシヤフト Method of manufacturing composite material and windmill blade
JP2012513914A (en) * 2008-12-30 2012-06-21 エムアールエイ・システムズ・インコーポレイテッド Process and apparatus for manufacturing composite structures
JP2012528024A (en) * 2009-05-25 2012-11-12 エアバス オペレーションズ ゲーエムベーハー Apparatus and method for manufacturing composite elements
CN103286960A (en) * 2013-05-10 2013-09-11 哈尔滨飞机工业集团有限责任公司 Forming and pressurizing method of wall plate with omega-shaped reinforcing rib
CN106956444A (en) * 2016-01-11 2017-07-18 湖南大学 The molded all-in-one of fiber grid
JP2019104108A (en) * 2017-12-08 2019-06-27 本田技研工業株式会社 Manufacturing apparatus for thermoplastic resin material
JP2020001387A (en) * 2018-06-27 2020-01-09 グッドリッチ コーポレイション Composite panel and method for forming composite panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103306195A (en) * 2013-06-14 2013-09-18 金文成 FRP (fiber reinforced plastic) stiffening plate rubber vibration isolation support as well as manufacturing method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163028A (en) * 1987-11-07 1989-06-27 Mitsubishi Electric Corp Molding device
JPH04144723A (en) * 1990-10-08 1992-05-19 Mitsubishi Kasei Corp Manufacture of fiber-reinforced resin molded form
JPH07100838A (en) * 1993-10-01 1995-04-18 Mitsubishi Materials Corp Formation of foamed layer of double container and device thereof
JPH07117137A (en) * 1993-10-27 1995-05-09 Dainippon Ink & Chem Inc Molding of reinforced plastic molded product
JPH11501880A (en) * 1995-09-30 1999-02-16 ドイチェス ツェントルム フュア ルフト− ウント ラウムファールト エー ファウ Apparatus and method for producing large-area component elements by RTM method
JP2000043173A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Core material, frp structure using the same and manufacture thereof
JP2000343538A (en) * 1999-06-02 2000-12-12 Fjc:Kk Resin mold, molding method and injection port component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163028A (en) * 1987-11-07 1989-06-27 Mitsubishi Electric Corp Molding device
JPH04144723A (en) * 1990-10-08 1992-05-19 Mitsubishi Kasei Corp Manufacture of fiber-reinforced resin molded form
JPH07100838A (en) * 1993-10-01 1995-04-18 Mitsubishi Materials Corp Formation of foamed layer of double container and device thereof
JPH07117137A (en) * 1993-10-27 1995-05-09 Dainippon Ink & Chem Inc Molding of reinforced plastic molded product
JPH11501880A (en) * 1995-09-30 1999-02-16 ドイチェス ツェントルム フュア ルフト− ウント ラウムファールト エー ファウ Apparatus and method for producing large-area component elements by RTM method
JP2000043173A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Core material, frp structure using the same and manufacture thereof
JP2000343538A (en) * 1999-06-02 2000-12-12 Fjc:Kk Resin mold, molding method and injection port component

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504029A (en) * 2003-05-26 2007-03-01 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP4838719B2 (en) * 2003-05-26 2011-12-14 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2005271247A (en) * 2004-03-23 2005-10-06 Toray Ind Inc Frp reinforcing and repairing method
JP4733145B2 (en) * 2004-12-16 2011-07-27 スネクマ・プロピュルシオン・ソリド Densification of fiber structure by resin transfer molding to produce thick parts of composite materials
JP2008524016A (en) * 2004-12-16 2008-07-10 スネクマ・プロピュルシオン・ソリド Densification of fiber structure by resin transfer molding to produce thick parts of composite materials
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2007261015A (en) * 2006-03-28 2007-10-11 Toray Ind Inc Method for producing fiber-reinforced composite material
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms
US10016949B2 (en) 2007-10-04 2018-07-10 Airbus Operations Limited Method of moulding a charge
JP2010540294A (en) * 2007-10-04 2010-12-24 エアバス・ユ―ケ―・リミテッド Molding method of molding material
JP2009096035A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Method for producing fiber-reinforced composite
JP2011507739A (en) * 2008-05-21 2011-03-10 シーメンス アクチエンゲゼルシヤフト Method of manufacturing composite material and windmill blade
US8282874B2 (en) 2008-05-21 2012-10-09 Siemens Aktiengesellschaft Method for manufacturing a composite and a wind turbine blade
JP2012513914A (en) * 2008-12-30 2012-06-21 エムアールエイ・システムズ・インコーポレイテッド Process and apparatus for manufacturing composite structures
WO2010087361A1 (en) * 2009-01-29 2010-08-05 東レ株式会社 Rtm method and method for manufacturing fiber-reinforced resin molded body
KR20110118134A (en) * 2009-01-29 2011-10-28 도레이 카부시키가이샤 Rtm method and method for manufacturing fiber-reinforced resin molded body
US8574484B2 (en) 2009-01-29 2013-11-05 Toray Industries, Inc. RTM method and method for manufacturing fiber-reinforced resin molded body
JP5614282B2 (en) * 2009-01-29 2014-10-29 東レ株式会社 RTM molding method and method for producing fiber-reinforced resin molding
KR101582705B1 (en) 2009-01-29 2016-01-05 도레이 카부시키가이샤 Rtm method and method for manufacturing fiber-reinforced resin molded body
JP2012528024A (en) * 2009-05-25 2012-11-12 エアバス オペレーションズ ゲーエムベーハー Apparatus and method for manufacturing composite elements
CN103286960A (en) * 2013-05-10 2013-09-11 哈尔滨飞机工业集团有限责任公司 Forming and pressurizing method of wall plate with omega-shaped reinforcing rib
CN106956444A (en) * 2016-01-11 2017-07-18 湖南大学 The molded all-in-one of fiber grid
JP2019104108A (en) * 2017-12-08 2019-06-27 本田技研工業株式会社 Manufacturing apparatus for thermoplastic resin material
JP7078219B2 (en) 2017-12-08 2022-05-31 本田技研工業株式会社 Thermoplastic resin material manufacturing equipment
US11780124B2 (en) 2017-12-08 2023-10-10 Honda Motor Co., Ltd. Apparatus for manufacturing thermoplastic resin material
JP2020001387A (en) * 2018-06-27 2020-01-09 グッドリッチ コーポレイション Composite panel and method for forming composite panel
JP7265425B2 (en) 2018-06-27 2023-04-26 グッドリッチ コーポレイション Composite panel and method of forming composite panel

Also Published As

Publication number Publication date
JP4639549B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
EP1415782B1 (en) Method for producing upsized frp member
JP2003048223A (en) Frp manufacturing method
JP4639551B2 (en) Method for producing CFRP skin-stringer structural member
CN103192536B (en) Microwave high-pressure intermittent curing method for fiber-reinforced resin base composite material and die
KR101995529B1 (en) Fibre reinforced composite moulding
CN103862764B (en) Method for preparing honeycomb interlayer structure composite material by adopting liquid formation technology
KR101849707B1 (en) Method for producing a composite material
US20120175824A1 (en) Method of and Apparatus for Making a Composite Material
US20100080980A1 (en) Molding process for core-containing composites and composites formed thereby
JP6483114B2 (en) Continuous production method of sandwich-shaped profile with foam core and profile filled with hard foam
CA2946501A1 (en) Composite structures with stiffeners and method of making the same
AU2003243331A1 (en) Controlled atmospheric pressure resin infusion process
EP2842711B1 (en) Apparatus and method for producing a composite material aircraft component
JP2006305867A (en) Manufacturing method of fiber reinforced plastic
EP3647012A1 (en) Composite material production method and composite material
JP2002307463A (en) Method for producing fiber-reinforced resin
CN207128360U (en) A kind of core filled composite material
CN116214959A (en) Preparation method of all-carbon interlayer composite material
JP4761178B2 (en) Method for manufacturing FRP large planar body
JP4645775B2 (en) Manufacturing method of FRP
Uzay et al. Advanced technologies for fiber reinforced polymer composite manufacturing
WO2023034630A1 (en) Film-bonded infusion
JP3124301B2 (en) Manufacturing method of composite molded products
Costantino et al. Composite processing: state of the art and future trends
Rajpurohit Fiber Reinforced Composites: Advances in Manufacturing Techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

EXPY Cancellation because of completion of term