JP2006305867A - Manufacturing method of fiber reinforced plastic - Google Patents
Manufacturing method of fiber reinforced plastic Download PDFInfo
- Publication number
- JP2006305867A JP2006305867A JP2005131250A JP2005131250A JP2006305867A JP 2006305867 A JP2006305867 A JP 2006305867A JP 2005131250 A JP2005131250 A JP 2005131250A JP 2005131250 A JP2005131250 A JP 2005131250A JP 2006305867 A JP2006305867 A JP 2006305867A
- Authority
- JP
- Japan
- Prior art keywords
- thermosetting resin
- mold
- preform
- frp
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、軽量、高強度、高剛性な繊維強化プラスチックを、高精度、低コスト、環境に優しく製造する方法に関するものである。 The present invention relates to a method for producing a lightweight, high-strength, high-rigidity fiber-reinforced plastic with high accuracy, low cost, and environmental friendliness.
繊維強化プラスチック(以下、FRPと略す)は軽量でありながら剛性や強度、耐衝撃性などの機械的性質が優れているため、宇宙機部材、航空機部材、自動車部材、鉄道車両部材、船舶部材、スポーツ用具部材などの数多くの分野で広く用いられている。 Fiber reinforced plastic (hereinafter abbreviated as FRP) is lightweight but has excellent mechanical properties such as rigidity, strength, and impact resistance. Therefore, spacecraft members, aircraft members, automobile members, railway vehicle members, ship members, Widely used in many fields such as sports equipment.
特に熱硬化性樹脂硬化物をマトリックス樹脂として用いたFRPは熱可塑性樹脂をマトリックス樹脂として用いたFRPより機械的性質、環境特性に優れたものが多く、構造材用途には熱硬化性樹脂硬化物をマトリックス樹脂として用いることが多い。 In particular, FRP using a cured thermosetting resin as a matrix resin has many mechanical properties and environmental characteristics better than FRP using a thermoplastic resin as a matrix resin. Is often used as a matrix resin.
熱硬化性樹脂硬化物をマトリックス樹脂として用いたFRPの製造には強化繊維基材と室温では半固形状で流動しない高粘度、高粘性の未硬化の樹脂からなる中間体であるプリプレグやSMC(シートモールディングコンパウンド)などを作成し、これらを積層などして加熱硬化する方法が広く用いられている。しかし、プリプレグやSMCシートといった中間体の製造費用が必要なため、部材のコストが高く、航空機や高級スポーツ用部材の生産には適用しうるが、自動車などの大量生産には適さない。さらに、強化繊維には室温で高粘性の樹脂が付着しているため、強化繊維が十分変形できず、従って、複雑形状の部材に適用することは非常に困難であった。 For the production of FRP using a cured thermosetting resin as a matrix resin, a prepreg or SMC (an intermediate made of a high-viscosity, high-viscosity, uncured resin that does not flow in a semi-solid state at room temperature with a reinforcing fiber substrate Sheet molding compounds) are prepared, and these are laminated and heat cured. However, since manufacturing costs for intermediates such as prepregs and SMC sheets are required, the cost of the members is high, and it can be applied to the production of aircraft and high-grade sports components, but is not suitable for mass production of automobiles and the like. Furthermore, since the high-viscosity resin adheres to the reinforcing fiber at room temperature, the reinforcing fiber cannot be sufficiently deformed, and therefore it is very difficult to apply it to a member having a complicated shape.
このため、樹脂を含まない/付着していない強化繊維(ドライ基材と業界では称する)を所定形状に賦形したプリフォームを製造し、これを金型内に配置し、低粘度の液状熱硬化性樹脂を金型内に注入、加熱硬化させてFRP部材を成形するRTM(レジントランスファーモールディング)法が注目されている(特許文献1)。RTM法では、ドライ基材を使用するため、3次元の複雑形状に連続の強化繊維を賦形することができる。プリプレグ成形のように連続繊維を切断する必要はないので、部材の物性も向上する。さらに、RTM法は、室温で液状の樹脂を100℃程度まで加熱して金型内部に注入するため、樹脂の粘度は数百センチポイズ以下にまで低下し、強化繊維の内分まで樹脂が含浸し(行き亘り)、ボイドや空洞、未含浸などの欠陥の少ない軽量部材が製造できる。さらに、金型内を真空にするなどの工程を併用することで、ボイドや空洞がより少ない高品位の構造部材を製造することが可能となる。 For this reason, a preform in which a reinforcing fiber not containing / adhering resin (referred to as a dry base material in the industry) is formed into a predetermined shape is manufactured and placed in a mold, and a low-viscosity liquid heat An RTM (resin transfer molding) method in which a curable resin is injected into a mold and cured by heating to form an FRP member has attracted attention (Patent Document 1). In the RTM method, since a dry base material is used, continuous reinforcing fibers can be shaped into a three-dimensional complicated shape. Since there is no need to cut the continuous fiber as in the prepreg molding, the physical properties of the member are also improved. Furthermore, in the RTM method, a liquid resin at room temperature is heated to about 100 ° C. and injected into the mold, so that the viscosity of the resin is reduced to several hundred centipoises or less, and the resin is impregnated to the inside of the reinforcing fiber. (Wide), lightweight members with few defects such as voids, cavities and unimpregnated can be manufactured. Furthermore, by using a process such as evacuating the inside of the mold, a high-quality structural member with fewer voids and cavities can be manufactured.
しかしながら、RTM法は、樹脂の注入工程が必要であるため、金型が複雑高価であり、注入工程に用いるチューブやパイプなどの成形副資材が必要となる。加えて、成形品となる樹脂以外にも注入路などに残る無駄な樹脂が多く発生し、コストアップの要因となる。また、熱硬化樹脂の場合、樹脂は再利用できず、一バッチごとの掃除も労力を要し、コストアップの要因となる。成形した部材に注入口や吸引口の痕が残るという欠点もある。さらに、室温で液状の樹脂を扱うので、容器や配管から漏れ出た樹脂で現場が汚れることが多いといった問題がある。 However, since the RTM method requires a resin injection step, the mold is complicated and expensive, and molding auxiliary materials such as tubes and pipes used in the injection step are required. In addition, in addition to the resin that becomes the molded product, a lot of useless resin that remains in the injection path or the like is generated, resulting in a cost increase. Further, in the case of a thermosetting resin, the resin cannot be reused, and cleaning for each batch requires labor, resulting in an increase in cost. There is also a drawback that traces of the injection port and the suction port remain in the molded member. Furthermore, since liquid resin is handled at room temperature, there is a problem that the site is often contaminated with resin leaking from containers and piping.
一方、強化繊維基材と未硬化の熱硬化性樹脂からなる樹脂フィルムを型内に配置し、加熱により該樹脂フィルムを溶融した熱硬化性樹脂を強化繊維基材に含浸させた後、硬化させるRFI(レジンフィルムインフュージョン)法が新たに開発されている(特許文献2)。RTMのように室温で液状の熱硬化性樹脂を用いないので、現場が汚れることは少なく、樹脂調合などの手間も省ける。 On the other hand, a resin film comprising a reinforcing fiber base and an uncured thermosetting resin is placed in a mold, and the reinforcing fiber base is impregnated with a thermosetting resin obtained by melting the resin film by heating, and then cured. An RFI (resin film infusion) method has been newly developed (Patent Document 2). Since a thermosetting resin that is liquid at room temperature is not used like RTM, the site is less likely to get dirty, and it is possible to save time and labor for resin preparation.
しかしながら、RFI法に用いる熱硬化性樹脂はフィルム状であるため、3次元形状に所定量配置することが難しく、平板に近い形状で用いられることが多い。さらに、樹脂フィルムは薄く、自立しないため、3次元形状のままで取り扱うことが不可能で、型への配置などの手間がかかる。また、樹脂は室温で固体であるため、加熱しても粘度が十分低下せず、強化繊維基材への樹脂含浸が不十分となり、RTMのように、ボイドなどの欠陥の少ない部材を得られないといった問題がある。かかる問題を解決するために、強化繊維基材と熱硬化性樹脂フィルムを交互に積層して、樹脂の含浸距離を短くするという対策(特許文献3)も考案されているが、積層の手間がかかりすぎる結果、コストアップになるという問題がある。
本発明は、かかる背景技術の問題点に鑑み、軽量で高強度、高剛性のFRPを高生産性の下で製造することができるFRPの製造方法を提供せんとするものである。なお、本発明によれば、室温で粘度の低い液状の熱硬化性樹脂を用いて含浸するので、複雑形状の成形品を容易に成形することができ、さらに樹脂や成形副資材の使用量を従来より大幅に軽減することができ、かつ、ボイドなどの欠点の少ない成形体を提供することができる。 In view of the problems of the background art, an object of the present invention is to provide an FRP manufacturing method capable of manufacturing a lightweight, high-strength, high-rigidity FRP with high productivity. According to the present invention, since the liquid thermosetting resin having a low viscosity at room temperature is impregnated, a molded product having a complicated shape can be easily formed, and the amount of resin and molding auxiliary material used can be reduced. It is possible to provide a molded body that can be significantly reduced from the conventional ones and has few defects such as voids.
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1) 室温で液状である熱硬化性樹脂を未硬化状態で所定の形状に冷却・固化することにより熱硬化性樹脂プリフォームを形成した後、該熱硬化性樹脂プリフォームを、強化繊維基材に積層させる形で配置して成形型内に装填した後、該成形型を昇温・加圧して、該熱硬化性樹脂プリフォームを溶融、液状化した熱硬化性樹脂を前記強化繊維基材に含浸させ、次いで前記熱硬化性樹脂を硬化させることを特徴とする繊維強化プラスチックの製造方法。
(2) 前記強化繊維基材が、少なくとも一部に未含浸部を有する強化繊維基材である前記(1)に記載の繊維強化プラスチックの製造方法。
(3) 前記熱硬化性樹脂プリフォームが、担持体に熱硬化性樹脂液を含浸させて所定の形状に賦形し、冷却・固化したものである前記(1)または(2)のいずれかに記載の繊維強化プラスチックの製造方法。
(4) 前記熱硬化性樹脂プリフォームが、搬送時、結露防止用材料に覆われていることを特徴とする、前記(1)〜(3)のいずれかに記載の繊維強化プラスチックの製造方法。
(5) 前記熱硬化性樹脂が、エポキシ樹脂である前記(1)〜(4)のいずれかに記載の繊維強化プラスチックの製造方法。
(6) 前記強化繊維基材が、少なくとも炭素繊維を含むものである前記(1)〜(5)のいずれかに記載の繊維強化プラスチックの製造方法。
(7) 軟質の多孔質シートを担持体として用いる前記(3)に記載の繊維強化プラスチックの製造方法。
(8) 前記(1)〜(7)のいずれかに記載の繊維強化プラスチックの製造方法を用いて製造されたものであることを特徴とする繊維強化プラスチック。
The present invention employs the following means in order to solve such problems. That is,
(1) After forming a thermosetting resin preform by cooling and solidifying a thermosetting resin that is liquid at room temperature into a predetermined shape in an uncured state, the thermosetting resin preform After being placed in a form laminated to the material and loaded into the mold, the mold is heated and pressurized to melt and liquefy the thermosetting resin preform, and the curable fiber base A method for producing a fiber reinforced plastic, comprising impregnating a material and then curing the thermosetting resin.
(2) The method for producing a fiber-reinforced plastic according to (1), wherein the reinforcing fiber substrate is a reinforcing fiber substrate having an unimpregnated part at least in part.
(3) Either of the above (1) or (2), wherein the thermosetting resin preform is obtained by impregnating a carrier with a thermosetting resin liquid, shaping the carrier into a predetermined shape, and cooling and solidifying. The manufacturing method of the fiber reinforced plastic as described in 2.
(4) The method for producing a fiber-reinforced plastic according to any one of (1) to (3), wherein the thermosetting resin preform is covered with a dew condensation prevention material during transportation. .
(5) The method for producing a fiber-reinforced plastic according to any one of (1) to (4), wherein the thermosetting resin is an epoxy resin.
(6) The method for producing a fiber-reinforced plastic according to any one of (1) to (5), wherein the reinforcing fiber substrate includes at least carbon fiber.
(7) The method for producing a fiber-reinforced plastic according to (3), wherein a soft porous sheet is used as a carrier.
(8) A fiber-reinforced plastic manufactured using the method for manufacturing a fiber-reinforced plastic according to any one of (1) to (7).
本発明によれば、自動車やスポーツ用具など多方面に好適に使用されるFRPを高生産性の下に提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, FRP used suitably for many fields, such as a motor vehicle and sports equipment, can be provided under high productivity.
本発明は、前記課題、つまり軽量で高強度、高剛性のFRPを高生産性で製造することができるFRPの製造方法について、鋭意検討し、室温で液状である熱硬化性樹脂を、予め所定の形状に冷却・固化して熱硬化性樹脂プリフォームを形成して、この冷却・固化された熱硬化性樹脂プリフォームを、冷却・固化状態のままで成形型内に強化繊維基材に積層させる形で配置させて、その後、該成形型を昇温・加圧して、熱硬化性樹脂プリフォームの樹脂を液化・含浸させ、次いで該熱硬化性樹脂を硬化させてみたところ、かかる課題を一挙に解決することができる上に、複雑形状のFRPにおいても、ボイドなどの欠点を少なく、容易に提供することができることを究明したものである。 The present invention has intensively studied the above-mentioned problem, that is, a method for producing FRP capable of producing a lightweight, high-strength, and high-rigidity FRP with high productivity. A thermosetting resin that is liquid at room temperature is determined in advance. A thermosetting resin preform is formed by cooling and solidifying into a shape of the same, and this cooled and solidified thermosetting resin preform is laminated on the reinforcing fiber base in the mold in the cooled and solidified state. After that, when the mold was heated and pressurized, the resin of the thermosetting resin preform was liquefied and impregnated, and then the thermosetting resin was cured. In addition to being able to solve all at once, it has been clarified that even a complex-shaped FRP can be easily provided with fewer defects such as voids.
本発明において、室温とは、通常室内でとりうる温度を想定しており、5〜40℃とする。すなわち室温で液状であるとは、5〜40℃の範囲で液状であることを意味するものである。 In the present invention, the room temperature is assumed to be a temperature that can normally be taken indoors, and is set to 5 to 40 ° C. That is, being liquid at room temperature means being liquid in the range of 5 to 40 ° C.
次に、本発明で液状とは、測定される熱硬化性樹脂と同じ温度状態にある比重7以上の金属片を、該熱硬化性樹脂の上に置き、重力で瞬時に埋没するとき、その熱硬化性樹脂は液状であると定義し、また、固化状態とは、前記同一手段により、瞬時には埋没することがない状態を固化状態と定義する。また、本発明で冷却とは室温以下に温度を下げることと定義する。 Next, in the present invention, the liquid state means that when a piece of metal having a specific gravity of 7 or more in the same temperature state as the thermosetting resin to be measured is placed on the thermosetting resin and instantaneously buried by gravity, The thermosetting resin is defined as a liquid, and the solidified state is defined as a solidified state in which the thermosetting resin is not immediately buried by the same means. In the present invention, cooling is defined as lowering the temperature below room temperature.
また、所定の形状とは、FRPの製造品の製品形状を模した形状、または、製品形状が複雑である場合は、いくつかに分解した形状をも意味することをさす。実質的に未硬化で、かつ、冷却され固化状態にある熱硬化性樹脂が、所定の形状であるものを熱硬化性樹脂プリフォームと定義する。 In addition, the predetermined shape means a shape imitating the product shape of a manufactured product of FRP, or a complicated shape when the product shape is complicated. A thermosetting resin preform that is substantially uncured and is in a predetermined shape after being cooled and solidified is defined as a thermosetting resin preform.
なお、熱硬化性樹脂が未硬化であるとは、熱硬化性樹脂の硬化反応率rが20%以下であることを示す。ただし、硬化反応率rとは示差走査熱量計法(DSC)測定による硬化発熱量を用いて測定した測定値より下記の式で求められる硬化反応の進行度合いである。 In addition, that the thermosetting resin is uncured indicates that the curing reaction rate r of the thermosetting resin is 20% or less. However, the curing reaction rate r is the degree of progress of the curing reaction obtained by the following formula from the measured value measured using the calorific value by the differential scanning calorimetry (DSC) measurement.
反応率r(%)=(Hi−Ht)/Hi×100
Hi:熱硬化性樹脂主剤と硬化剤を均一に混合した直後の熱硬化性樹脂の硬化発熱量
Ht:熱硬化性樹脂の硬化発熱量
ここでいう示差走査熱量計法(DSC)とは、試料と熱的に不活性な基準物質をそれぞれ相等しい容器に入れ、両者を等価な条件下におき、周囲の温度を一定速度で上昇させながら、あるいは下降させながら、両者間の温度差(示差温度)を連続的に測定してゆき、試料の温度変化から温度差−時間曲線に囲まれる面積から吸、発熱量を算出する方法である。 かかる方法を用いて、所定の反応条件で反応させる場合の熱硬化性樹脂の硬化発熱量を測定することができる。測定条件としては昇温速度が10℃/分とし測定温度範囲25℃〜300℃とする。
Reaction rate r (%) = (Hi−Ht) / Hi × 100
Hi: Curing calorific value of the thermosetting resin immediately after mixing the thermosetting resin main component and the curing agent uniformly. Ht: Curing calorific value of the thermosetting resin. The differential scanning calorimetry (DSC) referred to here is a sample. And a thermally inactive reference substance in the same container, put them under equivalent conditions, and increase or decrease the ambient temperature at a constant rate, and the temperature difference between them (differential temperature) ) Is continuously measured, and the amount of absorption and heat generation is calculated from the area surrounded by the temperature difference-time curve from the temperature change of the sample. By using such a method, it is possible to measure the amount of heat generated by curing the thermosetting resin when the reaction is performed under predetermined reaction conditions. As measurement conditions, the rate of temperature rise is 10 ° C./min, and the measurement temperature range is 25 ° C. to 300 ° C.
本発明にて用いる室温で液状である熱硬化性樹脂は、比較的安価なものが多く世の中に出回っており、これらの熱硬化性樹脂を利用することができれば、FRPの低コスト化につながる。また、室温で液状である熱硬化性樹脂は加熱を行うことによりさらに低粘度となるため、強化繊維基材への含浸に適しており、ボイドや空洞、未含浸などの欠陥の少ない軽量部材を製造することができる。 Many thermosetting resins that are liquid at room temperature used in the present invention are relatively inexpensive, and if these thermosetting resins can be used, the cost of FRP can be reduced. In addition, thermosetting resins that are liquid at room temperature have a lower viscosity when heated, so they are suitable for impregnation of reinforcing fiber bases, and lightweight members with few defects such as voids, cavities, and unimpregnated are used. Can be manufactured.
しかしながら、液状の熱硬化性樹脂を強化繊維基材に注入する方式では、注入直前に熱硬化性樹脂主剤と硬化剤を混合しなくてはならず、また液状であるため、現場で扱いにくい。さらに、混合時の温度管理を十分に行わないと、自己反応熱で反応が加速してしまい、硬化してしまう可能性もある。 However, in the method of injecting a liquid thermosetting resin into the reinforcing fiber substrate, the thermosetting resin main agent and the curing agent must be mixed immediately before injection, and since it is liquid, it is difficult to handle on site. Furthermore, if the temperature control at the time of mixing is not sufficiently performed, the reaction is accelerated by the self-reaction heat and may be cured.
そこで、本発明では、所定の温度で熱硬化性樹脂主剤と硬化剤を均一に混合後、冷却して、未硬化状態で固化させるという手段を採用することによって、該熱硬化性樹脂の硬化反応を止め、なおかつ、室温以上の温度雰囲気では簡単に液状化することができ、それによって、RTM法適用時と同様に強化繊維基材への含浸性能が保たれるという効果を奏させしめることに成功したところに特徴を有するものである。 Therefore, in the present invention, the thermosetting resin is cured by uniformly mixing the thermosetting resin main agent and the curing agent at a predetermined temperature, and then cooling and solidifying in an uncured state. In addition, it can be easily liquefied in an atmosphere of room temperature or higher, thereby achieving the effect of maintaining the impregnation performance of the reinforcing fiber base material in the same manner as when the RTM method is applied. It has the characteristics in that place.
また、RTM法では、成形型への注入ポイントは点であるのに対し、樹脂を含浸せしめるべき強化繊維基材は面であるために、注入孔の位置や吸入孔の位置の工夫が必要になるが、これに対して、本発明では強化繊維基材に積層する形で配置されるので、熱硬化性樹脂プリフォームの全面で強化繊維基材に接しているため、精度よく樹脂含浸が可能となる。 In addition, in the RTM method, the injection point into the mold is a point, but the reinforcing fiber base material to be impregnated with the resin is the surface, so it is necessary to devise the position of the injection hole and the position of the suction hole In contrast, in the present invention, since it is arranged in a form that is laminated on the reinforcing fiber base, the entire surface of the thermosetting resin preform is in contact with the reinforcing fiber base, so that the resin can be impregnated with high accuracy. It becomes.
本発明では、RTM法のような注入工程に用いられるチューブやパイプなどの副資材は必要なく、また熱硬化性樹脂を遠くまで流すためのメディア(樹脂が流れやすいようなスペースを確保する副資材、メッシュ状物など)も必要もないので、使用する副資材量を削減することができる利点がある。 In the present invention, secondary materials such as tubes and pipes used in the injection process such as the RTM method are not necessary, and a medium for flowing a thermosetting resin far away (secondary material for ensuring a space where the resin can easily flow). In addition, there is an advantage that the amount of secondary materials to be used can be reduced.
次に、本発明の特徴は、熱硬化性樹脂を冷却・固化する際に、所定の形状に賦形し、熱硬化性樹脂プリフォームとするところにある。すなわち、室温で液状の熱硬化性樹脂主剤と硬化剤を均一に混合した熱硬化性樹脂を所定の形状に賦形した熱硬化性樹脂プリフォームを、冷却して、未硬化状態で固化させるものである。 Next, the feature of the present invention is that when the thermosetting resin is cooled and solidified, it is shaped into a predetermined shape to form a thermosetting resin preform. That is, a thermosetting resin preform formed by uniformly shaping a thermosetting resin in which a liquid thermosetting resin main component and a curing agent are uniformly mixed at room temperature into a predetermined shape is cooled and solidified in an uncured state. It is.
この熱硬化性樹脂プリフォームは、成形型へ装填する際、強化繊維基材と共に積層、配置するだけで、位置決めが可能であり、生産性を著しく向上させることができる。さらに、この熱硬化性樹脂プリフォームを使用すれば、強化繊維基材へ含浸すべき樹脂量を制御することができるため、RTM法などに比べ劇的に樹脂の無駄が削減される一方、バッチごとのVf(繊維体積含有率)ムラなどを少なくすることができ、高精度のFRPを製造することができる。また、熱硬化性樹脂自体は室温以上の温度では液状であるため、時間の経過と共に形状保持が困難になるため、素速く成形型に装填して、含浸、さらに硬化させてFRP化することが重要になる。 When this thermosetting resin preform is loaded into a mold, it can be positioned by simply laminating and arranging it together with a reinforcing fiber base material, and productivity can be significantly improved. Furthermore, if this thermosetting resin preform is used, the amount of resin to be impregnated into the reinforcing fiber base can be controlled, so that waste of resin can be dramatically reduced compared to the RTM method and the like. Vf (fiber volume content) unevenness and the like can be reduced, and a highly accurate FRP can be manufactured. In addition, since the thermosetting resin itself is liquid at room temperature or higher, it becomes difficult to maintain its shape over time, so it can be quickly loaded into a mold, impregnated, further cured, and made into FRP. Become important.
本発明においては、該熱硬化性樹脂プリフォームと強化繊維基材を成形型に積層・装填して、該熱硬化性樹脂プリフォームを該強化繊維基材をへ含浸させる際に、該成形型を、昇温と加圧することによって、該樹脂プリフォームを溶融・液化し、さらに硬化させるところに特徴を有するものである。 In the present invention, when the thermosetting resin preform and the reinforcing fiber base material are laminated and loaded in a mold and the thermosetting resin preform is impregnated into the reinforcing fiber base material, Is characterized in that the resin preform is melted and liquefied by heating and pressurizing and further cured.
たとえば、FRP型などの熱伝導性の高くない型に、熱硬化性樹脂プリフォームを配置すれば、室温で液状になるため、含浸は可能である。しかしながら、素速く含浸を行いたい場合や、硬化を促進したい場合は、加熱手段を有する金属製の型を用いることで、冷却により固化した熱硬化性樹脂プリフォームを素速く溶融し、樹脂粘度を低下させることができる。金属性の型は熱伝導率が高く、温度ムラが少なく、品位の高いFRPを製造することができる。また、加圧(バギングなどの成形型内の減圧を含む)を行うことで、強化繊維基材への含浸が促進される。 For example, if a thermosetting resin preform is placed on a mold that does not have high thermal conductivity, such as an FRP mold, it becomes liquid at room temperature and can be impregnated. However, if you want to impregnate quickly or accelerate curing, use a metal mold with a heating means to quickly melt the thermosetting resin preform solidified by cooling and increase the resin viscosity. Can be reduced. A metallic mold has a high thermal conductivity, has little temperature unevenness, and can produce a high-quality FRP. Moreover, the impregnation into the reinforcing fiber base is promoted by applying pressure (including pressure reduction in the mold such as bagging).
本発明のかかる熱硬化性樹脂プリフォームは、室温で液状である熱硬化性樹脂を凝固点以下まで冷却し、固化させて作成しても構わないが、薄殻上の熱硬化性樹脂プリフォームの場合、室温環境での搬送時には樹脂が溶けだし剛性が急激に失われ、取り扱いにくくなる。また、アルコール分などを含む樹脂などには−20℃を下回るような低温でも固化しにくいものがあり、熱硬化性樹脂のみでは、搬送時の剛性が保持できないこともある。そこで、所定の温度で液状である熱硬化性樹脂と硬化剤を混合した後、担持体と接触させて冷却・固化することによって、熱硬化性樹脂の凝固点を上回る温度であっても、ある程度の剛性を保持することが可能となり、なおかつ、型に熱硬化性樹脂プリフォームを配置する際も、表面の樹脂が液状化しても内部の固化した樹脂と担持体との複合効果で剛性を保持することが可能となる。成形が実施され熱硬化性樹脂が硬化した後、担持体はFRPと分離されてもよいし、FRPの一部として一体化されていてもよい。すなわち、担持体とは、搬送性・取扱い性を向上させるために熱硬化性樹脂プリフォームの骨格となって剛性を向上させるものと定義する。 Such a thermosetting resin preform of the present invention may be prepared by cooling and solidifying a thermosetting resin that is liquid at room temperature to a temperature below the freezing point. In this case, the resin starts to melt during transportation in a room temperature environment, the rigidity is rapidly lost, and the handling becomes difficult. In addition, some resins containing alcohol and the like are difficult to solidify even at a low temperature below -20 ° C., and the thermosetting resin alone may not maintain rigidity during transportation. Therefore, after mixing a thermosetting resin that is liquid at a predetermined temperature and a curing agent, it is brought into contact with the carrier and cooled and solidified, so that even at a temperature above the freezing point of the thermosetting resin, a certain amount of Rigidity can be maintained, and even when a thermosetting resin preform is placed on the mold, even if the resin on the surface is liquefied, the rigidity is maintained by the combined effect of the solidified resin inside and the carrier. It becomes possible. After the molding is performed and the thermosetting resin is cured, the carrier may be separated from the FRP, or may be integrated as a part of the FRP. In other words, the carrier is defined as one that improves the rigidity as a skeleton of a thermosetting resin preform in order to improve transportability and handling.
特に、軟質の多孔質シートが担持体として扱いやすい。かかる多孔質シートとしては、不織布でもよいが、好ましくは樹脂発泡体、特に可撓性に優れたエラストマー樹脂発泡体、中でもポリウレタンフォームがよい。本発明において軟質とは、ひずみ0.1〜1%間の圧縮弾性率にして10MPa以下であることを示す。室温で液状である熱硬化性樹脂を軟質の多孔質シートに吸い込ませ、賦形して冷却することで容易に熱硬化性樹脂プリフォームを得ることができる。こうして得られた熱硬化性樹脂プリフォームは搬送性に優れ、一旦成形型に装填し加圧した際には、容易に多孔質シートが変形し、溶融した熱硬化性樹脂が絞り出されて、強化繊維基材に含浸される。 In particular, a soft porous sheet is easy to handle as a carrier. Such a porous sheet may be a non-woven fabric, but is preferably a resin foam, particularly an elastomer resin foam excellent in flexibility, especially polyurethane foam. In the present invention, the term “soft” means that the compressive elastic modulus between strains is 0.1 to 1% and is 10 MPa or less. A thermosetting resin preform can be easily obtained by sucking a thermosetting resin that is liquid at room temperature into a soft porous sheet, shaping, and cooling. The thermosetting resin preform thus obtained has excellent transportability, and once loaded into a mold and pressed, the porous sheet is easily deformed, and the molten thermosetting resin is squeezed out, The reinforcing fiber substrate is impregnated.
さらに本発明の熱硬化性樹脂プリフォームは、搬送する時には、結露防止用材料に被覆して搬送するのが好ましい。すなわち、かかる熱硬化性樹脂プリフォームは室温以下に冷却されているため、湿度の高い部屋で放置すると、水滴が表面に付着する。水と親和性の高い樹脂、例えばフェノール樹脂を用いる場合は、それほど問題にはならないこともあるが、通常、水の存在が未硬化や物性や品位の低下の原因となることが多い。好ましくは湿度の低い環境で成形を行うべきだが、高温多湿環境下で成形を実施せざるを得ないことも多い。広い作業所すべてを湿度管理するのは簡単なことではない。特に、冷却装置から熱硬化性樹脂プリフォームを取り出し、成形型へ搬送するまでに結露により水滴が該熱硬化性樹脂プリフォームにつかないように、外気を遮断する結露防止用材料を具することによって、該熱硬化性樹脂プリフォームに水滴が触れることなく、精度よくFRPを製造することが可能となる。 Furthermore, when the thermosetting resin preform of the present invention is transported, it is preferably transported while being covered with a dew condensation prevention material. That is, since such a thermosetting resin preform is cooled to room temperature or lower, when left in a room with high humidity, water droplets adhere to the surface. In the case of using a resin having a high affinity for water, for example, a phenol resin, it may not be a problem, but usually the presence of water often causes uncured properties and deterioration of physical properties and quality. Preferably, the molding should be performed in an environment with low humidity, but there are many cases where the molding must be carried out in a high temperature and high humidity environment. It is not easy to manage the humidity of all large workplaces. In particular, by taking out the thermosetting resin preform from the cooling device and providing a material for preventing condensation so that water droplets do not adhere to the thermosetting resin preform due to condensation before being transported to the mold. The FRP can be produced with high accuracy without water droplets coming into contact with the thermosetting resin preform.
本発明のFRPとしては、熱硬化性樹脂と強化繊維基材で構成されているものであるが、該熱硬化性樹脂がエポキシ樹脂であり、該強化繊維基材が少なくとも炭素繊維を含む強化繊維基材で構成されているのが好ましい。 The FRP of the present invention is composed of a thermosetting resin and a reinforced fiber base material. The thermosetting resin is an epoxy resin, and the reinforced fiber base material contains at least carbon fibers. It is preferably composed of a base material.
すなわち、かかるFRPのなかでも、もっとも軽量化効果を望めるのが、炭素繊維を含む強化繊維基材とエポキシ樹脂の組合せからなるCFRP(炭素繊維強化プラスチック)である。すなわち、炭素繊維は比強度、比剛性に優れており、比較的高剛性なエポキシ樹脂との相性がよく、高性能なFRPを作成することが可能となる。 That is, among such FRPs, CFRP (carbon fiber reinforced plastic) made of a combination of a reinforced fiber base material containing carbon fibers and an epoxy resin is most desired to have a light weight effect. That is, carbon fiber is excellent in specific strength and specific rigidity, has a good compatibility with a relatively high rigidity epoxy resin, and can produce a high-performance FRP.
次に、本発明のFRPの製造方法の一例を、図面を参照しながら説明する。図1は、本発明におけるFRPの製造方法の手順の一例を示す図であり、A)、B)、C)、D)、E)、F)の順に工程が続く。 Next, an example of the manufacturing method of FRP of this invention is demonstrated, referring drawings. FIG. 1 is a diagram showing an example of the procedure of the method for producing FRP in the present invention, and the steps continue in the order of A), B), C), D), E), and F).
図1A)に示す工程は、所定の温度において液状である熱硬化性樹脂主剤1aを硬化剤1bと混合し、熱硬化性樹脂2を調製する過程である。硬化反応があまり進まないうちに均一に混合することが好ましい。また、予め熱硬化性樹脂1aや硬化剤1bを真空脱泡しておいてもよい。熱硬化性樹脂2中に空気を含有させないことによって、最終的なFRPの成形品の品位を向上させることができる。熱硬化性樹脂としてはエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂などが用いられる。
The process shown in FIG. 1A) is a process of preparing the
図1B)に示す工程では、図1A)に示す工程で調製された未硬化の熱硬化性樹脂2を賦形する。図では賦形型3に液状の熱硬化性樹脂2を流し込み、賦形を行っているが、その他にも、凝固点以下に冷却、固化した熱硬化性樹脂2を粉砕し、コールドプレスで賦形を実施する手法、平板状に鋳て冷却、固化させた熱硬化性樹脂2を室温で若干軟化させてプレスで賦形を実施するなどの手法にて賦形することができる。
In the step shown in FIG. 1B), the uncured
またこの工程では熱硬化性樹脂2のみを用いて賦形することができるが、熱硬化性樹脂2と担持体を接触させて、賦形することもできる。担持体自体がすでに賦形されており、熱硬化性樹脂2を浸み込ますことによって、熱硬化性樹脂プリフォームを賦形することもできる。担持体としては、軟質の多孔質フォームや、フィルム状物、メッシュ状物、球状や繊維状のフィラーなどが好ましい。軟質の多孔質フォームには液状の熱硬化性樹脂2をしみこませることによって賦形が可能になる。フィルム状物やメッシュ状物は賦形型内に配され、液状の熱硬化性樹脂2を流し込むことで、冷却後一体化され剛性を持つことになる。球状や繊維状のフィラーを液状の熱硬化性樹脂2と共に賦形型に流し込むことで、冷却後一体化され剛性を持つこととなる。いずれも、熱硬化性樹脂2のみで熱硬化性樹脂プリフォーム6を作成するより、熱硬化性樹脂の凝固点を上回る温度であっても、ある程度の剛性を保持することが可能となる。
In this step, the
図1C)に示す工程では、図1B)に示す工程で型入れされた賦形型ごと冷却庫に入れている。未硬化である熱硬化性樹脂2が冷却により固化するまで、形状を保持できればよいため、製造方法によっては賦形型ごと冷却庫に入れなくてもよい。冷却庫の温度は好ましくは熱硬化性樹脂の凝固点以下であるが、困難な場合は担持体などを併用して剛性を向上する。
In the step shown in FIG. 1C), the shaping molds put in the step shown in FIG. 1B) are put in the refrigerator. Since it is only necessary to maintain the shape until the uncured
こうして作成された熱硬化性樹脂プリフォーム6は、好ましくは反応率が10%未満であると、樹脂の可使時間が長くなり、成形時の強化繊維基材への含浸性が高まる。熱硬化性樹脂プリフォーム6は通常水分を嫌うため、湿度の低い環境で成形を行うのが好ましいが、広い作業所すべてを湿度管理するのは簡単なことではなく、高温多湿環境下で成形を実施せざるを得ない場合は、熱硬化性樹脂プリフォーム6を搬送する際、結露により水滴が熱硬化性樹脂プリフォームにつかないように、外気を遮断する結露防止用材料を具することが好ましい。結露防止用材料として図2にA)、B)、C)の例を示す。
When the
図2A)に示す例は、図1B)の工程で用いられた賦形型3を結露防止用材料として用いることで、密閉された熱硬化性樹脂プリフォーム6への結露を防止する。図2B)に示す例は、フィルム状結露防止材料10を熱硬化性樹脂プリフォーム6の表面に付したものである。型に配する直前にフィルムを剥ぎ取ることで、熱硬化性樹脂プリフォーム6への結露を最小限にくい止める。図3C)に示す例は、密閉容器状結露防止材料11中に熱硬化性樹脂プリフォーム6をおさめ、外気を遮断する。この際、冷却されている熱硬化性樹脂プリフォーム6に熱が伝わりにくいように、固定治具の接触面積がすくないこと、熱伝導の小さな材料で密閉容器状結露防止材料11が構成されていることが好ましい。
The example shown in FIG. 2A) prevents condensation on the sealed
図1D)に示す工程では、図1C)に示す工程で作成された冷却・固化した熱硬化性樹脂プリフォーム6と、強化繊維基材7を成形型8に配する。
In the step shown in FIG. 1D), the cooled and solidified
ここで用いる強化繊維基材としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維、玄武岩繊維、ポリエチレン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維基材を使用することができ、かかる強化繊維基材で構成されたFRPは、構造用のFRPとして好適である。 As the reinforcing fiber substrate used here, it is possible to use a reinforcing fiber substrate using glass fibers, aramid fibers, carbon fibers, boron fibers, basalt fibers, polyethylene fibers, natural fibers, modified natural fibers, etc. as fibers. The FRP made of such a reinforcing fiber substrate is suitable as a structural FRP.
強化繊維基材の形態としては布帛や、繊維から直接所定の形状に賦形された強化繊維プリフォームがある。前者には織物、編物、組物、ステッチ物、不織布などが、後者には賦形型の縁にピンを植設し、糸をピンに掛けながら引き回して、プリフォームを作成するファイバプレースメント(特開2004−218133)やチョップした繊維とバインダーを共に賦形型に吹き付け、加熱固着してプリフォームを作成するP4(Programmable Powder Preform Process)(Gerard, J.H. et al., “Owens−Corning P−4 Technology−−The Latest on this New Process”, 48.sup.th Annual Conference Composites Institute, The Society Of The Plastics Industry, Inc., Feb. 8−11, 1993, pp. 1−9.)などが用いられる。 As the form of the reinforcing fiber base, there are a fabric and a reinforcing fiber preform formed into a predetermined shape directly from the fiber. The former is a woven, knitted, braided, stitched, non-woven fabric, etc. The latter is a fiber placement that creates a preform by placing a pin on the edge of the shaping mold and drawing it around the pin. JP 2004-218133), P4 (Programmable Powder Preform Process) (Gerald, JH et al., “Owens-”), in which a chopped fiber and a binder are sprayed together on a shaping mold and fixed by heating. Corning P-4 Technology--The Latest on this New Process ", 48. sup.th Annual Conferencing Composites Institute, The Society Of The Plastic. s Industry, Inc., Feb. 8-11, 1993, pp. 1-9.).
成形型8は、図1D)に示すように両面型であっても、図3のような片面型であっても構わない。かかる成形型としてはFRP型なども使用することができるが、加熱手段を有する熱伝導率の高い金属製の成形型を用いるのが好ましい。すなわち、かかる金属製の成形型によれば、冷却により固化した熱硬化性樹脂プリフォームを素速く溶融し、樹脂液粘度を低下させることができ、含浸、硬化に有利となる。また、プレス圧による加圧やバギングにより型内の減圧を行うことで、成形体へのボイドの混入や未含浸を防ぐことができ、さらに強化繊維基材への含浸が促進される。
The
熱硬化性樹脂プリフォーム6と強化繊維基材7の成形型における配置の位置関係は、上下左右、積層、いずれでも構わない。また、熱硬化性樹脂プリフォーム6と強化繊維基材7を直接接触させても構わないし、熱硬化性樹脂プリフォームに含まれる担持体などを分離する目的などでピールプライ(離型剤が塗布されている織布で、樹脂を透過し、成形後容易に剥がすことが可能な副資材)など副資材を介して接触させてもよい。製造品形状が複雑である場合などは熱硬化性樹脂プリフォーム6自体が製造品形状をいくつかに分割した形状であり、それらを分散的に配することも可能である。例えば、熱硬化性樹脂プリフォーム6の形状は強化繊維基材7より一回り小さく作り、強化繊維基材7端から樹脂を吸引したり、熱硬化性樹脂プリフォーム6と強化繊維基材7を上下いずれかに配置し、強化繊維基材7側から樹脂を吸引する手法などを採用することができる。
The positional relationship of the arrangement of the
図1E)に示す工程では、熱硬化性樹脂プリフォーム6が溶解し液状で未硬化である熱硬化性樹脂が強化繊維基材7中に含浸し、硬化する。前述のように、加熱や加圧などの手段を用いることで、含浸と硬化が促進される。
In the step shown in FIG. 1E), the
図1F)に示す工程では、成形型8から成形品が脱型され、目的とするFRP9が製造される。
In the step shown in FIG. 1F), the molded product is removed from the
以下、本発明を実施例により、さらに詳細に説明するが、本発明は特にこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not specifically limited to this.
従来から知られているVa−RTM法によれば、高い機械的物性を誇るFRPを品位よく製作できる。これに対して本発明の手法を適用すると、同様に高い機械的物性を持ち品位の良いFRPを、高効率に、場合によっては大幅に副資材を削減して製作出来ることを示す。 According to the conventionally known Va-RTM method, an FRP having high mechanical properties can be manufactured with high quality. On the other hand, when the method of the present invention is applied, it is shown that an FRP having high mechanical properties and good quality can be manufactured with high efficiency and, in some cases, with a substantial reduction in auxiliary materials.
すべての実施例は以下の共通する条件で実施した。 All examples were carried out under the following common conditions.
目的とするFRPはハット形状であり、片面型、両面型を用いて達成する。強化繊維基材としては、炭素繊維の平織物BT70−30(東レ社製、炭素繊維目付300g/m2 )を用いた。目的のFRPの形状に則して切り出し、4層同一方向に積層した。熱硬化性樹脂としてはエポキシ樹脂組成物であるTR−C32(東レ社製)を用いた。TR−C32は主としてエポキシ樹脂からなる主剤と硬化剤を使用前に調合して使用する2液型エポキシ樹脂組成物である。TR−C32の主剤と硬化剤を重量比100:32で調合することで、好適に熱硬化反応が起こる。室温で液状で25℃で100ポアズ程度の粘度であり、含浸・硬化を行う温度である70℃では100センチポアズ以下に粘度が低下する。 The target FRP has a hat shape and is achieved by using a single-sided type or a double-sided type. As the reinforcing fiber substrate, a carbon fiber plain fabric BT70-30 (manufactured by Toray Industries, Inc., carbon fiber basis weight 300 g / m 2 ) was used. Cut out according to the shape of the target FRP and laminated in the same direction of 4 layers. As the thermosetting resin, TR-C32 (manufactured by Toray Industries, Inc.) which is an epoxy resin composition was used. TR-C32 is a two-pack type epoxy resin composition in which a main agent mainly composed of an epoxy resin and a curing agent are prepared before use. A thermosetting reaction suitably occurs by blending the main agent of TR-C32 and the curing agent at a weight ratio of 100: 32. It is liquid at room temperature and has a viscosity of about 100 poise at 25 ° C., and the viscosity decreases to 100 centipoise or less at 70 ° C., which is the temperature for impregnation and curing.
得られたハット形状の底の平坦部より、強化繊維基材の織目に平行に、長さ60mm、幅25mmの曲げ強度試験片を切り出した。ASTM D−790に規定する試験方法に従い、3点曲げ試験治具(圧子径10mm、支点径10mm)を用いて支持スパンを40mmに設定し、クロスヘッド速度1.0mm/minで曲げ強度を測定した。なお、本実施例においては、試験器としてインストロン(R)万能試験機4201型を用いた。測定数はn=5とし、平均値を曲げ強度とした。さらに、曲げ強度試験片の断面を光学顕微鏡で観察することにより、ボイドの有無、強化繊維基材内への樹脂含浸状態の評価を行った。ボイドおよび未含浸部が全く観察されない状況を良好、繊維束内部に微少なボイドが観察された状態を可、繊維束内部にボイドおよび未含浸部が観察された状態を不良と判定した。
A bending strength test piece having a length of 60 mm and a width of 25 mm was cut out from the flat portion of the obtained hat-shaped bottom in parallel with the weave of the reinforcing fiber base. According to the test method specified in ASTM D-790, using a three-point bending test jig (
実施例1
上記TR−C32の主剤を50℃で30分真空脱泡した後、室温にて上記TR−C32の硬化剤と空気が混入しないように均一に混合して、未硬化の熱硬化性樹脂を調製した。
Example 1
The main component of TR-C32 is vacuum degassed at 50 ° C. for 30 minutes, and then uniformly mixed so that the curing agent of TR-C32 and air are not mixed at room temperature to prepare an uncured thermosetting resin. did.
一方、FRPの製造品に模した形状で、0.5mm厚のプラスチックフィルムであり離型性のよいトレファン(R)(東レ社製)を切断、折り曲げて賦形型の上型と下型を作成した。前述の未硬化の熱硬化性樹脂を、こうして作成した賦形型の下型に流し込み、熱硬化性樹脂プリフォームの厚みを上型で規制した。熱硬化性樹脂プリフォームの必要厚みは作成するFRPの目標Vfを55%としと強化繊維基材の目付から決定した。 On the other hand, an upper mold and a lower mold of the shaping mold are cut and bent by Trefan (R) (manufactured by Toray Industries, Inc.), which is a plastic film with a thickness of 0.5 mm and is shaped like an FRP manufactured product. It was created. The aforementioned uncured thermosetting resin was poured into the lower mold of the shaping mold thus prepared, and the thickness of the thermosetting resin preform was regulated by the upper mold. The required thickness of the thermosetting resin preform was determined based on the basis weight of the reinforcing fiber substrate, assuming that the target Vf of the FRP to be created was 55%.
こうして賦形型によって一体化された未硬化の熱硬化性樹脂を、賦形型ごと−50℃の冷凍庫に入れ、冷却・固化させた。固化した後、冷凍庫内で賦形型と未硬化の熱硬化性樹脂のみからなる熱硬化性樹脂プリフォーム6を分離した。
The uncured thermosetting resin thus integrated by the shaping mold was put into a −50 ° C. freezer together with the shaping mold, and cooled and solidified. After solidifying, the
図4に示す成形型8は金型であり、シーラント(フィルムと型を密着させ、型内をシールする)14で型周囲を覆った後、FRPと分離するためにフッ素系の離型剤であるダイフリー(R)GA−6010(ダイキン工業社製)を型表面に塗布した。強化繊維基材7を型に装填し、その端部に厚手の不織布からなるブリーダー(空気や樹脂の通り道となるようなスペーサーの役割を果たす)13を配した。ブリーダー13に接続されたチューブを介して、真空ポンプに接続され、脱気を可能とする。この成形型8を70℃に温調されたオーブン内で加熱して、成形型8の温度が70℃で安定したところで、前記の熱硬化性樹脂プリフォーム6を冷凍庫から取り出して強化繊維基材7の上部に装填し、素速くバギングフィルム12で完全に密封し、真空ポンプを稼働させて、バギングフィルム12に囲まれた型内を脱気することで、成形体は大気圧で加圧された。すぐに熱硬化性樹脂プリフォーム6は溶解し、未硬化の熱硬化性樹脂が強化繊維基材へ含浸・硬化を開始した。2時間後、熱硬化性樹脂の硬化が完了し、成形品であるFRPを成形型8から脱型した。
The
FRPの表面品位は良好で、非常に軽量で曲げ強度は650MPaと比較例1程ではないが、高い物性を示した。また、断面観察によれば、樹脂含浸状態は可であった。FRP成形品に必要な樹脂量だけを熱硬化性樹脂プリフォームとして用意すればよく、樹脂を無駄なく使用することができ、また、端部におけるバリがほとんど発生せずトリミングを行うことなく目的の形状にFRPを作成することができた。 The surface quality of the FRP was good, very light, and the bending strength was 650 MPa, which was not as high as that of Comparative Example 1, but showed high physical properties. Moreover, according to cross-sectional observation, the resin-impregnated state was acceptable. Only the amount of resin required for the FRP molded product needs to be prepared as a thermosetting resin preform, the resin can be used without waste, and there is almost no burrs at the end, and trimming is not performed. FRP could be created in the shape.
実施例2
実施例1と同様に未硬化の熱硬化性樹脂のみからなる熱硬化性樹脂プリフォーム6を作成した。
Example 2
Similar to Example 1, a
図5に示す成形型8は金型であり、それぞれプレス器に取り付けられ、70℃に温調されている。FRPと分離するためにフッ素系の離型剤であるダイフリー(R)GA−6010を成形型8表面に塗布した。強化繊維基材7を型に装填し、その上から熱硬化性樹脂プリフォーム6を冷凍庫から取り出して強化繊維基材7の上部に装填し、すばやく成形型を昇降し6kg/cm2 の加圧を加えた。すぐに熱硬化性樹脂プリフォーム6は溶解し、未硬化の熱硬化性樹脂が強化繊維基材へ含浸・硬化を開始した。2時間後、熱硬化性樹脂の硬化が完了し、型を開け、成形品であるFRPを成形型から脱型した。
The
FRPの表面品位は良好で、非常に軽量で曲げ強度は624MPaと比較例1程ではないが、高い物性を示した。また、断面観察によれば、樹脂含浸状態は可であった。FRP成形品に必要な樹脂量だけを熱硬化性樹脂プリフォームとして用意すればよく、樹脂を無駄なく使用することができ、また、端部におけるバリがほとんど発生せずトリミングを行うことなく目的の形状にFRPを作成することができた。また、実施例1に比べても、さらにバギングフィルムやブリーダー、シーラントなどの副資材を削減することができ、かつ作業量も大幅に減った。 The surface quality of the FRP was good, very light, and the bending strength was 624 MPa, which was not as high as that of Comparative Example 1, but showed high physical properties. Moreover, according to cross-sectional observation, the resin-impregnated state was acceptable. Only the amount of resin required for the FRP molded product needs to be prepared as a thermosetting resin preform, the resin can be used without waste, and there is almost no burrs at the end, and trimming is not performed. FRP could be created in the shape. In addition, compared with Example 1, it was possible to further reduce auxiliary materials such as bagging films, bleeders, sealants, and the amount of work was greatly reduced.
実施例3
実施例1、2と同様に未硬化の熱硬化性樹脂のみからなる熱硬化性樹脂プリフォーム6を作成した。
Example 3
A
図6に示す成形型8は金型であり、それぞれプレス器に取り付けられ、70℃に温調されている。FRPと分離するためにフッ素系の離型剤であるダイフリー(R)GA−6010を成形型8表面に塗布した。強化繊維基材7を型に装填し、その上から熱硬化性樹脂プリフォーム6を冷凍庫から取り出して強化繊維基材7の上部に装填し、さらにその上から強化繊維基材7を装填し、すばやく成形型を昇降し6kg/cm2 の加圧を加えた。すぐに熱硬化性樹脂プリフォーム6は溶解し、未硬化の熱硬化性樹脂が強化繊維基材7へ含浸・硬化を開始した。2時間後、熱硬化性樹脂の硬化が完了し、型を開け、成形品であるFRPを成形型から脱型した。
The
FRPの表面品位は良好で、非常に軽量で曲げ強度は608MPaと比較例1程ではないが、高い物性を示した。また、断面観察によれば、樹脂含浸状態は可であった。FRP成形品に必要な樹脂量だけを熱硬化性樹脂プリフォームとして用意すればよく、樹脂を無駄なく使用することができ、また、端部におけるバリがほとんど発生せずトリミングを行うことなく目的の形状にFRPを作成することができた。また、実施例1に比べても、さらにバギングフィルムやブリーダー、シーラントなどの副資材を削減することができ、かつ作業量も大幅に減った。強化繊維基材と熱硬化性樹脂プリフォームを積層しても成形が可能であることが示された。 The surface quality of FRP was good, very light, and the bending strength was 608 MPa, which was not as high as that of Comparative Example 1, but showed high physical properties. Moreover, according to cross-sectional observation, the resin-impregnated state was acceptable. Only the amount of resin required for the FRP molded product needs to be prepared as a thermosetting resin preform, the resin can be used without waste, and there is almost no burrs at the end, and trimming is not performed. FRP could be created in the shape. In addition, compared with Example 1, it was possible to further reduce auxiliary materials such as bagging films, bleeders, sealants, and the amount of work was greatly reduced. It was shown that molding is possible even if a reinforcing fiber base and a thermosetting resin preform are laminated.
実施例4
上記TR−C32の主剤を50℃で30分真空脱泡した後、室温にて上記TR−C32の硬化剤と空気が混入しないように均一に混合して、未硬化の熱硬化性樹脂を用意した。
Example 4
After defoaming the main component of TR-C32 at 50 ° C. for 30 minutes, uniformly mix the TR-C32 curing agent and air so as not to mix at room temperature to prepare an uncured thermosetting resin. did.
一方、FRPの製造品に模した形状で、0.5mm厚のプラスチックフィルムであり離型性のよいトレファン(R)を切断、折り曲げて賦形型の上型と下型を作成した。前述の未硬化の熱硬化性樹脂を、こうして作成した賦形型の下型に流し込み、熱硬化性樹脂プリフォームの厚みを上型で規制した。熱硬化性樹脂プリフォームの必要厚みは作成するFRPの目標Vfを55%としと強化繊維基材の目付から決定した。 On the other hand, Trefan (R) having a shape resembling a manufactured product of FRP and a 0.5 mm-thick plastic film having good releasability was cut and bent to create an upper mold and a lower mold of the shaping mold. The aforementioned uncured thermosetting resin was poured into the lower mold of the shaping mold thus prepared, and the thickness of the thermosetting resin preform was regulated by the upper mold. The required thickness of the thermosetting resin preform was determined based on the basis weight of the reinforcing fiber substrate, assuming that the target Vf of the FRP to be created was 55%.
−20℃の冷凍庫に入れ、冷却・固化させた。−20℃というのは、このエポキシ樹脂の凝固点よりは高い温度であるため、手で押すと変形する程度の硬さではあるが、賦形型をそのまま担持体として用いることによって、剛性を高めた。 It put into the -20 degreeC freezer, and it was made to cool and solidify. Since -20 ° C is higher than the freezing point of this epoxy resin, it is hard enough to be deformed when pressed by hand, but the rigidity is increased by using the shaping mold as it is. .
賦形型によって一体化されたまま熱硬化性樹脂プリフォームを図7に示す成形型8まで搬送し、賦形下型を外して、賦形上型を担持体としてそのまま残した熱硬化性樹脂プリフォーム6を強化繊維基材7の上に配した。すばやく成形型を昇降し6kg/cm2 の加圧を加えた。すぐに熱硬化性樹脂プリフォーム6は溶解し、未硬化の熱硬化性樹脂が強化繊維基材へ含浸・硬化を開始した。2時間後、熱硬化性樹脂の硬化が完了し、型を開け、成形品であるFRPを成形型から脱型した。担持体である賦形上型は離形性がよいため、成形後に簡単にFRPから剥がすことができた。
The thermosetting resin preform is transported to the molding die 8 shown in FIG. 7 while being integrated by the shaping die, the shaping lower die is removed, and the thermosetting resin leaving the shaping upper die as a carrier is left as it is. The
FRPの表面品位は良好で、非常に軽量で曲げ強度は689MPaと比較例1とほぼ同等の高い物性を示した。また、断面観察によれば、樹脂含浸状態は良好であった。FRP成形品に必要な樹脂量だけを熱硬化性樹脂プリフォームとして用意すればよく、樹脂を無駄なく使用することができ、また、端部におけるバリがほとんど発生せずトリミングを行うことなく目的の形状にFRPを作成することができた。また、実施例1に比べても、さらにバギングフィルムやブリーダー、シーラントなどの副資材を削減することができ、かつ作業量も大幅に減った。また、実施例1、2、3に比べ、熱硬化性樹脂プリフォームの搬送時に賦形型に囲まれているため水滴の影響を受けることなく、物性が高くなるとともに、賦形型は担持体として機能するため、熱硬化性樹脂プリフォームの搬送時、成形型への配置時、取扱い性が向上した。 The surface quality of the FRP was good, very light, and the bending strength was 689 MPa, which was as high as that of Comparative Example 1. Moreover, according to cross-sectional observation, the resin impregnation state was good. Only the amount of resin required for the FRP molded product needs to be prepared as a thermosetting resin preform, the resin can be used without waste, and there is almost no burrs at the end, and trimming is not performed. FRP could be created in the shape. In addition, compared with Example 1, it was possible to further reduce auxiliary materials such as bagging films, bleeders, sealants, and the amount of work was greatly reduced. In addition, compared to Examples 1, 2, and 3, since the thermosetting resin preform is surrounded by the shaping mold during transportation, the physical properties are improved without being affected by water droplets, and the shaping mold is a carrier. Therefore, the handling property was improved when the thermosetting resin preform was transported and placed on the mold.
実施例5
上記TR−C32の主剤を50℃で30分真空脱泡した後、室温にて上記TR−C32の硬化剤と空気が混入しないように均一に混合して、未硬化の熱硬化性樹脂を用意した。
Example 5
After defoaming the main component of TR-C32 at 50 ° C. for 30 minutes, uniformly mix the TR-C32 curing agent and air so as not to mix at room temperature to prepare an uncured thermosetting resin. did.
一方、FRPの製造品に模した形状で、0.5mm厚のプラスチックフィルムであり離型性のよいトレファン(R)を切断、折り曲げて賦形型の上型と下型を作成した。前述の未硬化の熱硬化性樹脂を担持体である軟質のウレタンフォーム材に吸収させた後、賦形型にセットした。実施例4と同様に−20℃の冷凍庫に入れ、冷却・固化させた。 On the other hand, Trefan (R) having a shape resembling a manufactured product of FRP and a 0.5 mm-thick plastic film having good releasability was cut and bent to create an upper mold and a lower mold of the shaping mold. The uncured thermosetting resin described above was absorbed in a soft urethane foam material as a carrier, and then set in a shaping mold. In the same manner as in Example 4, it was put in a freezer at −20 ° C. and cooled and solidified.
賦形型によって一体化されたまま熱硬化性樹脂プリフォームを図8に示す成形型8まで搬送し、賦形上型、下型を外して、熱硬化性樹脂プリフォーム6を取り出した。強化繊維基材7の上に、成形後熱硬化性樹脂プリフォーム6に用いられた多孔質フォームとFRPを分離するため、ピールプライ15を配し、さらにその上から熱硬化性樹脂プリフォーム6を装填した。すばやく成形型を昇降し6kg/cm2 の加圧を加えた。すぐに熱硬化性樹脂プリフォーム6は潰れ、未硬化の熱硬化性樹脂が溶けだし、強化繊維基材へ含浸・硬化を開始した。2時間後、熱硬化性樹脂の硬化が完了し、型を開け、成形品であるFRPを成形型から脱型した。担持体である賦形上型は離形性がよいため、成形後に簡単にFRPから剥がすことができた。
The thermosetting resin preform was conveyed to the molding die 8 shown in FIG. 8 while being integrated by the shaping die, the shaping upper die and the lower die were removed, and the
FRPの表面品位は良好で、非常に軽量で曲げ強度は705MPaと比較例1とほぼ同等の高い物性を示した。また、断面観察によれば、樹脂含浸状態は良好であった。FRP成形品に必要な樹脂量だけを熱硬化性樹脂プリフォームとして用意すればよく、樹脂を無駄なく使用することができ、また、端部におけるバリがほとんど発生せずトリミングを行うことなく目的の形状にFRPを作成することができた。また、実施例1に比べても、さらにバギングフィルムやブリーダー、シーラントなどの副資材を削減することができ、かつ作業量も大幅に減った。また、実施例1、2、3に比べ、熱硬化性樹脂プリフォームの搬送時に賦形型に囲まれているため水滴の影響を受けることなく、物性が高くなるとともに、多孔質フォームは担持体として機能するため、−20℃程度の低温でも十分に剛性を保持し、熱硬化性樹脂プリフォームの搬送時、成形型への配置時、取扱い性が向上した。 The surface quality of the FRP was good, very light, and the bending strength was 705 MPa, which was as high as that of Comparative Example 1. Moreover, according to cross-sectional observation, the resin impregnation state was good. Only the amount of resin required for the FRP molded product needs to be prepared as a thermosetting resin preform, the resin can be used without waste, and there is almost no burrs at the end, and trimming is not performed. FRP could be created in the shape. In addition, compared with Example 1, it was possible to further reduce auxiliary materials such as bagging films, bleeders, sealants, and the amount of work was greatly reduced. In addition, compared with Examples 1, 2, and 3, since the thermosetting resin preform is surrounded by the shaping mold during transportation, the physical properties are improved without being affected by water droplets, and the porous foam is a carrier. Therefore, the rigidity is sufficiently maintained even at a low temperature of about −20 ° C., and the handling property is improved when the thermosetting resin preform is transported and placed on the mold.
比較例1
従来知られているVa−RTM法によるFRPの製造を実施した。
Comparative Example 1
FRP was produced by a conventionally known Va-RTM method.
図3に示した成形型8は金型であり、シーラント14で型周囲を覆った後、FRPと分離するためにフッ素系の離型剤であるダイフリー(R)GA−6010を型表面に塗布した。次に、強化繊維基材7を型に装填し、その上に液状樹脂の通り道となるメディア(樹脂拡散媒体であり、本例ではメッシュ基材を用いた)16を配置し、成型後にFRPとメディア16を分離可能とするため、強化繊維基材7とメディア16の間にピールプライ15を配置した。また強化繊維基材7端にブリーダー13を設けた。ブリーダー13上にアルミC型チャンネル(空気や樹脂の通り道を物理的に確保するためのC型断面のアルミ角材)17を配し、図3において左側のアルミC型チャンネル17には真空ポンプに直結された脱気用のチューブが接続され、右側のアルミC型チャンネル17には樹脂注入用のチューブが接続された後、バギングフィルム12で密封した。成形型8を70℃に温調されたオーブン内に入れ、図3における左側の脱気用チューブにより真空引きを実施した。また、上記TR−C32の主剤を50℃で30分真空脱泡した後、上記TR−C32の硬化剤と空気が混入しないように均一に混合して、液状の未硬化の熱硬化性樹脂を用意した。成形型8の型温度が70℃で安定した後、図3における右側の樹脂注入用のチューブより未硬化の熱硬化性樹脂を注入した。注入された樹脂はメディア16に沿って流れ、強化繊維基材7に含浸した。2時間後、熱硬化性樹脂の硬化が完了し、成形品であるFRPを成形型8から脱型した。
The
FRPの表面品位は良好で、非常に軽量で曲げ強度は729MPaと高かった。また、断面観察によれば、樹脂含浸状態は良好であった。一方比較例では、注入に用いられるチューブやメディアに残された樹脂量が無駄になり、副資材としてもピールプライ15やメディア16、アルミC型チャンネル17やチューブなどが成形後に廃棄しなくてはならなかった。また、余分な樹脂がバリとなって強化繊維基材端に発生した。
The surface quality of the FRP was good, very light, and the bending strength was as high as 729 MPa. Moreover, according to cross-sectional observation, the resin impregnation state was good. On the other hand, in the comparative example, the amount of resin remaining in the tube or media used for injection is wasted, and the
1a 熱硬化性樹脂主剤
1b 硬化剤
2 熱硬化性樹脂
3 賦形型
4 樹脂を型入れした賦形型
5 冷却器
6 熱硬化性樹脂プリフォーム
7 強化繊維基材
8 成形型
9 本発明により製造されたFRP
10 フィルム状結露防止用材料
11 密閉容器状結露防止用材料
12 バギングフィルム
13 ブリーダー
14 シーラント
15 ピールプライ
16 メディア
17 アルミC型チャンネル
DESCRIPTION OF SYMBOLS 1a Thermosetting resin
10 Film-like
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005131250A JP2006305867A (en) | 2005-04-28 | 2005-04-28 | Manufacturing method of fiber reinforced plastic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005131250A JP2006305867A (en) | 2005-04-28 | 2005-04-28 | Manufacturing method of fiber reinforced plastic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006305867A true JP2006305867A (en) | 2006-11-09 |
Family
ID=37473313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005131250A Pending JP2006305867A (en) | 2005-04-28 | 2005-04-28 | Manufacturing method of fiber reinforced plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006305867A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008290371A (en) * | 2007-05-25 | 2008-12-04 | Yokohama Rubber Co Ltd:The | Laminate and its manufacturing method |
JP2008290372A (en) * | 2007-05-25 | 2008-12-04 | Yokohama Rubber Co Ltd:The | Laminate and its manufacturing method |
WO2009078419A1 (en) * | 2007-12-17 | 2009-06-25 | Toyota Jidosha Kabushiki Kaisha | Method of molding fiber-reinforced-resin hollow part |
US8808480B2 (en) | 2007-08-01 | 2014-08-19 | Toyota Jidosha Kabushiki Kaisha | Flanged fiber-reinforced resin hollow part and method of molding the same |
WO2014203734A1 (en) * | 2013-06-21 | 2014-12-24 | 三菱電機株式会社 | Fiber-reinforced plastic, air rectification cover for elevator and process for manufacturing fiber-reinforced plastic |
JP2016144922A (en) * | 2015-02-09 | 2016-08-12 | 日産自動車株式会社 | Molding method and molding apparatus for composite material, and composite material |
WO2016136791A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
WO2016136790A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
WO2016136793A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
WO2017145872A1 (en) | 2016-02-23 | 2017-08-31 | 東レ株式会社 | Method for producing fiber reinforced composite material |
JPWO2016136792A1 (en) * | 2015-02-27 | 2017-12-07 | 東レ株式会社 | Resin supply material, method of using reinforced fiber, preform, and method of manufacturing fiber reinforced resin |
JP2019098631A (en) * | 2017-12-04 | 2019-06-24 | 株式会社Subaru | Fiber-reinforced resin body and method for producing the same |
US10343371B2 (en) | 2010-05-04 | 2019-07-09 | Industrialesud S.P.A. | Articles made of multilayer composite material and preparation methods thereof |
WO2020196600A1 (en) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | Molded article of carbon-fiber-reinforced composite material and production method for molded article of carbon-fiber-reinforced composite material |
-
2005
- 2005-04-28 JP JP2005131250A patent/JP2006305867A/en active Pending
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008290372A (en) * | 2007-05-25 | 2008-12-04 | Yokohama Rubber Co Ltd:The | Laminate and its manufacturing method |
JP2008290371A (en) * | 2007-05-25 | 2008-12-04 | Yokohama Rubber Co Ltd:The | Laminate and its manufacturing method |
US8808480B2 (en) | 2007-08-01 | 2014-08-19 | Toyota Jidosha Kabushiki Kaisha | Flanged fiber-reinforced resin hollow part and method of molding the same |
WO2009078419A1 (en) * | 2007-12-17 | 2009-06-25 | Toyota Jidosha Kabushiki Kaisha | Method of molding fiber-reinforced-resin hollow part |
JP2009143178A (en) * | 2007-12-17 | 2009-07-02 | Toyota Motor Corp | Method for molding fiber-reinforced resin hollow component |
US8932421B2 (en) | 2007-12-17 | 2015-01-13 | Toyota Jidosha Kabushiki Kaisha | Method of molding fiber-reinforced plastic hollow part |
US10343371B2 (en) | 2010-05-04 | 2019-07-09 | Industrialesud S.P.A. | Articles made of multilayer composite material and preparation methods thereof |
WO2014203734A1 (en) * | 2013-06-21 | 2014-12-24 | 三菱電機株式会社 | Fiber-reinforced plastic, air rectification cover for elevator and process for manufacturing fiber-reinforced plastic |
JP2016144922A (en) * | 2015-02-09 | 2016-08-12 | 日産自動車株式会社 | Molding method and molding apparatus for composite material, and composite material |
CN107406599B (en) * | 2015-02-27 | 2020-10-02 | 东丽株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
CN112011073A (en) * | 2015-02-27 | 2020-12-01 | 东丽株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
CN112011073B (en) * | 2015-02-27 | 2022-09-09 | 东丽株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
CN107406599A (en) * | 2015-02-27 | 2017-11-28 | 东丽株式会社 | The manufacture method of resin supplying material, preform and fiber-reinforced resin |
JPWO2016136790A1 (en) * | 2015-02-27 | 2017-11-30 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber reinforced resin |
JPWO2016136793A1 (en) * | 2015-02-27 | 2017-11-30 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber reinforced resin |
JPWO2016136791A1 (en) * | 2015-02-27 | 2017-12-07 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber reinforced resin |
JPWO2016136792A1 (en) * | 2015-02-27 | 2017-12-07 | 東レ株式会社 | Resin supply material, method of using reinforced fiber, preform, and method of manufacturing fiber reinforced resin |
US11034809B2 (en) * | 2015-02-27 | 2021-06-15 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
EP3795617A3 (en) * | 2015-02-27 | 2021-04-14 | Toray Industries, Inc. | Resin supply material, preform, and method for producing fiber-reinforced resin |
TWI657909B (en) * | 2015-02-27 | 2019-05-01 | 日商東麗股份有限公司 | Resin supply material, preform, and manufacturing method of fiber-reinforced resin |
EP3795617A2 (en) | 2015-02-27 | 2021-03-24 | Toray Industries, Inc. | Resin supply material, preform, and method for producing fiber-reinforced resin |
WO2016136790A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
TWI673153B (en) * | 2015-02-27 | 2019-10-01 | 日商東麗股份有限公司 | Resin supply material, preform, and method for producing fiber reinforced resin |
TWI716881B (en) * | 2015-02-27 | 2021-01-21 | 日商東麗股份有限公司 | Resin supply material, preform, and manufacturing method of fiber reinforced resin |
TWI701132B (en) * | 2015-02-27 | 2020-08-11 | 日商東麗股份有限公司 | Resin supply material, preform, and manufacturing method of fiber reinforced resin |
WO2016136793A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
US10822463B2 (en) | 2015-02-27 | 2020-11-03 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
WO2016136791A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
US10800894B2 (en) | 2015-02-27 | 2020-10-13 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
EP3421212A4 (en) * | 2016-02-23 | 2019-10-30 | Toray Industries, Inc. | Method for producing fiber reinforced composite material |
KR20180117143A (en) | 2016-02-23 | 2018-10-26 | 도레이 카부시키가이샤 | Manufacturing method of fiber reinforced composite material |
US11001011B2 (en) | 2016-02-23 | 2021-05-11 | Toray Industries, Inc. | Method of producing fiber reinforced composite material |
CN108698268A (en) * | 2016-02-23 | 2018-10-23 | 东丽株式会社 | The manufacturing method of fiber reinforced composite material |
WO2017145872A1 (en) | 2016-02-23 | 2017-08-31 | 東レ株式会社 | Method for producing fiber reinforced composite material |
US10828850B2 (en) | 2017-12-04 | 2020-11-10 | Subaru Corporation | Fiber-reinforced plastic and method of producing the fiber-reinforced plastic |
JP2019098631A (en) * | 2017-12-04 | 2019-06-24 | 株式会社Subaru | Fiber-reinforced resin body and method for producing the same |
JPWO2020196600A1 (en) * | 2019-03-28 | 2020-10-01 | ||
WO2020196600A1 (en) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | Molded article of carbon-fiber-reinforced composite material and production method for molded article of carbon-fiber-reinforced composite material |
US11993688B2 (en) | 2019-03-28 | 2024-05-28 | Toray Industries, Inc. | Molded article of carbon fiber composite material and production method for molded article of carbon fiber composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006305867A (en) | Manufacturing method of fiber reinforced plastic | |
JP5054258B2 (en) | Molding material | |
US20120175824A1 (en) | Method of and Apparatus for Making a Composite Material | |
US7334782B2 (en) | Controlled atmospheric pressure resin infusion process | |
US9199431B2 (en) | Fibre-reinforced composite molding and manufacture thereof | |
US6391436B1 (en) | Manufacture of void-free laminates and use thereof | |
JP5044220B2 (en) | Carbon foam composite tool and method for using the carbon foam composite tool | |
JP5901518B2 (en) | Manufacturing method for advanced composite components | |
JP2007521987A5 (en) | ||
WO2013096968A9 (en) | Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material | |
EP3331689B1 (en) | Moulding materials with improved surface finish | |
CN114030268B (en) | Preparation method of honeycomb sandwich structure composite material with high-strength cementing property | |
JP4639549B2 (en) | Manufacturing method of FRP | |
WO2004078442A1 (en) | Pre-consolidated pre-form and method of pre-consolidating pre-forms | |
JP2009179065A (en) | Method of manufacturing frp structure | |
JP4730637B2 (en) | RTM molding method | |
JP2006289980A (en) | Fixing method for fixing display body such as mark to composite material and its product | |
JP6012653B2 (en) | Manufacturing method of fiber reinforced plastic molding | |
Costantino et al. | Composite processing: state of the art and future trends | |
Park et al. | Manufacture of carbon fiber composites | |
Roessler | Resin Film Infusion Process for Carbon Fiber/Epoxy Composite Plates | |
US11213979B2 (en) | Or relating to three dimensional mouldings | |
da Gama et al. | Defects tracking in Out-of-Autoclave composite materials | |
JP2024139872A (en) | A method for manufacturing a composite article. | |
JP2011042174A (en) | Method for manufacturing frp |