JP2003026820A - Carbon fiber-reinforced composite material, and method for producing the same - Google Patents

Carbon fiber-reinforced composite material, and method for producing the same

Info

Publication number
JP2003026820A
JP2003026820A JP2001213095A JP2001213095A JP2003026820A JP 2003026820 A JP2003026820 A JP 2003026820A JP 2001213095 A JP2001213095 A JP 2001213095A JP 2001213095 A JP2001213095 A JP 2001213095A JP 2003026820 A JP2003026820 A JP 2003026820A
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
reinforced composite
fiber reinforced
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001213095A
Other languages
Japanese (ja)
Inventor
Hiroki Ooseto
浩樹 大背戸
Toshiya Kamae
俊也 釜江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001213095A priority Critical patent/JP2003026820A/en
Publication of JP2003026820A publication Critical patent/JP2003026820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced composite material comprising a matrix resin having high elongation and excellent heat resistance, and having excellent characteristics such as fatigue resistance, resistance to thermal crack, and heat resistance, and to provide a method for producing the composite material. SOLUTION: This method for producing the carbon fiber-reinforced composite material comprises a liquid epoxy resin composition capable of providing a cured product having >=4% tensile elongation at a room temperature when the composition is cured a the same condition as the molding condition of the carbon fiber-reinforced composite material, and having the glass transition temperature >=10 deg.C higher than the curing temperature. The carbon fiver- reinforced composite material is produced by using the method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、航空機部材、自動
車部材、船舶部材、スポーツ用具部材などに好適に用い
られる炭素繊維強化複合材料およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced composite material suitably used for aircraft members, automobile members, ship members, sports equipment members and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】強化繊維とマトリックス樹脂からなる繊
維強化複合材料は、軽量でありながら、強度や剛性や耐
衝撃性などの機械物性に優れるため、航空機部材、自動
車部材、船舶部材、スポーツ用具部材などの数多くの分
野に応用されてきた。
2. Description of the Related Art A fiber-reinforced composite material composed of a reinforcing fiber and a matrix resin is lightweight and has excellent mechanical properties such as strength, rigidity and impact resistance. Therefore, it is used as an aircraft member, an automobile member, a ship member, a sports equipment member. It has been applied to many fields such as.

【0003】これらのうち、比強度、比弾性率に優れた
炭素繊維を強化繊維とする炭素繊維強化複合材料は、軽
量化効果が大きく特に適用分野が広い。
Among these, the carbon fiber reinforced composite material having carbon fiber excellent in specific strength and specific elastic modulus as a reinforcing fiber has a large weight saving effect and is particularly applicable to a wide range of fields.

【0004】炭素繊維強化複合材料のマトリックス樹脂
としては、機械特性、耐熱性、耐薬品性、炭素繊維との
接着性に優れ、さらに重合収縮や線膨張係数の小さい熱
硬化性樹脂であるエポキシ樹脂(硬化物)が広く使われ
ている。特に炭素繊維との接着性に優れるため、ポリア
ミン硬化剤を用いたエポキシ樹脂(硬化物)が多く用い
られている。
The matrix resin of the carbon fiber reinforced composite material is an epoxy resin which is a thermosetting resin which has excellent mechanical properties, heat resistance, chemical resistance, adhesion to carbon fibers, and has a small polymerization shrinkage and a small linear expansion coefficient. (Cured product) is widely used. In particular, an epoxy resin (cured product) using a polyamine curing agent is often used because of its excellent adhesion to carbon fiber.

【0005】炭素繊維とエポキシ樹脂からなる繊維強化
複合材料の製造には、炭素繊維と未硬化のエポキシ樹脂
からなる中間体であるプリプレグを作成し、これを積層
し、加熱硬化する方法が広く用いられてきた。
For the production of a fiber-reinforced composite material composed of carbon fibers and an epoxy resin, a method in which a prepreg, which is an intermediate body composed of carbon fibers and an uncured epoxy resin, is prepared, laminated and heat-cured is widely used. Has been.

【0006】ところが、この方法はプリプレグという中
間体を作らなければならないため、生産性は必ずしも優
れたものとは言えない。
However, this method is not necessarily excellent in productivity because an intermediate called prepreg must be produced.

【0007】これに対して、型内に設置した強化繊維基
材に液状の熱硬化性樹脂を注入し、加熱硬化して繊維強
化複合材料を得るRTM法(Resin Transf
erMolding)は、より生産性の優れた炭素繊維
強化複合材料の製造方法として近年注目されている。
On the other hand, an RTM method (resin transf) for injecting a liquid thermosetting resin into a reinforced fiber base material placed in a mold and curing it by heating to obtain a fiber reinforced composite material.
In recent years, erMolding) has attracted attention as a method for producing a carbon fiber reinforced composite material which is more excellent in productivity.

【0008】とくに、体積繊維含有率の高く、より優れ
た機械特性を有する炭素繊維強化複合材料をRTM法で
得るためには、強化繊維基材への含浸性を良くするた
め、低粘度のエポキシ樹脂組成物(エポキシ樹脂と硬化
剤からなる組成物)を用いる必要がある。
In particular, in order to obtain a carbon fiber reinforced composite material having a high volume fiber content and superior mechanical properties by the RTM method, the epoxy resin having a low viscosity is used in order to improve the impregnation property into the reinforcing fiber base material. It is necessary to use a resin composition (composition comprising an epoxy resin and a curing agent).

【0009】ところが、低粘度のエポキシ樹脂組成物を
用いるにあたっては、低粘度という制限があるため、従
来のプリプレグ用のエポキシ樹脂組成物と比べて使用で
きる原料や配合比に大きな制約を受ける。そのため、各
種の望ましい特性値を同時に満足させることが困難であ
った。
However, when using a low-viscosity epoxy resin composition, there is a limitation of low viscosity, so that the raw materials and the compounding ratio which can be used are largely restricted as compared with the conventional epoxy resin composition for prepreg. Therefore, it is difficult to satisfy various desired characteristic values at the same time.

【0010】同時に満足させることが望ましい特性の一
つが、マトリックス樹脂(すなわち、エポキシ樹脂の硬
化物)の伸度と耐熱性(つまり、ガラス転移温度が高い
こと)の両立である。マトリックス樹脂の伸度が低い
と、繊維強化複合材料に対して、引張強度が低くなる、
疲労特性や耐衝撃性が低くなる、成形時の熱応力による
クラック発生や熱サイクルによるクラック発生が起こり
やすい(サーマルクラック耐性が低い)などの不利な性
質をもたらす。また、成形時にマトリックス樹脂のガラ
ス転移温度を越えると、炭素繊維強化複合材料の耐熱性
が大きく低下するため、マトリックス樹脂のガラス転移
温度は炭素繊維強化複合材料の耐熱性の支配要因となっ
ており、極力高いことが望まれる。一般に熱硬化性樹脂
の硬化物のガラス転移温度は硬化温度と正の相関を持
つ。しかし、ガラス転移温度と硬化温度の差は用いる樹
脂の化学組成により大きく異なる。
At the same time, one of the characteristics that is desired to be satisfied is compatibility between the elongation of the matrix resin (that is, the cured product of the epoxy resin) and the heat resistance (that is, high glass transition temperature). When the elongation of the matrix resin is low, the tensile strength of the fiber-reinforced composite material is low,
It has disadvantageous properties such as low fatigue property and impact resistance, cracking due to thermal stress during molding and cracking due to thermal cycle (low thermal cracking resistance). In addition, when the glass transition temperature of the matrix resin is exceeded during molding, the heat resistance of the carbon fiber reinforced composite material is significantly reduced, so the glass transition temperature of the matrix resin is a controlling factor of the heat resistance of the carbon fiber reinforced composite material. , It is desired to be as high as possible. Generally, the glass transition temperature of a cured product of a thermosetting resin has a positive correlation with the curing temperature. However, the difference between the glass transition temperature and the curing temperature greatly depends on the chemical composition of the resin used.

【0011】エポキシ樹脂硬化物の伸度を高めるには、
架橋密度を小さくする、柔軟鎖(ポリオキシアルキレ
ン、長鎖アルキレン、ポリシロキサンなど)などの手法
が有効であるが、これらの手法を用いると、硬化物のガ
ラス転移温度が硬化温度に対して相対的に低くなる。さ
らに硬化物の弾性率も低くなる。マトリックス樹脂の弾
性率が低くなると、繊維強化複合材料の機械物性、特に
圧縮強度、曲げ強度が低くなる。
To increase the elongation of the cured epoxy resin,
Techniques such as flexible chains (polyoxyalkylene, long-chain alkylene, polysiloxane, etc.) that reduce the crosslink density are effective, but when these techniques are used, the glass transition temperature of the cured product is relative to the curing temperature. Will be low. Furthermore, the elastic modulus of the cured product also becomes low. When the elastic modulus of the matrix resin is low, the mechanical properties of the fiber-reinforced composite material, especially the compressive strength and bending strength, are low.

【0012】以上のような理由で、既存の液状エポキシ
樹脂組成物では、満足のいく性能の炭素繊維強化複合材
料を得ることは困難であった。
For the above reasons, it has been difficult to obtain a carbon fiber reinforced composite material having satisfactory performance with the existing liquid epoxy resin composition.

【0013】[0013]

【発明が解決しようとする課題】本発明の課題は、高伸
度で耐熱性に優れたマトリックス樹脂からなり、耐疲労
性、サーマルクラック耐性などの特性と耐熱性を両立さ
せることのできる炭素繊維強化複合材料とその製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is a carbon fiber which is composed of a matrix resin having high elongation and excellent heat resistance, and which has both heat resistance and characteristics such as fatigue resistance and thermal crack resistance. It is to provide a reinforced composite material and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、本発明の炭素繊維強化複合材料の製造方法は、炭素
繊維強化複合材料の成形条件と同一硬化条件で硬化した
場合の硬化物の室温引張伸度が4%以上、ガラス転移温
度が硬化温度より10℃以上高い液状エポキシ樹脂組成
物を用いることを特徴とする方法からなる。好ましく
は、硬化物の室温引張伸度が5%以上の液状エポキシ樹
脂組成物を用いる。
In order to solve the above problems, the method for producing a carbon fiber reinforced composite material of the present invention is a cured product obtained by curing under the same curing conditions as the molding conditions of the carbon fiber reinforced composite material. A method comprising using a liquid epoxy resin composition having a room temperature tensile elongation of 4% or more and a glass transition temperature of 10 ° C. or more higher than a curing temperature. A liquid epoxy resin composition having a room temperature tensile elongation of 5% or more is preferably used.

【0015】このような方法により製造された本発明に
係る炭素繊維強化複合材料は、優れた機械特性と耐熱性
の両方を兼ね備えており、とくに自動車用部材等に好適
なものとなる。
The carbon fiber reinforced composite material according to the present invention produced by such a method has both excellent mechanical properties and heat resistance, and is particularly suitable for automobile members and the like.

【0016】[0016]

【発明の実施の形態】以下に、本発明について、望まし
い実施の形態とともに詳細に説明する。本発明に係る炭
素繊維強化複合材料の製造方法においては、液状エポキ
シ樹脂組成物が用いられる。液状エポキシ樹脂組成物と
しては、ポリアミン硬化型エポキシ樹脂樹脂組成物と酸
無水物硬化型エポキシ樹脂組成物が繊維強化複合材料の
製造によく用いられるが、中でも、ポリアミン硬化型エ
ポキシ樹脂組成物、すなわちエポキシ樹脂とポリアミン
硬化剤からなる組成物が硬化物と炭素繊維の接着性に優
れるため好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below along with preferred embodiments. In the method for producing a carbon fiber reinforced composite material according to the present invention, a liquid epoxy resin composition is used. As the liquid epoxy resin composition, a polyamine-curable epoxy resin resin composition and an acid anhydride-curable epoxy resin composition are often used in the production of fiber-reinforced composite materials. A composition composed of an epoxy resin and a polyamine curing agent is preferable because of excellent adhesion between the cured product and the carbon fiber.

【0017】本発明においては、その硬化物の伸度と耐
熱性の両方に優れた液状エポキシ樹脂組成物を選択して
使用する。
In the present invention, a liquid epoxy resin composition having excellent elongation and heat resistance of the cured product is selected and used.

【0018】ここで、液状とは、注入温度において容易
に強化繊維に含浸できる程度の粘度、具体的には500mPa
・s以下の液体であることを意味する。通常含浸温度は10
0℃以下とすることが多いので、本発明に用いる液状エ
ポキシ樹脂組成物は、100℃における粘度が500mPa・s以
下であることが好ましい。あるいは粘度が500mPa・sとな
る温度が100℃以下であることが好ましい。通常の液体
であれば、粘度は温度に対して単調に増加するため、両
者は等価であると考えることができる。あるいは粘度が
500mPa・sとなる温度が70℃以下であれば低温注入が可能
になるためさらに好ましい。
The term "liquid" as used herein means a viscosity such that the reinforcing fibers can be easily impregnated at the injection temperature, specifically 500 mPa.
-It means a liquid of s or less. Normal impregnation temperature is 10
Since the temperature is often 0 ° C. or lower, the liquid epoxy resin composition used in the present invention preferably has a viscosity at 100 ° C. of 500 mPa · s or lower. Alternatively, the temperature at which the viscosity reaches 500 mPa · s is preferably 100 ° C. or lower. In the case of a normal liquid, the viscosity increases monotonically with temperature, and therefore both can be considered to be equivalent. Or the viscosity
It is more preferable that the temperature of 500 mPa · s be 70 ° C. or lower because low temperature injection becomes possible.

【0019】液状エポキシ樹脂組成物の硬化物の伸度に
ついては、炭素繊維強化複合材料の製造(成形)と同じ
硬化条件、すなわち、同じ硬化温度、および同じ硬化時
間で、液状エポキシ樹脂組成物のみを硬化して得られる
硬化物試料の室温引張伸度が4%以上であることが必要
である。室温引張伸度が5%以上であればさらに好まし
い。このとき、同時に室温引張弾性率が3.2GPa以
上であることが好ましい。
Regarding the elongation of the cured product of the liquid epoxy resin composition, only the liquid epoxy resin composition is produced under the same curing conditions as in the production (molding) of the carbon fiber reinforced composite material, that is, at the same curing temperature and the same curing time. It is necessary that the room temperature tensile elongation of the cured product sample obtained by curing the above is 4% or more. More preferably, the room temperature tensile elongation is 5% or more. At this time, it is preferable that the room temperature tensile elastic modulus is at least 3.2 GPa.

【0020】これと同時に、硬化物は、硬化温度より1
0℃以上高いガラス転移温度を有することを必須とす
る。硬化物のガラス転移温度は、前記の硬化物の小片の
示差走査熱量分析を行うことにより知ることができる。
At the same time, the cured product is 1
It is essential to have a glass transition temperature higher than 0 ° C. The glass transition temperature of the cured product can be known by performing differential scanning calorimetry on the above-mentioned cured product.

【0021】このようなエポキシ樹脂組成物を設計する
場合は、ベンゼン環やシクロヘキサン環などの剛直骨格
を多く含み、長鎖アルキレン、ポリオキシアルキレン、
ポリシロキサンなどの単結合の長い連鎖をできるだけ含
まず、架橋点間分子量が大きくなるように硬化物の分子
骨格を設計することが有効である。
When such an epoxy resin composition is designed, it contains many rigid skeletons such as a benzene ring and a cyclohexane ring, and a long-chain alkylene, polyoxyalkylene,
It is effective to design the molecular skeleton of the cured product so as to increase the molecular weight between cross-linking points by avoiding long chains of single bonds such as polysiloxane as much as possible.

【0022】本発明に係る炭素繊維強化複合材料の製造
方法は、公知の液状樹脂を用いる繊維強化複合材料のい
ずれの製法に対しても適用することができる。
The method for producing a carbon fiber reinforced composite material according to the present invention can be applied to any method for producing a fiber reinforced composite material using a known liquid resin.

【0023】好ましい製造方法の一つとしてRTM法を
用いることができる。RTM法とは、型内に設置した強
化繊維基材に液状の熱硬化性樹脂を注入し、硬化して繊
維強化複合材料を得る方法である。中でも、型のキャビ
ティ内を減圧し、内外の圧力差を利用して樹脂を注入す
る真空RTM法に好適である。
The RTM method can be used as one of preferred manufacturing methods. The RTM method is a method of injecting a liquid thermosetting resin into a reinforcing fiber base material placed in a mold and curing the resin to obtain a fiber-reinforced composite material. Above all, it is suitable for the vacuum RTM method in which the inside of the mold cavity is depressurized and the resin is injected by utilizing the pressure difference between the inside and the outside.

【0024】強化繊維基材は、炭素繊維からなる織物、
ブレイドなどをそのまま用いてもよく、織物などを積
層、賦形し、結着剤やステッチなどの手段で形態を固定
しプリフォームとしたものを用いてもよい。また、炭素
繊維以外の強化繊維、例えばガラス繊維、アラミド繊
維、金属繊維など組み合わせたものを併用してもよい。
組合せの方法としては、織物の経糸と緯糸の一方を炭素
繊維以外の強化繊維とする方法や、炭素繊維織物と他の
強化繊維の織物やマットを積層するなどの方法がある。
The reinforcing fiber substrate is a woven fabric made of carbon fiber,
A blade or the like may be used as it is, or a woven fabric or the like may be laminated and shaped, and the form may be fixed by a means such as a binder or a stitch to form a preform. Further, reinforcing fibers other than carbon fibers, for example, glass fibers, aramid fibers, metal fibers and the like may be used in combination.
Examples of the combination method include a method in which one of the warp and weft of the woven fabric is a reinforcing fiber other than carbon fiber, a method in which a carbon fiber woven fabric and a woven fabric or mat of other reinforcing fibers are laminated, and the like.

【0025】型は、剛体からなるクローズドモールドを
用いてもよく、剛体の片面型と可撓性のフィルム(バッ
グ材)を用いる方法も可能である。後者の場合、強化繊
維基材は剛体片面型と可撓性フィルムの間に設置する。
A closed mold made of a rigid body may be used as the mold, and a method using a rigid one-sided mold and a flexible film (bag material) is also possible. In the latter case, the reinforcing fiber substrate is placed between the rigid one-sided mold and the flexible film.

【0026】剛体の型材としては、金属(スチール、ア
ルミニウムなど)、FRP、木材、石膏など既存の各種
のものが用いられる。可撓性のフィルムとしては、ナイ
ロン、フッ素樹脂、シリコーン樹脂のフィルムが用いら
れる。
As the rigid mold material, various existing materials such as metal (steel, aluminum, etc.), FRP, wood, gypsum, etc. can be used. As the flexible film, a film of nylon, fluororesin, or silicone resin is used.

【0027】剛体のクローズドモールドを用いる場合
は、加圧して型締めし、液状エポキシ樹脂組成物を加圧
して注入することが通常行われる。このとき、注入口と
は別に吸引口を設け、真空ポンプに接続して吸引するこ
とも可能である。吸引を行い、かつ、特別な加圧手段を
用いず、大気圧のみで液状エポキシ樹脂を注入すること
も可能である。
When a rigid closed mold is used, the liquid epoxy resin composition is usually injected by pressurizing and clamping the liquid epoxy resin composition. At this time, a suction port may be provided separately from the injection port and connected to a vacuum pump for suction. It is also possible to inject the liquid epoxy resin only by the atmospheric pressure without performing a suction and using a special pressurizing means.

【0028】剛体の片面型と可撓性フィルムを用いる場
合は、通常、吸引と大気圧による注入を用いる。大気圧
による注入で、良好な含浸を実現するためには、米国特
許4902215号公報に示されるような、樹脂拡散媒
体を用いることが有効である。
When using a rigid one-sided type and a flexible film, suction and injection at atmospheric pressure are usually used. In order to achieve good impregnation by injection at atmospheric pressure, it is effective to use a resin diffusion medium as shown in US Pat. No. 4,902,215.

【0029】また、型内には、強化繊維基材以外にフォ
ームコア、ハニカムコア、金属部品などを設置し、これ
らと一体化した複合材料を得ることも可能である。特に
フォームコアの両面に炭素繊維基材を配置して成形して
得られるサンドイッチ構造体は、軽量で大きな曲げ剛性
を持つので、外板材料として有用である。
It is also possible to install a foam core, a honeycomb core, metal parts, etc. in the mold in addition to the reinforcing fiber base material to obtain a composite material integrated with these. In particular, the sandwich structure obtained by arranging and molding the carbon fiber base material on both sides of the foam core is lightweight and has a large bending rigidity, and is therefore useful as an outer plate material.

【0030】さらに、強化繊維基材の設置に先立って、
剛体型の表面にゲルコートを塗布することも好ましく行
われる。
Further, prior to the installation of the reinforcing fiber base material,
It is also preferable to apply a gel coat to the rigid body type surface.

【0031】樹脂注入が終了した後、適切な加熱手段を
用いて、加熱硬化が行われる。このときの硬化温度は、
前述のとおりマトリックス樹脂のガラス転移温度と相関
し、炭素繊維強化複合材料の耐熱性とするため、製品に
要求される耐熱性を考慮して選ばれるが、60〜180
℃が好ましい。硬化温度を不必要に高温に設定すると、
成形時間が長くなる、使用する型、熱媒、副資材が高価
になるなどの弊害が生じるため、特に高度の耐熱性が要
求されない場合は、60〜150℃が好ましい。硬化時
間は通常10分〜3時間である。
After the resin injection is completed, heat curing is carried out by using an appropriate heating means. The curing temperature at this time is
As described above, the heat resistance of the carbon fiber reinforced composite material is correlated with the glass transition temperature of the matrix resin.
C is preferred. If you set the curing temperature to an unnecessarily high temperature,
Since adverse effects such as long molding time and high cost of the mold, heat medium, and auxiliary materials used occur, 60 to 150 ° C. is preferable unless particularly high heat resistance is required. The curing time is usually 10 minutes to 3 hours.

【0032】RTM法は、曲面をなす板状部材の製造に
特に適した方法であるので、本発明の炭素繊維強化複合
材料の製造方法は、航空機、鉄道車両、自動車、船舶な
どの外板の製造に特に好適に用いられる。中でも、短い
成形サイクルで大量生産が要求される自動車用部材の製
造に好適である。
Since the RTM method is a method particularly suitable for manufacturing a plate member having a curved surface, the method for manufacturing a carbon fiber reinforced composite material according to the present invention can be applied to an outer plate of an aircraft, a railway vehicle, an automobile, a ship, etc. It is particularly preferably used for manufacturing. Among them, it is suitable for manufacturing automobile members that require mass production in a short molding cycle.

【0033】さらに別の製造方法として、フィラメント
ワインディング法が挙げられる。フィラメントワインデ
ィング法は、マンドレルに液状樹脂を含浸させた強化繊
維のストランドを捲回した後、加熱硬化する方法であ
る。フィラメントワインディング法は、回転対称性を有
する部材の製造に適した方法であるので、圧力容器、フ
ライホイール、自動車のプロペラシャフトなどの製造に
好適である。
As another manufacturing method, there is a filament winding method. The filament winding method is a method in which a mandrel is wound with a strand of reinforcing fiber in which a liquid resin is impregnated and then heated and cured. The filament winding method is suitable for manufacturing members having rotational symmetry, and is therefore suitable for manufacturing pressure vessels, flywheels, automobile propeller shafts, and the like.

【0034】本発明によって得られるの炭素繊維強化複
合材料は、強化繊維の体積含有率が50%以上であるこ
とが、炭素繊維の持つ優れた比強度、比弾性率を有効に
生かすために好ましい。また、このとき、本発明におけ
る好ましい液状エポキシ樹脂組成物を用いることによっ
て、同時に望ましい耐熱性も得られる。
In the carbon fiber reinforced composite material obtained by the present invention, the volume content of the reinforcing fibers is preferably 50% or more in order to effectively utilize the excellent specific strength and specific elastic modulus of the carbon fibers. . At this time, by using the preferable liquid epoxy resin composition of the present invention, desired heat resistance can be obtained at the same time.

【0035】[0035]

【実施例】以下、実施例によって本発明をさらに具体的
に説明する。 (1)実施例1 (液状エポキシ樹脂組成物の評価)東レ(株)製ポリア
ミン硬化型液状エポキシ樹脂組成物 TR-C32 を50℃に
予熱した厚さ2mmの板状キャビティをもつアルミニウム
製の成形型に注入し、オーブン中で、毎分1℃で昇温
し、90℃に達したところで、この温度を2時間保持
し、その後、脱型してエポキシ樹脂硬化物の板を得た。
これを切削加工してダンベル状試験片(小型1(1/
2)号形)を得、JIS K7113号に従って室温(23℃)
で引張試験を行った。引張伸度は5.8%、引張弾性率
は3.3GPaであった。同じ硬化物の板から切り出し
た小片試料を示差走査熱量分析装置TA3000(メトラー社
製)を用いて、昇温速度40℃/minで昇温測定を行い、ガ
ラス転移領域の中点からガラス転移温度を求めたとこ
ろ、113℃であった。
The present invention will be described in more detail with reference to the following examples. (1) Example 1 (Evaluation of Liquid Epoxy Resin Composition) Polyamine-curable liquid epoxy resin composition TR-C32 manufactured by Toray Industries, Inc. was preheated to 50 ° C. and molded from aluminum having a plate-like cavity with a thickness of 2 mm. It was poured into a mold, heated at 1 ° C./min in an oven, and when the temperature reached 90 ° C., this temperature was maintained for 2 hours, and then the mold was removed to obtain a plate of a cured epoxy resin.
Dumbbell-shaped test pieces (small size 1 (1 /
2) No.) was obtained and room temperature (23 ° C) according to JIS K7113
The tensile test was conducted at. The tensile elongation was 5.8% and the tensile elastic modulus was 3.3 GPa. Using a differential scanning calorimeter TA3000 (manufactured by Mettler), a small piece sample cut out from the same cured product plate was subjected to temperature rise measurement at a temperature rise rate of 40 ° C / min, and the glass transition temperature was measured from the midpoint of the glass transition region. Was 113 ° C.

【0036】また、TR-C32の50℃における粘度を円錐−
平板型回転粘度計で測定したところ、140mPa・sであっ
た。
Further, the viscosity of TR-C32 at 50 ° C.
It was 140 mPa · s when measured with a flat plate rotational viscometer.

【0037】(繊維強化複合材料の製造)縦300mm、
横300mm、高さ1.3mmの直方体のキャビティを備え、
上型と下型よりなり、下型の中央部に樹脂の注入口が備
えられ、上型の4つの角部に樹脂の注出口を有するスチ
ール製金型のキャビティ内面に離型剤を塗布した。
(Production of fiber-reinforced composite material) Length 300 mm,
It has a rectangular parallelepiped cavity with a width of 300 mm and a height of 1.3 mm.
A mold release agent was applied to the inner surface of the cavity of a steel mold having an upper mold and a lower mold, a resin injection port provided at the center of the lower mold, and resin injection ports at the four corners of the upper mold. .

【0038】炭素繊維平織クロスCF6273H(T700GC−12K
使用、190g/m2目付、東レ(株)製)を、一辺が経糸方
向となるように1辺280mmの正方形に切り出したもの
をキャビティ内に6枚重ねた。
Carbon fiber plain weave cloth CF6273H (T700GC-12K
Using, 190 g / m 2 basis weight, manufactured by Toray Industries, Inc., and cutting into a square of 280 mm on each side so that one side is the warp direction, 6 sheets were stacked in the cavity.

【0039】プレスを用いて型締めし、金型温度を50℃
に昇温した。注出口をトラップを介して真空ポンプに接
続し、型内を0.5kPa以下に減圧した。続いて、東レ
(株)製ポリアミン硬化型液状エポキシ樹脂組成物TR-C
32を、キャビティー内に注入圧300kPaで注入した。トラ
ップに流出するエポキシ樹脂にほぼ気泡がみられなくな
った時点で、注入を完了し。毎分1℃で金型を昇温し、
90℃に達したところで、この温度を2時間保持し、そ
の後、脱型して繊維強化複合材料を得た。
The mold is clamped using a press and the mold temperature is 50 ° C.
The temperature was raised to. The outlet was connected to a vacuum pump via a trap, and the pressure inside the mold was reduced to 0.5 kPa or less. Then, Toray Industries, Inc. polyamine curable liquid epoxy resin composition TR-C
32 was injected into the cavity at an injection pressure of 300 kPa. Injection was completed when almost no bubbles were found in the epoxy resin flowing out to the trap. Heat the mold at 1 ° C per minute,
When the temperature reached 90 ° C., this temperature was maintained for 2 hours, and then the mold was removed to obtain a fiber reinforced composite material.

【0040】繊維強化複合材料の表面、および切断、研
磨後の断面を顕微鏡観察したところ、ボイド、クラック
などの欠陥は観察されなかった。
When the surface of the fiber-reinforced composite material and the cross section after cutting and polishing were microscopically observed, defects such as voids and cracks were not observed.

【0041】ASTM−D3039に準拠して、インストロン420
8型引張試験機(インストロン社製)を用いて上記繊維
強化複合材料の引張強度測定を行った。試験片寸法は、
幅25.4mm、長さ229mmとし、環境温度は23℃、クロスヘ
ッドスピードは1.27mm/sとした。引張強度は871MP
aであった。
According to ASTM-D3039, Instron 420
The tensile strength of the fiber-reinforced composite material was measured using an 8-type tensile tester (manufactured by Instron). The test piece dimensions are
The width was 25.4 mm, the length was 229 mm, the environmental temperature was 23 ° C, and the crosshead speed was 1.27 mm / s. Tensile strength is 871MP
It was a.

【0042】[0042]

【発明の効果】以上説明したように、本発明の炭素繊維
強化複合材料およびその製造方法によれば、特定の液状
エポキシ樹脂組成物を用いて成形するので、得られる成
形品の優れた機械特性と耐熱性を両立させることができ
る。
As described above, according to the carbon fiber reinforced composite material and the method for producing the same of the present invention, since molding is performed using a specific liquid epoxy resin composition, the resulting molded article has excellent mechanical properties. And heat resistance can be compatible.

フロントページの続き Fターム(参考) 4F072 AA01 AA07 AB06 AB09 AB10 AB11 AB28 AD23 AE01 AF28 AK03 AK11 AK14 AK20 AL01 AL02 Continued front page    F-term (reference) 4F072 AA01 AA07 AB06 AB09 AB10                       AB11 AB28 AD23 AE01 AF28                       AK03 AK11 AK14 AK20 AL01                       AL02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化複合材料の成形条件と同一
硬化条件で硬化した場合の硬化物の室温引張伸度が4%
以上、ガラス転移温度が硬化温度より10℃以上高い液
状エポキシ樹脂組成物を用いることを特徴とする炭素繊
維強化複合材料の製造方法。
1. The room temperature tensile elongation of the cured product is 4% when cured under the same curing conditions as the molding conditions of the carbon fiber reinforced composite material.
Above, a method for producing a carbon fiber reinforced composite material, characterized in that a liquid epoxy resin composition having a glass transition temperature higher than the curing temperature by 10 ° C. or more is used.
【請求項2】 炭素繊維強化複合材料の成形条件と同一
硬化条件で硬化した場合の硬化物の室温引張伸度が5%
以上である液状エポキシ樹脂組成物を用いることを特徴
とする、請求項1の炭素繊維強化複合材料の製造方法。
2. The room temperature tensile elongation of the cured product is 5% when cured under the same curing conditions as the molding conditions of the carbon fiber reinforced composite material.
The method for producing a carbon fiber reinforced composite material according to claim 1, wherein the liquid epoxy resin composition as described above is used.
【請求項3】 炭素繊維強化複合材料の成形条件と同一
温度履歴を与えて硬化した場合の硬化物の室温引張弾性
率が3.2GPa以上である液状エポキシ樹脂を用いることを
特徴とする、請求項1または2の炭素繊維強化複合材料
の製造方法。
3. A liquid epoxy resin having a room temperature tensile elastic modulus of 3.2 GPa or more when cured by applying the same temperature history as the molding conditions of the carbon fiber reinforced composite material. 1. The method for producing a carbon fiber reinforced composite material according to 1 or 2.
【請求項4】 液状エポキシ樹脂の硬化温度が60〜1
50℃の範囲内にある、請求項1〜3のいずれかに記載
の炭素繊維強化複合材料の製造方法。
4. The curing temperature of the liquid epoxy resin is 60 to 1
The method for producing a carbon fiber-reinforced composite material according to any one of claims 1 to 3, which is within a range of 50 ° C.
【請求項5】 液状エポキシ樹脂組成物がエポキシ樹脂
とポリアミン硬化剤からなる、請求項1〜4のいずれか
に記載の炭素繊維強化複合材料の製造方法。
5. The method for producing a carbon fiber reinforced composite material according to claim 1, wherein the liquid epoxy resin composition comprises an epoxy resin and a polyamine curing agent.
【請求項6】 成形後の炭素繊維強化複合材料の体積繊
維含有率が50%以上である、請求項1〜5のいずれか
に記載の炭素繊維強化複合材料の製造方法。
6. The method for producing a carbon fiber reinforced composite material according to claim 1, wherein the carbon fiber reinforced composite material after molding has a volume fiber content of 50% or more.
【請求項7】 炭素繊維基材を配置した型のキャビティ
内を減圧し、前記液状エポキシ樹脂組成物を、減圧され
たキャビティ内圧力と外部圧力との差圧を利用してキャ
ビティ内に注入し炭素繊維基材に含浸する真空RTM成
形法を用いる、請求項1〜6のいずれかに記載の炭素繊
維強化複合材料の製造方法。
7. The pressure inside the cavity of the mold in which the carbon fiber base material is arranged is reduced, and the liquid epoxy resin composition is injected into the cavity by utilizing the reduced pressure difference between the internal pressure of the cavity and the external pressure. The method for producing a carbon fiber reinforced composite material according to any one of claims 1 to 6, which uses a vacuum RTM method of impregnating a carbon fiber base material.
【請求項8】 請求項1〜7のいずれかに記載の方法に
より製造された炭素繊維強化複合材料。
8. A carbon fiber reinforced composite material produced by the method according to claim 1.
【請求項9】 自動車用部材である、請求項8の炭素繊
維強化複合材料。
9. The carbon fiber reinforced composite material according to claim 8, which is a member for automobiles.
JP2001213095A 2001-07-13 2001-07-13 Carbon fiber-reinforced composite material, and method for producing the same Pending JP2003026820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213095A JP2003026820A (en) 2001-07-13 2001-07-13 Carbon fiber-reinforced composite material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213095A JP2003026820A (en) 2001-07-13 2001-07-13 Carbon fiber-reinforced composite material, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003026820A true JP2003026820A (en) 2003-01-29

Family

ID=19048139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213095A Pending JP2003026820A (en) 2001-07-13 2001-07-13 Carbon fiber-reinforced composite material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003026820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313516A (en) * 2014-10-24 2015-01-28 苏州吴创材料科技发展有限公司 Rare earth added carbon fiber aluminum matrix composite material for car doors and preparation method thereof
WO2021200407A1 (en) * 2020-03-31 2021-10-07 アイシン・エィ・ダブリュ株式会社 Rotor core and method for manufacturing rotor core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313516A (en) * 2014-10-24 2015-01-28 苏州吴创材料科技发展有限公司 Rare earth added carbon fiber aluminum matrix composite material for car doors and preparation method thereof
WO2021200407A1 (en) * 2020-03-31 2021-10-07 アイシン・エィ・ダブリュ株式会社 Rotor core and method for manufacturing rotor core
JP2021164216A (en) * 2020-03-31 2021-10-11 株式会社アイシン Rotor core and manufacturing method thereof
JP7335193B2 (en) 2020-03-31 2023-08-29 株式会社アイシン Rotor core and rotor core manufacturing method

Similar Documents

Publication Publication Date Title
KR930003894B1 (en) New prepreg and composite molding and production of composite molding
CN103201102B (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
KR101996111B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
US6311542B1 (en) Moulding methods and moulded articles
EP1485251B1 (en) Silicone resin based composites interleaved for improved toughness
TWI431031B (en) Fabricating method of fiber reinforced composition and heat-resistant die and heat-resistant structural material using fiber reinforced composition
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
CN109774263B (en) Continuously-formed segmented-cured high-gloss-surface glass fiber reinforced plastic gel coating plate and preparation method thereof
JP2006265434A (en) Epoxy resin composition and fiber-reinforced composite material
JP5138506B2 (en) Epoxy resin composition and prepreg
JP2003071856A (en) Rtm method
JP2004035702A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material
CN108384234A (en) A kind of wave-penetrating composite material and preparation method thereof
JP2005313607A (en) Reinforcing fiber base material, prepreg, fiber-reinforced plastic and manufacturing method of fiber-reinforced plastic
JP2003026820A (en) Carbon fiber-reinforced composite material, and method for producing the same
AU644701B2 (en) Improved composite tooling
JP4352720B2 (en) Epoxy resin composition for fiber reinforced composite material, fiber reinforced composite material and method for producing the same
JP4576895B2 (en) Reinforced fiber base material for fiber reinforced composite material and fiber reinforced composite material
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
WO2000053654A1 (en) Epoxy resin composition, epoxy resin composition for fiber-reinforced composite, and fiber-reinforced composite containing the same
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JPH05293919A (en) Carbon fiber reinforced resin composite material and production thereof
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JP3066805B2 (en) Manufacturing method of high strength high elasticity hybrid type FRP