JP2006265434A - Epoxy resin composition and fiber-reinforced composite material - Google Patents

Epoxy resin composition and fiber-reinforced composite material Download PDF

Info

Publication number
JP2006265434A
JP2006265434A JP2005087898A JP2005087898A JP2006265434A JP 2006265434 A JP2006265434 A JP 2006265434A JP 2005087898 A JP2005087898 A JP 2005087898A JP 2005087898 A JP2005087898 A JP 2005087898A JP 2006265434 A JP2006265434 A JP 2006265434A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
fiber
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087898A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005087898A priority Critical patent/JP2006265434A/en
Publication of JP2006265434A publication Critical patent/JP2006265434A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-viscosity epoxy resin composition having excellent impregnating properties because of a small change in viscosity and having excellent productivity because of rapid curability at a low temperature such as about 100°C and to provide a fiber-reinforced composite material using the composition. <P>SOLUTION: The epoxy resin composition comprises at least the following constituent elements (A) to (C). The amount of the constituent element (A) is 70-100 wt.% based on the whole epoxy resin and the amount of the constituent element (C) is 0.1-5 wt.% based on the whole epoxy resin. The constituent element (A) is a bisphenol F type epoxy resin having ≤200 epoxy equivalents; the constituent element (B) is an aromatic polyamine which is liquid at room temperature and the constituent element (C) is a complex of a Lewis acid with a base. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低粘度で粘度変化が小さいため含浸性に優れ、かつ低温で速やかに硬化するため生産性に優れたエポキシ樹脂組成物、およびこれを用いた繊維強化複合材料に関する。   The present invention relates to an epoxy resin composition excellent in impregnation due to low viscosity and small viscosity change, and excellent in productivity because it cures rapidly at low temperature, and a fiber-reinforced composite material using the same.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を活かした材料設計ができるため、航空宇宙分野をはじめ、スポーツ分野、一般産業分野等に広く用途が拡大されている。   Fiber reinforced composite materials composed of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so the applications have been expanded widely in aerospace, sports, general industrial fields, etc. Yes.

強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等が用いられる。マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化性樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂等が用いられるが、なかでも優れた耐熱性、弾性率、耐薬品性を有し、かつ硬化収縮が小さいエポキシ樹脂が最もよく用いられる。   As the reinforcing fiber, glass fiber, aramid fiber, carbon fiber, boron fiber or the like is used. As the matrix resin, either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used. As the thermosetting resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, maleimide resin, cyanate resin, etc. are used, among others, it has excellent heat resistance, elastic modulus, chemical resistance, An epoxy resin having a small cure shrinkage is most often used.

繊維強化複合材料の製造には、プリプレグ法、ハンドレイアップ法、フィラメントワイディング法、RTM(Resin Transfer Molding)法等の方法が適用される。このうち、RTM法は、型内に配置した強化繊維基材に液状の熱硬化性樹脂組成物を含浸し、加熱硬化する方法であり、複雑な形状を有する繊維強化複合材料を成形できるという特長を有する。   Methods such as a prepreg method, a hand lay-up method, a filament wiping method, and an RTM (Resin Transfer Molding) method are applied to the production of the fiber reinforced composite material. Among these, the RTM method is a method of impregnating a reinforced fiber base disposed in a mold with a liquid thermosetting resin composition and heat-curing, and is capable of forming a fiber-reinforced composite material having a complicated shape. Have

RTM法に用いられる樹脂に要求される特性としては、機械特性、耐熱性はもちろんのこと、強化繊維基材への含浸を容易にするために、低粘度であることが必要である。また、樹脂含浸時の粘度変化が大きいと、得られる繊維強化複合材料に未含浸部が生じ、所望の特性が得られないため問題がある。さらに、RTM法では型内で樹脂の硬化が行われるが、100℃以下の低い硬化温度において、短時間で硬化が可能であると、型の材質、副資材、熱源に安価なものを使用できるので経済性、生産性に有利である。すなわち、含浸時は低粘度で、粘度変化が小さく、かつ100℃以下の低温で速やかに硬化することが要求されている。   The properties required for the resin used in the RTM method are not only mechanical properties and heat resistance, but also a low viscosity in order to facilitate the impregnation of the reinforcing fiber substrate. In addition, when the viscosity change during resin impregnation is large, there is a problem because an unimpregnated portion is generated in the obtained fiber-reinforced composite material and desired characteristics cannot be obtained. Further, in the RTM method, the resin is cured in the mold, but if it can be cured in a short time at a low curing temperature of 100 ° C. or less, an inexpensive material, auxiliary material, and heat source can be used. So it is advantageous for economy and productivity. That is, when impregnated, it is required to have a low viscosity, a small viscosity change, and to cure rapidly at a low temperature of 100 ° C. or less.

低粘度で、かつ粘度変化の小さい樹脂組成物として、エポキシ樹脂、および該エポキシ樹脂のエポキシ当量から算出される化学量論量に基づいて80〜200%の量のジエチルトルエンジアミンからなるエポキシ樹脂組成物が知られている(例えば、特許文献1)。しかしながら、該特許文献1で開示されるエポキシ樹脂組成物は含浸性、成形物の機械特性は良好であるが、硬化には150℃以上で7時間以上の加熱が必要であり、経済性、生産性が不十分である。   An epoxy resin composition comprising a low-viscosity resin composition having a small viscosity change and an epoxy resin and diethyltoluenediamine in an amount of 80 to 200% based on the stoichiometric amount calculated from the epoxy equivalent of the epoxy resin. A thing is known (for example, patent document 1). However, the epoxy resin composition disclosed in Patent Document 1 has good impregnation properties and mechanical properties of the molded product, but curing requires heating at 150 ° C. or higher for 7 hours or longer, which is economical and Insufficient sex.

また、低粘度で、かつ粘度変化の小さい樹脂組成物として、エポキシ当量165以下のビスフェノールF型エポキシ樹脂、およびポリアミンからなるエポキシ樹脂組成物が知られている(例えば、特許文献2)。また、該特許文献2で開示されるエポキシ樹脂組成物の硬化時間の短縮を目的として、任意の成分として酸型の硬化促進剤の配合が示唆されている。しかしながら、該特許文献2において、硬化促進剤の具体的構成は特に開示されておらず、100℃以下の低温で硬化が可能な具体的な硬化促進剤の種類や配合量については何ら例示されていない。   As a resin composition having a low viscosity and a small viscosity change, an epoxy resin composition comprising a bisphenol F type epoxy resin having an epoxy equivalent of 165 or less and a polyamine is known (for example, Patent Document 2). Further, for the purpose of shortening the curing time of the epoxy resin composition disclosed in Patent Document 2, it is suggested that an acid type curing accelerator is blended as an optional component. However, in Patent Document 2, the specific configuration of the curing accelerator is not particularly disclosed, and no specific examples of the type and blending amount of the curing accelerator that can be cured at a low temperature of 100 ° C. or less are exemplified. Absent.

低温で硬化が可能な樹脂組成物として、エポキシ当量200以下のビスフェノールF型エポキシ樹脂、常温で液体の酸無水物系硬化剤、およびイミダゾール化合物から成るエポキシ樹脂組成物が知られている(例えば、特許文献3)。しかしながら、該特許文献3で開示されるエポキシ樹脂組成物は、硬化には依然として120℃の高温の加熱が必要であり、100℃程度の比較的低温での硬化性が不十分であった。   As a resin composition that can be cured at low temperature, an epoxy resin composition comprising a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less, an acid anhydride curing agent that is liquid at room temperature, and an imidazole compound is known (for example, Patent Document 3). However, the epoxy resin composition disclosed in Patent Document 3 still requires heating at a high temperature of 120 ° C. for curing, and the curability at a relatively low temperature of about 100 ° C. was insufficient.

このように、低粘度で、かつ粘度変化の小さいものの、硬化には120℃以上の加熱が必要であり、低粘度で、かつ粘度変化が小さく、さらに100℃以下の低温で速やかに硬化するエポキシ樹脂組成物は、知られていなかった。
特開平6−329763号公報 特開2004−285148号公報 特開平7−268067号公報
Thus, although it has a low viscosity and a small change in viscosity, it requires heating at 120 ° C. or higher for curing, and has a low viscosity and a small change in viscosity. The resin composition has not been known.
Japanese Patent Laid-Open No. 6-329763 JP 2004-285148 A Japanese Patent Laid-Open No. 7-268067

本発明の目的は、含浸性と低温硬化性とを両立したエポキシ樹脂組成物、および繊維強化複合材料を提供することである。   An object of the present invention is to provide an epoxy resin composition and a fiber-reinforced composite material that have both impregnation properties and low-temperature curability properties.

本発明者はかかる課題に取り組み、エポキシ樹脂組成物の配合について鋭意検討した結果、ある特定の構造を有するエポキシ樹脂、芳香族ポリアミン、硬化促進剤を特定の量で配合した時に、特異的に含浸性と低温硬化性が向上することを見いだし、生産性と経済性とを両立した本発明に至った。すなわち、本発明のエポキシ樹脂組成物は、少なくとも次の構成要素(A)〜(C)を含み、かつ構成要素(A)が全エポキシ樹脂の70〜100重量%であり、構成要素(C)が全エポキシ樹脂の0.1〜5重量%である繊維強化複合材料用エポキシ樹脂組成物である。   The present inventor tackled such a problem, and as a result of earnestly examining the blending of the epoxy resin composition, when the epoxy resin having a specific structure, the aromatic polyamine, and the curing accelerator are blended in a specific amount, the impregnation is specifically performed. As a result, the present invention has been found to improve productivity and low-temperature curability and achieve both productivity and economy. That is, the epoxy resin composition of the present invention contains at least the following components (A) to (C), and the component (A) is 70 to 100% by weight of the total epoxy resin, and the component (C) Is an epoxy resin composition for fiber-reinforced composite materials, which is 0.1 to 5% by weight of the total epoxy resin.

構成要素(A):エポキシ当量200以下のビスフェノールF型エポキシ樹脂
構成要素(B):室温で液状の芳香族ポリアミン
構成要素(C):ルイス酸と塩基の錯体
また、本発明の繊維強化複合材料は、上記エポキシ樹脂組成物の硬化物と強化繊維とを含む。
Component (A): Bisphenol F type epoxy resin having an epoxy equivalent of 200 or less Component (B): Aromatic polyamine which is liquid at room temperature Component (C): Lewis acid and base complex The fiber-reinforced composite material of the present invention Includes a cured product of the above epoxy resin composition and reinforcing fibers.

本発明によれば、低粘度で、かつ粘度変化が小さく、さらに100℃以下の低温で速やかに硬化するエポキシ樹脂組成物を提供することができる。さらに、これにより生産性、経済性に優れた繊維強化複合材料を提供することができる。   According to the present invention, it is possible to provide an epoxy resin composition that has a low viscosity, has a small viscosity change, and is rapidly cured at a low temperature of 100 ° C. or lower. Furthermore, this makes it possible to provide a fiber-reinforced composite material that is excellent in productivity and economy.

本発明において用いられる構成要素(A)は、エポキシ当量200以下のビスフェノールF型エポキシ樹脂である。構成要素(A)のエポキシ当量は200以下でなければならず、200よりも大きいと粘度が高くなるため不適である。構成要素(A)のエポキシ当量は、好ましくは155〜165の範囲である。この範囲のものであれば、エポキシ樹脂組成物が低粘度であるためである。   The component (A) used in the present invention is a bisphenol F type epoxy resin having an epoxy equivalent of 200 or less. The epoxy equivalent of the component (A) must be 200 or less, and if it exceeds 200, the viscosity becomes high, which is not suitable. The epoxy equivalent of component (A) is preferably in the range of 155 to 165. This is because the epoxy resin composition has a low viscosity within this range.

ここで、エポキシ樹脂とは、1分子内に1個以上のエポキシ基を有する化合物を指し、エポキシ樹脂組成物とは、該エポキシ樹脂を含む未硬化の組成物を指し、例えば、エポキシ樹脂と硬化剤、適宜、さらに他の添加剤を含む組成物を指す。   Here, the epoxy resin refers to a compound having one or more epoxy groups in one molecule, and the epoxy resin composition refers to an uncured composition containing the epoxy resin, for example, cured with an epoxy resin. Refers to a composition containing an agent and, optionally, other additives.

これらエポキシ当量200以下のビスフェノールF型エポキシ樹脂の市販品としては、ジャパンエポキシレジン社製の”エピコート”(登録商標)1750(エポキシ当量:156〜163)、東都化成社製のYDF−8170C(エポキシ当量:155〜165)、等がある。   Commercially available bisphenol F type epoxy resins having an epoxy equivalent of 200 or less include “Epicoat” (registered trademark) 1750 (epoxy equivalent: 156 to 163) manufactured by Japan Epoxy Resin Co., Ltd., YDF-8170C (epoxy manufactured by Toto Kasei Co., Ltd.) Equivalent: 155 to 165).

本発明において、構成要素(A)の配合量(構成要素(A)に該当するエポキシ樹脂を複数種用いる場合はその合計)は、全エポキシ樹脂100重量%に対して、70〜100重量%である必要がある。70重量%未満であると、エポキシ樹脂組成物が高粘度となるため、強化繊維への含浸性が不十分となるためである。   In the present invention, the blending amount of the constituent element (A) (when a plurality of epoxy resins corresponding to the constituent element (A) are used in total) is 70 to 100% by weight with respect to 100% by weight of the total epoxy resin. There must be. This is because if the amount is less than 70% by weight, the epoxy resin composition has a high viscosity, so that the impregnation property to the reinforcing fibers becomes insufficient.

本発明において、構成要素(A)以外に、さらに他のエポキシ樹脂を全エポキシ樹脂100重量%に対して、0〜30重量%未満の範囲で配合することもできる。他のエポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、エポキシ当量が200よりも大きいビスフェノールF型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられ、これらの変性物を使用することもできる。この中で、高いガラス転移温度と弾性率をもつ硬化物を得るためには、3官能以上の芳香族エポキシ樹脂の配合が有効である。好ましい3官能以上の芳香族エポキシ樹脂としては、例えば、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,O−トリグリシジル−m−アミノフェノール、N,N,O−トリグリシジル−p−アミノフェノール、等がある。   In the present invention, in addition to the component (A), other epoxy resins may be blended in the range of 0 to less than 30% by weight with respect to 100% by weight of the total epoxy resin. Other epoxy resins are not particularly limited. For example, bisphenol A type epoxy resins, bisphenol F type epoxy resins having an epoxy equivalent greater than 200, glycidyl ester type epoxy resins, glycidyl ether type epoxy resins, glycidyl amine type epoxy resins. And alicyclic epoxy resins, and these modified products can also be used. Among these, in order to obtain a cured product having a high glass transition temperature and an elastic modulus, it is effective to blend a trifunctional or higher functional aromatic epoxy resin. Preferable trifunctional or higher functional aromatic epoxy resins include, for example, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, N, N, O-triglycidyl-m-aminophenol, N , N, O-triglycidyl-p-aminophenol, and the like.

N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタンの市販品としては、住友化学工業社製の”スミエポキシ”(登録商標)ELM434、ハンツマン・アドバンスト・マテリアルズ社製の”アラルダイト” (登録商標)MY−720、”アラルダイト” (登録商標)MY−721、等がある。   As commercial products of N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, “Sumiepoxy” (registered trademark) ELM434 manufactured by Sumitomo Chemical Co., Ltd., manufactured by Huntsman Advanced Materials, Inc. "Araldite" (registered trademark) MY-720, "Araldite" (registered trademark) MY-721, and the like.

N,N,O−トリグリシジル−m−アミノフェノールの市販品としては、住友化学工業社製の”スミエポキシ”(登録商標)ELM120、また、N,N,O−トリグリシジル−p−アミノフェノールの市販品としては、ハンツマン・アドバンスト・マテリアルズ社製の”アラルダイト”(登録商標)MY0500、”アラルダイト” (登録商標)MY0510、ジャパンエポキシレジン社製の”エピコート”(登録商標)630、等がある。これら構成要素(A)以外のエポキシ樹脂は、単独あるいは2種以上を用いることができる。本発明のエポキシ樹脂組成物には、室温で固体のエポキシ樹脂を含んでもよいが、構成要素(A)との混合物が室温で液体であることが好ましい。   Commercially available products of N, N, O-triglycidyl-m-aminophenol include “Sumiepoxy” (registered trademark) ELM120 manufactured by Sumitomo Chemical Co., Ltd., and N, N, O-triglycidyl-p-aminophenol. Commercially available products include “Araldite” (registered trademark) MY0500 manufactured by Huntsman Advanced Materials, “Araldite” (registered trademark) MY0510, “Epicoat” (registered trademark) 630 manufactured by Japan Epoxy Resin, and the like. . Epoxy resins other than these constituent elements (A) can be used alone or in combination of two or more. The epoxy resin composition of the present invention may contain an epoxy resin that is solid at room temperature, but the mixture with the component (A) is preferably liquid at room temperature.

本発明において用いられる構成要素(B)は、室温で液状の芳香族ポリアミンである。室温で液状の芳香族ポリアミンの例としては、例えば、ジエチルトルエンジアミン(2,4−ジエチル−6−メチル−m−フェニレンジアミンと4,6−ジエチル−2−メチル−m−フェニレンジアミンを主成分とする混合物)、ビス(メチルチオ)トルエンジアミン、2,2’−ジイソプロピル−6,6’−ジメチル−4,4’−メチレンジアニリン、2,2’,6,6’−テトライソプロピル−4,4’−メチレンジアニリン、2,2’−ジエチル−4,4’−メチレンジアニリン、ポリオキシテトラメチレンビス(p−アミノベンゾエート)などを挙げることができる。これらの中で、低粘度でかつガラス転移温度などの硬化物物性が優れる点から、ジエチルトルエンジアミンが最も好ましい。ジエチルトルエンの市販品としては、ジャパンエポキシレジン社製の”エピキュア”(登録商標)W等がある。   The component (B) used in the present invention is an aromatic polyamine that is liquid at room temperature. Examples of aromatic polyamines which are liquid at room temperature include, for example, diethyltoluenediamine (2,4-diethyl-6-methyl-m-phenylenediamine and 4,6-diethyl-2-methyl-m-phenylenediamine as main components. Bis (methylthio) toluenediamine, 2,2′-diisopropyl-6,6′-dimethyl-4,4′-methylenedianiline, 2,2 ′, 6,6′-tetraisopropyl-4, Examples include 4'-methylenedianiline, 2,2'-diethyl-4,4'-methylenedianiline, polyoxytetramethylene bis (p-aminobenzoate), and the like. Of these, diethyltoluenediamine is most preferred because of its low viscosity and excellent cured product properties such as glass transition temperature. Examples of commercially available diethyltoluene include “Epicure” (registered trademark) W manufactured by Japan Epoxy Resin Co., Ltd.

室温で液状の芳香族ポリアミンは、室温で液体である単一の成分を用いてもよく、また混合物を用いてもよい。混合物の場合、室温で固体の芳香族アミンを含んでもよいが、構成要素(B)との混合物は室温で液体であることが好ましい。   As the aromatic polyamine which is liquid at room temperature, a single component which is liquid at room temperature may be used, or a mixture may be used. In the case of a mixture, it may contain an aromatic amine that is solid at room temperature, but the mixture with component (B) is preferably liquid at room temperature.

本発明に用いられる構成要素(C)はルイス酸と塩基の錯体である。ルイス酸と塩基の錯体としては、高温で解離してルイス酸を生成するものが挙げられる。ルイス酸としては、3フッ化ホウ素や3塩化ホウ素等のハロゲン化ホウ素、5フッ化リン、5フッ化アンチモンなどが好ましい。また、塩基としては有機アミンが好ましい。具体的には3フッ化ホウ素・アニリン錯体、3フッ化ホウ素・p−クロロアニリン錯体、3フッ化ホウ素・エチルアミン錯体、3フッ化ホウ素・イソプロピルアミン錯体、3フッ化ホウ素・ベンジルアミン錯体、3フッ化ホウ素・ジメチルアミン錯体、3フッ化ホウ素ジエチルアミン錯体、3フッ化ホウ素・ジブチルアミン錯体、3フッ化ホウ素・ピペリジン錯体、3フッ化ホウ素・ジベンジルアミン錯体、3塩化ホウ素・ジメチルオクチルアミン錯体等が挙げられる。これらの錯体はいずれも有機化合物に対する溶解性は優れるが、中でも、3フッ化ホウ素・ピペリジン錯体及び/又は3塩化ホウ素・ジメチルオクチルアミン錯体エポキシ樹脂組成物の粘度変化が小さく、かつ低温硬化性に優れるため、特に好ましく使用できる。   Component (C) used in the present invention is a complex of Lewis acid and base. Examples of the complex of Lewis acid and base include those that dissociate at a high temperature to produce a Lewis acid. As the Lewis acid, boron halides such as boron trifluoride and boron trichloride, phosphorus pentafluoride, antimony pentafluoride and the like are preferable. The base is preferably an organic amine. Specifically, boron trifluoride / aniline complex, boron trifluoride / p-chloroaniline complex, boron trifluoride / ethylamine complex, boron trifluoride / isopropylamine complex, boron trifluoride / benzylamine complex, 3 Boron fluoride / dimethylamine complex, boron trifluoride / diethylamine complex, boron trifluoride / dibutylamine complex, boron trifluoride / piperidine complex, boron trifluoride / dibenzylamine complex, boron trichloride / dimethyloctylamine complex Etc. All of these complexes have excellent solubility in organic compounds, but among them, the viscosity change of the boron trifluoride / piperidine complex and / or boron trichloride / dimethyloctylamine complex epoxy resin composition is small and low temperature curability is achieved. Since it is excellent, it can be particularly preferably used.

本発明の構成要素(C)の配合量(構成要素(C)に該当するルイス酸と塩基の錯体を複数種用いる場合はその合計)は、全エポキシ樹脂に対して、0.1〜5重量%である必要があり、好ましくは1〜3重量%である。0.1重量%未満であると、硬化に時間を要するため生産性が低下し、一方5重量%よりも大きいとエポキシ樹脂組成物の粘度安定性が低下し、得られる繊維強化複合材料に未含浸部が生じることがある。   The blending amount of the constituent element (C) of the present invention (the total amount when a plurality of Lewis acid and base complexes corresponding to the constituent element (C) are used) is 0.1 to 5 wt. %, Preferably 1 to 3% by weight. If it is less than 0.1% by weight, it takes time to cure, so the productivity is lowered. On the other hand, if it is more than 5% by weight, the viscosity stability of the epoxy resin composition is lowered, and the resulting fiber-reinforced composite material is not yet. Impregnation may occur.

本発明のエポキシ樹脂組成物は、70℃における初期粘度が1〜50mPa・sの範囲にあり、かつ70℃で1時間保持した時の粘度が500mPa・s以下である。70℃における初期粘度がこの範囲内であると、強化繊維への含浸性が優れ、特に強化繊維含有率の高い、機械特性に優れた繊維強化複合材料が得られる。また、70℃で1時間保持した時の粘度が500mPa・s以下であると、大型の繊維強化複合材料の成形が可能である。   The epoxy resin composition of the present invention has an initial viscosity in the range of 1 to 50 mPa · s at 70 ° C., and a viscosity of 500 mPa · s or less when held at 70 ° C. for 1 hour. When the initial viscosity at 70 ° C. is within this range, a fiber-reinforced composite material excellent in impregnation into reinforcing fibers, particularly having a high reinforcing fiber content and excellent mechanical properties can be obtained. Further, when the viscosity when held at 70 ° C. for 1 hour is 500 mPa · s or less, a large fiber-reinforced composite material can be molded.

ここでいう粘度とは、JIS Z8803(1991)における、円すい−平板型回転粘度計を使用した粘度の測定により求められる粘度のことである。JIS Z8803(1991)における、円すい−平板型回転粘度計を使用した粘度の測定には、例えば、東機産業社製粘度計(TVE−33H型)等を用いることができる。また、初期粘度とは測定を開始してから30秒経過した後の粘度を指す。   The viscosity here is a viscosity obtained by measuring a viscosity using a cone-plate type rotational viscometer in JIS Z8803 (1991). For example, a viscometer (TVE-33H type) manufactured by Toki Sangyo Co., Ltd. can be used to measure the viscosity using a cone-plate type rotational viscometer in JIS Z8803 (1991). The initial viscosity refers to the viscosity after 30 seconds have elapsed from the start of measurement.

樹脂硬化物の耐熱性は、繊維強化複合材料の耐熱性と正の相関があるため、高耐熱性の繊維強化複合材料を得るためには、高耐熱性の樹脂硬化物を用いることが重要である。ガラス転移温度は、雰囲気の温度がガラス転移温度を上回ると、樹脂硬化物、ひいては繊維強化複合材料の機械強度が大きく低下することから、耐熱性の指標としてよく用いられる。   Since the heat resistance of the cured resin has a positive correlation with the heat resistance of the fiber-reinforced composite material, it is important to use a highly heat-resistant resin cured material in order to obtain a highly heat-resistant fiber-reinforced composite material. is there. The glass transition temperature is often used as an index of heat resistance because when the temperature of the atmosphere exceeds the glass transition temperature, the mechanical strength of the cured resin, and thus the fiber-reinforced composite material, is greatly reduced.

本発明のエポキシ樹脂組成物は、100℃で4時間硬化して得られる硬化物のガラス転移温度が90℃以上である。   The epoxy resin composition of the present invention has a glass transition temperature of 90 ° C. or higher of a cured product obtained by curing at 100 ° C. for 4 hours.

本発明のエポキシ樹脂組成物は100℃で4時間硬化して得られる硬化物を、70℃の温水中に2日間浸漬したときの吸水率が3重量%以下である。   The epoxy resin composition of the present invention has a water absorption of 3% by weight or less when a cured product obtained by curing at 100 ° C. for 4 hours is immersed in warm water at 70 ° C. for 2 days.

ここでいう吸水率とは幅10mm×長さ60mm×厚み2mmの平板状の硬化物を用いて、下記式から求めることができる。   The water absorption referred to here can be obtained from the following formula using a flat cured product having a width of 10 mm, a length of 60 mm, and a thickness of 2 mm.

吸水率=(W−W)/W1×100
:70℃の温水中に浸漬する前の樹脂硬化物重量(g)
:70℃の温水中に2日間浸漬した後の樹脂硬化物重量(g)
本発明のエポキシ樹脂組成物は、前記構成要素以外の添加剤として、界面活性剤、内部離型剤、色素、難燃剤、酸化防止剤、紫外線吸収剤等を添加することも可能である。これらの添加剤は、本発明のエポキシ樹脂組成物中に均一に溶解するものであることが最も好ましい。ただし、均一に溶解しないものであっても、液滴あるいは粒子の形態で安定なコロイド状態を保つ場合は問題ない。この場合、液滴あるいは粒子の径は1μm以下であることが好ましく、0.3μm以下であればさらに好ましい。液滴や粒子の径が大きいと、強化繊維の間隙の通過に困難をきたし、組成の不均一性を招く恐れがある。
Water absorption rate = (W 2 −W 1 ) / W1 × 100
W 1 : Weight of cured resin before being immersed in warm water at 70 ° C. (g)
W 2 : Weight of cured resin after immersing in warm water at 70 ° C. for 2 days (g)
In the epoxy resin composition of the present invention, surfactants, internal mold release agents, dyes, flame retardants, antioxidants, ultraviolet absorbers and the like can be added as additives other than the above-described constituent elements. Most preferably, these additives are those that dissolve uniformly in the epoxy resin composition of the present invention. However, even if it does not dissolve uniformly, there is no problem in maintaining a stable colloidal state in the form of droplets or particles. In this case, the diameter of the droplet or particle is preferably 1 μm or less, and more preferably 0.3 μm or less. If the diameter of the droplets or particles is large, it may be difficult to pass through the gaps between the reinforcing fibers, and the composition may be non-uniform.

本発明の繊維強化複合材料は、前記エポキシ樹脂組成物の硬化物と強化繊維からなるものである。   The fiber-reinforced composite material of the present invention comprises a cured product of the epoxy resin composition and reinforcing fibers.

本発明の繊維強化複合材の製造方法としては、ハンドレイアップ法、プリプレグ法、RTM法、プルトルージョン法、フィラメントワインディング法、スプレーアップ法などの公知の方法がいずれも好ましく適用できる。好ましい製造法の一つであるRTM法とは、型内に設置した強化繊維基材に液状の熱硬化性樹脂を注入し、硬化して繊維強化複合材を得る方法である。   As the method for producing the fiber-reinforced composite material of the present invention, any known method such as a hand lay-up method, a prepreg method, an RTM method, a pultrusion method, a filament winding method, or a spray-up method can be preferably applied. The RTM method, which is one of the preferred production methods, is a method in which a liquid thermosetting resin is injected into a reinforcing fiber base placed in a mold and cured to obtain a fiber-reinforced composite material.

強化繊維基材としては、強化繊維からなる織物、ニット、マット、ブレイドなどをそのまま用いてもよく、これらの基材を積層、賦形し、結着剤やステッチなどの手段で形態を固定したプリフォームを用いても良い。   As the reinforcing fiber base material, a woven fabric made of reinforcing fibers, knit, mat, braid or the like may be used as it is, and these base materials are laminated and shaped, and the form is fixed by means such as a binder or a stitch. A preform may be used.

型は、剛体からなるクローズドモールドを用いてもよく、剛体の片面型と可撓性のフィルム(バッグ)を用いる方法も可能である。後者の場合、強化繊維基材は剛体片面型と可撓性フィルムの間に設置する。剛体の型材としては、例えば金属(鉄、スチール、アルミニウムなど)、FRP、木材、石膏など既存の各種のものが用いられる。可撓性のフィルムとしては、ナイロン、フッ素樹脂、シリコーン樹脂などのフィルムが用いられる。   The mold may be a closed mold made of a rigid body, or a method using a rigid single-sided mold and a flexible film (bag) is also possible. In the latter case, the reinforcing fiber base is placed between the rigid single-sided mold and the flexible film. As the rigid mold material, for example, various existing ones such as metal (iron, steel, aluminum, etc.), FRP, wood, plaster, and the like are used. As the flexible film, a film of nylon, fluorine resin, silicone resin or the like is used.

剛体のクローズドモールドを用いる場合は、加圧して型締めし、液状エポキシ樹脂組成物を加圧して注入することが通常行われる。このとき、注入口とは別に吸引口を設け、真空ポンプに接続して吸引することも可能である。吸引を行い、かつ、特別な加圧手段を用いず、大気圧のみで液状エポキシ樹脂を注入することも可能である。   When a rigid closed mold is used, it is usually performed by pressurizing and clamping and injecting the liquid epoxy resin composition under pressure. At this time, it is also possible to provide a suction port separately from the injection port and connect it to a vacuum pump for suction. It is also possible to inject the liquid epoxy resin only at atmospheric pressure without suction and using a special pressurizing means.

剛体の片面型と可撓性フィルムを用いる場合は、通常、吸引と大気圧による注入を用いる。大気圧による注入で、良好な含浸を実現するためには、米国特許第4902215号公報に示されるような、樹脂拡散媒体を用いることが有効である。また、型内には、強化繊維基材以外にフォームコア、ハニカムコア、金属部品などを設置し、これらと一体化した複合材を得ることも可能である。特にフォームコアの両面に炭素繊維基材を配置して成型して得られるサンドイッチ構造体は、軽量で大きな曲げ剛性を持つので、例えば自動車や航空機などの外板材料として有用である。さらに、強化繊維基材の設置に先立って、剛体型の表面に後述のゲルコートを塗布することも好ましく行われる。   When a rigid single-sided mold and a flexible film are used, suction and injection by atmospheric pressure are usually used. In order to achieve good impregnation by injection at atmospheric pressure, it is effective to use a resin diffusion medium as shown in US Pat. No. 4,902,215. In addition to the reinforcing fiber substrate, a foam core, a honeycomb core, a metal part, and the like can be installed in the mold, and a composite material integrated with these can be obtained. In particular, a sandwich structure obtained by placing and molding carbon fiber substrates on both sides of a foam core is lightweight and has a large bending rigidity, and thus is useful as an outer plate material for automobiles, aircrafts and the like. Furthermore, prior to installation of the reinforcing fiber base, it is also preferable to apply a gel coat described later on the rigid surface.

樹脂注入が終了した後、適切な加熱手段を用いて加熱硬化を行い、脱型する。脱型後にさらに高温で後硬化を行うことも可能である。   After the resin injection is completed, heat curing is performed using an appropriate heating means, and demolding is performed. It is also possible to perform post-curing at a higher temperature after demolding.

以下、本発明を実施例に基づき具体的に説明する。なお、実施例、比較例においては、各種サンプルの作製、物性値は次に示す条件で行った。
1.粘度測定
JIS Z 8803(1991)における、円すい−平板形回転粘度計を使用した粘度の測定方法に従い、70℃にて、エポキシ樹脂組成物の粘度を測定した。粘度計は、東機産業社製粘度計(TVE−33H型)を用いて測定した。粘度計のローターは、角度1°34’、半径24mmのものを使用した。
2.エポキシ樹脂の樹脂硬化板の作成
エポキシ樹脂組成物を厚み2mmのスペーサーを有する型に注入し、オーブン中で30℃から100℃まで速度1.5℃/分で昇温し、100℃で4時間加熱硬化した後、30℃まで速度2.5℃/分で降温し、厚み2mmの樹脂硬化板を得た。
3.ガラス転移温度の測定
上述の方法により得られた樹脂硬化板を幅12.7mm×長さ55mmに切断してガラス転移温度測定用の試料とした。Rheometric Scientific社製の粘弾性測定装置ARESにより、Rectangular Torsionモードにおいて、昇温速度5℃/min、周波数1Hzで測定を行い、貯蔵弾性率G’の変曲点からガラス転移温度を求めた。
4.吸水率の測定
上述の方法により得られた樹脂硬化板を幅10mm×長さ60mmに切断し、以下の式により吸水率を求めた。
Hereinafter, the present invention will be specifically described based on examples. In Examples and Comparative Examples, production of various samples and physical property values were performed under the following conditions.
1. Viscosity measurement The viscosity of the epoxy resin composition was measured at 70 ° C. according to a viscosity measurement method using a cone-plate type rotational viscometer in JIS Z 8803 (1991). The viscometer was measured using a viscometer (TVE-33H type) manufactured by Toki Sangyo Co., Ltd. The rotor of the viscometer used was an angle of 1 ° 34 ′ and a radius of 24 mm.
2. Preparation of cured resin plate of epoxy resin The epoxy resin composition was poured into a mold having a spacer having a thickness of 2 mm, heated in an oven from 30 ° C. to 100 ° C. at a rate of 1.5 ° C./min, and at 100 ° C. for 4 hours. After heat curing, the temperature was lowered to 30 ° C. at a rate of 2.5 ° C./min to obtain a 2 mm thick resin cured plate.
3. Measurement of glass transition temperature The resin cured plate obtained by the above-described method was cut into a width of 12.7 mm and a length of 55 mm to obtain a sample for measuring the glass transition temperature. The glass transition temperature was determined from the inflection point of the storage elastic modulus G ′ using a viscoelasticity measuring device ARES manufactured by Rheometric Scientific in a Rectangular Torsion mode, at a heating rate of 5 ° C./min and a frequency of 1 Hz.
4). Measurement of water absorption rate The cured resin plate obtained by the above-described method was cut into a width of 10 mm and a length of 60 mm, and the water absorption rate was determined by the following equation.

吸水率=(W−W)/W1×100
:70℃の温水中に浸漬する前の樹脂硬化物重量(g)
:70℃の温水中に2日間浸漬した後の樹脂硬化物重量(g)
[実施例1]
構成要素(B)として”エピキュア” (登録商標)W(ジャパンエポキシレジン社製28.1重量部に、構成要素(C)として3フッ化ホウ素・ピペリジン錯体(ステラケミファ社製)1.0重量部を添加し、70℃で30分間均一に混合した。これに構成要素(A)として”エピコート”(登録商標)1750(エポキシ当量156〜163、ジャパンエポキシレジン社製)100重量部を添加し、均一に混合してエポキシ樹脂組成物を調整した。得られた樹脂組成物についての評価結果を表1に示す。
[実施例2,3]
構成要素(C)の3フッ化ホウ素・ピペリジン錯体をそれぞれ表1に示す配合量で添加した以外は全て実施例1と同様にしてエポキシ樹脂組成物を調整した。得られた樹脂組成物の評価結果を表1に示す。
[実施例4]
構成要素(B)として”エピキュア” (登録商標)W28.1重量部に、構成要素(C)として3フッ化ホウ素・ピペリジン錯体1.0重量部を添加し、70℃で30分間均一に混合した。これに構成要素(A)として”エピコート”(登録商標)70重量部、構成要素(A)以外のエポキシ樹脂として”エピコート” (登録商標)630(ジャパンエポキシレジン社製)30重量部を添加し、均一に混合してエポキシ樹脂組成物を調整した。得られた樹脂組成物についての評価結果を表1に示す。
[比較例1]
実施例1で用いた構成要素(C)の3フッ化ホウ素・ピペリジン錯体を添加しない以外は全て実施例1と同様にしてエポキシ樹脂組成物を調整した。得られた樹脂組成物についての評価結果を表1に示す。70℃初期粘度、70℃1時間保持後の粘度は良好であったが、100℃で4時間加熱しても未硬化であった。
[比較例2]
構成要素(A)として”エピコート” (登録商標)1750を100重量部に、構成要素(B)以外の硬化剤として”アンカミン” (登録商標)2049(エアープロダクツ・アンド・ケミカルズ社製)37.2重量部を添加し、均一に混合してエポキシ樹脂組成物を調整した。得られた樹脂組成物についての評価結果を表1に示す。70℃での初期粘度は良好であるが、ポットライフが短く、70℃1時間保持後の粘度は1000mPa・sを大きく超えていた。
Water absorption rate = (W 2 −W 1 ) / W1 × 100
W 1 : Weight of cured resin before being immersed in warm water at 70 ° C. (g)
W 2 : Weight of cured resin after immersing in warm water at 70 ° C. for 2 days (g)
[Example 1]
"Epicure" (registered trademark) W (28.1 parts by weight manufactured by Japan Epoxy Resin Co., Ltd.) as component (B), and boron trifluoride / piperidine complex (produced by Stella Chemifa Co.) 1.0 wt. Were added and mixed uniformly for 30 minutes at 70 ° C. To this, 100 parts by weight of “Epicoat” (registered trademark) 1750 (epoxy equivalents 156-163, manufactured by Japan Epoxy Resin Co., Ltd.) was added as component (A). The epoxy resin composition was prepared by uniformly mixing, and the evaluation results of the obtained resin composition are shown in Table 1.
[Examples 2 and 3]
An epoxy resin composition was prepared in the same manner as in Example 1 except that the boron trifluoride / piperidine complex of component (C) was added in the amounts shown in Table 1, respectively. The evaluation results of the obtained resin composition are shown in Table 1.
[Example 4]
“Epicure” (registered trademark) W28.1 parts by weight as component (B) is added 1.0 part by weight of boron trifluoride / piperidine complex as component (C) and mixed uniformly at 70 ° C. for 30 minutes. did. To this, 70 parts by weight of “Epicoat” (registered trademark) as component (A) and 30 parts by weight of “Epicoat” (registered trademark) 630 (manufactured by Japan Epoxy Resin) as an epoxy resin other than component (A) are added. The mixture was uniformly mixed to prepare an epoxy resin composition. The evaluation results for the obtained resin composition are shown in Table 1.
[Comparative Example 1]
An epoxy resin composition was prepared in the same manner as in Example 1 except that the boron trifluoride / piperidine complex of component (C) used in Example 1 was not added. The evaluation results for the obtained resin composition are shown in Table 1. The initial viscosity at 70 ° C. and the viscosity after holding at 70 ° C. for 1 hour were good, but were uncured even when heated at 100 ° C. for 4 hours.
[Comparative Example 2]
40. “Epicoat” (registered trademark) 1750 as component (A) is 100 parts by weight, and “Ancamine” (registered trademark) 2049 (manufactured by Air Products and Chemicals) as a curing agent other than component (B) 2 parts by weight was added and mixed uniformly to prepare an epoxy resin composition. The evaluation results for the obtained resin composition are shown in Table 1. Although the initial viscosity at 70 ° C. was good, the pot life was short, and the viscosity after holding at 70 ° C. for 1 hour greatly exceeded 1000 mPa · s.

Figure 2006265434
Figure 2006265434

本発明のエポキシ樹脂組成物は、RTM法以外にもフィラメントワインディング法や、プルトルージョン法などの液状エポキシ樹脂組成物を用いる繊維強化複合材料の製造に適用することができる。   The epoxy resin composition of the present invention can be applied to the production of a fiber reinforced composite material using a liquid epoxy resin composition such as a filament winding method or a pultrusion method other than the RTM method.

本発明のエポキシ樹脂組成物を用いることで、軽量、高強度、高剛性で耐熱性に優れた繊維強化複合材料を経済的に製造することができる。   By using the epoxy resin composition of the present invention, a fiber-reinforced composite material that is lightweight, high-strength, high-rigidity and excellent in heat resistance can be produced economically.

本発明の繊維強化複合材料は、航空機の胴体、主翼、尾翼、動翼、フェアリング、カウル、ドアなど、宇宙機のモーターケース、主翼など、人工衛星の構体、自動車のシャシー、鉄道車両の構体などに好適に用いることができる。
The fiber reinforced composite material of the present invention includes an aircraft fuselage, a main wing, a tail wing, a moving wing, a fairing, a cowl, a door, a spacecraft motor case, a main wing, an artificial satellite structure, an automobile chassis, and a railway vehicle structure. It can use suitably for.

Claims (7)

少なくとも次の構成要素(A)〜(C)を含み、かつ構成要素(A)が全エポキシ樹脂の70〜100重量%であり、構成要素(C)が全エポキシ樹脂の0.1〜5重量%であるエポキシ樹脂組成物。
構成要素(A):エポキシ当量200以下のビスフェノールF型エポキシ樹脂
構成要素(B):室温で液状の芳香族ポリアミン
構成要素(C):ルイス酸と塩基の錯体
At least the following components (A) to (C) are included, and component (A) is 70 to 100% by weight of the total epoxy resin, and component (C) is 0.1 to 5% by weight of the total epoxy resin. % Epoxy resin composition.
Component (A): Bisphenol F type epoxy resin having an epoxy equivalent of 200 or less Component (B): Aromatic polyamine which is liquid at room temperature Component (C): Complex of Lewis acid and base
構成要素(B)がジエチルトルエンジアミンである請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the component (B) is diethyltoluenediamine. 構成要素(C)が3フッ化ホウ素・ピペリジン錯体及び/又は3塩化ホウ素・ジメチルオクチルアミン錯体である請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the component (C) is a boron trifluoride-piperidine complex and / or a boron trichloride-dimethyloctylamine complex. 70℃における初期粘度が1〜50mPa・sの範囲であり、かつ70℃で1時間保持した時の粘度が500mPa・s以下である請求項1〜3のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the initial viscosity at 70 ° C is in the range of 1 to 50 mPa · s, and the viscosity when held at 70 ° C for 1 hour is 500 mPa · s or less. 100℃で4時間硬化して得られる硬化物のガラス転移温度が90℃以上である請求項1〜4のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the cured product obtained by curing at 100 ° C for 4 hours has a glass transition temperature of 90 ° C or higher. 100℃で4時間硬化して得られる硬化物を、70℃の温水中に2日間浸漬したときの吸水率が3重量%以下である請求項1〜5のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, which has a water absorption of 3% by weight or less when a cured product obtained by curing at 100 ° C for 4 hours is immersed in warm water at 70 ° C for 2 days. . 請求項1〜6のいずれかに記載のエポキシ樹脂組成物の硬化物と強化繊維を含む繊維強化複合材料。
The fiber reinforced composite material containing the hardened | cured material of the epoxy resin composition in any one of Claims 1-6, and a reinforced fiber.
JP2005087898A 2005-03-25 2005-03-25 Epoxy resin composition and fiber-reinforced composite material Pending JP2006265434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087898A JP2006265434A (en) 2005-03-25 2005-03-25 Epoxy resin composition and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087898A JP2006265434A (en) 2005-03-25 2005-03-25 Epoxy resin composition and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2006265434A true JP2006265434A (en) 2006-10-05

Family

ID=37201726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087898A Pending JP2006265434A (en) 2005-03-25 2005-03-25 Epoxy resin composition and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2006265434A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021516A1 (en) 2009-08-17 2011-02-24 Dic株式会社 Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
WO2011034042A1 (en) 2009-09-18 2011-03-24 Dic株式会社 Resin composition for fiber-reinforced composite material, cured object obtained therefrom, fiber-reinforced composite material, fiber-reinforced molded resin, and process for producing same
JP2016210860A (en) * 2015-05-01 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
EP3124455A1 (en) 2015-07-31 2017-02-01 Petroceramics S.p.A. Method for the production of a fibre-reinforced carbon-ceramic composite material, composite carbon-ceramic material obtained using such method and component of a disc brake made of such material
WO2019065248A1 (en) 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 Resin composition for fiber-reinforced composite material and fiber-reinforced composite material obtained using same
KR20190068552A (en) 2016-10-14 2019-06-18 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Resin composition for fiber reinforced composite material and fiber reinforced composite material using the same
CN114989398A (en) * 2022-05-16 2022-09-02 中国电子科技集团公司第三十八研究所 Solvent-free RTM resin body for ultralow temperature and wide temperature environment and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021516A1 (en) 2009-08-17 2011-02-24 Dic株式会社 Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
US8487052B2 (en) 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
WO2011034042A1 (en) 2009-09-18 2011-03-24 Dic株式会社 Resin composition for fiber-reinforced composite material, cured object obtained therefrom, fiber-reinforced composite material, fiber-reinforced molded resin, and process for producing same
US8883938B2 (en) 2009-09-18 2014-11-11 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
JP2016210860A (en) * 2015-05-01 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
EP3124455A1 (en) 2015-07-31 2017-02-01 Petroceramics S.p.A. Method for the production of a fibre-reinforced carbon-ceramic composite material, composite carbon-ceramic material obtained using such method and component of a disc brake made of such material
KR20190068552A (en) 2016-10-14 2019-06-18 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Resin composition for fiber reinforced composite material and fiber reinforced composite material using the same
US11597829B2 (en) 2016-10-14 2023-03-07 Nippon Steel Chemical & Material Co., Ltd. Resin composition for fiber-reinforced composite materials and fiber-reinforced composite material using same
WO2019065248A1 (en) 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 Resin composition for fiber-reinforced composite material and fiber-reinforced composite material obtained using same
CN114989398A (en) * 2022-05-16 2022-09-02 中国电子科技集团公司第三十八研究所 Solvent-free RTM resin body for ultralow temperature and wide temperature environment and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4396274B2 (en) Epoxy resin composition for fiber reinforced composite material, method for producing fiber reinforced composite material, and fiber reinforced composite material
JP5454138B2 (en) Epoxy resin composition, fiber-reinforced composite material, and method for producing the same
KR101642616B1 (en) Fiber-reinforced resin composite material and process for producing same
JP5228853B2 (en) Epoxy resin composition, fiber reinforced composite material, and production method thereof
KR20140127868A (en) Fiber-reinforced composite material
KR20110120314A (en) Benzoxazine resin composition
JP2006265434A (en) Epoxy resin composition and fiber-reinforced composite material
KR20140127869A (en) Fiber-reinforced composite material
JP2014227473A (en) Epoxy resin composition for composite material, fiber-reinforced composite material, and methods for producing the same
JP2009102563A (en) Epoxy resin composition and fiber-reinforced composite material by using the same
JP4475880B2 (en) Epoxy resin composition
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP2009280669A (en) Rtm fiber-reinforced composite material and process for producing it
JP2013159618A (en) Epoxy resin composition, fiber reinforced composite material, and method for producing them
JP2009227907A (en) Epoxy resin composition and fiber reinforced composite material containing it
JP2004346092A (en) Resin composition for prepreg
JP2004035702A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material
JP2011046797A (en) Epoxy resin composition, fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP4352720B2 (en) Epoxy resin composition for fiber reinforced composite material, fiber reinforced composite material and method for producing the same
JP2010163573A (en) Epoxy resin composition and fiber-reinforced composite material using the same
JP5381146B2 (en) Fiber reinforced prepreg and cured product
JP2001302760A (en) Epoxy resin composition
JP2017066218A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP4333178B2 (en) Manufacturing method of fiber reinforced composite material
JP7014153B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites