JP3885848B2 - Composite material molding method and molding die therefor - Google Patents

Composite material molding method and molding die therefor Download PDF

Info

Publication number
JP3885848B2
JP3885848B2 JP15433498A JP15433498A JP3885848B2 JP 3885848 B2 JP3885848 B2 JP 3885848B2 JP 15433498 A JP15433498 A JP 15433498A JP 15433498 A JP15433498 A JP 15433498A JP 3885848 B2 JP3885848 B2 JP 3885848B2
Authority
JP
Japan
Prior art keywords
matrix resin
resin
composite material
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15433498A
Other languages
Japanese (ja)
Other versions
JPH11348059A (en
Inventor
宏 水野
善弘 添田
友裕 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Yokohama Rubber Co Ltd
Society of Japanese Aerospace Companies
Original Assignee
Mitsubishi Heavy Industries Ltd
Yokohama Rubber Co Ltd
Society of Japanese Aerospace Companies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Yokohama Rubber Co Ltd, Society of Japanese Aerospace Companies filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15433498A priority Critical patent/JP3885848B2/en
Publication of JPH11348059A publication Critical patent/JPH11348059A/en
Application granted granted Critical
Publication of JP3885848B2 publication Critical patent/JP3885848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複合材の成形方法及びその成形用金型に係わり、更に詳しくは簡単な方向と金型設備とにより、品質精度が高い樹脂材料の複合材を成形することが出来る複合材の成形方法及びその成形用金型に関するものである。
【0002】
【従来の技術】
従来、補強繊維基材にマトリックス樹脂を含浸させて所定の形状に成形する複合材料の成形方法としては、レジンインジェクション成形法(RIM)や、レジントランスファー成形法(RTM)は、簡便な樹脂成形方法として、車両の部品等の成形品の他、多種の部品の成形方法として用いられている。
【0003】
レジントランスファー成形法(RTM)としては、例えば、図3に示すように断面凹状のキャビティ1を備えた下部金型2と、この下部金型2に嵌合する上部金型3とで構成され、その前記キャビティ1内に、炭素繊維布等の補強繊維基材4を配置した後、上下金型2,3を嵌合させ、前記キャビティ1内を上部金型3に設けた真空吸引パイプ5により負圧状態にすると共に、マトリックス樹脂注入機6に収容された熱硬化性樹脂から成るマトリックス樹脂7を配管8を介して下部金型2の樹脂注入口2aからキャビティ1内に圧入させて補強繊維基材4に含浸させる。
【0004】
その後、上下金型2,3に設けた図示しない加熱手段による加熱,加圧によりマトリックス樹脂を加熱硬化し、複合材を成形するものである。なお、9はOリング等のシール材を示している。
【0005】
【発明が解決しようとする課題】
ところで、上記のようなレジントランスファー成形法(RTM)において、マトリックス樹脂としてポリイミド樹脂等の熱硬化性樹脂材料を用いて成形する場合に、当該トランスファー温度での樹脂粘度が著しく高い場合、上下金型2,3のキャビティ1内に配置されたプリフォームを樹脂注入口2aから注入されるマトリックス樹脂の圧力と粘度とで乱してしまう問題があった。
【0006】
特に、キャビティ1内に強固に固定化されていない二次元,三次元のプリフォームを用いた場合、樹脂注入口2a近傍の樹脂フローにより、内部の補強繊維基材4が乱れ、結果として、成形品に反りが生じたり、残留応力等の不均一性を引き起し、製品精度に問題が生していた。
このような補強繊維基材4の乱れを防止する手段として、例えば、三次元のプリフォームをキャビティ1内に強固に固定したり、またはマトリックス樹脂のトランスファー速度を低下させる方法が考えられるが、低コスト成形法としての利点が失われ、また生産性の向上を図ることが出来ないと言う問題がある。
【0007】
この発明の目的は、マトリックス樹脂のトランスファー速度を低下させることなく生産性の向上を図ることができ、成形品に反りを生じさせたり、残留応力等の不均一性を引き起すことなく、製品精度を高めることが出来る複合材の成形方法及びその成形用金型を提供することにある。
【0008】
【課題を解決するための手段】
この発明は上記目的を達成するため、複合材の成形方法としては、マトリックス樹脂の樹脂注入口を備えた下部金型のキャビティ内に、表面に離型処理を施したメッシュ材料を使用した透過率調整部材を配設した後、補強繊維基材を配置し、この下部金型に、空隙率 40% 10% の多孔質物質から成る多孔質フイルターを備えた真空吸引パイプが接続した上部金型を気密的に嵌合し、前記キャビティ内を前記真空吸引パイプを介して吸引することにより負圧状態にし、この状態でマトリックス樹脂注入機に収容されているマトリックス樹脂を加圧空気により加圧しながら前記マトリックス樹脂の樹脂注入口からキャビティ内のメッシュ開孔率が1〜80%のメッシュ材料から成る透過率調整部材を介して補強繊維基材にマトリックス樹脂を圧入させて含浸させ、この際、マトリックス樹脂の硬化反応時に発生する低分子量物質から成る副生成物や低粘度樹脂を前記多孔質フイルターにより選択しながら順次系外に除去し、その後、前記マトリックス樹脂を含浸させた補強繊維基材を加熱,加圧することにより複合材を成形することを要旨とするものである。
【0009】
また、この発明の複合材の成形用金型としては、マトリックス樹脂の樹脂注入口を備えた下部金型と、この下部金型に気密的に嵌合し、かつ空隙率 40% 10% の多孔質物質から成る多孔質フイルターを備えた真空吸引パイプを接続した上部金型とから成り、前記下部金型のキャビティ内におけるマトリックス樹脂注入口側に、加圧注入されるマトリックス樹脂の圧力を均一にして補強繊維基材に含浸させる表面に離型処理を施し、かつメッシュ開孔率が1〜80%のメッシュ材料から成る透過率調整部材を配設したことを要旨とするものである。
【0010】
この発明は上記のように構成したので、マトリックス樹脂の樹脂注入口から注入される高粘度の熱硬化性マトリックス樹脂は、メッシュ材料から成る透過率調整部材により透過圧力が分散されて均一となり、この熱硬化性マトリックス樹脂がキャビティ内の補強繊維基材に除々に含浸するので、補強繊維基材に乱れを生じさせることがなくなり、この結果、マトリックス樹脂のトランスファー速度を低下させることなく生産性の向上を図ることができ、成形品に反りを生じさせたり、残留応力等の不均一性を引き起すことなく、製品精度を高めることが出来るものである。
また、マトリックス樹脂の硬化反応時に発生する低分子量物質から成る副生成物や低粘度樹脂を前記多孔質フイルターにより選択しながら順次系外に除去し、その後、前記マトリックス樹脂を含浸させた補強繊維基材を加熱,加圧することにより製品精度の高い複合材を成形することが可能である。
【0011】
【発明の実施の形態】
以下、添付図面に基づき、この発明の実施形態を説明する。
なお、従来例と同一構成要素は、同一符号を付して説明は省略する。
図1は、この発明の複合材成形方法に利用する成形用金型の断面図を示し、この成形用金型は、樹脂注入口2aを備えた下部金型2と、この下部金型2に嵌合する真空吸引パイプ5が接続された上部金型3とで構成され、下部金型2のキャビティ1における樹脂注入口2a側には、メッシュ材料から成る透過率調整部材11が水平に配設されている。
【0012】
前記透過率調整部材11は、ポリテトラフルオロエチレンをコートしたガラスクロス等のメッシュ材料を使用し、メッシュ開孔率は1〜80%が好ましい。例えば、マトリックス樹脂7の注入圧力0.1MPa/cmに対して、メッシュ開孔率を50%程度にすることにより、透過圧力が分散されて均一となり、この熱硬化性のマトリックス樹脂7はキャビティ内の補強繊維基材4を乱すことなく含浸されるものである。
【0013】
また、メッシュ材料の一つの開孔部位の長さがプリフォームのバンドル直径(メッシュ材料を束ねた筒状体の直径)よりも小さいものを用い、使用するマトリックス樹脂7との離型性を高めるために表面に離型処理を施したメッシュ材料を使用するものである。
前記上下金型2,3には、図示しない加熱手段が設けられ、下部金型2と上部金型3との嵌合部には、キャビティ1内の水密性及び気密性を保つためのOリング等のシール材9が設けてある。
【0014】
前記下部金型2のキャビティ1内に配設した透過率調整部材11上には、炭素繊維布,ガラス繊維等の補強繊維基材4が配置され、この補強繊維基材4にはマトリックス樹脂注入機6に収容されている高粘稠のポリイミド樹脂等の熱硬化性樹脂から成るマトリックス樹脂7が配管8及び樹脂注入口2aを介して含浸されるように構成されている。この熱硬化性樹脂から成るマトリックス樹脂7は、その樹脂粘度が、0.1Pa.s 以上1,000Pa.s 以下の粘稠樹脂を使用する。
【0015】
前記上部金型3に接続された真空吸引パイプ5には、四フッ化エチレン,セラミック,グラファイト,通気性を有する超高分子量ポリエチレン等の多孔質物質から成る多孔質フィルター10が設けられている。
例えば、粒子径3ミクロン粒度のポリテトラフルオロエチレン粒子(PTFE粒子)を用いて製作したPTFE多孔質フィルターの場合、空隙率は40%〜10%の範囲が好ましく、更に好ましくは35%〜15%の範囲である。
【0016】
空隙率が40%以上であると、樹脂のフローが大きく多孔質フィルターとしての機能をはたさず、10%以下であると低分子量物質等の除去が困難となるためである。なお、その他のフィルターの材料については、適宜最適な範囲を選択すれば良い。
次に、図2の成形フローチャートを参照しながらキャビティ1内を減圧して、マトリックス樹脂7を搬送しながら複合材を成形する方法について説明する。
【0017】
まず、スタートでは、離型処理した上下金型2,3を準備し(ステップ▲1▼)、下部金型2のキャビティ1内の樹脂注入口2a近傍に、表面に離型処理を施したメッシュ材料から成る透過率調整部材11を水平に配設する(ステップ▲2▼)。
次いで、透過率調整部材11上に、炭素繊維布,ガラス繊維等の補強繊維基材4を配置すると共に、上部金型3に接続された真空吸引パイプ5には、四フッ化エチレン,セラミック,グラファイト,通気性を有する超高分子量ポリエチレン等の多孔質物質から成る多孔質フィルター10を配置する(ステップ▲3▼,▲4▼)。
【0018】
そして、下部金型2上に上部金型3を気密的に嵌合させ(ステップ▲5▼)、キャビティ1内を図示しない真空ポンプ等に接続された真空吸引パイプ5を介して吸引することにより負圧状態にし、この状態でマトリックス樹脂注入機6に収容されている高粘稠のポリイミド樹脂等の熱硬化性樹脂から成るマトリックス樹脂7を加圧空気により加圧しながら配管8及び樹脂注入口2aを介してキャビティ1内に圧入させる(ステップ▲6▼)。
【0019】
キャビティ1内に圧入された高粘稠のマトリックス樹脂7は、メッシュ材料から成る透過率調整部材11により透過圧力が均一に分散されて補強繊維基材4に除々に含浸することになる。この結果、補強繊維基材4は、繊維の乱れがなく、またマトリックス樹脂7のトランスファー速度を低下させることなく生産性の向上を図ることができる。
【0020】
また、上記補強繊維基材4にマトリックス樹脂7を含浸させる際、マトリックス樹脂7の硬化反応時に発生するガス,水,アルコール等の低分子量物質から成る副生成物や、低粘度樹脂を、真空吸引パイプ5に設けた多孔質フィルター10によって選択しながら順次系外に除去する。その後、上下金型2,3によって加熱,加圧することにより複合材を成形することで、ボイド等を含まない品質精度の高い成形品を製造することが出来るものである。
【0021】
以上のようにして、マトリックス樹脂7の含浸操作が終了したら、上下金型2,3を加熱させて、マトリックス樹脂7を加熱硬化させて複合材を成形するものである(ステップ▲8▼)。
【0022】
以上のような方法により、補強繊維基材4にマトリックス樹脂7を含浸させる際に、マトリックス樹脂注入口2aから注入される高粘度の熱硬化性マトリックス樹脂7は、メッシュ材料から成る透過率調整部材11により透過圧力が分散されて均一となり、この熱硬化性マトリックス樹脂7がキャビティ1内の補強繊維基材4に除々に含浸するので、補強繊維基材4に乱れを生じさせることがなくなり、この結果、マトリックス樹脂のトランスファー速度を低下させることなく生産性の向上を図ることができ、成形品に反りを生じさせたり、残留応力等の不均一性を引き起すことなく、製品精度を高めることが出来るものである。
【0023】
また、発生するガス,水,アルコール等の低分子量物質から成る副生成物や、配合溶剤を、上下金型2,3の外部に除去するので、複合材料の成形品にはボイド等を含まない品質精度の高い成形品を製造することが出来、また既存の設備を利用して簡便な方法で熟練者でなくても短時間に効率良く成形作業を行うことが出来るものである。
【0024】
【発明の効果】
この発明は、上記のように構成したので、マトリックス樹脂のトランスファー速度を低下させることなく生産性の向上を図ることができ、成形品に反りを生じさせたり、残留応力等の不均一性を引き起すことなく、製品精度を高めることが出来る効果がある。また離型処理したメッシュ材料から成る透過率調整部材を使用する場合には、金型からの脱型が容易となり、作業性を向上させることが出来る。
【図面の簡単な説明】
【図1】この発明の複合材成形方法に利用する成形用金型の断面図である。
【図2】この発明の複合材の成形工程のフローチャート図である。
【図3】従来の複合材料の成形装置の概略構成図である。
【符号の説明】
1 キャビティ 2 下部金型
3 上部金型 4 補強繊維基材
5 真空吸引パイプ 6 マトリックス樹脂注入機
7 マトリックス樹脂 8 配管
9 シール材 10 多孔質フィルター
2a 樹脂注入口 11 透過率調整部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method of a composite material and a molding die thereof, and more specifically, molding of a composite material capable of molding a composite material of a resin material with high quality accuracy by a simple direction and mold equipment. The present invention relates to a method and a molding die thereof.
[0002]
[Prior art]
Conventionally, a resin injection molding method (RIM) or a resin transfer molding method (RTM) is a simple resin molding method as a composite material molding method in which a reinforcing fiber base material is impregnated with a matrix resin and molded into a predetermined shape. As a molding method for various parts in addition to molded parts such as vehicle parts.
[0003]
As a resin transfer molding method (RTM), for example, as shown in FIG. 3, it is composed of a lower mold 2 provided with a cavity 1 having a concave cross section and an upper mold 3 fitted to the lower mold 2. After the reinforcing fiber base 4 such as carbon fiber cloth is disposed in the cavity 1, the upper and lower molds 2 and 3 are fitted, and the inside of the cavity 1 is provided by the vacuum suction pipe 5 provided in the upper mold 3. While making the negative pressure state, the matrix resin 7 made of thermosetting resin accommodated in the matrix resin injection machine 6 is press-fitted into the cavity 1 from the resin injection port 2a of the lower mold 2 through the pipe 8, thereby reinforcing the fiber. The base material 4 is impregnated.
[0004]
Thereafter, the matrix resin is heat-cured by heating and pressurizing with heating means (not shown) provided in the upper and lower molds 2 and 3 to form a composite material. Reference numeral 9 denotes a sealing material such as an O-ring.
[0005]
[Problems to be solved by the invention]
By the way, in the resin transfer molding method (RTM) as described above, when molding is performed using a thermosetting resin material such as polyimide resin as a matrix resin, when the resin viscosity at the transfer temperature is extremely high, There has been a problem that the preforms disposed in the cavities 1 and 3 are disturbed by the pressure and viscosity of the matrix resin injected from the resin injection port 2a.
[0006]
In particular, when a two-dimensional or three-dimensional preform that is not firmly fixed in the cavity 1 is used, the internal reinforcing fiber base 4 is disturbed by the resin flow in the vicinity of the resin injection port 2a, resulting in molding. The product is warped and causes non-uniformity such as residual stress, resulting in problems in product accuracy.
As a means for preventing such disturbance of the reinforcing fiber base 4, for example, a method of firmly fixing a three-dimensional preform in the cavity 1 or reducing the transfer speed of the matrix resin can be considered. There is a problem that the advantage as the cost forming method is lost and the productivity cannot be improved.
[0007]
The object of the present invention is to improve the productivity without reducing the transfer speed of the matrix resin, and without causing the product to warp or cause non-uniformity such as residual stress. It is an object of the present invention to provide a molding method of a composite material and a molding die for the molding material that can improve the hardness.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention achieves the above-mentioned object. As a method of molding a composite material, a transmittance using a mesh material whose surface is subjected to a release treatment in a cavity of a lower mold having a resin injection port of a matrix resin. After the adjustment member is placed, the reinforcing fiber base is placed, and the lower die is connected to the lower die by a vacuum suction pipe having a porous filter made of a porous material having a porosity of 40% to 10%. Are closed in a vacuum state by sucking the inside of the cavity through the vacuum suction pipe, and in this state, the matrix resin accommodated in the matrix resin injector is pressurized with pressurized air. The matrix resin is pressed into the reinforcing fiber base from the matrix resin injection port through a permeability adjusting member made of a mesh material having a mesh opening ratio in the cavity of 1 to 80%. At this time, by-products and low-viscosity resin composed of low molecular weight substances generated during the curing reaction of the matrix resin are sequentially removed from the system while being selected by the porous filter, and then impregnated with the matrix resin. The gist is to form a composite material by heating and pressurizing the reinforced fiber base material .
[0009]
Further, the present invention as the molding die of the composite, and a lower mold having a resin injection port of the matrix resin, hermetically fitted to the lower mold, and porosity of 40% to 10% It consists of an upper mold connected to a vacuum suction pipe equipped with a porous filter made of a porous material , and the pressure of the matrix resin to be injected by pressure is uniform on the matrix resin inlet side in the cavity of the lower mold The gist of the invention is that the surface to be impregnated into the reinforcing fiber base is subjected to a release treatment and a transmittance adjusting member made of a mesh material having a mesh opening ratio of 1 to 80% is disposed.
[0010]
Since the present invention is configured as described above, the high-viscosity thermosetting matrix resin injected from the resin injection port of the matrix resin becomes uniform because the permeation pressure is dispersed by the transmittance adjusting member made of a mesh material. Since the thermosetting matrix resin gradually impregnates the reinforcing fiber base in the cavity, the reinforcing fiber base is not disturbed, resulting in improved productivity without reducing the transfer rate of the matrix resin. Therefore, the accuracy of the product can be improved without causing warpage of the molded product or causing non-uniformity such as residual stress.
Further, by- products and low-viscosity resin, which are generated during the curing reaction of the matrix resin, are sequentially removed from the system while being selected by the porous filter, and then the reinforcing fiber base impregnated with the matrix resin is used. By heating and pressurizing the material, it is possible to mold a composite material with high product accuracy.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In addition, the same component as a prior art example attaches | subjects the same code | symbol, and abbreviate | omits description.
FIG. 1 shows a cross-sectional view of a molding die used in the composite material molding method of the present invention. The molding die includes a lower die 2 provided with a resin injection port 2a, and a lower die 2. The upper mold 3 is connected to a vacuum suction pipe 5 to be fitted, and a transmittance adjusting member 11 made of a mesh material is disposed horizontally on the resin injection port 2a side of the cavity 1 of the lower mold 2. Has been.
[0012]
The transmittance adjusting member 11 uses a mesh material such as glass cloth coated with polytetrafluoroethylene, and the mesh opening ratio is preferably 1 to 80%. For example, with respect to the injection pressure of 0.1 MPa / cm 2 for the matrix resin 7, the permeation pressure is dispersed and made uniform by setting the mesh porosity to about 50%. It is impregnated without disturbing the reinforcing fiber base 4 inside.
[0013]
In addition, using a mesh material having a smaller opening length than the preform bundle diameter ( diameter of the cylindrical body in which the mesh material is bundled) , the releasability from the matrix resin 7 to be used is improved. Therefore, a mesh material whose surface is subjected to a release treatment is used.
The upper and lower molds 2 and 3 are provided with heating means (not shown), and the fitting portion between the lower mold 2 and the upper mold 3 has an O-ring for maintaining watertightness and airtightness in the cavity 1. A sealing material 9 such as is provided.
[0014]
On the transmittance adjusting member 11 disposed in the cavity 1 of the lower mold 2, a reinforcing fiber base 4 such as a carbon fiber cloth or glass fiber is disposed, and a matrix resin is injected into the reinforcing fiber base 4. A matrix resin 7 made of a thermosetting resin such as a highly viscous polyimide resin accommodated in the machine 6 is impregnated through the pipe 8 and the resin injection port 2a. The matrix resin 7 made of this thermosetting resin uses a viscous resin having a resin viscosity of 0.1 Pa.s or more and 1,000 Pa.s or less.
[0015]
The vacuum suction pipe 5 connected to the upper mold 3 is provided with a porous filter 10 made of a porous material such as tetrafluoroethylene, ceramic, graphite, and ultra-high molecular weight polyethylene having air permeability.
For example, in the case of a PTFE porous filter manufactured using polytetrafluoroethylene particles (PTFE particles) having a particle size of 3 microns, the porosity is preferably in the range of 40% to 10%, more preferably 35% to 15%. Range.
[0016]
This is because if the porosity is 40% or more, the resin flow is large and the function as a porous filter is not achieved, and if it is 10% or less, it is difficult to remove low molecular weight substances and the like. In addition, what is necessary is just to select the optimal range suitably about the material of another filter.
Next, a method of molding the composite material while reducing the pressure inside the cavity 1 and conveying the matrix resin 7 will be described with reference to the molding flowchart of FIG.
[0017]
First, at the start, the upper and lower molds 2 and 3 subjected to the mold release treatment are prepared (step {circle around (1)}), and the mesh whose surface is subjected to the mold release process in the vicinity of the resin inlet 2a in the cavity 1 of the lower mold 2 is prepared. The transmittance adjusting member 11 made of a material is disposed horizontally (step {circle around (2)}).
Next, a reinforcing fiber base material 4 such as carbon fiber cloth or glass fiber is disposed on the transmittance adjusting member 11, and a vacuum suction pipe 5 connected to the upper mold 3 includes ethylene tetrafluoride, ceramic, A porous filter 10 made of a porous material such as graphite or breathable ultra-high molecular weight polyethylene is disposed (steps (3) and (4)).
[0018]
Then, the upper mold 3 is airtightly fitted onto the lower mold 2 (step (5)), and the cavity 1 is sucked through a vacuum suction pipe 5 connected to a vacuum pump or the like (not shown). In this state, the pipe 8 and the resin injection port 2a are pressurized while the matrix resin 7 made of thermosetting resin such as highly viscous polyimide resin accommodated in the matrix resin injection machine 6 is pressurized with pressurized air. And press-fit into the cavity 1 (step (6)).
[0019]
The highly viscous matrix resin 7 press-fitted into the cavity 1 is uniformly impregnated into the reinforcing fiber base 4 with the permeation pressure uniformly dispersed by the permeability adjusting member 11 made of a mesh material. As a result, the reinforcing fiber base 4 can be improved in productivity without any fiber disturbance and without reducing the transfer speed of the matrix resin 7.
[0020]
When the matrix fiber 7 is impregnated into the reinforcing fiber base 4, a by-product composed of a low molecular weight substance such as gas, water, alcohol, etc. generated during the curing reaction of the matrix resin 7 or a low viscosity resin is vacuum sucked. While being selected by the porous filter 10 provided on the pipe 5, it is sequentially removed from the system. Thereafter, by molding the composite material by heating and pressurizing with the upper and lower molds 2 and 3, it is possible to manufacture a molded product with high quality accuracy that does not contain voids.
[0021]
When the impregnation operation of the matrix resin 7 is completed as described above, the upper and lower molds 2 and 3 are heated, and the matrix resin 7 is heated and cured to form a composite material (step (8)).
[0022]
When the reinforcing fiber base 4 is impregnated with the matrix resin 7 by the above-described method, the high-viscosity thermosetting matrix resin 7 injected from the matrix resin injection port 2a is a transmittance adjusting member made of a mesh material. 11, the permeation pressure is dispersed and becomes uniform, and this thermosetting matrix resin 7 gradually impregnates the reinforcing fiber base 4 in the cavity 1, so that the reinforcing fiber base 4 is not disturbed. As a result, productivity can be improved without reducing the transfer speed of the matrix resin, and product accuracy can be improved without causing warping of the molded product or non-uniformity such as residual stress. It is possible.
[0023]
Further, since the by-product composed of low molecular weight substances such as gas, water, alcohol, etc. and the mixed solvent are removed from the upper and lower molds 2 and 3, the molded article of the composite material does not contain voids or the like. A molded product with high quality accuracy can be manufactured, and a molding method can be efficiently performed in a short time even if it is not an expert by a simple method using existing equipment.
[0024]
【The invention's effect】
Since the present invention is configured as described above, it is possible to improve productivity without reducing the transfer rate of the matrix resin, causing warping of the molded product, and causing non-uniformity such as residual stress. There is an effect that the product accuracy can be improved without causing it. Further, when using a transmittance adjusting member made of a mesh material subjected to mold release treatment, it is easy to remove the mold from the mold, and workability can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a molding die used in a composite material molding method of the present invention.
FIG. 2 is a flowchart of a molding process of a composite material according to the present invention.
FIG. 3 is a schematic configuration diagram of a conventional composite material molding apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cavity 2 Lower metal mold | die 3 Upper metal mold | die 4 Reinforcement fiber base material 5 Vacuum suction pipe 6 Matrix resin injection machine 7 Matrix resin 8 Piping 9 Sealing material 10 Porous filter 2a Resin injection port 11 Permeability adjustment member

Claims (6)

マトリックス樹脂の樹脂注入口を備えた下部金型のキャビティ内に、表面に離型処理を施したメッシュ材料を使用した透過率調整部材を配設した後、補強繊維基材を配置し、この下部金型に、空隙率 40% 10% の多孔質物質から成る多孔質フイルターを備えた真空吸引パイプが接続した上部金型を気密的に嵌合し、前記キャビティ内を前記真空吸引パイプを介して吸引することにより負圧状態にし、この状態でマトリックス樹脂注入機に収容されているマトリックス樹脂を加圧空気により加圧しながら前記マトリックス樹脂の樹脂注入口からキャビティ内のメッシュ開孔率が1〜80%のメッシュ材料から成る透過率調整部材を介して補強繊維基材にマトリックス樹脂を圧入させて含浸させ、この際、マトリックス樹脂の硬化反応時に発生する低分子量物質から成る副生成物や低粘度樹脂を前記多孔質フイルターにより選択しながら順次系外に除去し、その後、前記マトリックス樹脂を含浸させた補強繊維基材を加熱,加圧することにより複合材を成形する複合材の成形方法。In the cavity of the lower mold provided with the resin injection port of the matrix resin , after arranging the transmittance adjusting member using the mesh material subjected to the release treatment on the surface, the reinforcing fiber base material is arranged, and this lower part An upper mold to which a vacuum suction pipe having a porous filter made of a porous material having a porosity of 40% to 10% is connected to the mold in an airtight manner, and the inside of the cavity is interposed through the vacuum suction pipe. In this state, a negative pressure state is obtained, and in this state, the matrix resin contained in the matrix resin injecting machine is pressurized with pressurized air while the mesh hole ratio in the cavity from the resin injection port of the matrix resin is 1 to A matrix resin is pressed into and impregnated into a reinforcing fiber base material through a transmittance adjusting member made of 80% mesh material. At this time, the matrix resin is generated during a curing reaction. The by-products and low-viscosity resin consisting of molecular weight material was removed in order outside of the system while selected by the porous filter, then heating the reinforcing fiber base material impregnated with the matrix resin, the composite material by pressurizing A molding method of a composite material to be molded. 前記マトリックス樹脂が、熱硬化性樹脂であり、その樹脂粘度が、0.1Pa.s 以上1,000Pa.s 以下の粘稠樹脂を使用する請求項1に記載の複合材の成形方法。  The method for molding a composite material according to claim 1, wherein the matrix resin is a thermosetting resin, and a viscous resin having a resin viscosity of 0.1 Pa.s to 1,000 Pa.s is used. 前記透過率調整部材が、ポリテトラフルオロエチレンをコートしたガラスクロスから成るメッシュ材料を使用する請求項1または2に記載の複合材の成形方法。The method for molding a composite material according to claim 1 or 2, wherein the transmittance adjusting member uses a mesh material made of glass cloth coated with polytetrafluoroethylene . 前記補強繊維基材が、炭素繊維布またはガラス繊維布を使用する請求項1,2または3に記載の複合材の成形方法。  The method for forming a composite material according to claim 1, wherein the reinforcing fiber base material uses a carbon fiber cloth or a glass fiber cloth. マトリックス樹脂の樹脂注入口を備えた下部金型と、この下部金型に気密的に嵌合し、かつ空隙率 40% 10% の多孔質物質から成る多孔質フイルターを備えた真空吸引パイプを接続した上部金型とから成り、前記下部金型のキャビティ内におけるマトリックス樹脂注入口側に、加圧注入されるマトリックス樹脂の圧力を均一にして補強繊維基材に含浸させる表面に離型処理を施し、かつメッシュ開孔率が1〜80%のメッシュ材料から成る透過率調整部材を配設して成る複合材の成形用金型。A lower mold having a resin injection port of the matrix resin, the hermetically fitted to the lower mold, and a vacuum suction pipe with a porous filter made of a porous material porosity of 40% to 10% The upper mold is connected to the matrix resin injection port side in the cavity of the lower mold. A mold for molding a composite material provided with a transmittance adjusting member made of a mesh material having a mesh opening ratio of 1 to 80% . 前記透過率調整部材が、ポリテトラフルオロエチレンをコートしたガラスクロスから成るメッシュ材料を使用する請求項5に記載の複合材の成形用金型。The mold for molding a composite material according to claim 5, wherein the transmittance adjusting member uses a mesh material made of glass cloth coated with polytetrafluoroethylene .
JP15433498A 1998-06-03 1998-06-03 Composite material molding method and molding die therefor Expired - Fee Related JP3885848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15433498A JP3885848B2 (en) 1998-06-03 1998-06-03 Composite material molding method and molding die therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15433498A JP3885848B2 (en) 1998-06-03 1998-06-03 Composite material molding method and molding die therefor

Publications (2)

Publication Number Publication Date
JPH11348059A JPH11348059A (en) 1999-12-21
JP3885848B2 true JP3885848B2 (en) 2007-02-28

Family

ID=15581890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15433498A Expired - Fee Related JP3885848B2 (en) 1998-06-03 1998-06-03 Composite material molding method and molding die therefor

Country Status (1)

Country Link
JP (1) JP3885848B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806866B2 (en) * 2001-07-16 2011-11-02 東レ株式会社 Vacuum RTM molding method
DE102005053690A1 (en) 2005-11-10 2007-05-31 Airbus Deutschland Gmbh Tool, assembly and method for manufacturing a component, component
JPWO2011043253A1 (en) * 2009-10-09 2013-03-04 東レ株式会社 Method and apparatus for manufacturing fiber reinforced plastic
FR3002750B1 (en) * 2013-03-01 2015-04-10 Safran INJECTION MOLD FOR MANUFACTURING A REVOLUTION PIECE OF COMPOSITE MATERIAL HAVING EXTERNAL FLANGES, IN PARTICULAR A GAS TURBINE HOUSING
KR101656282B1 (en) * 2016-03-16 2016-09-09 주식회사 진보 resin mold with a reinforcement layer and the method thereof
KR102239189B1 (en) * 2019-11-05 2021-04-12 경상국립대학교산학협력단 Making Machine for FRP with High Porosity and Making Method of Using the Same

Also Published As

Publication number Publication date
JPH11348059A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US5441692A (en) Process and apparatus for autoclave resin transfer molding
US5863452A (en) Isostatic pressure resin transfer molding
EP0415870B1 (en) Preform liners for resin transfer molding
CA2467437C (en) Method and device for producing fiber-reinforced plastic components
US4562033A (en) Method of manufacturing articles from a composite material
US7332112B1 (en) Apparatus and method for forming densified, carbon-carbon composites
JPH04294110A (en) Adaptable composite material molding die
CN112912236B (en) Pouring device and method for producing fiber-reinforced composite parts
JPH0651310B2 (en) Compression molding method for molding compound
JP2010517829A (en) Method for processing composite materials
US11052573B2 (en) Method of fabricating both a woven fiber preform and a composite material part
JP3885848B2 (en) Composite material molding method and molding die therefor
GB2292332A (en) Moulding process and apparatus
US5194268A (en) Apparatus for injection molding a ceramic greenware composite without knit lines
US5098620A (en) Method of injection molding ceramic greenward composites without knit lines
KR20090051628A (en) Reverse vacuum system for minimizing thickness variation of vartm process
KR20080082625A (en) Sol-gel process for the manufacture of moulds for photocatalytic processes
JPH09117964A (en) Method and apparatus for molding composite material
EP3052305B1 (en) Flexible resin transfer molding tool
US10189219B2 (en) Method of fabricating a ceramic article
US20040018265A1 (en) Liquid molding pressure control apparatus
JPH09330628A (en) Manufacture of resin insulator and its device
CN211683431U (en) Forming equipment for continuous fiber reinforced thermoplastic composite material
JP5457561B2 (en) Process for extending the processing window of thermosetting resins
CN109795137A (en) For fixing the method and device of reinforcing fibre in the molding of resin material workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees