JP4803413B2 - 交流電動機のインバータ装置 - Google Patents

交流電動機のインバータ装置 Download PDF

Info

Publication number
JP4803413B2
JP4803413B2 JP2001269701A JP2001269701A JP4803413B2 JP 4803413 B2 JP4803413 B2 JP 4803413B2 JP 2001269701 A JP2001269701 A JP 2001269701A JP 2001269701 A JP2001269701 A JP 2001269701A JP 4803413 B2 JP4803413 B2 JP 4803413B2
Authority
JP
Japan
Prior art keywords
current
voltage
output
voltage drop
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001269701A
Other languages
English (en)
Other versions
JP2003088195A (ja
Inventor
陽一 山本
英昭 井浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001269701A priority Critical patent/JP4803413B2/ja
Publication of JP2003088195A publication Critical patent/JP2003088195A/ja
Application granted granted Critical
Publication of JP4803413B2 publication Critical patent/JP4803413B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は出力電圧センサを持たない電力変換器における、交流電動機の抵抗測定方法に関する。
【0002】
【従来の技術】
従来、交流電動機を制御する技術として、可変電圧可変周波数による速度制御が知られている。より高精度に交流電動機を制御するべく、交流電動機に供給される一次電流を、トルクに直接関与する励磁電流(磁束を発生させる電流)とトルク電流(トルクを発生させる電流)とに分けて制御し、二次磁束とトルク電流を常に直交するように制御することで、直流交流電動機と同等の応答性を得ることのできるベクトル制御方式が実用化されている。ベクトル制御方式を採用したインバータ装置においては、一次抵抗、漏れインダクタンス、定格スリップ周波数などの交流電動機の電気的定数に基づいて制御定数が設定される。一般に、交流電動機の誘起電圧と出力周波数の比が一定になるように制御するため、交流電動機の誘起電圧を精度よく求めることが必要となる。これに対応するためには、交流電動機の電気的定数の中でも、一次側インピーダンスを精度よくインバータ装置等に設定することが特に重要となる。この場合、通常の運転前にインバータ装置を用いて交流電動機の電気定数を測定し、この値を制御定数として運転する。交流電動機の端子電圧を測定する電圧センサを用いずに適用できる一次抵抗測定方法として、特開平6-59000に記載されている。
通常、インバータ装置は、図5に示されるように、与えられた直流電圧あるいは3相交流電源からの交流電源を変換した直流電圧を、PWM制御方式により任意の周波数と電圧の交流に再度変換し、この一次周波数および一次電圧を交流電動機2に供給する電圧形PWMインバータからなる電力変換器1、U,V,W相の各相に流れる電流を検出する電流検出器 3A、3B、3C、ベクトル制御を行う制御装置4からなる。なお、電力変換器1はパワー半導体素子(以下、IGBTと呼ぶ)から構成され、速度検出器5が交流電動機2に連結されている。
図6は、従来の制御装置4のブロック図である。制御装置4は、外部から速度指令値ωrrefが入力され、交流電動機2への一次電流(U相電流Iu、V相電流Iv、W相電流Iw)を検出して座標変換を行なった励磁電流帰還値Idfbおよびトルク電流帰還値Iqfbを送出する3相/2相変換器6が設けられている。
また、制御装置4は、後述するIdref、Iqrefと設定された二次抵抗r2からすべり周波数指令値ωsを求め、速度検出器6からの速度検出値ωrとから一次角周波数ω1を演算して出力する一次角周波数演算回路7と速度検出値ωrを入力とし磁束指令を演算する磁束指令演算器14と、磁束指令を入力として励磁電流指令Idrefを演算する係数器15(係数値:1/M*、M*は励磁インダクタンス)を有し、励磁電流指令値Idrefと3相/2相変換器6からの励磁電流帰還値Idfbとが一致するように励磁電流方向電圧を制御する励磁電流制御回路(ACR d)8が設けられている。
さらに、速度指令値ωrrefと速度検出器6からの速度検出値ωrが一致するように設けられた速度制御回路(ASR)9の出力値をトルク電流指令値Iqrefとし、トルク電流指令値Iqrefと3相/2相変換器6が出力するトルク電流帰還値Iqfbとが一致するように制御するためのトルク電流制御回路(ACR q)10が設けられ、電圧指令補償回路11の出力のうち、励磁電流方向成分の電圧は、励磁電流制御回路8出力と加算され励磁電流方向電圧指令値Vdrefを生成し、トルク電流方向成分の電圧は、トルク電流制御回路10出力と加算されトルク電流方向電圧指令値Vqrefを生成する。さらに、励磁電流方向電圧指令値Vdrefとトルク電流方向電圧指令値VqrefとからU,V,Wの各相の電圧指令(Vu,Vv,Vw)のPWM信号を生成して出力する2相/3相変換器12が設けられている。
また、一次角周波数指令演算回路7からの一次角周波数ω1は、積算器13により積算され、3相/2相変換器6および2相/3相変換器12へ、位相θとして入力される。
また、制御装置4は、図7に示す出力電流に対するIGBTオン電圧降下量
の特性を内蔵する電圧降下記憶手段20、一次抵抗のチューニング動作をコントロールするチューニング処理部30、チューニング処理部30からの切り替え指令1〜3によりそれぞれ、励磁電流指令値Idref、トルク電流指令値Iqref、位相θの信号を切り替える信号切り替え器31〜33を内蔵している。
次に、特開平6-59000に記載されている一次抵抗測定方法を適用した、運転前に行う一次抵抗測定の動作について、チューニング処理部30の動作を中心に説明する。一次抵抗チューニングが指示されると、チューニング処理部30は、一次抵抗測定の対象となる交流電動機とインバータの定格電流値を基に、抵抗測定の際に流す直流電流の大きさを決め、信号切り替え器31〜33の出力により信号をaからbに切り替えて運転を開始する。信号の切り替えにより、トルク電流指令値Iqref、励磁電流指令値Idref、位相θの信号を、それぞれ、0、チューニング処理部30からの出力値、0とし、Iw=Idref、Iu=Iv=−Idref/2となるようにする。制御装置4は、電流検出器3A,3B、3Cからの電流検出値と上記電流指令値が一致するように電圧指令を制御する。次に、オン電圧降下記憶手段20は、電圧指令値VdrefとVqrefを取り込み、√(Vdref2+Vqref2)でVrefを、W相の電流検出値Iwを取り込み、IGBTのオン電圧降下量Vpを図7の特性図を用いて求める。チューニング処理部30は、電圧指令値Vref、オン電圧降下量VpとW相の電流検出値Iwを取り込み、(Vref−Vp)とIwの比で抵抗値を演算する。
なお、Iw=Idref、Iu=Iv=−Idref/2となるように運転しているので、IGBTのオン電圧降下量Vpは、
Vp = (W相でのオン電圧降下量) + (U相またはV相でのオン電圧降下量)
=(電流Iwでのオン電圧降下量) + (電流Iw/2でのオン電圧降下量)
= Vp(Iw) + Vp(Iw/2)
として求める。
また、交流電動機に異なる直流電流I1、I2を流すように運転し、I1、I2におけるそれぞれの直流電流に対応したIGBTのオン電圧降下量をオン電圧降下記憶手段20でVp1、Vp2として求め、(Vref2−Vp2)−(Vref1−Vp1)と(I2−I1)の比から交流電動機の一次抵抗を演算測定する方法もあるが、前述の方法と同様に実施できるのでここでは説明を省略する。
【0003】
【発明が解決しようとする課題】
ところが通常、抵抗測定時に流す直流電流の大きさの領域では、出力電圧に対するIGBTのオン電圧降下量特性には線形性がない。このため、出力電流に対するIGBTのオン電圧降下量特性を線形とした従来技術の図7を用いると、電圧指令は大きな誤差を含むようになり、精度よく一次抵抗を測定することはできない。一方、出力電流に対するオン電圧降下量特性が線形になる領域を用いると、モータ容量やインバータ容量に対して大きな電流を流すことになるためモータ焼損の懸念、抵抗自体の発熱による誤差拡大、IGBTの破壊や寿命に与える影響の懸念等の問題が発生することになる。特に、一次抵抗による電圧降下が小さい大容量の電動機の抵抗測定時や、IGBT定格電流基準では小さな直流電流値となる、例えば電動機容量に対するインバータ装置容量の比が大きい場合の抵抗測定時は更に、精度が悪くなっていた。本発明は上記の問題に鑑みてなされたものであり、本発明の目的は出力電流に対するIGBTのオン電圧降下量の非線形特性を補正することにより、非常に精度のよい抵抗測定装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために、この発明の第1の局面によるインバータ装置は、出力電圧の大きさ、周波数および位相の制御が可能なパワー半導体素子から構成され、直流電圧を交流又は直流に変換し、交流電動機へ供給するための電力変換器と、パワー半導体素子の定格電流を基準とした電流の大きさを対数関数とした変数の多項式で近似した特性式と、対数演算用の関数テーブルと、を用いて求める。
【0005】
【発明の実施の形態】
以下、本発明の第1の実施例を図1に基づいて説明する。
図1は本発明の交流電動機を駆動するインバータ装置の全体構成を示すブロック図である。従来の構成ブロック図である図6と異なるところは、オン電圧降下記憶手段20をオン電圧特性演算部20’に変更したことと、オン電圧特性演算部20’でのオン電圧降下量特性演算の際にLN(自然対数)関数を用いることができるようにしたことである。図1において、従来の構成ブロック図である図6と同一名称には同一符号を付し、重複説明を省略する。
変更したオン電圧特性演算部20’の動作の説明にあたり、まず、IGBTのオン電圧降下量の近似式と、オン電圧降下量特性演算の際に用いるLN関数について説明する。
▲1▼IGBTのオン電圧降下量の近似式について
IGBTのオン電圧降下量特性は、IGBTに流れる直流電流Iに対して図8に示すように、電流値が非常に小さいところでは、IGBTのオン電圧降下量は急激に変化する特性をもっている。
そこで、前もってIGBTのオン電圧降下量をカタログや特性データを参考に、直流電流Iに対してLN(自然対数)あるいは、LOG(常用対数)スケールとした二次式で近似し、この近似式を内蔵する。以下、LNスケールとした場合を説明する。
1式は、IGBTのオン電圧降下量を直流電流Iに対してLN関数で近似した式である。
Vp(I)=a×LN(I)2+b×LN(I)+c …(1)
ただし、I:IGBT基準の電流値[%]を示す。
なお、係数a、b、cは、1式がIGBTのトランジスタ特性とダイオード特性の平均値と一致するように求めた値である。
図4は、1式で近似したIGBTのオン電圧降下量の特性を横軸にI、LN(I)にそれぞれとって示したものである。比較のため、図8に示したカタログ特性を併せて示しているが、両者は非常によく近似できていることがわかる。
【0006】
▲2▼オン電圧特性演算の際に用いるLN関数について
LN関数は、通常のCPUでは準備されていない関数であるので、EXPテーブルを記憶しておき、この間を直線近似することでLN演算可能とする。
図9に示したオン電圧特性演算部20’内に記憶されたEXPテーブルを用い、直流電流IがIGBTの定格の8.5%電流である場合を例にしてLN関数の計算方法を説明する。8.5は、図9より7.389と9.025の間であるので、この2点を用いて下式で直線近似し、2.1358を求める。なお、電卓で計算したLN(8.5)は、2.140である。
(2.2−2.0)/(9.025−7.389)×(8.5−7.389)+2.0=2.1358
次にオン電圧特性演算部20’の動作について説明する。
オン電圧特性演算部20’では、電流Iが入力されると、まず、IGBT定格電流基準で何[%]かを演算し(x%とする)、先に説明した要領でLN(x)の値をEXPテーブルを用いて直線近似補間して求めた後、1式に代入してオン電圧降下量Vp(x)を求める。
また、Vdref、Vqrefが入力されると、√(Vdref2+Vqref2)でVrefを求める。
【0007】
次に本発明第1の実施例の動作を図2に基づいて説明する。
図2は、本発明第1の実施例での抵抗チューニングのフローチャートである。チューニング動作は、従来技術とほぼ同じであるので、重複するところは簡潔に順を追って説明する。
一次抵抗チューニングが指示されると、チューニング処理部30は、Iw=Idref、Iu=Iv=−Idref/2とするために、信号切り替え器31〜33にaからbに切り替えを指令する。これにより、トルク電流指令値Iqref=0、位相θ=0とし、運転を開始する(ステップ1)。制御装置4は、電流指令通りに電流が流れるように電圧指令を制御する(ステップ2)。次に、オン電圧特性演算部20’は、電圧指令値VdrefとVqrefからVrefを、W相の電流検出値IwからIGBTオン電圧降下量Vpを演算する。演算は、W相電流検出値IwをIBGT定格電流基準の[%]単位に変換後、Iwに対応するIGBTオン電圧降下量Vp(Iw)と、同様にU、V相電流検出値に対応するIw /2に対応するIGBTオン電圧降下量Vp(Iw/2)を演算し、その和としてIGBTオン電圧降下量Vpを求める。Vp=Vp(Iw)+Vp(Iw/2)(ステップ3)。チューニング処理部30は電圧指令値Vref、オン電圧降下量VpとW相の電流検出値Iwを取り込み、(Vref−Vp)とIwの比で抵抗値を演算する(ステップ4)。以上のようにして、本発明の第1の実施例は実施される。
【0008】
次に、本発明第2の実施例の動作を図3に基づいて説明する。なお、第2の実施例を実施するインバータ装置は第1と全く同様であるので説明は省略する。
図3は、本発明第2の実施例での抵抗チューニングのフローチャートである。以下、順を追って説明する。
一次抵抗チューニングが指示されると、チューニング処理部30は、Iw=Idref1、Iu=Iv=−Idref1/2とするために、信号切り替え器31〜33にaからbに切り替えを指令する。これにより、トルク電流指令値Iqref=0、位相θ=0とし、運転を開始する(ステップ1)。 制御装置4は、電流指令通りに電流が流れるように電圧指令を制御する(ステップ2)。次に、オン電圧特性演算部20’は、電圧指令値Vdref1とVqref1を取り込み、√(Vdref12+Vqref12)でVref1を演算し、W相の電流検出値Iw1を取り込み、IGBTオン電圧降下量Vp1を演算する(ステップ3)。次に第2の大きさの直流電流Idref2が流れるように運転する(ステップ4)。制御装置4は、電流指令通りに電流が流れるように電圧指令を制御する(ステップ5)。次に、オン電圧特性演算部20’は、取り込んだVdref2、Vqref2からVref2を演算し、W相の電流検出値Iw2を取り込み、IGBTオン電圧降下量Vp2を演算する(ステップ6)。チューニング処理部30は取り込んだVref1、Vref2、Vp1、Vp2、Iw1、Iw2から、(Vref2−Vp2)−(Vref1−Vp1)と(Iw2−Iw1)を演算しその振幅比で抵抗値を演算する(ステップ7)。
【0009】
以上、IGBTのオン電圧降下量特性を直流電流IのLN関数の2次式で近似したが、LOG関数で近似してもよいし、3次式以上に近似しても本発明は同様に適用できる。
また、√(Vdref2+Vqref2)として電圧指令値Vrefを求めたが、制御装置4内に制御量としてVrefがあればそれを用いてもよいし、q軸電流指令値Iqref=0となるように制御しているので、一次抵抗測定時はVqref=0になることを利用し、出力電圧指令値Vrefの替わりにd軸電圧指令値Vdrefを用いてもよい。
これまで一次抵抗を測定する際、電流指令を与えその結果として指令される電圧指令を出力電圧指令値Vrefとしたが、電流制御をしない一次抵抗測定方法でも、電圧指令補償回路11により、直接電圧指令を出力し、その値を出力電圧指令値Vrefとすればそのまま適用できる。
また、Iw=Idref、Iu=Iv=−Idref/2とするために、Iqref=0、位相θ=0としたが、Idrefと同じ大きさにする相をW相の替わりに他の相にしても適用できるし、Iw=Iqref、Idref=0となるように、位相θの値を変更して適用できることは当然である。
以上のようにして、交流電動機の一次抵抗値は測定演算され、演算された一次抵抗値は、インバータ装置の記憶要素(図示せず)に記憶され、通常運転時の制御定数として使用される。
【0010】
【発明の効果】
力電流に対するパワー半導体素子のオン電圧降下量の非線形特性を補正することにより、非常に精度よく抵抗測定ができる。なお、本発明によれば、パワー半導体素子のオン電圧降下量を、前もって準備したパワー半導体素子の定格電流を基準とした電流の大きさを対数関数とした変数の多項式で近似した特性式と、対数演算用の関数テーブルとを用い、パワー半導体素子のオン電圧降下量の特性が線形性のない領域でも、オン電圧降下量を精度よく演算し補正するので、大容量の電動機の抵抗測定時や電動機容量に対するインバータ容量の比が大きい場合の測定でも、非常に精度よく抵抗が測定できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を示す制御装置の構成を示すブロック図
【図2】本発明の第1の実施例を示す抵抗チューニングのフローチャート
【図3】本発明の第2の実施例を示す抵抗チューニングのフローチャート
【図4】本発明の実施例で用いるIGBTオン電圧降下量の特性図の例
【図5】従来のインバータ装置の構成を示すブロック図
【図6】従来の制御装置の構成を示すブロック図
【図7】従来装置で用いるIGBTオン電圧降下量の特性図の例
【図8】IGBTオン電圧降下量の特性図(カタログ値)の例
【図9】本発明の実施例でLN関数を演算する際に用いるEXPテーブルの例
【符号の説明】
1 電力変換器
2 交流電動機
3A,3B、3C 電流検出器
4 制御装置
5 速度検出器
6 3相/2相変換器
7 一次角周波数演算回路
8 励磁電流制御回路
9 速度制御回路
10 トルク電流制御回路
11 電圧指令補償回路
12 2相/3相変換器
13 積算器
14 磁束指令演算器
15 係数器
20 オン電圧降下量記憶手段
20’ オン電圧特性演算部
30 チューニング処理部
31〜33 信号切り替え器

Claims (3)

  1. 出力電圧の大きさ、周波数および位相の制御が可能なパワー半導体素子から構成され
    直流電圧を交流又は直流に変換し、交流電動機へ供給するための電力変換器と、
    記パワー半導体素子のオン電圧降下量を、前記パワー半導体素子の定格電流を基準とした電流の大きさを対数関数とした変数の多項式で近似した特性式と、対数演算用の関数テーブルと、を用いて求めることを特徴とする交流電動機のインバータ装置。
  2. 前記インバータ装置は、さらに、前記電力変換器が出力する電流を検出し、出力電流として出力する電流検出器を備え、
    直流電流を流すように周波数と位相を固定した交流電圧を指令信号として出力し、前記電力変換器を介して前記交流電動機に直流電圧を供給し、その際の前記電流検出器により検出された出力電流Iを用いて前記パワー半導体素子のオン電圧降下量の特性式から電圧降下量Vpを求め、その際の出力電圧指令値Vrefから前記電圧降下量Vpを減じた値(Vref−Vp)と前記出力電流Iの振幅比から前記交流電動機の一次抵抗値を測定演算することを特徴とする請求項1に記載のインバータ装置。
  3. 前記インバータ装置は、さらに、前記電力変換器が出力する電流を検出し、出力電流として出力する電流検出器を備え、
    順次、異なる2つの直流電流を流すように周波数と位相を固定した交流電圧を指令信号として出力し、前記電力変換器を介して前記交流電動機に直流電圧を供給し、その際の前記電流検出器により検出されたそれぞれの出力電流I1、I2を用いて前記パワー半導体素子のオン電圧降下量の特性式から電圧降下量Vp1、Vp2を求め、その際のそれぞれの出力電圧指令値Vref1、Vref2から前記電圧降下量Vp1,Vp2を減じて求めた値の差分(Vref2−Vp2)−(Vref1−Vp1)と前記出力電流I1、I2の差分(I2−I1)の振幅比から前記交流電動機の一次抵抗値を測定演算することを特徴とする請求項1に記載のインバータ装置。
JP2001269701A 2001-09-06 2001-09-06 交流電動機のインバータ装置 Expired - Fee Related JP4803413B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269701A JP4803413B2 (ja) 2001-09-06 2001-09-06 交流電動機のインバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269701A JP4803413B2 (ja) 2001-09-06 2001-09-06 交流電動機のインバータ装置

Publications (2)

Publication Number Publication Date
JP2003088195A JP2003088195A (ja) 2003-03-20
JP4803413B2 true JP4803413B2 (ja) 2011-10-26

Family

ID=19095472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269701A Expired - Fee Related JP4803413B2 (ja) 2001-09-06 2001-09-06 交流電動機のインバータ装置

Country Status (1)

Country Link
JP (1) JP4803413B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857747B2 (ja) * 2005-12-07 2012-01-18 株式会社安川電機 交流電動機のインバータ装置
JP5131432B2 (ja) * 2007-02-08 2013-01-30 株式会社ジェイテクト モータ用制御装置
JP2011259602A (ja) * 2010-06-09 2011-12-22 Fujitsu Telecom Networks Ltd 二次電池代替電源装置及び二次電池代替電源制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144075B2 (ja) * 1992-08-05 2001-03-07 株式会社日立製作所 交流電動機の定数測定方法
JP4042278B2 (ja) * 1999-11-30 2008-02-06 株式会社明電舎 同期電動機の制御方式

Also Published As

Publication number Publication date
JP2003088195A (ja) 2003-03-20

Similar Documents

Publication Publication Date Title
JP6671550B1 (ja) 電力変換装置、電動機駆動システム及び制御方法
WO1998040964A1 (fr) Dispositif de commande de moteur asynchrone
JP5576039B2 (ja) 同期電動機制御装置
WO2005018080A1 (ja) 電圧形インバータの制御方法
JP4803413B2 (ja) 交流電動機のインバータ装置
JP2020048249A (ja) ステアリング装置
JP3959617B2 (ja) 交流電動機の定数測定方法および制御装置
JPH07170799A (ja) 交流電動機の制御方法と装置および電動機電流の補正方法
CN107615641B (zh) 感应电机的功率转换装置、二次时间常数测量方法和速度控制方法
JP4708444B2 (ja) 交流電動機の制御装置
CN112042101B (zh) 脉冲图形生成装置
JP2018121421A (ja) 同期モータの制御装置
JP2018125955A (ja) モータ制御装置
JP2013219988A (ja) 回転機の制御装置
JP3677144B2 (ja) 誘導電動機制御装置
JP3849857B2 (ja) 交流電動機の抵抗測定方法
JP3674638B2 (ja) 誘導電動機の速度推定方法および誘導電動機駆動装置
JP4857747B2 (ja) 交流電動機のインバータ装置
JP2004135407A (ja) 交流電動機の制御装置
JP6520799B2 (ja) 回転電機の制御装置
JP5724733B2 (ja) 回転機の制御装置
US11527974B2 (en) Method for determining current-dependent inductances of a multi-phase electrical machine and frequency converter
JP2774246B2 (ja) 電流形コンバータの制御装置
JP7546818B1 (ja) インダクタンス計測装置およびインダクタンス計測方法
WO2022176390A1 (ja) 制御装置、モータの駆動装置、制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees