JP4801750B2 - Flexible metal laminate with stable dimensional change rate and manufacturing method thereof - Google Patents

Flexible metal laminate with stable dimensional change rate and manufacturing method thereof Download PDF

Info

Publication number
JP4801750B2
JP4801750B2 JP2009040977A JP2009040977A JP4801750B2 JP 4801750 B2 JP4801750 B2 JP 4801750B2 JP 2009040977 A JP2009040977 A JP 2009040977A JP 2009040977 A JP2009040977 A JP 2009040977A JP 4801750 B2 JP4801750 B2 JP 4801750B2
Authority
JP
Japan
Prior art keywords
metal
polymer film
layer
conductive layer
metal laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040977A
Other languages
Japanese (ja)
Other versions
JP2009202594A (en
Inventor
ジュン−キュ アン,
クァン−ス フ,
スン−フン チェ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Mtron Ltd
Original Assignee
LS Mtron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Mtron Ltd filed Critical LS Mtron Ltd
Publication of JP2009202594A publication Critical patent/JP2009202594A/en
Application granted granted Critical
Publication of JP4801750B2 publication Critical patent/JP4801750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、軟性金属積層板に関し、より詳しくは、ノートパソコン、モニター、テレビなどの大型LCD、及び携帯電話、PDAなどの小型電子機器に使われる軟性回路基板の主材料である軟性金属積層板に関する。   The present invention relates to a flexible metal laminate, and more particularly, a flexible metal laminate that is a main material of a flexible circuit board used in large-sized LCDs such as notebook computers, monitors, and televisions, and small electronic devices such as mobile phones and PDAs. About.

一般に印刷回路基板(PCB;Printed Circuit Board)とは、印刷回路原板に電気配線の回路設計に従って各種部品を連結するか又は支持するものであり、よく電子製品の神経回路に例えられる。ノートパソコン、携帯電話、PDA、小型ビデオカメラ、及び電子手帳などの電子機器の著しい成長に伴い、製品の高集積化、小型化における印刷回路基板の重要性が増している。   In general, a printed circuit board (PCB) is a printed circuit board that connects or supports various components according to a circuit design of electrical wiring, and is often compared to a neural circuit of an electronic product. With the remarkable growth of electronic devices such as notebook personal computers, mobile phones, PDAs, small video cameras, and electronic notebooks, the importance of printed circuit boards in high integration and miniaturization of products is increasing.

印刷回路基板はその物理的特性に応じてリジッド(rigid)印刷回路基板、軟性(flexible)印刷回路基板、この2つが結合されたリジド−フレキシブル印刷回路基板、及びリジド−フレキシブル印刷回路基板と類似のマルチ−フレキシブル印刷回路基板に分けられる。   The printed circuit board is similar to a rigid printed circuit board, a flexible printed circuit board, a rigid-flexible printed circuit board in which the two are combined, and a rigid-flexible printed circuit board, depending on its physical characteristics. Divided into multi-flexible printed circuit boards.

その中で軟性回路基板の原資材である軟性金属積層板は、携帯電話、デジタルカムコーダー、ノートパソコン、LCDモニターなどのデジタル家電製品に使われるものであり、屈曲性が優れて軽薄短小化に有利であるという特性のため、近年需要が急激に増えている。   Among them, soft metal laminates, which are the raw materials for flexible circuit boards, are used in digital home appliances such as mobile phones, digital camcorders, notebook computers, LCD monitors, etc. In recent years, demand has increased rapidly due to the characteristic of being.

しかし、従来の軟性金属積層板は回路を形成するための基板として高分子フィルムが使われるが、高分子フィルムの強度、熱膨脹係数などと回路を形成する金属層の強度、熱膨脹係数などとの差によって内部に応力が存在するようになり、このことは、パターンを形成した後、強制に高分子フィルムを拘束していた金属層が除去されるときに寸法の変化が起きるという問題に繋がる。   However, conventional soft metal laminates use a polymer film as a substrate for forming a circuit. However, the difference between the strength of the polymer film, the thermal expansion coefficient, etc., and the strength of the metal layer forming the circuit, the thermal expansion coefficient, etc. As a result, stress is present in the interior, and this leads to a problem that a dimensional change occurs when the metal layer that forcibly restrains the polymer film is removed after the pattern is formed.

このように、パターン形成後の寸法変化率が増加すれば、回路上に半導体チップを実装するか又はLCDパネル及びPCB基板を接続するときに、図1のように、一部配線において対向する電極である金属層がずれてしまう場合(S)があり得る。これにより配線が断線される問題が生じることがあり、また寸法変化率の中心値以外に変化率の偏差が大きければ、場合によって安定した配線及び接続が不可能になる問題が生じる恐れがある。   Thus, if the rate of dimensional change after pattern formation increases, when mounting a semiconductor chip on a circuit or connecting an LCD panel and a PCB substrate, as shown in FIG. There may be a case where the metal layer is shifted (S). This may cause a problem that the wiring is disconnected, and if the deviation of the change rate is large other than the center value of the dimensional change rate, there may be a problem that stable wiring and connection may not be possible.

本発明は上記のような問題点を解決するために創案されたものであり、金属層の成分及び組織と高分子フィルムの物性を調節し、パターン形成後にも寸法変化率の低い優れた特性の軟性金属積層板を提供することに目的がある。   The present invention was devised to solve the above-mentioned problems, and it has excellent characteristics of low dimensional change even after pattern formation by adjusting the components of the metal layer and the physical properties of the structure and the polymer film. An object is to provide a flexible metal laminate.

本発明の他の目的及び長所は後述され、本発明の実施例を通じて理解できるであろう。また、本発明の目的及び長所は添付された特許請求の範囲に示された手段及び組合せによって実現することができる。   Other objects and advantages of the present invention will be described later and will be understood through embodiments of the present invention. The objects and advantages of the invention may also be realized by means and combinations set forth in the appended claims.

上記のような目的を達成するための本発明による軟性金属積層板は、高分子フィルム、タイコート層(tie coat layer)、金属シード層、及び金属伝導層を含む軟性金属積層板において、前記金属伝導層内に含まれた不純物の総含量が0.03%以下であり、前記金属伝導層の集合組織の主方位成分の体積分率が50%以上であり、前記金属伝導層のマクロ結晶粒の割合が10%以下であることを特徴とする。   According to another aspect of the present invention, there is provided a flexible metal laminate including a polymer film, a tie coat layer, a metal seed layer, and a metal conductive layer. The total content of impurities contained in the conductive layer is 0.03% or less, the volume fraction of the main orientation component of the texture of the metal conductive layer is 50% or more, and the macro crystal grains of the metal conductive layer The ratio is 10% or less.

前記高分子フィルムのモジュラスは5.0〜10.5GPaであり、熱膨脹係数(CTE)は11〜18um/m°Cであり、含湿膨張係数(CHE)は5.5〜9.5ppmであることが望ましい。   The modulus of the polymer film is 5.0 to 10.5 GPa, the coefficient of thermal expansion (CTE) is 11 to 18 um / m ° C, and the coefficient of moisture expansion (CHE) is 5.5 to 9.5 ppm. It is desirable.

また、前記タイコート層はニッケル(Ni)、クロム(Cr)、またはこれらの合金からなり、前記金属シード層及び金属伝導層は銅または銅合金からなり、前記高分子フィルムはポリイミドからなることが望ましい。   The tie coat layer may be made of nickel (Ni), chromium (Cr), or an alloy thereof, the metal seed layer and the metal conductive layer may be made of copper or a copper alloy, and the polymer film may be made of polyimide. desirable.

さらに、前記軟性金属積層板はパターン形成後の寸法変化率が0.05%以下であり、寸法変化率の偏差が0.02%ポイント以下であることが望ましい。   Further, the flexible metal laminate preferably has a dimensional change rate of 0.05% or less after pattern formation and a deviation of the dimensional change rate of 0.02% point or less.

本発明の他の態様によれば、軟性回路基板に使われる軟性金属積層板の製造方法として、(a)高分子フィルムを用意するステップ、(b)高分子フィルムの上部にタイコート層を形成するステップ、(c)タイコート層が形成された高分子フィルムの上部に金属シード層を形成するステップ、及び(d)前記金属シード層の上部に、電気メッキ方式で不純物の総含量が0.03%以下であり、集合組織の主方位成分の体積分率が50%以上であり、マクロ結晶粒の割合が10%以下である金属伝導層を形成するステップを含む軟性金属積層板の製造方法が提供される。   According to another aspect of the present invention, as a method for producing a flexible metal laminate used for a flexible circuit board, (a) preparing a polymer film, (b) forming a tie coat layer on the polymer film (C) forming a metal seed layer on the polymer film on which the tie coat layer is formed; and (d) forming a total impurity content of 0. 0 on the metal seed layer by electroplating. The manufacturing method of a soft metal laminated board including the step of forming a metal conductive layer having a volume fraction of a main orientation component of a texture of 50% or more and a ratio of macro crystal grains of 10% or less. Is provided.

望ましくは、前記ステップ(a)では、モジュラスが5.0〜10.5GPaであり、熱膨脹係数(CTE)は11〜18um/m°Cであり、含湿膨張係数(CHE)は5.5〜9.5ppmである特性を持つ高分子フィルムを用意する。   Preferably, in the step (a), the modulus is 5.0 to 10.5 GPa, the coefficient of thermal expansion (CTE) is 11 to 18 um / m ° C, and the coefficient of moisture expansion (CHE) is 5.5 to 5.5. A polymer film having a property of 9.5 ppm is prepared.

本発明によれば、物性を調節した高分子フィルムと、その上に形成された金属層の不純物含量、集合組織、及び結晶粒の割合を調節してパターン形成後にも寸法変化率の低い安定した軟性金属積層板を提供することができる。   According to the present invention, the polymer film with controlled physical properties and the impurity content, texture, and crystal grain ratio of the metal layer formed on the polymer film are controlled to stabilize the low rate of dimensional change even after pattern formation. A soft metal laminate can be provided.

本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
従来の軟性金属積層板を用いた軟性回路で生じる寸法変化による接続不良の状態を示した図である。 本発明の一実施例による軟性金属積層板の断面を示した概略図である。 本発明の一実施例による軟性金属積層板を製造する工程を概略的に示したフロー図である。
The following drawings attached to the specification illustrate preferred embodiments of the present invention, and together with the detailed description, serve to further understand the technical idea of the present invention. It should not be construed as being limited to the matters described in the drawings.
It is the figure which showed the state of the connection failure by the dimensional change which arises in the soft circuit using the conventional soft metal laminated board. It is the schematic which showed the cross section of the soft metal laminated board by one Example of this invention. It is the flowchart which showed schematically the process of manufacturing the soft metal laminated sheet by one Example of this invention.

以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms and words used in this specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor himself should explain the invention in the best possible manner. It must be interpreted with the meaning and concept corresponding to the technical idea of the present invention in accordance with the principle that the term concept can be appropriately defined. Therefore, the configuration described in the embodiments and drawings described in this specification is only the most preferable embodiment of the present invention, and does not represent all of the technical idea of the present invention. It should be understood that there are various equivalents and variations that can be substituted at the time of filing.

図2は、本発明の一実施例による軟性金属積層板の断面を示した概略図である。   FIG. 2 is a schematic view showing a cross section of a soft metal laminate according to an embodiment of the present invention.

図2を参照すれば、本発明による軟性金属積層板は、高分子フィルム100上に、異種金属からなるタイコート層110、タイコート層110上に蒸着された金属シード層120、及び前記金属シード層120上に電着された金属伝導層130を含む。   Referring to FIG. 2, the flexible metal laminate according to the present invention includes a tie coat layer 110 made of a different metal on a polymer film 100, a metal seed layer 120 deposited on the tie coat layer 110, and the metal seed. A metal conductive layer 130 electrodeposited on layer 120 is included.

前記高分子フィルム100は、軟性金属積層板に適合するように屈曲性を持つポリイミドフィルムからなる。ポリイミドフィルムは高い耐熱性と屈曲性、及び優れた機械的強度を持ち、金属と同等の熱膨脹係数を持つため、軟性フィルムの材料として多く使われる。ここで、前記高分子フィルム100は優れた物理的特性を持つように形成する。すなわち、前記高分子フィルム100は、モジュラス特性が5.0〜10.5GPaになるようにし、熱膨脹係数(CTE)が11〜18um/m°Cになるようにし、含湿膨張係数(CHE)が5.5〜9.5ppmになるようにする。このような条件を満足する高分子フィルム100が優れた物理的性質を持つということについては後述する。特に、このような条件は、物理的性質の中、後述する金属層に軟性回路基板の製造のためにパターンを形成し、パターンに沿って金属層を除去した後の寸法変化率及び変化率偏差を小さくするためである。   The polymer film 100 is made of a polyimide film having flexibility so as to be compatible with a soft metal laminate. Polyimide films are often used as materials for flexible films because they have high heat resistance and flexibility, excellent mechanical strength, and the same thermal expansion coefficient as metal. Here, the polymer film 100 is formed to have excellent physical properties. That is, the polymer film 100 has a modulus characteristic of 5.0 to 10.5 GPa, a thermal expansion coefficient (CTE) of 11 to 18 um / m ° C, and a moisture expansion coefficient (CHE). 5.5 to 9.5 ppm. It will be described later that the polymer film 100 satisfying such conditions has excellent physical properties. In particular, these conditions are due to the physical properties of the dimensional change rate and change rate deviation after forming a pattern on the metal layer to be described later for the production of a flexible circuit board and removing the metal layer along the pattern. This is to reduce the size.

タイコート層110は、高分子フィルム100の表面上に真空成膜方式で形成される。そして、タイコート層110は、高分子フィルム100とタイコート層110上に蒸着される金属シード層120との間に介在され、両層間の接合力強化及びバリアーとしての役割を果たす。よって、軟性金属積層板が高温処理されても金属シード層120が高分子フィルム100から剥離されることを防止することができる。   The tie coat layer 110 is formed on the surface of the polymer film 100 by a vacuum film formation method. The tie coat layer 110 is interposed between the polymer film 100 and the metal seed layer 120 deposited on the tie coat layer 110, and plays a role of strengthening the bonding force between both layers and serving as a barrier. Therefore, it is possible to prevent the metal seed layer 120 from being peeled from the polymer film 100 even when the soft metal laminate is subjected to a high temperature treatment.

タイコート層110の厚さは高温処理後、または回路形成時にメッキ液の浸透によって剥離されない範囲に調節することが望ましい。また、タイコート層110は高分子フィルム100と金属シード層120との間に介在され、両層間の結合を増進させるための用途であるため、あまり厚い必要はない。望ましくは、タイコート層110の厚さは50〜300Åである。タイコート層110の厚さが薄過ぎる場合、高温に弱くて耐食性が悪くなり、高温処理後または回路形成時にメッキ液の浸透によって剥離される恐れがある。   It is desirable to adjust the thickness of the tie coat layer 110 within a range in which the tie coat layer 110 is not peeled off by penetration of the plating solution after the high temperature treatment or at the time of circuit formation. In addition, the tie coat layer 110 is interposed between the polymer film 100 and the metal seed layer 120 and is used for enhancing the bond between the two layers, and therefore need not be so thick. Desirably, the thickness of the tie coat layer 110 is 50 to 300 mm. When the thickness of the tie coat layer 110 is too thin, the tie coat layer 110 is weak at high temperatures and has poor corrosion resistance, and may be peeled off by permeation of the plating solution after the high temperature treatment or circuit formation.

タイコート層110の材料としては、他の物質との結合力及び反応性が良い金属、例えば、クロム、ニッケル、またはクロムとニッケルの合金が望ましい。   As a material of the tie coat layer 110, a metal having good binding force and reactivity with other substances, for example, chromium, nickel, or an alloy of chromium and nickel is desirable.

前記金属シード層120は、タイコート層110上にスパッタリングを含む多様な真空蒸着方式で形成される。望ましくは、金属シード層120は銅(Cu)または銅合金である。そして、その厚さは後述する金属伝導層130と一定範囲以上の接着力を持つように調節する。望ましくは、金属シード層120の厚さは500Å以上である。   The metal seed layer 120 may be formed on the tie coat layer 110 by various vacuum deposition methods including sputtering. Preferably, the metal seed layer 120 is copper (Cu) or a copper alloy. And the thickness is adjusted so as to have a certain range or more of adhesive strength with the metal conductive layer 130 described later. Desirably, the thickness of the metal seed layer 120 is 500 mm or more.

前記金属伝導層130は、金属シード層120上に電解メッキ方式で形成される。すなわち、真空蒸着によって金属シード層120を形成した後、これをメッキ液に浸漬させて電気化学的反応によって金属伝導層130が金属シード層120上に電着できるようにする。望ましくは、前記金属伝導層130は銅または銅の合金層である。   The metal conductive layer 130 is formed on the metal seed layer 120 by electrolytic plating. That is, after forming the metal seed layer 120 by vacuum deposition, the metal seed layer 120 is immersed in a plating solution so that the metal conductive layer 130 can be electrodeposited on the metal seed layer 120 by an electrochemical reaction. Preferably, the metal conductive layer 130 is a copper or copper alloy layer.

電気伝導性のある前記金属伝導層は、物理的性質が優れた組織及び成分を持つように形成する。すなわち、金属伝導層内に含まれた不純物である炭素(C)と硫黄(S)の総含量を0.03%以下にし、金属伝導層の集合組織の主方位成分の体積分率を50%以上にし、金属伝導層のマクロ結晶粒の割合を10%以下にして形成する。このような条件を持つ金属伝導層130が優れた物理的性質を持つことについては後述する。前記高分子フィルム100における説明と同様に、このような条件は軟性回路基板の製造のためにパターンを形成し、パターニングによって金属層が除去された後の寸法変化率及び変化率偏差を小さくするためである。   The metal conductive layer having electrical conductivity is formed so as to have a structure and components having excellent physical properties. That is, the total content of carbon (C) and sulfur (S), which are impurities contained in the metal conductive layer, is 0.03% or less, and the volume fraction of the main orientation component of the texture of the metal conductive layer is 50%. As described above, the ratio of the macro crystal grains of the metal conductive layer is set to 10% or less. It will be described later that the metal conductive layer 130 having such conditions has excellent physical properties. Similar to the description in the polymer film 100, such conditions are used to reduce the dimensional change rate and change rate deviation after the metal layer is removed by patterning for the production of a flexible circuit board. It is.

一方、集合組織とは、多結晶材料において同一の結晶方位を持つ多数の結晶粒で構成された1つの集合体のことを言う。例えば、結晶方位面の集合組織は材料が特定方向(面の垂直方向)を軸にして秩序よく整列されている集合組織のことを言う。2つ以上の集合組織を持つ金属板材は物理的性質において重要な特性を示す。   On the other hand, the texture refers to one aggregate composed of a large number of crystal grains having the same crystal orientation in a polycrystalline material. For example, a texture in a crystal orientation plane refers to a texture in which materials are regularly arranged with a specific direction (perpendicular to the plane) as an axis. A metal sheet having two or more textures exhibits important properties in physical properties.

望ましくは、パターン形成後、金属層が除去された後の寸法変化率が0.05%以下であり、寸法変化率の偏差が0.02%ポイント以下であるとき、安定した配線及び接続が可能である。   Desirably, when the dimensional change rate after the metal layer is removed after pattern formation is 0.05% or less and the deviation of the dimensional change rate is 0.02% point or less, stable wiring and connection are possible. It is.

次に、本発明による軟性金属積層板の製造方法について具体的に説明する。   Next, the manufacturing method of the soft metal laminated board by this invention is demonstrated concretely.

図3は、本発明の一実施例による軟性金属積層板を製造する工程を概略的に示したフロー図である。   FIG. 3 is a flowchart schematically showing a process of manufacturing a soft metal laminate according to an embodiment of the present invention.

図3を参照すれば、まず、高分子フィルム100を用意し(ステップS10)、異種金属からなるタイコート層110をスパッタリング法、真空蒸着法、イオンプレイティング法などの真空成膜法によって形成する(ステップS20)。   Referring to FIG. 3, first, a polymer film 100 is prepared (step S10), and a tie coat layer 110 made of a dissimilar metal is formed by a vacuum film forming method such as a sputtering method, a vacuum evaporation method, or an ion plating method. (Step S20).

具体的に、高分子フィルム100はモジュラス特性を5.0〜10.5GPaにし、熱膨脹係数(CTE)を11〜18um/m°Cにし、含湿膨張係数(CHE)を5.5〜9.5ppmにして形成して用意する。このようにして用意された高分子フィルムを真空が維持されるチャンバ内に搬入し、アルゴン、酸素、窒素などのガス又はその混合ガスを注入してプラズマで乾式前処理して高分子フィルムの表面を改質する。次いで、チャンバ内の真空度を維持してアルゴンなどの不活性ガス雰囲気で金属ターゲット(ニッケル‐クロム合金元素の金属ターゲット)からスパッタリングを含む多様な真空成膜法で高分子フィルム100上にタイコート層110を形成する。   Specifically, the polymer film 100 has a modulus characteristic of 5.0 to 10.5 GPa, a thermal expansion coefficient (CTE) of 11 to 18 um / m ° C, and a moisture-containing expansion coefficient (CHE) of 5.5 to 9.5. Prepare to form 5 ppm. The polymer film thus prepared is carried into a chamber in which a vacuum is maintained, and a gas such as argon, oxygen, nitrogen, or a mixed gas thereof is injected, and dry pretreatment with plasma is performed, so that the surface of the polymer film is obtained. To reform. Next, the vacuum in the chamber is maintained and a tie coat is applied on the polymer film 100 by various vacuum film forming methods including sputtering from a metal target (a nickel-chromium alloy element metal target) in an inert gas atmosphere such as argon. Layer 110 is formed.

次に、タイコート層110の上部に銅または銅合金からなる金属シード層120を形成する(ステップS30)。金属シード層120はチャンバ内の真空度を維持し、アルゴンなどの不活性ガス雰囲気で銅または銅合金ターゲットからスパッタリングすることでタイコート層110上に金属シード層120を形成する。   Next, a metal seed layer 120 made of copper or a copper alloy is formed on the tie coat layer 110 (step S30). The metal seed layer 120 maintains the degree of vacuum in the chamber, and the metal seed layer 120 is formed on the tie coat layer 110 by sputtering from a copper or copper alloy target in an inert gas atmosphere such as argon.

次いで、金属シード層120の上部に金属伝導層130を形成する(ステップS40)。金属伝導層130はメッキ液を使う電解メッキ方式を用いる。電解メッキ方式で金属伝導層130を形成するとき、金属伝導層130の成分、結晶粒、及び集合組織は下記する多くの変数に応じて調節される。   Next, the metal conductive layer 130 is formed on the metal seed layer 120 (step S40). The metal conductive layer 130 uses an electrolytic plating method using a plating solution. When the metal conductive layer 130 is formed by electrolytic plating, the components, crystal grains, and texture of the metal conductive layer 130 are adjusted according to many variables described below.

高分子フィルム100上にタイコート層110及び金属シード層120を積層するときには、高分子フィルムの改質前処理の条件、すなわち、ガスの種類、混合比、パワー、前処理方式と、積層時の圧力、高分子フィルムと金属ターゲットとの距離、積層速度、及び高分子フィルムの温度を変化させる。また、金属伝導層130をメッキするときには、メッキ液の温度、メッキ液の組成、及び電解メッキ時の電流密度を変化させる。これによって形成されるタイコート層110及び金属シード層120の結晶粒の大きさ、表面状態、メッキ液の温度、メッキ液の組成、及び電解メッキ時の電流密度などは金属伝導層130をなす集合組織を変化させる。これによって、金属伝導層の不純物成分の含量、マクロ結晶粒の割合、及び集合組織の主方位成分の体積分率が決定される。   When the tie coat layer 110 and the metal seed layer 120 are laminated on the polymer film 100, the conditions for the pre-modification of the polymer film, that is, the type of gas, the mixing ratio, the power, the pre-treatment method, The pressure, the distance between the polymer film and the metal target, the lamination speed, and the temperature of the polymer film are changed. When the metal conductive layer 130 is plated, the temperature of the plating solution, the composition of the plating solution, and the current density during electrolytic plating are changed. The size of the crystal grains of the tie coat layer 110 and the metal seed layer 120 formed thereby, the surface state, the temperature of the plating solution, the composition of the plating solution, the current density during electrolytic plating, and the like constitute the metal conductive layer 130. Change the organization. As a result, the content of the impurity component in the metal conductive layer, the ratio of the macro crystal grains, and the volume fraction of the main orientation component of the texture are determined.

また、メッキされる金属イオンを含むメッキ液が収容されたメッキ槽の外部に別途の磁石を用意し、磁石から磁場を印加することで金属伝導層130の集合組織を変化させることもできる。   Alternatively, a separate magnet may be prepared outside the plating tank containing the plating solution containing metal ions to be plated, and the texture of the metal conductive layer 130 may be changed by applying a magnetic field from the magnet.

一方、本発明のより具体的な実験例を説明することで本発明をさらに詳しく説明する。しかし、本発明が下記する実験例に限定されることなく、添付される特許請求の範囲内で多様な形態の実施例が具現され得ることは勿論である。   On the other hand, the present invention will be described in more detail by explaining more specific experimental examples of the present invention. However, the present invention is not limited to the following experimental examples, and it is needless to say that various embodiments can be implemented within the scope of the appended claims.

本実験例においては、高分子フィルム上にタイコート層、金属シード層、金属伝導層を順次形成して試料を用意する。このとき、高分子フィルムの物理的特性、金属層の成分及び組織を変化させた多数の試料を用意する。このように用意された試料のパターン形成後の寸法変化率とその偏差をそれぞれテストする。   In this experimental example, a sample is prepared by sequentially forming a tie coat layer, a metal seed layer, and a metal conductive layer on a polymer film. At this time, a large number of samples in which the physical properties of the polymer film, the components of the metal layer, and the structure are changed are prepared. The dimensional change rate after pattern formation of the sample prepared in this way and its deviation are each tested.

下記表1及び表2は、金属伝導層(Cu層)の不純物総含量、主方位成分の体積分率、マクロ結晶粒の割合と、高分子フィルムのモジュラス、熱膨脹係数、含湿膨張係数などの因子を変化させて形成した試料を用いてパターン形成後の寸法変化率とその偏差を測定した実験の実施例及び比較例を示した表である。   Tables 1 and 2 below show the total impurity content of the metal conductive layer (Cu layer), the volume fraction of the main orientation component, the ratio of macro crystal grains, the modulus of the polymer film, the thermal expansion coefficient, the moisture expansion coefficient, etc. It is the table | surface which showed the Example and comparative example of experiment which measured the dimensional change rate after pattern formation, and its deviation using the sample formed by changing a factor.

Figure 0004801750
Figure 0004801750

Figure 0004801750
Figure 0004801750

表1及び表2を参照し、実施例及び比較例の実験に対して各項目の因子による評価結果値を説明する。   With reference to Table 1 and Table 2, the evaluation result value by the factor of each item is demonstrated with respect to experiment of an Example and a comparative example.

まず、表1に示されたように、本発明による実施例においては、金属伝導層(Cu層)の不純物(C及びS)の総含量が0.03%以下であり、集合組織の主方位成分の体積分率が50%以上であり、マクロ結晶粒の割合が10%以下である試料が使われた。また、高分子フィルムのモジュラス特性は5.0〜10.5GPa範囲であり、熱膨脹係数(CTE)は11〜18um/m°C範囲であり、含湿膨張係数(CHE)は5.5〜9.5ppm範囲である試料が使われた。   First, as shown in Table 1, in the examples according to the present invention, the total content of impurities (C and S) of the metal conductive layer (Cu layer) is 0.03% or less, and the main orientation of the texture A sample having a volume fraction of components of 50% or more and a macro crystal grain ratio of 10% or less was used. The modulus property of the polymer film is in the range of 5.0 to 10.5 GPa, the coefficient of thermal expansion (CTE) is in the range of 11 to 18 um / m ° C, and the moisture expansion coefficient (CHE) is 5.5 to 9 Samples in the .5 ppm range were used.

このような条件を満足するように形成された軟性金属積層板の試料を用いてパターン形成後の寸法変化率及び寸法変化率偏差を測定した結果、表1のように、寸法変化率は0.05%以下の値として測定され、寸法変化率偏差も0.02%ポイント以下の値として測定された。   As a result of measuring a dimensional change rate and a dimensional change rate deviation after pattern formation using a sample of a soft metal laminate formed so as to satisfy such conditions, as shown in Table 1, the dimensional change rate was 0. The value was measured as a value of 05% or less, and the dimensional change rate deviation was also measured as a value of 0.02% point or less.

次に、表2に示されたように、比較例においては、金属伝導層の不純物総含量が0.03%以上である試料を用いた場合は、パターン形成後の寸法変化率を測定した結果が0.056%〜0.063%であって、本発明の基準値である0.05%を超過する値であった。また、金属伝導層の集合組織の主方位成分の体積分率が50%以下である試料を用いた場合は、寸法変化率を測定した結果が0.058%〜0.071%であって、本発明の基準値である0.05%を超過する値であった。さらに、金属伝導層のマクロ結晶粒の割合が10%以上である試料を用いた場合、寸法変化率は0.056%〜0.074%であって、これもまた本発明の基準値である0.05%を超過する値であった。   Next, as shown in Table 2, in the comparative example, when a sample in which the total impurity content of the metal conductive layer was 0.03% or more was used, the dimensional change rate after pattern formation was measured. Was 0.056% to 0.063%, which was a value exceeding 0.05% which is the reference value of the present invention. Moreover, when the sample whose volume fraction of the main azimuth | direction component of the texture of a metal conductive layer is 50% or less was used, the result of having measured the dimensional change rate is 0.058%-0.071%, The value exceeded the 0.05% which is the reference value of the present invention. Further, when a sample in which the proportion of macro crystal grains in the metal conductive layer is 10% or more is used, the dimensional change rate is 0.056% to 0.074%, which is also the reference value of the present invention. The value exceeded 0.05%.

さらに、高分子フィルムのモジュラス特性が5.0GPa以下である試料を用いた場合、寸法変化率が0.059%であって本発明の基準値を超過し、10.5GPa以上の試料を用いた場合も、寸法変化率が0.057%〜0.062%であって本発明の基準値を超過した。また、高分子フィルムの熱膨脹係数(CTE)が18um/m°C以上である試料を用いた場合、寸法変化率が0.077%〜0.081%であって本発明の基準値を超過し、11um/m°C以下の試料を用いた場合も、寸法変化率が0.056%〜0.061%であって本発明の基準値を超過した。さらには、高分子フィルムの含湿膨張係数(CHE)が11ppm以上である試料を用いた場合にも、寸法変化率は0.061%〜0.065%であり、これもまた本発明の基準値を超過する結果である。   Further, when a sample having a modulus characteristic of the polymer film of 5.0 GPa or less was used, the dimensional change rate was 0.059%, which exceeded the reference value of the present invention, and a sample of 10.5 GPa or more was used. In this case, the dimensional change rate was 0.057% to 0.062%, which exceeded the reference value of the present invention. When a sample having a thermal expansion coefficient (CTE) of the polymer film of 18 um / m ° C or more is used, the dimensional change rate is 0.077% to 0.081%, which exceeds the standard value of the present invention. Even when a sample of 11 um / m ° C. or less was used, the dimensional change rate was 0.056% to 0.061%, which exceeded the reference value of the present invention. Further, even when a sample having a moisture expansion coefficient (CHE) of the polymer film of 11 ppm or more is used, the dimensional change rate is 0.061% to 0.065%, which is also the criterion of the present invention. The result is exceeding the value.

このように、上記比較例における条件では、パターン形成後の寸法変化率が本発明の基準値である0.05%以下を満たすことができず、寸法変化率偏差も本発明の基準値である0.02%ポイント以下を満たすことができない例が続出した。   Thus, under the conditions in the comparative example, the dimensional change rate after pattern formation cannot satisfy 0.05% or less, which is the reference value of the present invention, and the dimensional change rate deviation is also the reference value of the present invention. Examples that could not satisfy 0.02 percentage points or less continued.

したがって、上述した実験例の結果を総合すれば、高分子フィルムはモジュラス特性が5.0〜10.5GPa範囲であり、熱膨脹係数(CTE)は11〜18um/m°C範囲であり、含湿膨張係数(CHE)は5.5〜9.5ppm範囲を満たすように形成することが望ましい。また、金属伝導層は内部に含まれた不純物(C及びS)の総含量が0.03%以下であり、金属伝導層の集合組織の主方位成分の体積分率が50%以上であり、金属伝導層のマクロ結晶粒の割合が10%以下である条件を満たすように形成することが望ましい。これでパターン形成後にも寸法変化率が0.05%以下であって、寸法変化率偏差も0.02%ポイント以下である優れた特性の軟性金属積層板を具現することができる。   Therefore, when the results of the experimental examples described above are combined, the polymer film has a modulus characteristic in the range of 5.0 to 10.5 GPa, and the coefficient of thermal expansion (CTE) is in the range of 11 to 18 um / m ° C. The expansion coefficient (CHE) is preferably formed so as to satisfy the 5.5 to 9.5 ppm range. The metal conductive layer has a total content of impurities (C and S) contained therein of 0.03% or less, a volume fraction of the main orientation component of the texture of the metal conductive layer is 50% or more, It is desirable to form the metal conductive layer so as to satisfy the condition that the ratio of macro crystal grains is 10% or less. Thus, it is possible to realize a flexible metal laminate having excellent characteristics in which the dimensional change rate is 0.05% or less and the dimensional change rate deviation is 0.02% point or less even after pattern formation.

以上、本発明をたとえ限定された実施例と図面によって説明したが、本発明はこれに限定されるものではく、本発明が属する技術分野で通常の知識を持つ者によって本発明の技術思想及び特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。   Although the present invention has been described with reference to the limited embodiments and drawings, the present invention is not limited to this, and the technical idea and the present invention can be determined by those who have ordinary knowledge in the technical field to which the present invention belongs. It goes without saying that various modifications and variations are possible within the equivalent scope of the claims.

100 高分子フィルム
110 タイコート層
120 金属シード層
130 金属伝導層
100 polymer film 110 tie coat layer 120 metal seed layer 130 metal conductive layer

Claims (7)

高分子フィルム、タイコート層、金属シード層、及び金属伝導層を含む軟性金属積層板において、
前記金属伝導層内に含まれた不純物の総含量が0.03%以下であり、前記金属伝導層の集合組織の主方位成分の体積分率が50%以上であり、前記金属伝導層のマクロ結晶粒の割合が10%以下であり、
前記高分子フィルムのモジュラスが5.0〜10.5GPaであり、熱膨脹係数(CTE)が11〜18um/m°Cであり、含湿膨張係数(CHE)が5.5〜9.5ppmであることを特徴とする軟性金属積層板。
In a flexible metal laminate including a polymer film, a tie coat layer, a metal seed layer, and a metal conductive layer,
The total content of impurities contained in the metal conductive layer is 0.03% or less, the volume fraction of the main orientation component of the texture of the metal conductive layer is 50% or more, and the macro of the metal conductive layer The proportion of crystal grains is 10% or less,
The modulus of the polymer film is 5.0 to 10.5 GPa, the coefficient of thermal expansion (CTE) is 11 to 18 um / m ° C, and the coefficient of moisture expansion (CHE) is 5.5 to 9.5 ppm. A soft metal laminate characterized by the above.
前記タイコート層は、ニッケル(Ni)、クロム(Cr)、またはこれらの合金からなることを特徴とする請求項1に記載の軟性金属積層板。 The soft metal laminate according to claim 1, wherein the tie coat layer is made of nickel (Ni), chromium (Cr), or an alloy thereof. 前記金属シード層及び金属伝導層は銅または銅合金からなることを特徴とする請求項1に記載の軟性金属積層板。 The soft metal laminate according to claim 1, wherein the metal seed layer and the metal conductive layer are made of copper or a copper alloy. 前記高分子フィルムはポリイミドからなることを特徴とする請求項1に記載の軟性金属積層板。 The flexible metal laminate according to claim 1, wherein the polymer film is made of polyimide. 前記軟性金属積層板はパターン形成後の寸法変化率が0.05%以下であることを特徴とする請求項1に記載の軟性金属積層板。 The soft metal laminate according to claim 1, wherein the flexible metal laminate has a dimensional change rate of 0.05% or less after pattern formation. 前記軟性金属積層板はパターン形成後の寸法変化率の偏差が0.02%ポイント以下であることを特徴とする請求項1に記載の軟性金属積層板。 2. The soft metal laminate according to claim 1, wherein the soft metal laminate has a dimensional variation rate deviation of 0.02% or less after pattern formation. 3. 軟性回路基板に使われる軟性金属積層板の製造方法であって、
(a)モジュラスが5.0〜10.5GPaであり、熱膨脹係数(CTE)が11〜18um/m°Cであり、含湿膨張係数(CHE)が5.5〜9.5ppmである特性を持つ高分子フィルムを用意するステップと、
(b)用意した高分子フィルムの上部にタイコート層を形成するステップと、
(c)タイコート層が形成された高分子フィルムの上部に金属シード層を形成するステップと、
(d)前記金属シード層の上部に、電気メッキ方式で不純物の総含量が0.03%以下であり、集合組織の主方位成分の体積分率が50%以上であり、マクロ結晶粒の割合が10%以下である金属伝導層を形成するステップと、を含む軟性金属積層板の製造方法。
A method for producing a flexible metal laminate used for a flexible circuit board,
(A) The modulus is 5.0 to 10.5 GPa, the coefficient of thermal expansion (CTE) is 11 to 18 um / m ° C, and the coefficient of moisture expansion (CHE) is 5.5 to 9.5 ppm. A step of preparing a polymer film having,
(B) forming a tie coat layer on top of the prepared polymer film;
(C) forming a metal seed layer on the polymer film on which the tie coat layer is formed;
(D) Above the metal seed layer, the total content of impurities by electroplating is 0.03% or less, the volume fraction of the main orientation component of the texture is 50% or more, and the ratio of macro crystal grains Forming a metal conductive layer having a thickness of 10% or less.
JP2009040977A 2008-02-28 2009-02-24 Flexible metal laminate with stable dimensional change rate and manufacturing method thereof Active JP4801750B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080018482A KR20090093133A (en) 2008-02-28 2008-02-28 Dimensionally stable flexible metal clad laminate and method for manufacturing the same
KR10-2008-0018482 2008-02-28

Publications (2)

Publication Number Publication Date
JP2009202594A JP2009202594A (en) 2009-09-10
JP4801750B2 true JP4801750B2 (en) 2011-10-26

Family

ID=41145315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040977A Active JP4801750B2 (en) 2008-02-28 2009-02-24 Flexible metal laminate with stable dimensional change rate and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4801750B2 (en)
KR (1) KR20090093133A (en)
TW (1) TWI394494B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140072409A (en) * 2012-12-04 2014-06-13 도레이첨단소재 주식회사 Method for processing a flexible cupper clad laminated film

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109753A (en) * 1992-09-25 1994-04-22 Fuji Electric Co Ltd Checker for phase-rotation direction
JPH07197239A (en) * 1994-01-07 1995-08-01 Hitachi Chem Co Ltd Production of metal-laminated polyimide film
TW491013B (en) * 1999-11-10 2002-06-11 Rohm & Haas Method of forming a thin metal layer on an insulating substrate
CA2327801A1 (en) * 2000-03-21 2001-09-21 Rocky L. Hilburn Copper on polymer component having improved adhesion
JP2002172734A (en) * 2000-12-07 2002-06-18 Kanegafuchi Chem Ind Co Ltd Polyimide/metal laminate and flexible printed wiring board using the same
JP2002252257A (en) * 2000-12-18 2002-09-06 Mitsui Mining & Smelting Co Ltd Semiconductor carrier film and its manufacturing method
JP3556178B2 (en) * 2001-04-20 2004-08-18 住友電工プリントサーキット株式会社 Flexible copper-clad board and method of manufacturing the same
JP4086768B2 (en) * 2003-12-10 2008-05-14 日東電工株式会社 Manufacturing method of flexible circuit board
JP2006306009A (en) * 2004-07-27 2006-11-09 Kakogawa Plastic Kk Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
JP2006175634A (en) * 2004-12-21 2006-07-06 Nippon Steel Chem Co Ltd Metal-polyimide substrate
JP2006278371A (en) * 2005-03-28 2006-10-12 Nippon Steel Chem Co Ltd Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP2006316328A (en) * 2005-05-16 2006-11-24 Daiso Co Ltd Method for manufacturing two-layer flexible copper-clad laminate
KR20060124505A (en) * 2005-05-31 2006-12-05 엘에스전선 주식회사 Flexible metal clad laminate and method of manufacturing flexible metal clad laminate
KR101045149B1 (en) * 2005-08-04 2011-06-30 가부시키가이샤 가네카 Metal-Coated Polyimide Film
JP2007208251A (en) * 2006-01-05 2007-08-16 Toyo Kohan Co Ltd Substrate for flexible board, flexible board using it, and manufacturing method thereof
KR100727716B1 (en) * 2006-02-02 2007-06-13 엘에스전선 주식회사 Flexible metal clad laminate and manufacturing method thereof

Also Published As

Publication number Publication date
TW200948222A (en) 2009-11-16
KR20090093133A (en) 2009-09-02
TWI394494B (en) 2013-04-21
JP2009202594A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
KR100764300B1 (en) flexible metal clad laminate and method for manufacturing the same
KR101421702B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
TW201734219A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine whose copper foil contains 0.001~0.05 mass% of Ag and contains total 0.003~0.825 mass% of addition elements selected from more than one of the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR101189131B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
KR20140054417A (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
KR101421703B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP4801750B2 (en) Flexible metal laminate with stable dimensional change rate and manufacturing method thereof
JP5555749B2 (en) Soft circuit copper clad laminate, printed circuit board using the same, and method for manufacturing the same
KR20060124505A (en) Flexible metal clad laminate and method of manufacturing flexible metal clad laminate
KR101189132B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR101012919B1 (en) flexible metal clad laminate without adhesion and method of manufacturing flexible metal clad laminate without adhesion
CN113692111B (en) High-corrosion-resistance flexible copper-clad plate and preparation method thereof
KR102514454B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR102313803B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR101357141B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
US20210130173A1 (en) Super-flexible high electrical and thermal conductivity flexible base material and preparation method thereof
KR101189133B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR20120068112A (en) Method of high adhesive strength flexible metal-clad laminate
KR101867913B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
CN109385556A (en) Flexible printed base plate copper foil, the copper clad layers stack for having used the copper foil, flexible printed base plate and electronic equipment
KR102313800B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR20090085867A (en) Dimensionally stable flexible metal clad laminate for super fine pitch printed circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110329

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4801750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250