JP2007208251A - Substrate for flexible board, flexible board using it, and manufacturing method thereof - Google Patents

Substrate for flexible board, flexible board using it, and manufacturing method thereof Download PDF

Info

Publication number
JP2007208251A
JP2007208251A JP2007000339A JP2007000339A JP2007208251A JP 2007208251 A JP2007208251 A JP 2007208251A JP 2007000339 A JP2007000339 A JP 2007000339A JP 2007000339 A JP2007000339 A JP 2007000339A JP 2007208251 A JP2007208251 A JP 2007208251A
Authority
JP
Japan
Prior art keywords
layer
substrate
polyimide film
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007000339A
Other languages
Japanese (ja)
Inventor
Yoji Tamura
洋二 田村
Kazuhiko Ishihara
和彦 石原
Kohei Izumi
孝平 泉
Tomoyuki Tsuruta
知之 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2007000339A priority Critical patent/JP2007208251A/en
Publication of JP2007208251A publication Critical patent/JP2007208251A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a flexible board that has excellent adhesiveness between a polyimide film and a conductive metal layer, and a flexible board using the substrate. <P>SOLUTION: A surface of a polyimide film is activated by lightly etching the surface so that the degree of surface roughness becomes as small as possible, and then an Ni-B alloy layer and a Cu layer are formed by using a vacuum film forming method to obtain a substrate for a flexible board, and thereafter a second Cu layer that is a conductive metal layer is formed on the substrate for the flexible board by using a wet plating method to obtain the flexible board of the present invention. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリント基板等に用いるフレキシブル基板用基材、およびそれを用いたフレキシブル基板ならびにそれらの製造方法に関する。   The present invention relates to a substrate for a flexible substrate used for a printed circuit board or the like, a flexible substrate using the substrate, and a method for producing them.

ノートパソコン、プリンター、デジタルカメラ、液晶ディスプレイなどの小形でかつ軽量であることが求められる電子機器の通電回路に用いるプリント基板として、高密度な実装が可能で、軽量でかつ変形可能で柔軟なTAB(Tape Automated Bonding)テープやフレキシブル基板の需要が高まっている。従来のプリント基板としては、連続使用による温度上昇に耐える耐熱性および可撓性を有するプラスチック基板、例えばポリイミドフィルムにエポキシ樹脂などの熱硬化性樹脂からなる接着剤を用いて導電性金属層である銅箔を貼り合わせたものが用いられていた。しかし、接着剤を用いたプリント基板による通電回路では変形しやすく寸法安定性に乏しく、また熱硬化性接着剤の耐熱性が基板材料の耐熱性よりも劣るため、熱安定性も十分ではなかった。さらに、銅箔を用いたプリント基板では、銅箔の厚さが大きく、高密度実装すなわち回路の軽量化および小型化に十分に対応することができなかった。   TAB is a lightweight, deformable, and flexible TAB that can be mounted at high density as a printed circuit board for use in energization circuits of electronic devices that are required to be small and lightweight, such as notebook computers, printers, digital cameras, and liquid crystal displays. (Tape Automated Bonding) There is an increasing demand for tapes and flexible substrates. As a conventional printed circuit board, a heat-resistant and flexible plastic substrate that can withstand a temperature rise due to continuous use, for example, a conductive metal layer using an adhesive made of a thermosetting resin such as an epoxy resin on a polyimide film What stuck the copper foil was used. However, the current-carrying circuit using a printed circuit board using an adhesive is easily deformed and has poor dimensional stability, and the heat resistance of the thermosetting adhesive is inferior to that of the substrate material, so that the heat stability is not sufficient. . Furthermore, in a printed board using copper foil, the thickness of the copper foil is large, and it has not been possible to sufficiently cope with high-density mounting, that is, reduction in circuit weight and size.

これらの問題を解決するため、ポリイミドフィルム上に接着剤を用いずに金属層を形成させる技術として、
(1)銅箔上にポリアミック酸をキャスティング法を用いて塗布し、乾燥し硬化させるキャスティング法
(2)銅箔上にポリイミドフィルムを加熱圧着するラミネート法
(3)ポリイミドフィルム表面に無電解めっきで金属薄膜を形成させ、その上に電気めっき法で所定の厚さの金属層を形成させる無電解めっき法
(4)ポリイミドフィルム表面に真空成膜法を用いて金属薄膜を形成させ、その上に電気めっき法で所定の厚さの金属層を形成させる真空成膜法
などの方法が種々試みられている。
In order to solve these problems, as a technology to form a metal layer on the polyimide film without using an adhesive,
(1) Casting method in which polyamic acid is applied on a copper foil using a casting method, dried and cured (2) Laminating method in which a polyimide film is thermocompression-bonded on a copper foil (3) Electroless plating on the polyimide film surface An electroless plating method in which a metal thin film is formed and a metal layer having a predetermined thickness is formed thereon by electroplating. (4) A metal thin film is formed on a polyimide film surface by using a vacuum film forming method, and a metal thin film is formed thereon. Various methods such as a vacuum film forming method in which a metal layer having a predetermined thickness is formed by electroplating have been tried.

(1)のキャスティング法や(2)のラミネート法を用いて形成した回路基板は、熱安定性および寸法安定性において従来の接着剤を用いたプリント基板よりも優れており、幅広く用いられている。しかし、10μm以下の厚さの導電層を用いることが求められる次世代の電子機器の高密度実装基板には、圧延や電鋳による厚い銅箔を用いるこれらの方法は、軽量化およびコストの観点から問題がある。   Circuit boards formed by using the casting method (1) and the laminating method (2) are superior to conventional printed boards using adhesives in terms of thermal stability and dimensional stability, and are widely used. . However, these methods using a thick copper foil by rolling or electroforming for a high-density mounting substrate of a next-generation electronic device that is required to use a conductive layer having a thickness of 10 μm or less are light in weight and cost. There is a problem.

(3)の無電解めっき法によると薄い導電層の形成が可能であり、軽量な高密度実装基板に適している。しかし、無電解めっき法ではめっき層の付着を向上させるために実施するポリイミドフィルム表面を薬品を用いて活性化処理するが、薬品の後処理に伴う製造コストの上昇、および後処理作業による環境汚染の観点から問題がある。   According to the electroless plating method (3), it is possible to form a thin conductive layer, which is suitable for a lightweight high-density mounting substrate. However, in the electroless plating method, the surface of the polyimide film, which is implemented to improve the adhesion of the plating layer, is activated with chemicals. However, the manufacturing cost increases due to chemical post-treatment and environmental pollution due to post-treatment operations. There is a problem from the point of view.

(4)の真空成膜法を用いる場合は環境汚染の問題はないが、ポリイミドフィルムとその上に形成する金属薄膜との接着強度が小さく剥離しやすい、という欠点を有している。この欠点を克服するため、以下に示す種々の方法が提案されている。   In the case of using the vacuum film forming method (4), there is no problem of environmental pollution, but it has a drawback that the adhesive strength between the polyimide film and the metal thin film formed thereon is small and it is easy to peel off. In order to overcome this drawback, the following various methods have been proposed.

例えば特許文献1は、プラスチックフィルム基材上に、ニッケル層、銅層、ニッケル層を真空中で順次形成されてなる導電性フィルムを提案している。また、特許文献2は、耐熱性基材フィルムの片面に、NiまたはNi−Crの耐食性金属の蒸着層を介してCuまたはAlの良導電性金属の蒸着層を設け、さらに良導電性金属の蒸着層上にNiまたはNi−Crの耐食性金属の蒸着層を設け、基材フィルムの他面に、金属蒸着膜または有機もしくは無機ポリマーのコーティング層を設けてなるフレキシブルプリント回路用フィルム材料を提案している。また、特許文献3は、ポリイミドなどの高分子フィルム表面に、Cu、Ni、Cr、Ti、V、W、Moの少なくとも1種の第一の金属を真空成膜手段によって付着させ、次いで第一の金属を高分子フィルム中に熱拡散させ、引き続いてCu、Ni、Al等を無電解メッキ法、または電気メッキ法などを用いて形成させる、高分子フィルムに金属層を形成させる方法を提案している。また、特許文献4は、ポリイミド樹脂フィルムの表面を親水化して触媒を付与し、その後無電解メッキによりニッケル、コバルトまたはそれらの合金の一つを施し、その後無電解銅メッキ、または電解銅メッキを行うことによる銅ポリイミド基板の製造方法を提案している。   For example, Patent Document 1 proposes a conductive film formed by sequentially forming a nickel layer, a copper layer, and a nickel layer in a vacuum on a plastic film substrate. Further, in Patent Document 2, a vapor-deposited layer of a highly conductive metal such as Cu or Al is provided on one side of a heat-resistant base film via a vapor-deposited layer of corrosion resistant metal such as Ni or Ni-Cr, and Proposed a film material for flexible printed circuits in which a vapor-deposited layer of Ni or Ni-Cr corrosion-resistant metal is provided on the vapor-deposited layer, and a metal vapor-deposited film or an organic or inorganic polymer coating layer is provided on the other side of the base film. ing. In Patent Document 3, at least one first metal of Cu, Ni, Cr, Ti, V, W, and Mo is attached to the surface of a polymer film such as polyimide by a vacuum film forming means, and then the first Proposed a method of forming a metal layer on a polymer film by thermally diffusing the metal in the polymer film and subsequently forming Cu, Ni, Al, etc. using an electroless plating method or an electroplating method. ing. Further, in Patent Document 4, the surface of the polyimide resin film is hydrophilized to give a catalyst, and then nickel, cobalt, or one of their alloys is applied by electroless plating, and then electroless copper plating or electrolytic copper plating is performed. Proposes a method for producing a copper polyimide substrate.

さらに、特許文献5は、プラズマ処理された表面を有するポリイミド樹脂などのポリマーフィルムと、そのプラズマ処理された表面に付着した、ニッケルまたはCu、Cr、Fe、V、Ti、Al、Si、Pd、Ta、W、Zn、In、Sn、Mn、Coおよびこれらの2つ以上の混合物からなる群より選択される金属を合金用金属とするニッケル合金を含むニッケルタイトコート層と、そのニッケルタイトコート層に付着した銅シードコート層とを含む無接着剤フレキシブルラミネートを提案している。   Further, Patent Document 5 discloses a polymer film such as a polyimide resin having a plasma-treated surface and nickel or Cu, Cr, Fe, V, Ti, Al, Si, Pd, and the like attached to the plasma-treated surface. A nickel tight coat layer containing a nickel alloy having a metal selected from the group consisting of Ta, W, Zn, In, Sn, Mn, Co and a mixture of two or more thereof as a metal for the alloy, and the nickel tight coat layer An adhesive-free flexible laminate is proposed that includes a copper seed coat layer adhered to the substrate.

しかし、これらの文献が提案している技術では、いずれによってもCu層がポリイミドフィルムから剥離する現象を皆無にすることができない。また、連続使用による温度上昇により、高温で長時間経時させた場合の接着強度の低下を抑制することが求められている。   However, the techniques proposed by these documents cannot eliminate the phenomenon that the Cu layer peels off from the polyimide film. In addition, there is a need to suppress a decrease in adhesive strength when aged for a long time at a high temperature due to a temperature increase due to continuous use.

特開昭62−047908号公報Japanese Patent Laid-Open No. 62-047908 特開昭62−181488号公報JP 62-181488 A 特開平03−274261号公報Japanese Patent Laid-Open No. 03-274261 特開平05−090737号公報JP 05-090737 A 特開2000−508265号公報JP 2000-508265 A

そこで、本発明は、ポリイミドフィルムと導電性金属層との接着性に優れ、高温で長時間経時させた場合の接着強度の低下を抑制することができるフレキシブル基板及びそれを得るためのフレキシブル基板用基材、ならびにそれらの製造方法を提供することを目的とする。   Therefore, the present invention provides a flexible substrate that is excellent in adhesion between the polyimide film and the conductive metal layer and can suppress a decrease in adhesive strength when aged for a long time at a high temperature, and a flexible substrate for obtaining the same. It aims at providing a base material and those manufacturing methods.

上記目的を達成するための本発明のフレキシブル基板用基材は、活性化処理後の表面粗さRa(JIS B0601)が1.5〜10nmであるポリイミドフィルムの少なくとも片面に、下から順にNi−B合金層とCu層とを形成してなることを特徴とするものである。
請求項2の発明は、請求項1記載のフレキシブル基板用基材において、前記Ni−B合金層の厚さが5〜100nmであることを特徴とするものである。請求項3の発明は、請求項1または2記載のフレキシブル基板用基材において、前記Cu層の厚さが50〜300nmであることを特徴とする。さらに、請求項4の発明は、請求項1〜3のいずれかに記載のフレキシブル基板用基材において、前記Ni−B合金層のB含有率が0.1〜22重量%であることを特徴とする。
また、請求項5に係る本発明のフレキシブル基板は、請求項1〜4のいずれかに記載のフレキシブル基板用基材のCu層上に、1〜100μmの厚さの第二のCu層を設けてなることを特徴とするものである。
In order to achieve the above object, the substrate for flexible substrate of the present invention comprises Ni-- in order from the bottom on at least one surface of a polyimide film having a surface roughness Ra (JIS B0601) after activation treatment of 1.5 to 10 nm. A B alloy layer and a Cu layer are formed.
According to a second aspect of the present invention, in the flexible substrate substrate according to the first aspect, the Ni-B alloy layer has a thickness of 5 to 100 nm. According to a third aspect of the present invention, in the flexible substrate base material according to the first or second aspect, the thickness of the Cu layer is 50 to 300 nm. Furthermore, invention of Claim 4 is a base material for flexible substrates in any one of Claims 1-3, B content rate of the said Ni-B alloy layer is 0.1-22 weight%, It is characterized by the above-mentioned. And
Moreover, the flexible substrate of this invention which concerns on Claim 5 provides the 2nd Cu layer of thickness of 1-100 micrometers on the Cu layer of the base material for flexible substrates in any one of Claims 1-4. It is characterized by.

そして、上記目的を達成するための請求項6記載の本発明のフレキシブル基板用基材の製造方法は、ポリイミドフィルムの表面をプラズマ処理により表面粗さRa(JIS B0601)1.5〜10nmに活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ5〜100nmのNi−B合金層を形成させる工程、さらに該Ni−B合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程からなることを特徴とするものである。   And the manufacturing method of the base material for flexible substrates of this invention of Claim 6 for achieving the said objective is activated by the surface roughness Ra (JIS B0601) 1.5-10nm by the plasma processing of the surface of a polyimide film. A step of forming a Ni-B alloy layer having a thickness of 5 to 100 nm on the surface of the activated polyimide film by a vacuum film-forming method, and a conductive layer on the Ni-B alloy layer. It comprises a step of forming a Cu layer having a thickness of 50 to 300 nm by a vacuum film forming method as an underlayer.

さらに、上記目的を達成するための請求項7記載の本発明のフレキシブル基板の製造方法は、請求項6に記載のフレキシブル基板用基材の製造方法を用いてフレキシブル基板用基材を作成し、次いで該フレキシブル基板用基材のCu層上に電気めっき法により厚さ1〜100μmの第二のCu層を形成させることを特徴とするものである。   Furthermore, the manufacturing method of the flexible substrate of this invention of Claim 7 for achieving the said objective creates the base material for flexible substrates using the manufacturing method of the base material for flexible substrates of Claim 6, Next, a second Cu layer having a thickness of 1 to 100 μm is formed on the Cu layer of the substrate for flexible substrate by electroplating.

本発明のフレキシブル基板は、ポリイミドフィルムの表面を粗面化の程度を極力抑制して軽度にエッチングして活性化した後、真空成膜法を用いてNi−B合金層とその上にCu層を形成してなるフレキシブル基板用基材を得、この上に湿式めっき法により導電性金属層である第二のCu層を形成させたことによって、フレキシブル基板用基材と第二のCu層との優れた接着力が得られ、また高温で長時間経時させても良好な接着力を保持することができ、熱安定性に優れている。この結果、電子機器の高密度な実装が求められる通電回路に用いるプリント基板として好適に利用できるフレキシブル基板を得ることができる。   The flexible substrate of the present invention is activated by lightly etching the surface of the polyimide film while suppressing the degree of roughening as much as possible, and then using a vacuum film forming method to form a Ni-B alloy layer and a Cu layer thereon. A flexible substrate and a second Cu layer are obtained by forming a second Cu layer, which is a conductive metal layer, by a wet plating method. Excellent adhesive strength can be obtained, and good adhesive strength can be maintained even after aging at high temperatures for a long time, and the thermal stability is excellent. As a result, it is possible to obtain a flexible substrate that can be suitably used as a printed circuit board used in an energization circuit that requires high-density mounting of electronic devices.

以下、本発明を詳細に説明する。図1は本発明のフレキシブル基板用基材の概略断面図である。フレキシブル基板用基材10は、ポリイミドフィルム1の片面上にNi−B合金層2が形成され、Ni−B合金層2上にCu層3が形成されて構成される。図1はポリイミドフィルム1の片面上にNi−B合金層2とCu層3が形成された場合を示すが、ポリイミドフィルム1の他の片面上に同様にNi−B合金層2とCu層3が形成されていてもよい。   Hereinafter, the present invention will be described in detail. FIG. 1 is a schematic cross-sectional view of the substrate for flexible substrate of the present invention. The substrate 10 for flexible substrate is configured by forming a Ni—B alloy layer 2 on one surface of a polyimide film 1 and forming a Cu layer 3 on the Ni—B alloy layer 2. Although FIG. 1 shows the case where the Ni-B alloy layer 2 and the Cu layer 3 are formed on one side of the polyimide film 1, the Ni-B alloy layer 2 and the Cu layer 3 are similarly formed on the other side of the polyimide film 1. May be formed.

フレキシブル基板用基材10のNi−B合金層2およびCu層3を形成させる基体であるポリイミドフィルム1としては、BPDA(ビフェニルテトラカルボン酸)系のポリイミド樹脂や、PMDA(ピロメリット酸二無水物)系のポリイミド樹脂などのいずれのポリイミド樹脂からなるフィルムも用いることができる。これらのポリイミドフィルム1の表面を活性化してNi−B合金層2およびCu層3を形成させる。   Examples of the polyimide film 1 that is a base on which the Ni-B alloy layer 2 and the Cu layer 3 of the substrate 10 for flexible substrate are formed include BPDA (biphenyltetracarboxylic acid) -based polyimide resin and PMDA (pyromellitic dianhydride). A film made of any polyimide resin such as a) polyimide resin can be used. The surfaces of these polyimide films 1 are activated to form the Ni—B alloy layer 2 and the Cu layer 3.

活性化処理はポリイミドフィルムの表面ができるだけ粗面化しないよう、軽度にエッチングする。エッチングはアルカリ水溶液による湿式エッチングや真空中のプラズマ照射によるエッチングなどの乾式エッチングがあるが、本発明においては真空中におけるプラズマ処理が好ましい。プラズマ処理に用いるガスとしては、He、Ne、Arなどの不活性ガスを単独で、またはこれらの不活性ガスの2種類以上を混合して用いる。プラズマを発生させるエネルギー供給源としては、直流(DC)、交流(AC)、高周波(RF)、マイクロ波などの一般に用いるエネルギー源を用いる。このようにしてプラズマ処理を行った後の表面粗さRa(JIS B0601)は1.5〜10nmであることが好ましく、2〜5nmであることがより好ましい。通常のポリイミドフィルムの表面粗さRa(JIS B0601)は1〜5nmであるので、極力表面粗さが増加しないように軽度にエッチングする。表面粗さRa(JIS B0601)が1.5nm未満の場合は、ポリイミドフィルム上に形成させる金属層との良好な接着力が得られない。一方、10nmを超えると、ポリイミドフィルム上にめっき層を形成させた後にめっき層をエッチングしてファインパターンを形成させる際に良好なパターンが得られにくくなる。通常のポリイミドフィルムの表面粗さRaは上記のように1〜5nmであり、本発明におけるプラズマ処理を行った場合の表面粗さRaと一部重複するが、本発明者の研究によれば、後述する実施例で示すように、ポリイミドフィルムと導電性金属層との接着強度は、単にポリイミドフィルムの表面粗さのみに左右されるのではなく、プラズマ処理による表面活性化が影響を及ぼしていることがわかった。   In the activation treatment, light etching is performed so that the surface of the polyimide film is not roughened as much as possible. Etching includes dry etching such as wet etching with an alkaline aqueous solution and etching by plasma irradiation in a vacuum. In the present invention, plasma treatment in a vacuum is preferable. As a gas used for the plasma treatment, an inert gas such as He, Ne, or Ar is used alone, or two or more of these inert gases are mixed and used. As an energy supply source for generating plasma, generally used energy sources such as direct current (DC), alternating current (AC), high frequency (RF), and microwave are used. The surface roughness Ra (JIS B0601) after performing the plasma treatment in this manner is preferably 1.5 to 10 nm, and more preferably 2 to 5 nm. Since the surface roughness Ra (JIS B0601) of a normal polyimide film is 1 to 5 nm, it is slightly etched so as not to increase the surface roughness as much as possible. When the surface roughness Ra (JIS B0601) is less than 1.5 nm, good adhesive strength with the metal layer formed on the polyimide film cannot be obtained. On the other hand, when the thickness exceeds 10 nm, it is difficult to obtain a good pattern when a fine pattern is formed by etching the plating layer after forming the plating layer on the polyimide film. The surface roughness Ra of a normal polyimide film is 1 to 5 nm as described above, and partially overlaps with the surface roughness Ra when the plasma treatment in the present invention is performed, but according to the study of the present inventors, As shown in the examples described later, the adhesive strength between the polyimide film and the conductive metal layer is not only influenced by the surface roughness of the polyimide film, but is affected by the surface activation by the plasma treatment. I understood it.

このようにして表面を活性化した後、ポリイミドフィルム上に形成させる導電層であるCu層とポリイミドフィルムとの接着力を高める金属層を形成させる。金属層としてはNiやNi−Cr、Ni−Cu、Ni−P、Ni−BなどのNi基合金が好ましいが、中でもNi−B合金層を形成させることがより好ましい。本発明者らは、ポリイミドフィルムとの接着力を高め、かつ高温で長時間経時させた場合に良好な接着力を保持することが可能な層について鋭意研究した結果、真空成膜法を用いてNi−B合金層を形成させることにより、Ni層単独や他の上記金属とのNi合金層を形成させるよりも、ポリイミドフィルムと最上層のCu層との良好な接着力が得られることを見いだした。また、真空成膜法としてはスパッタ法や蒸着法などがあるが、スパッタ法を用いることが好ましいことが判明した。   After activating the surface in this way, a metal layer that increases the adhesive force between the Cu film, which is a conductive layer formed on the polyimide film, and the polyimide film is formed. The metal layer is preferably a Ni-based alloy such as Ni, Ni—Cr, Ni—Cu, Ni—P, or Ni—B, but more preferably a Ni—B alloy layer is formed. As a result of intensive research on a layer capable of increasing the adhesive strength with a polyimide film and maintaining good adhesive strength when aged for a long time at a high temperature, the inventors used a vacuum film-forming method. It has been found that by forming a Ni-B alloy layer, better adhesion between the polyimide film and the uppermost Cu layer can be obtained than when forming a Ni alloy layer alone or a Ni alloy layer with another metal. It was. Further, as the vacuum film forming method, there are a sputtering method and a vapor deposition method, but it has been found that it is preferable to use the sputtering method.

上記のNi−B合金層2においてB含有率は0.1〜22重量%であることが好ましい。B含有率が0.1重量%未満であると、高温で長時間経時させた場合にポリイミドフィルムとの接着力が低下してしまう。B含有率が22重量%を超えると、このNi−B合金層上に後記するCu層とその上に第二のCu層を形成させた後にエッチングにより金属層を除去して回路を形成する際にNi−B合金層が完全に除去されずに残留するようになり、回路間の絶縁性が不良となるので好ましくない。   In the Ni—B alloy layer 2 described above, the B content is preferably 0.1 to 22% by weight. When the B content is less than 0.1% by weight, the adhesive strength with the polyimide film is lowered when the B content is aged for a long time at a high temperature. When the B content exceeds 22% by weight, a Cu layer to be described later on this Ni-B alloy layer and a second Cu layer are formed thereon, and then the metal layer is removed by etching to form a circuit. In this case, the Ni-B alloy layer remains without being completely removed, resulting in poor insulation between circuits.

また、Ni−B合金層2の厚さは5〜100nmであることが好ましい。Ni−B合金層2の厚さが5nm未満であるとポリイミドフィルムとの良好な接着力が得られない。厚さが100nmを超えても接着力の向上効果は飽和し、コスト的に有利でなくなる。   Moreover, it is preferable that the thickness of the Ni-B alloy layer 2 is 5 to 100 nm. When the thickness of the Ni-B alloy layer 2 is less than 5 nm, good adhesion with the polyimide film cannot be obtained. Even if the thickness exceeds 100 nm, the effect of improving the adhesive strength is saturated, which is not advantageous in terms of cost.

このようにしてポリイミドフィルム上に上記のNi−B合金層2を形成させた後、その上にCu層3の薄膜を形成させる。このCu層3は第二のCu層4を電気めっき法を用いて形成させるための導電性の下地層として形成させる。ポリイミドフィルム上へのCu層3の成膜法としては、スパッタ法や蒸着法などの真空成膜法を用いることが好ましいが、スパッタ法を用いることがより好ましい。Cu層3の厚さは50〜300nmであることが好ましい。厚さが50nm未満であると第二のCu層4を電気めっき法を用いて形成させる際にNi基合金層およびCu層3が溶解して失われるおそれがあり、好ましくない。一方、300nmを超えると十分な導電性は得られるがコスト的に有利でなくなる。以上のように、ポリイミドフィルム表面を軽度にエッチングした後、真空成膜法を用いてNi−B合金層2とさらにその上にCu層3を形成させることにより、ピンホールの無い均一表面の本発明のフレキシブル基板用基材が得られる。   Thus, after forming said Ni-B alloy layer 2 on a polyimide film, the thin film of Cu layer 3 is formed on it. The Cu layer 3 is formed as a conductive underlayer for forming the second Cu layer 4 using an electroplating method. As a film formation method for the Cu layer 3 on the polyimide film, it is preferable to use a vacuum film formation method such as a sputtering method or a vapor deposition method, but it is more preferable to use a sputtering method. The thickness of the Cu layer 3 is preferably 50 to 300 nm. If the thickness is less than 50 nm, the Ni-based alloy layer and the Cu layer 3 may be dissolved and lost when the second Cu layer 4 is formed by electroplating, which is not preferable. On the other hand, if it exceeds 300 nm, sufficient conductivity can be obtained, but it is not advantageous in terms of cost. As described above, after the polyimide film surface is slightly etched, a Ni-B alloy layer 2 and a Cu layer 3 are formed on the Ni-B alloy layer 2 by using a vacuum film forming method, so that a book with a uniform surface without a pinhole is formed. The base material for flexible substrates of the invention is obtained.

次いで以上のようにして得られる図1に示すフレキシブル基板用基材10のCu層3上に、図2に示すように導電層として第二のCu層4を形成させて本発明のフレキシブル基板20とする。第二のCu層4はスパッタ法や蒸着法などの乾式成膜法や、無電解めっき法や電気めっき法などの湿式めっき法のいずれを用いて成膜してもよいが、均一な厚さで短時間で成膜することができる電気めっき法を用いることが好ましい。第二のCu層4の厚さは1〜100μmであることが好ましい。厚さが1μm未満では通電回路として用いた場合に十分な導電性が得られない。一方、100μmを超えると高密度実装基板に必要とされるファインパターンの回路形成が困難になり、好ましくない。このようにして、本発明のフレキシブル基板が得られる。   Next, the second Cu layer 4 is formed as a conductive layer on the Cu layer 3 of the flexible substrate 10 shown in FIG. 1 obtained as described above, as shown in FIG. And The second Cu layer 4 may be formed using any one of a dry film forming method such as a sputtering method and a vapor deposition method, and a wet plating method such as an electroless plating method and an electroplating method. It is preferable to use an electroplating method that can form a film in a short time. The thickness of the second Cu layer 4 is preferably 1 to 100 μm. When the thickness is less than 1 μm, sufficient conductivity cannot be obtained when used as an energization circuit. On the other hand, if it exceeds 100 μm, it becomes difficult to form a fine pattern circuit required for a high-density mounting substrate, which is not preferable. In this way, the flexible substrate of the present invention is obtained.

以下、実施例を示して本発明を詳細に説明する。
[ポリイミドフィルムのエッチング]
50μmの厚さのポリイミドフィルムの片面に、プラズマ処理装置を用いて表1に示す条件でプラズマ照射によるエッチング処理を施して活性化し、基体記号A〜Dで示すフレキシブル基板用基材を形成するためのポリイミドフィルム基体を得た。また、比較用に活性化処理を施さないそのままの基体(基体記号E)およびポリイミドフィルム上に0.2μmの厚さで無電解Ni−B合金めっき層を形成させた基体(基体記号F)を準備した。さらに比較用として、プラズマ処理を高出力で且つ処理時間も長くして粗面化したもの(基体記号G)を準備した。
これらの基体の一部を切り出して走査型プローブ顕微鏡を用いて表面粗さRa(JIS B0601)を測定した。測定結果を表1に示す。
Hereinafter, the present invention will be described in detail with reference to examples.
[Polyimide film etching]
In order to form a substrate for a flexible substrate indicated by substrate symbols A to D by applying etching treatment by plasma irradiation on one side of a polyimide film having a thickness of 50 μm under the conditions shown in Table 1 using a plasma processing apparatus. A polyimide film substrate was obtained. For comparison, an untreated substrate (substrate symbol E) and a substrate (substrate symbol F) in which an electroless Ni—B alloy plating layer is formed on a polyimide film with a thickness of 0.2 μm are used. Got ready. Further, for comparison, a plasma treatment (base symbol G) having a high output and a roughened surface with a long treatment time was prepared.
A part of these substrates was cut out and the surface roughness Ra (JIS B0601) was measured using a scanning probe microscope. The measurement results are shown in Table 1.

Figure 2007208251
Figure 2007208251

[Ni基合金層の形成]
上記のようにして片面に活性化処理を施したポリイミドフィルム基体の活性化処理面に、DCマグネトロンスパッタリング装置を用いて表2に示すB含有率および厚さを有するNi−B合金層を形成させた。また比較用にNi層、Ni−Cr層をそれぞれDCマグネトロンスパッタリング装置を用いて形成させた。さらに比較用にNi−B層を無電解めっきで形成したもの(試料番号19)を用いた。
[Formation of Ni-based alloy layer]
A Ni-B alloy layer having the B content and thickness shown in Table 2 is formed on the activation surface of the polyimide film substrate that has been activated on one side as described above using a DC magnetron sputtering apparatus. It was. For comparison, a Ni layer and a Ni—Cr layer were each formed using a DC magnetron sputtering apparatus. For comparison, a Ni-B layer formed by electroless plating (Sample No. 19) was used.

[Cu層の形成]
次いで、上記の金属層の上にDCマグネトロンスパッタリング装置を用いて表2に示す厚さを有するCu層を形成させた。
[Formation of Cu layer]
Next, a Cu layer having the thickness shown in Table 2 was formed on the metal layer using a DC magnetron sputtering apparatus.

[第二のCu層の形成]
引き続いて、上記のCu層上に、下記のめっき浴を用い、下記の条件で電気めっきにより導電層である表2に示す厚さの第二のCu層を形成させた。このようにして試料番号1〜21の特性評価用の供試材を作成した。
<めっき浴>
硫酸銅 200g/L
硫酸 50g/L
光沢剤(商品名:SF−M、奥野製薬工業(株)製) 5ml/L
<浴温> 30℃
<撹搾> エアバブリング
<電流密度> 3A/dm
[Formation of second Cu layer]
Subsequently, a second Cu layer having a thickness shown in Table 2 as a conductive layer was formed on the above Cu layer by electroplating under the following conditions using the following plating bath. In this way, specimens for property evaluation of sample numbers 1 to 21 were prepared.
<Plating bath>
Copper sulfate 200g / L
Sulfuric acid 50g / L
Brightener (trade name: SF-M, manufactured by Okuno Pharmaceutical Co., Ltd.) 5ml / L
<Bath temperature> 30 ° C
<Squeezing> Air bubbling <Current density> 3 A / dm 2

[特性評価]
試料番号1〜21の供試材から100mm×100mmの大きさの試片を切り出し、一部はすぐ以下のようにして90°ピール強度を測定し、他の一部は150℃のオーブン中で1週間経時させた後、ポリイミドフィルムと金属層の接着力として90°ピール強度を以下のようにして測定した。すなわち、各供試材の金属層を形成させた面に2mmの幅の保護テープを貼付した後、塩化第二鉄水溶液でエッチングして金属層の露出部分を除去した。次いで金属層が残存した2mmの部分を短冊状に切り出した後、ポリイミドフィルムと金属層のNi層、または各種Ni基合金層の間で強制剥離し、剥離したポリイミドフィルムとこれらの金属層をテンシロンのチャックで挟んで90°ピール強度を測定した。なお、90°ピール強度はkg/cm(幅)に換算した。これらの結果を表2に示す。
[Characteristic evaluation]
Samples having a size of 100 mm × 100 mm were cut out from the specimens of sample numbers 1 to 21, and a part of them was immediately measured for 90 ° peel strength as follows, and the other part was in an oven at 150 ° C. After aging for one week, the 90 ° peel strength was measured as follows as the adhesive force between the polyimide film and the metal layer. That is, after a protective tape having a width of 2 mm was applied to the surface of each test material on which the metal layer was formed, the exposed portion of the metal layer was removed by etching with a ferric chloride aqueous solution. Next, a 2 mm portion where the metal layer remained was cut into a strip shape, and then forcedly peeled between the polyimide film and the Ni layer of the metal layer or various Ni-based alloy layers, and the peeled polyimide film and these metal layers were separated from Tensilon. The 90 ° peel strength was measured between the two chucks. The 90 ° peel strength was converted to kg / cm (width). These results are shown in Table 2.

Figure 2007208251
Figure 2007208251

表2に示すように、ポリイミドフィルムの表面粗さRaを1.5〜10nmの範囲内に軽度にエッチングして活性化した基体A〜Dについて、それぞれ活性化した後、真空成膜法(スパッタ法)を用いてNi−B合金層を厚さ5〜100nm、B含有率0.1〜22重量%の範囲内となるように形成し、次いで真空製膜法(スパッタ法)によりCu層を厚さ50〜300nmの範囲内となるように形成してフレキシブル基板用基材とし、引き続き該基材上に電気めっき法を用いて第二のCu層を厚さ1〜10μmとなるように形成してなる本発明の実施例に係る試料番号1〜15の各フレキシブル基板は、90゜ピール強度が初期で0.9kg/cm以上、また150℃雰囲気で1週間経時後でも0.7〜0.95kg/cmの強度が得られており、初期及び経時後とも十分な接着強度が得られていることが確認できた。本発明では、90゜ピール強度が初期0.9kg/cm以上、150℃×7日経時後0.7kg/cm以上を合格とした。   As shown in Table 2, after activating the substrates A to D, which were activated by slightly etching the surface roughness Ra of the polyimide film within a range of 1.5 to 10 nm, respectively, a vacuum film formation method (sputtering) Method) to form a Ni-B alloy layer having a thickness of 5 to 100 nm and a B content of 0.1 to 22% by weight, and then forming a Cu layer by vacuum film formation (sputtering). Formed to have a thickness in the range of 50 to 300 nm to form a substrate for a flexible substrate, and subsequently formed a second Cu layer on the substrate by electroplating to a thickness of 1 to 10 μm Each of the flexible substrates of Sample Nos. 1 to 15 according to the examples of the present invention has a 90 ° peel strength of 0.9 kg / cm or more at the initial stage, and 0.7 to 0 even after aging for 1 week in a 150 ° C. atmosphere. .95kg / cm strength is obtained Cage, it was confirmed that both the initial and after aging are sufficient adhesion strength is obtained. In the present invention, the 90 ° peel strength is 0.9 kg / cm or more at the initial stage, and 0.7 kg / cm or more after 150 ° C. × 7 days has passed.

これに対し、Bを含まないでNi単独層の上にCu層、第2Cu層を形成した試料番号16の比較例は、90゜ピール強度が初期及び経時後とも上記実施例と比べて劣っている。また、Bに代えてCrを含む試料番号17の比較例は、試料番号16よりは接着強度が上昇しているが、各実施例に比べて初期及び経時後とも劣っている。試料番号18の比較例は、ポリイミドフィルムの表面を活性化処理を行わないでNi−B合金層を形成させた場合であるが、この場合は供試材に保護テープを貼付して塩化第二鉄水溶液でエッチングして金属層の露出部分を除去して金属層が残存した部分を短冊状に切り出す段階で、剥離してしまい、接着強度が得られなかった。さらに、試料番号19は、ポリイミドフィルムの表面に無電解めっき層を形成した市販のフィルムにCu層及び第2Cu層を本発明と同様な方法で形成したものであるが、その場合もほぼ試料番号18と同様に接着強度が得られなかった。一方、試料番号20は、Ni−Bの合金層のBの含有率が25%の場合であるが、その場合初期強度はやや合格に近いが、経時後の強度はより劣っている。さらに、試料番号21は、ポリイミドフィルムの表面の活性化処理における表面粗さRaを11nmに粗面化した場合であるが、この場合他の処理条件は満たしていても、接着強度はかなり劣っていた。そのことにより、本発明では表面粗さRaを10nm以下にするようにした。
以上の結果より、本発明のフレキシブル基板は、上記処理条件で行うことにより、ポリイミドフィルムと金属層の接着力に優れており、高温で長時間加熱した後も優れた接着力を保持することができることが確認された。
On the other hand, the comparative example of sample number 16 in which the Cu layer and the second Cu layer were formed on the Ni single layer without containing B was inferior to the above example in the 90 ° peel strength both at the initial stage and after the lapse of time. Yes. Moreover, although the comparative example of the sample number 17 which contains Cr instead of B has the adhesive strength raised rather than the sample number 16, it is inferior in each initial stage and after time compared with each Example. The comparative example of sample number 18 is the case where the Ni-B alloy layer is formed without performing the activation treatment on the surface of the polyimide film. In this case, a protective tape is applied to the test material and the second chloride is added. Etching with an aqueous iron solution removed the exposed portion of the metal layer, and the portion where the metal layer remained was cut into a strip shape, resulting in peeling, and adhesive strength could not be obtained. Furthermore, sample number 19 is a commercially available film in which an electroless plating layer is formed on the surface of a polyimide film, and a Cu layer and a second Cu layer are formed by the same method as in the present invention. Similar to 18, no adhesive strength was obtained. On the other hand, Sample No. 20 is a case where the B content of the Ni-B alloy layer is 25%. In this case, the initial strength is somewhat close, but the strength after aging is inferior. Furthermore, Sample No. 21 is a case where the surface roughness Ra in the activation treatment of the surface of the polyimide film is roughened to 11 nm. In this case, even if other treatment conditions are satisfied, the adhesive strength is considerably inferior. It was. Accordingly, in the present invention, the surface roughness Ra is set to 10 nm or less.
From the above results, the flexible substrate of the present invention is excellent in the adhesive strength between the polyimide film and the metal layer by performing under the above processing conditions, and can retain the excellent adhesive strength even after being heated at a high temperature for a long time. It was confirmed that it was possible.

本発明のフレキシブル基板用基材は、真空成膜法を用いて形成した導電層の下地となるNi−B合金層およびCu層との定温および高温で長時間経時した後の接着力に優れている。そのためこのフレキシブル基板用基材の上に電気めっき法を用いて第二のCu層を形成してなる本発明のフレキシブル基板は、ノートパソコン、プリンター、デジタルカメラ、液晶ディスプレイなどの小形でかつ軽量であることが求められる電子機器の高密度な実装が求められる通電回路に用いるプリント基板として、好適に適用することができる。   The substrate for a flexible substrate of the present invention is excellent in adhesive strength after a long period of time at a constant temperature and high temperature with a Ni-B alloy layer and a Cu layer as a base of a conductive layer formed using a vacuum film formation method. Yes. Therefore, the flexible substrate of the present invention in which the second Cu layer is formed on the substrate for the flexible substrate by using an electroplating method is small and lightweight such as a notebook computer, a printer, a digital camera, and a liquid crystal display. The present invention can be suitably applied as a printed circuit board used in an energization circuit that requires high-density mounting of electronic devices that are required to exist.

本発明のフレキシブル基板用基材の断面図。Sectional drawing of the base material for flexible substrates of this invention. 本発明のフレキシブル基板の断面図。Sectional drawing of the flexible substrate of this invention.

符号の説明Explanation of symbols

1 ポリイミドフィルム
2 Ni−B合金層
3 Cu層
4 第二のCu層
10 フレキシブル基板用基材
20 フレキシブル基板
DESCRIPTION OF SYMBOLS 1 Polyimide film 2 Ni-B alloy layer 3 Cu layer 4 Second Cu layer 10 Base material for flexible substrates 20 Flexible substrate

Claims (7)

活性化処理後の表面粗さRa(JIS B0601)が1.5〜10nmであるポリイミドフィルムの少なくとも片面に、下から順にNi−B合金層とCu層とを形成してなることを特徴とするフレキシブル基板用基材。   A Ni-B alloy layer and a Cu layer are formed in order from the bottom on at least one surface of a polyimide film having a surface roughness Ra (JIS B0601) after activation treatment of 1.5 to 10 nm. Base material for flexible substrates. 前記Ni−B合金層の厚さが5〜100nmである、請求項1に記載のフレキシブル基板用基材。   The base material for flexible substrates of Claim 1 whose thickness of the said Ni-B alloy layer is 5-100 nm. 前記Cu層の厚さが50〜300nmである、請求項1または2に記載のフレキシブル基板用基材。   The base material for flexible substrates of Claim 1 or 2 whose thickness of the said Cu layer is 50-300 nm. 前記Ni−B合金層のB含有率が0.1〜22重量%である、請求項1〜3のいずれかに記載のフレキシブル基板用基材。   The base material for flexible substrates in any one of Claims 1-3 whose B content rate of the said Ni-B alloy layer is 0.1-22 weight%. 請求項1〜4のいずれかに記載のフレキシブル基板用基材のCu層上に、1〜100μmの厚さの第二のCu層を設けてなることを特徴とするフレキシブル基板。   5. A flexible substrate comprising a second Cu layer having a thickness of 1 to 100 [mu] m formed on the Cu layer of the substrate for flexible substrate according to any one of claims 1 to 4. ポリイミドフィルムの表面をプラズマ処理により表面粗さRa(JIS B0601)1.5〜10nmに活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ5〜100nmのNi−B合金層を形成させる工程、さらに該Ni−B合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程からなることを特徴とする、フレキシブル基板用基材の製造方法。   The surface of the polyimide film is activated by plasma treatment to a surface roughness Ra (JIS B0601) of 1.5 to 10 nm. The surface of the activated polyimide film is 5 to 100 nm thick by vacuum film formation. The method includes a step of forming a Ni-B alloy layer, and a step of forming a Cu layer having a thickness of 50 to 300 nm as a conductive underlayer on the Ni-B alloy layer by a vacuum film forming method. The manufacturing method of the base material for flexible substrates. 請求項6に記載のフレキシブル基板用基材の製造方法を用いてフレキシブル基板用基材を作成し、次いで該フレキシブル基板用基材のCu層上に電気めっき法により厚さ1〜100μmの第二のCu層を形成させることを特徴とするフレキシブル基板の製造方法。   A base material for a flexible substrate is prepared using the method for manufacturing a base material for a flexible substrate according to claim 6, and then a second layer having a thickness of 1 to 100 μm is formed on the Cu layer of the base material for a flexible substrate by electroplating. A method for producing a flexible substrate, comprising forming a Cu layer.
JP2007000339A 2006-01-05 2007-01-05 Substrate for flexible board, flexible board using it, and manufacturing method thereof Withdrawn JP2007208251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000339A JP2007208251A (en) 2006-01-05 2007-01-05 Substrate for flexible board, flexible board using it, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006000497 2006-01-05
JP2007000339A JP2007208251A (en) 2006-01-05 2007-01-05 Substrate for flexible board, flexible board using it, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007208251A true JP2007208251A (en) 2007-08-16

Family

ID=38487399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000339A Withdrawn JP2007208251A (en) 2006-01-05 2007-01-05 Substrate for flexible board, flexible board using it, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007208251A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202594A (en) * 2008-02-28 2009-09-10 Ls Mtron Ltd Flexible metal laminated plate having stable dimensional change rate, and method for producing the same
JP2013151627A (en) * 2011-12-28 2013-08-08 Sumitomo Bakelite Co Ltd Treatment method of cured film, and semiconductor device
KR20170042871A (en) * 2015-10-12 2017-04-20 엘에스엠트론 주식회사 Flexible Copper Clad Laminate and Method for Manufacturing The Same
CN113421697A (en) * 2021-05-28 2021-09-21 汕头超声显示器技术有限公司 Flexible copper-clad film and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202594A (en) * 2008-02-28 2009-09-10 Ls Mtron Ltd Flexible metal laminated plate having stable dimensional change rate, and method for producing the same
JP2013151627A (en) * 2011-12-28 2013-08-08 Sumitomo Bakelite Co Ltd Treatment method of cured film, and semiconductor device
KR20170042871A (en) * 2015-10-12 2017-04-20 엘에스엠트론 주식회사 Flexible Copper Clad Laminate and Method for Manufacturing The Same
KR102492818B1 (en) * 2015-10-12 2023-01-30 에스케이넥실리스 주식회사 Flexible Copper Clad Laminate and Method for Manufacturing The Same
CN113421697A (en) * 2021-05-28 2021-09-21 汕头超声显示器技术有限公司 Flexible copper-clad film and manufacturing method thereof
CN113421697B (en) * 2021-05-28 2023-02-17 汕头超声显示器技术有限公司 Flexible copper-clad film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
KR100859614B1 (en) Composite copper foil and method for production thereof
JP2007109982A (en) Method for manufacturing copper wired polyimide film
US7211332B2 (en) Laminate
JP5345955B2 (en) Adhesive flexible laminate
JP2008307737A (en) Laminate, wiring board and its manufacturing method
JP2007318177A (en) Double layer copper polyimide substrate
JP2006142514A (en) Copper clad laminated sheet
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP2007245564A (en) Manufacturing method of flexible copper clad laminate substrate
JP4160811B2 (en) Flexible copper-clad circuit board
JP2006179827A (en) Board material for flexible board, flexible board employing same, and method of manufacturing them
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP4564336B2 (en) Copper-clad laminate for COF and carrier tape for COF
JP2005041049A (en) Wide copper clad laminated board
JP5036004B2 (en) Method for manufacturing circuit wiring board
JP2009148995A (en) Metal-clad polyethylene naphthalate substrate and method for manufacturing it
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
JP5129170B2 (en) Method for manufacturing circuit wiring board
JP5276950B2 (en) Method for manufacturing circuit wiring board
JP2006103304A (en) Polyimide-metal laminated plate and its manufacturing method
JP2006175634A (en) Metal-polyimide substrate
JP4762742B2 (en) Method for producing flexible copper-clad laminate
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406