JP4800244B2 - テラヘルツ波測定装置 - Google Patents

テラヘルツ波測定装置 Download PDF

Info

Publication number
JP4800244B2
JP4800244B2 JP2007063890A JP2007063890A JP4800244B2 JP 4800244 B2 JP4800244 B2 JP 4800244B2 JP 2007063890 A JP2007063890 A JP 2007063890A JP 2007063890 A JP2007063890 A JP 2007063890A JP 4800244 B2 JP4800244 B2 JP 4800244B2
Authority
JP
Japan
Prior art keywords
terahertz wave
prism
output
terahertz
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007063890A
Other languages
English (en)
Other versions
JP2008224451A (ja
Inventor
敬史 安田
陽一 河田
宏典 高橋
紳一郎 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007063890A priority Critical patent/JP4800244B2/ja
Publication of JP2008224451A publication Critical patent/JP2008224451A/ja
Application granted granted Critical
Publication of JP4800244B2 publication Critical patent/JP4800244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、テラヘルツ波測定装置に関するものである。
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz〜100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。このようなテラヘルツ波の応用として、測定対象物で透過または反射したテラヘルツ波の電場振幅の時間波形を測定することで該測定対象物の情報を取得する技術が研究されている(特許文献1を参照)。
テラヘルツ波を用いた測定対象物の情報の測定技術は、一般に以下のようなものである。すなわち、光源(例えばフェムト秒レーザ光源)から出力されたパルス光は、分岐部により2分岐されてポンプ光およびプローブ光とされる。そのうちポンプ光はテラヘルツ波発生素子(例えば非線形光学結晶や光導電アンテナ素子)に入力されて、これにより、このテラヘルツ波発生素子からパルステラヘルツ波が発生する。この発生したテラヘルツ波は、測定対象部で透過または反射されることで該測定対象物の情報(例えば、吸収係数、屈折率)を取得し、その後、プローブ光と略同一タイミングでテラヘルツ波検出素子(例えば、電気光学結晶や光導電アンテナ素子)に入射される。
テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子では、両光の間の相関が検出される。例えば、テラヘルツ波検出素子として電気光学結晶が用いられる場合、テラヘルツ波およびプローブ光は、合波部により合波されて電気光学結晶に入射され、この電気光学結晶においてテラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。電気光学結晶におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物の情報が得られる。
テラヘルツ波による測定対象物の情報の取得に際しては、測定対象部でのテラヘルツ波の透過または反射だけでなく、特許文献1に開示されているように、プリズムの一平面においてテラヘルツ波を全反射させてエバネセント成分を生じさせ、該平面上の測定対象物に対してテラヘルツ波のエバネセント成分を照射することで、テラヘルツ波による測定対象物の情報の取得が行われる場合がある。特許文献1の記載によれば、テラヘルツ波の全反射を利用する技術では測定対象物が固体に限定されない等の効果を奏するとされている。
特開2004−354246号公報 特開2006−184078号公報
テラヘルツ波を測定対象物に透過させて測定を行う透過測定法、および、全反射の際に生じるテラヘルツ波のエバネセント波を測定対象物に照射して測定を行う全反射測定法は、各々長所および短所を有している。したがって、測定対象物や測定目的に応じて、透過測定法および全反射測定法の何れかが採用される。このことから、透過測定法および全反射測定法それぞれの装置構成を可能な限り共通化することが望まれる。
しかし、このような共通化を図ろうとした場合であっても、透過測定法と全反射測定法との間で切り替えを行う際には、測定対象物およびプリズムについてはテラヘルツ波伝播経路への組込み及び取外しが必要である。このような切り替えを行う度に測定対象物およびプリズムの位置決めを精確に行うことは容易ではなく、安定した測定条件で測定を行うことは容易ではない。
本発明は、上記問題点を解消する為になされたものであり、透過測定法と全反射測定法との間の切り替えが容易であって安定した測定条件で測定を行うことができるテラヘルツ波測定装置を提供することを目的とする。
本発明に係るテラヘルツ波測定装置は、(1) 光を出力する光源と、(2) 光源から出力された光を2分岐して、その2分岐した光のうち一方をポンプ光とし他方をプローブ光として出力する分岐部と、(3) 分岐部から出力されたポンプ光を入力することでテラヘルツ波を発生し出力するテラヘルツ波発生素子と、(4) テラヘルツ波発生素子から出力されるテラヘルツ波を入力する入射面と、テラヘルツ波を全反射させる反射面と、テラヘルツ波を外部へ出力する出射面と、凹部を形成する第1副反射面および第2副反射面と、を有する第1プリズムと、(5) 第1プリズムの凹部に嵌合し得る形状を有する凸部を含み、第1プリズムに対して着脱自在であり、内部空間を有する第2プリズムと、(6) 第1プリズムの出射面から出力されたテラヘルツ波と、分岐部から出力されたプローブ光とを入力し、これらテラヘルツ波とプローブ光との間の相関を検出するテラヘルツ波検出素子と、を備えることを特徴とする。
また、本発明に係るテラヘルツ波測定装置は、第1プリズムの凹部に第2プリズムの凸部が嵌合していないときに、第1プリズムの入射面に入力したテラヘルツ波を、第1プリズムの第1副反射面,反射面および第2副反射面の順に反射させ、第1プリズムの出射面から外部へ出力することで、第1プリズムの反射面に配置された測定対象物についての情報を、テラヘルツ波の全反射の際に生じる該テラヘルツ波のエバネセント成分により取得する。また、本発明に係るテラヘルツ波測定装置は、第1プリズムの凹部に第2プリズムの凸部が嵌合しているときに、第1プリズムの入射面に入力したテラヘルツ波を、第1プリズムの第1副反射面,第2プリズムの内部空間および第1プリズムの第2副反射面の順に透過させ、第1プリズムの出射面から外部へ出力することで、第2プリズムの内部空間に配置された測定対象物についての情報を、内部空間を透過するテラヘルツ波により取得する。
このテラヘルツ波測定装置では、光源から出力された光は、分岐部により2分岐されてポンプ光およびプローブ光とされて出力される。分岐部から出力されたポンプ光はテラヘルツ波発生素子に入力され、このテラヘルツ波発生素子でテラヘルツ波が発生し出力される。テラヘルツ波発生素子から出力されたテラヘルツ波は、第1プリズムの入射面に入力される。
第1プリズムの凹部に第2プリズムの凸部が嵌合していないときには、全反射測定法に拠る測定が行われ、第1プリズムの入射面に入力されたテラヘルツ波は、第1プリズムの第1副反射面,反射面および第2副反射面の順に反射され、第1プリズムの出射面から外部へ出力される。一方、第1プリズムの凹部に第2プリズムの凸部が嵌合しているときには、透過測定法に拠る測定が行われ、第1プリズムの入射面に入力されたテラヘルツ波は、第1プリズムの第1副反射面,第2プリズムの内部空間および第1プリズムの第2副反射面の順に透過して、第1プリズムの出射面から外部へ出力される。
第1プリズムの出射面から出力されたテラヘルツ波と、分岐部から出力されたプローブ光とは、テラヘルツ波検出素子に入力されて、このテラヘルツ波検出素子によりテラヘルツ波とプローブ光との間の相関が検出される。これにより、全反射測定法に拠る測定の際には、第1プリズムの反射面に配置された測定対象物についての情報は、テラヘルツ波の全反射の際に生じる該テラヘルツ波のエバネセント成分により取得される。一方、透過測定法に拠る測定の際には、第2プリズムの内部空間に配置された測定対象物についての情報は、内部空間を透過するテラヘルツ波により取得される。
第1プリズムの凹部と第2プリズムの凸部との嵌合の際に両者間のテラヘルツ波伝播経路上から気体を排除する接合用部材が挿入されるのが好適である。また、この接合用部材としてアセトンが好適に用いられる。このような接合用部材が挿入されることにより、第1プリズムの凹部と第2プリズムの凸部との嵌合の際に両者間のテラヘルツ波伝播経路上から気体が排除されるので、気体中の水分によるテラヘルツ波の吸収が防止される。
本発明に係るテラヘルツ波測定装置は、分岐部からテラヘルツ波検出素子に到るまでのポンプ光およびテラヘルツ波の光路と、分岐部からテラヘルツ波検出素子に到るまでのプローブ光の光路との、差を調整する光路長差調整部を更に備えるのが好適である。この場合には、光路長差調整部により、テラヘルツ波およびプローブ光それぞれがテラヘルツ波検出素子に入力されるタイミングが調整され、また、そのタイミングが掃引されることで、パルステラヘルツ波の電場振幅の時間波形が得られる。なお、この光路長差調整部は、ポンプ光,プローブ光およびテラヘルツ波の何れの光学系に設けられてもよい。
第2プリズムにおいてテラヘルツ波が入射または出射する面に、テラヘルツ波のうち特定方位の偏光成分を反射または透過させる偏光子が形成されているのが好適である。この場合には、テラヘルツ波のうち特定方位の偏光成分のものが測定対象物に照射される。
第1プリズムの入射面にテラヘルツ波発生素子が一体に設けられているのが好適である。また、第1プリズムの出射面にテラヘルツ波検出素子が一体に設けられているのが好適である。このように、第1プリズムの入射面または出射面にテラヘルツ波発生素子またはテラヘルツ波検出素子が一体に設けられていることにより、テレヘルツ波が空間伝播する距離を短く又は無くすことができるので、その空間にある気体中の水分によるテラヘルツ波の吸収が低減される。
第1プリズムの入射面の側に、第1プリズムの内部を伝播するテラヘルツ波に対してコリメート作用を奏する光学素子が形成されているのが好適である。第1プリズムの出射面の側に、第1プリズムの内部を伝播するテラヘルツ波に対して集光作用を奏する光学素子が形成されているのが好適である。第2プリズムにおいて内部空間に入力するテラヘルツ波に対してコリメート作用を奏する光学素子が形成されているのが好適である。また、第2プリズムにおいて内部空間から出力されるテラヘルツ波に対して集光作用を奏する光学素子が形成されているのが好適である。このように、第1プリズムまたは第2プリズムにテラヘルツ波に対してコリメート作用または集光作用を奏する光学素子(例えばレンズや軸外し放物面鏡)が形成されていれば、テラヘルツ波発生素子またはテラヘルツ波検出素子が光導電アンテナ素子である場合に好都合である。
本発明に係るテラヘルツ波測定装置は、透過測定法と全反射測定法との間の切り替えが容易であって、安定した測定条件で測定を行うことができる。
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一または同等の要素には同一の符号を付し、重複する説明を省略する。また、本発明の実施形態の構成と対比されるべき第1比較例および第2比較例の構成について先ず説明し、その後に、これら比較例の構成と対比しつつ実施形態の構成について説明する。
(第1比較例)
先ず、第1比較例に係るテラヘルツ波測定装置8について説明する。図1は、第1比較例に係るテラヘルツ波測定装置8の構成図である。この図に示されるテラヘルツ波測定装置8は、テラヘルツ波を用いて透過測定法により測定対象物Sの情報を取得するものであって、光源11、分岐部12、チョッパ13、光路長差調整部14、偏光子15、合波部16、テラヘルツ波発生素子20、テラヘルツ波検出素子40、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55を備える。
光源11は、一定の繰返し周期でパルス光を出力するものであり、好適にはパルス幅がフェムト秒程度であるパルスレーザ光を出力するフェムト秒パルスレーザ光源である。分岐部12は、例えばビームスプリッタであり、光源11から出力されたパルス光を2分岐して、その2分岐したパルス光のうち一方をポンプ光としてミラーM1へ出力し、他方をプローブ光としてミラーM4へ出力する。
チョッパ13は、分岐部12とミラーM1との間のポンプ光の光路上に設けられ、一定の周期でポンプ光の通過および遮断を交互に繰り返す。分岐部12から出力されチョッパ13を通過したポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。なお、分岐部12からテラヘルツ波発生素子20に到るまでのポンプ光の光学系を、以下では「ポンプ光学系」という。
テラヘルツ波発生素子20は、ポンプ光を入力することでパルステラヘルツ波を発生し出力するものであり、例えば、非線形光学結晶(例えばZnTe)、光導電アンテナ素子(例えばGaAsを用いた光スイッチ)、半導体(例えばInAs)および超伝導体の何れかを含んで構成される。テラヘルツ波発生素子20が非線形光学結晶を含む場合、このテラヘルツ波発生素子20は、ポンプ光入射に伴って発現する非線形光学現象によりテラヘルツ波を発生することができる。
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz〜100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。また、パルステラヘルツ波は、一定の繰返し周期で発生し、パルス幅が数ピコ秒程度である。テラヘルツ波発生素子20から出力されたテラヘルツ波は、測定対象物Sを透過することで測定対象物Sの情報(例えば、吸収係数、屈折率)を取得し、その後、合波部16に入力される。なお、テラヘルツ波発生素子20から合波部16に到るまでのテラヘルツ波の光学系を、以下では「テラヘルツ波光学系」という。
一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8により順次に反射され、偏光子15を通過して、合波部16に入力される。なお、分岐部12から合波部16に到るまでのプローブ光の光学系を、以下では「プローブ光学系」という。4個のミラーM4〜M7は光路長差調整部14を構成している。すなわち、ミラーM5およびM6が移動することで、ミラーM4およびM7とミラーM5およびM6との間の光路長が調整され、プローブ光学系の光路長が調整される。これにより、光路長差調整部14は、分岐部12から合波部16に到るまでのポンプ光学系およびテラヘルツ波光学系の光路と、分岐部12から合波部16に到るまでのプローブ光学系の光路との差を、調整することができる。
合波部16は、テラヘルツ波発生素子20から出力され測定対象物Sを透過したテラヘルツ波と、分岐部12から出力されて到達したプローブ光とを入力し、これらテラヘルツ波およびプローブ光を互いに同軸となるように合波してテラヘルツ波検出素子40へ出力する。この合波部16は、堅固な支持枠に接着され薄く引き伸ばされたフィルム状のミラーであるペリクルであるのが好適である。
テラヘルツ波検出素子40は、テラヘルツ波とプローブ光との間の相関を検出するものである。テラヘルツ波検出素子40が電気光学結晶を含む場合、このテラヘルツ波検出素子40は、合波部16から出力されたテラヘルツ波およびプローブ光を入力し、テラヘルツ波の伝搬に伴いポッケルス効果により複屈折が誘起され、その複屈折によりプローブ光の偏光状態を変化させて、そのプローブ光を出力する。このときの複屈折量はテラヘルツ波の電場強度に依存するので、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化量はテラヘルツ波の電場強度に依存する。
偏光分離素子52は、例えばウォラストンプリズムであり、テラヘルツ波検出素子40から出力され1/4波長板51を経たプローブ光を入力し、この入力したプローブ光を互いに直交する2つの偏光成分に分離して出力する。光検出器53A,53Bは、例えばフォトダイオードを含み、偏光分離素子52により偏光分離されたプローブ光の2つの偏光成分のパワーを検出して、その検出したパワーに応じた値の電気信号を差動増幅器54へ出力する。
差動増幅器54は、光検出器53A,53Bそれぞれから出力された電気信号を入力し、両電気信号の値の差に応じた値を有する電気信号をロックイン増幅器55へ出力する。ロックイン増幅器55は、チョッパ13におけるポンプ光の通過および遮断の繰返し周波数で、差動増幅器54から出力される電気信号を同期検出する。このロックイン増幅器55から出力される信号は、テラヘルツ波の電場強度に依存する値を有する。このようにして、測定対象物Sを透過したテラヘルツ波とプローブ光との間の相関を検出し、テラヘルツ波の電場振幅を検出して、測定対象物Sの情報を得ることができる。
このテラヘルツ波測定装置8は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。テラヘルツ波発生素子20では、ポンプ光の入力に応じてテラヘルツ波が発生し出力される。テラヘルツ波発生素子20から出力されたテラヘルツ波は、測定対象部Sを透過して合波部16に入力される。一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8により順次に反射され、偏光子15により直線偏光とされ、合波部16に入力される。
合波部16に入力されたテラヘルツ波およびプローブ光は、合波部16により互いに同軸となるように合波されて、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。そして、このテラヘルツ波検出素子40におけるプローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物Sの特性が得られる。
ただし、このような透過測定法では、水によるテラヘルツ波の吸収が大きいことから、通常、測定対象物Sは乾燥した固体に限定される。次に説明する第2比較例に係る全反射テラヘルツ波測定装置9は、このような問題点を解決し得るものである。
(第2比較例)
次に、第2比較例に係る全反射テラヘルツ波測定装置9について説明する。図2は、第2比較例に係る全反射テラヘルツ波測定装置9の構成図である。この図に示される全反射テラヘルツ波測定装置9は、テラヘルツ波を用いて全反射測定法により測定対象物Sの情報を取得するものであって、光源11、分岐部12、チョッパ13、光路長差調整部14、偏光子15、合波部16、テラヘルツ波発生素子20、プリズム30、テラヘルツ波検出素子40、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55を備える。
図1に示された第1比較例に係るテラヘルツ波測定装置8の構成と比較すると、この図2に示される第2比較例に係る全反射テラヘルツ波測定装置9は、テラヘルツ波光学系上にプリズム30を備える点で相違する。プリズム30は、テラヘルツ波発生素子20から出力されたテラヘルツ波を入射面30aに入力し、その入力したテラヘルツ波を内部で伝播させるとともに反射面30cで全反射させ、その全反射した後のテラヘルツ波を出射面30bから合波部16へ出力する。プリズム30はダフプリズムであり、入射面30aに入力されるテラヘルツ波の主光線と、出射面30bから出力されるテラヘルツ波の主光線とは、共通の直線上にある。プリズム30の反射面30cの上に測定対象物Sが配置される。
このテラヘルツ波測定装置9では、テラヘルツ波発生素子20から出力されたテラヘルツ波は、プリズム30の入射面30aに入力されて、プリズム30の内部を伝播するとともにプリズム30の反射面30cで全反射される。その全反射の際に、テラヘルツ波のエバネセント成分が、測定対象物Sのうち反射面30cの近傍にある部分に存在する。このことから、プリズム30の反射面30cで全反射された後のテラヘルツ波は、測定対象物Sのうち反射面30cの近傍にある部分の情報を取得する。そして、その全反射されたテラヘルツ波は、プリズム30の内部を伝播し、プリズム30の出射面30bから外部へ出力される。プリズム30から出力されたテラヘルツ波は、プローブ光学系を経たプローブ光とともに、合波部16に入力される。
合波部16に入力されたテラヘルツ波およびプローブ光は、合波部16により互いに同軸となるように合波されて、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。そして、このテラヘルツ波検出素子40におけるプローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物Sの特性が得られる。
このような全反射測定法では、プリズム30の反射面30cの上に配置される測定対象物Sが水分を含んでいても、測定が可能である。ただし、テラヘルツ波発生素子20からテラヘルツ波検出素子40までテラヘルツ波が伝播する空間において水分が無い又は少ないことが望ましい。
図1に示された透過測定法に拠るテラヘルツ波測定装置8の構成と、図2に示された全反射測定法に拠るテラヘルツ波測定装置9の構成とを対比すると、テラヘルツ波発生素子20から合波部16に到るまでのテラヘルツ波光学系上に、透過測定法では測定対象物Sが配置されるのに対して、全反射測定法では測定対象物Sが載置されたプリズム30が配置される。この点で相違しており、他の装置構成については共通化が可能である。したがって、透過測定法と全反射測定法との間で切り替えを行う際には、測定対象物Sおよびプリズム30についてテラヘルツ波伝播経路への組込み及び取外しを行えばよい。しかし、このような切り替えを行う度に測定対象物Sおよびプリズム30の位置決めを精確に行うことは容易ではなく、安定した測定条件で測定を行うことは容易ではない。以下に説明する本実施形態に係るテラヘルツ波測定装置は、このような問題点を解決し得るものである。
(第1実施形態)
次に、本発明の第1実施形態に係るテラヘルツ波測定装置1について説明する。図3は、第1実施形態に係るテラヘルツ波測定装置1の構成図である。この図に示されるテラヘルツ波測定装置1は、透過測定法と全反射測定法との間の切り替えが可能でテラヘルツ波を用いて測定対象物の情報を取得するものであって、光源11、分岐部12、チョッパ13、光路長差調整部14、偏光子15、合波部16、テラヘルツ波発生素子20、第1プリズム310、第2プリズム320、テラヘルツ波検出素子40、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55を備える。
図2に示された第2比較例に係るテラヘルツ波測定装置9の構成と比較すると、この図3に示される第1実施形態に係るテラヘルツ波測定装置1は、プリズム30に替えて第1プリズム310および第2プリズム320を備える点で相違する。図4は、第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム320の構成図である。同図(a)は、第1プリズム310と第2プリズム320とが互いに分離されている状態を示し、また、同図(b)は、第1プリズム310と第2プリズム320とが互いに嵌合されている状態を示す。
第1プリズム310は、いわゆる無収差プリズムであって、入射面310a,出射面310b,反射面310c,第1副反射面310dおよび第2副反射面310eを有する。入射面310aおよび出射面310bは互いに平行である。これら入射面310aおよび出射面310bに対して反射面310cは垂直である。第1プリズム310において、第1副反射面310dおよび第2副反射面310eは、反射面310cに対向する側に有り、凹部を形成している。反射面310cの上には測定対象物が配置される。
第2プリズム320は、入射面320a,出射面320bおよび内部空間320cを有する。入射面320aおよび出射面320bは、第1プリズム310の凹部に嵌合し得る形状を有する凸部を形成している。内部空間320cには測定対象物が入れられる。
第1プリズム310の凹部と第2プリズム320の凸部とが嵌合することで、第1プリズム310と第2プリズム320とは一体のプリズムとなることができる。これら第1プリズム310および第2プリズム320それぞれは、屈折率が互いに等しく、互いに同じ材料からなるのが好ましい。第2プリズム320は第1プリズム310に対して着脱自在であり、これにより、透過測定法と全反射測定法との間の切り替えが可能となる。
第1プリズム310および第2プリズム320それぞれは、テラヘルツ波発生素子20から出力されるテラヘルツ波の波長において透明であって、反射面310cの上に配置される測定対象物S測定対象物Sの屈折率より高い屈折率を有する材料からなり、例えばシリコンからなるのが好ましい。シリコンは、テラヘルツ波の波長帯において透明であり、波長1THzにおいて屈折率が3.4である。また、例えば、測定対象物Sの主成分が水であるとして、水の波長1THzにおける屈折率が2.0である。このとき、臨界角は36度(=sin-1(2.0/3.4))であるから、この臨界角より大きい入射角であるときに全反射が生じる。測定対象物Sが気体である場合も同様に全反射が生じる。
第1プリズム310の凹部と第2プリズム320の凸部とが嵌合しているとき(図4(b))、両者間のテラヘルツ波伝播経路上に水分が無い又は少ないことが望ましい。そこで、両者間のテラヘルツ波伝播経路上から気体(空気)を排除する接合用部材330が挿入されるのが好ましい。また、この接合用部材330は、第1プリズム310および第2プリズム320それぞれの屈折率と略等しい屈折率を有し、テラヘルツ帯で透明であることが好ましい。接合用部材330として好適にはアセトンが用いられる。このような接合用部材330が挿入されることにより、第1プリズム310の凹部と第2プリズム320の凸部との嵌合の際に両者間のテラヘルツ波伝播経路上から気体が排除されるので、気体中の水分によるテラヘルツ波の吸収が防止される。
第1プリズム310の凹部に第2プリズム320の凸部が嵌合していないとき、第1プリズム310の入射面310aに入力したテラヘルツ波は、第1プリズム310の第1副反射面310d,反射面310cおよび第2副反射面310eの順に反射され、第1プリズム310の出射面310bから外部へ出力される。これにより、第1プリズム310の反射面310cに配置された測定対象物についての情報が、テラヘルツ波の全反射の際に生じる該テラヘルツ波のエバネセント成分により取得される。
第1プリズム310の凹部に第2プリズム320の凸部が嵌合しているとき(図4(b))、第1プリズム310の入射面310aに入力したテラヘルツ波は、第1プリズム310の第1副反射面310d,第2プリズム320の内部空間320cおよび第1プリズム310の第2副反射面310eの順に透過し、第1プリズム310の出射面310bから外部へ出力される。これにより、第2プリズム320の内部空間320cに配置された測定対象物についての情報が、内部空間320cを透過するテラヘルツ波により取得される。
全反射測定法に拠る測定の際には、第1プリズム310の凹部に第2プリズム320の凸部が嵌合しておらず、テラヘルツ波測定装置1は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。テラヘルツ波発生素子20では、ポンプ光の入力に応じてテラヘルツ波が発生し出力される。テラヘルツ波発生素子20から出力されたテラヘルツ波は、第1プリズム310の入射面310aに入力されて、第1プリズム310の内部を伝播するとともに第1副反射面310dで反射されて反射面310cへ入射し、その反射面310cで全反射される。
この反射面310cにおける全反射の際に、テラヘルツ波のエバネセント成分が、反射面310cの上に配置された測定対象物Sのうち反射面310cの近傍にある部分に存在する。このことから、第1プリズム310の反射面310cで全反射された後のテラヘルツ波は、測定対象物Sのうち反射面310cの近傍にある部分の情報を取得する。そして、その全反射されたテラヘルツ波は、第1プリズム310の第2副反射面310eで反射されて出射面310bから外部へ出力される。第1プリズム310から出力されたテラヘルツ波は、プローブ光学系を経たプローブ光とともに合波部16に入力される。
合波部16に入力されたテラヘルツ波およびプローブ光は、合波部16により互いに同軸となるように合波されて、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。そして、このテラヘルツ波検出素子40におけるプローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、第1プリズム310の反射面310cの上に存在する測定対象物Sの特性が得られる。
一方、透過測定法に拠る測定の際には、第1プリズム310の凹部に第2プリズム320の凸部が嵌合しており、テラヘルツ波測定装置1は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生素子20に入力される。テラヘルツ波発生素子20では、ポンプ光の入力に応じてテラヘルツ波が発生し出力される。
テラヘルツ波発生素子20から出力されたテラヘルツ波は、第1プリズム310の入射面310aに入力されて、第1プリズム310の第1副反射面310dを経て、第2プリズム320の内部空間320cを透過し、第1プリズム310の第2副反射面310eを経て、第1プリズム310の出射面310bから外部へ出力される。この第2プリズム320の内部空間320cにおける透過の際に、テラヘルツ波は、内部空間320cに配置された測定対象物の情報を取得する。そして、第1プリズム310から出力されたテラヘルツ波は、プローブ光学系を経たプローブ光とともに合波部16に入力される。
合波部16に入力されたテラヘルツ波およびプローブ光は、合波部16により互いに同軸となるように合波されて、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。そして、このテラヘルツ波検出素子40におけるプローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、第2プリズム320の内部空間320cに配置された測定対象物の特性が得られる。
なお、透過測定法および全反射測定法の何れにおいても、光路長差調整部14においてミラーM4およびM7とミラーM5およびM6との間の光路長が調整され、プローブ光学系の光路長が調整されることで、テラヘルツ波検出素子40に入力されるテラヘルツ波およびプローブ光それぞれのタイミング差が調整される。前述したように、一般に、テラヘルツ波のパルス幅はピコ秒程度であるのに対して、プローブ光のパルス幅はフェムト秒程度であり、テラヘルツ波と比べてプローブ光のパルス幅は数桁狭い。このことから、光路長差調整部14によりテラヘルツ波検出素子40へのプローブ光の入射タイミングが掃引されることで、パルステラヘルツ波の電場振幅の時間波形が得られる。
以上のように、第1実施形態に係るテラヘルツ波測定装置1では、第1プリズム310の凹部および第2プリズム320の凸部を互いに嵌合可能な形状として着脱自在とし、これにより、透過測定法と全反射測定法との間の切り替えが可能となる。この切り替えに際しては、第1プリズム310をテラヘルツ波伝播経路上に固定されたままでよく、この固定された第1プリズム310に対して第2プリズム320の取付け又は取外しを行うことができる。また、第1プリズム310の凹部および第2プリズム320の凸部を互いに嵌合可能な形状となっているので、第1プリズム310に対して第2プリズム320の取付けを行う際に、第2プリズム320の位置決めが容易である。したがって、透過測定法と全反射測定法との間の切り替えが容易であり、また、透過測定法および全反射測定法の何れにおいても安定した測定条件で測定を行うことができる。
次に、第1実施形態に係るテラヘルツ波測定装置1の変形例について説明する。ここでは、第1実施形態に係るテラヘルツ波測定装置1において第2プリズム320に替えて用いられ得る第2プリズム321および第2プリズム322について説明する。第2プリズム321および第2プリズム322それぞれでは、テラヘルツ波が入射または出射する面に、テラヘルツ波のうち特定方位の偏光成分を反射または透過させる偏光子が形成されおり、また、その偏光子として複数本の金属線が並列配置されてなるワイヤグリッド偏光子が形成されている。
図5は、第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム321の構成図である。同図(a)は、第1プリズム310と第2プリズム321とが互いに嵌合されている状態を示し、また、同図(b)は、第2プリズム321の斜視図を示す。この図に示される第2プリズム321は、入射面321a,出射面321bおよび内部空間321cを有する。入射面321aおよび出射面321bは、第1プリズム310の凹部に嵌合し得る形状を有する凸部を形成している。内部空間321cには測定対象物が入れられる。
また、入射面321aには、その入射面321aにテラヘルツ波が入射する際の入射面に垂直な方向に延在する複数本の金属線321dが並列に形成されてなるワイヤグリッド偏光子が形成されている。同様に、出射面321bには、その出射面321bにテラヘルツ波が入射する際の入射面に垂直な方向に延在する複数本の金属線321eが並列に形成されてなるワイヤグリッド偏光子が形成されている。これら複数本の金属線321dおよび複数本の金属線321eは、例えば金が蒸着されることで形成される。
このような第2プリズム321が第1プリズム310に嵌合した状態において、s偏光のテラヘルツ波が第1プリズム310の入射面310aに入力する場合(同図(a))、そのテラヘルツ波は、第2プリズム321の入射面321aに形成されたワイヤグリッド偏光子により反射され、第1プリズム310の反射面310cで全反射され、第2プリズム321の出射面321bに形成されたワイヤグリッド偏光子により反射されて、第1プリズム310の出射面310bから外部へ出力されるので、全反射測定法に拠る測定が可能となる。
一方、p偏光のテラヘルツ波が第1プリズム310の入射面310aに入力する場合、そのテラヘルツ波は、第2プリズム321の入射面321aに形成されたワイヤグリッド偏光子を通過し、第2プリズム321の内部空間321cを通過し、第2プリズム321の出射面321bに形成されたワイヤグリッド偏光子を通過して、第1プリズム310の出射面310bから外部へ出力されるので、透過測定法に拠る測定が可能となる。
図6は、第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム322の構成図である。同図(a)は、第1プリズム310と第2プリズム322とが互いに嵌合されている状態を示し、また、同図(b)は、第2プリズム322の斜視図を示す。この図に示される第2プリズム322は、入射面322a,出射面322bおよび内部空間322cを有する。入射面322aおよび出射面322bは、第1プリズム310の凹部に嵌合し得る形状を有する凸部を形成している。内部空間322cには測定対象物が入れられる。
また、入射面322aには、その入射面322aにテラヘルツ波が入射する際の入射面に平行な方向に延在する複数本の金属線322dが並列に形成されてなるワイヤグリッド偏光子が形成されている。同様に、出射面322bには、その出射面322bにテラヘルツ波が入射する際の入射面に平行な方向に延在する複数本の金属線322eが並列に形成されてなるワイヤグリッド偏光子が形成されている。これら複数本の金属線322dおよび複数本の金属線322eは、例えば金が蒸着されることで形成される。
このような第2プリズム322が第1プリズム310に嵌合した状態において、s偏光のテラヘルツ波が第1プリズム310の入射面310aに入力する場合(同図(a))、そのテラヘルツ波は、第2プリズム322の入射面322aに形成されたワイヤグリッド偏光子を通過し、第2プリズム322の内部空間322cを通過し、第2プリズム322の出射面322bに形成されたワイヤグリッド偏光子を通過して、第1プリズム310の出射面310bから外部へ出力されるので、透過測定法に拠る測定が可能となる。
一方、p偏光のテラヘルツ波が第1プリズム310の入射面310aに入力する場合、そのテラヘルツ波は、第2プリズム322の入射面322aに形成されたワイヤグリッド偏光子により反射され、第1プリズム310の反射面310cで全反射され、第2プリズム322の出射面322bに形成されたワイヤグリッド偏光子により反射されて、第1プリズム310の出射面310bから外部へ出力されるので、全反射測定法に拠る測定が可能となる。
次に、第1実施形態に係るテラヘルツ波測定装置1の他の変形例について説明する。この変形例は、測定対象物が粉末である場合に好適なものである。すなわち、第1プリズム310の反射面310cの上に配置される測定対象物Sが粉末である場合、図7に示されるように、第1プリズム310の反射面310cに測定対象物Sを押え付ける機構60が設けられるのが好ましい。この押え付け機構60により測定対象物Sを反射面310cに押え付けることにより、測定対象物Sが反射面310cに対してより良く密着するので、全反射測定が効率よく行われ得る。また、第2プリズム320の内部空間320cに配置される測定対象物が粉末である場合、図8に示されるように、第2プリズム320の内部空間320cに測定対象物を押し込む機構61が設けられるのが好ましい。この押し込み機構61により測定対象物を内部空間320cに押し込むことにより、内部空間320cにおけるテラヘルツ伝播経路上に測定対象物が確実に配置されるので、透過測定が効率よく行われ得る。
(第2実施形態)
次に、本発明の第2実施形態に係るテラヘルツ波測定装置2について説明する。図9は、第2実施形態に係るテラヘルツ波測定装置2の構成図である。この図に示されるテラヘルツ波測定装置2は、透過測定法と全反射測定法との間の切り替えが可能でテラヘルツ波を用いて測定対象物の情報を取得するものであって、光源11、分岐部12、チョッパ13、光路長差調整部14、偏光子15、ビームスプリッタ17、テラヘルツ波発生素子20、第1プリズム310、第2プリズム320、テラヘルツ波検出素子40、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55を備える。
図3に示された第1実施形態に係るテラヘルツ波測定装置1の構成と比較すると、この図9に示される第2実施形態に係るテラヘルツ波測定装置2は、第1プリズム310に対してテラヘルツ波発生素子20およびテラヘルツ波検出素子40が一体に設けられている点で相違し、また、合波部16に替えてビームスプリッタ17を備える点で相違する。
図10は、テラヘルツ波発生素子20およびテラヘルツ波検出素子40が一体に設けられた第1プリズム310ならびに第2プリズム320の断面図であり、図11は、その第1プリズム310の斜視図である。これらの図に示されるように、第1プリズム310の入射面310aにテラヘルツ波発生素子20が一体に設けられ、第1プリズム310の出射面310bにテラヘルツ波検出素子40が一体に設けられている。
第1プリズム310に対してテラヘルツ波発生素子20およびテラヘルツ波検出素子40を一体化するに際しては、第1プリズム310の入射面310aにテラヘルツ波発生素子20が接着剤により接合され、また、第1プリズム310の出射面310bにテラヘルツ波検出素子40が接着剤により接合される。このとき用いられる接着剤は、テラヘルツ波の波長において透明なものであって、テラヘルツ波発生素子20およびテラヘルツ波検出素子40それぞれの屈折率と第1プリズム310の屈折率との間の中間の屈折率を有するのが好ましい。
また、第1プリズム310の反射面310bとテラヘルツ波検出素子40との接合位置において、プローブ光の波長で反射率が高いのが好ましい。反射面310bに誘電体多層膜が形成されていて、これにより、テラヘルツ波に対して透明であって、プローブ光波長に対して高反射率とされていてもよい。
このテラヘルツ波測定装置2は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、第1プリズム310の入射面310aに一体化されて設けられたテラヘルツ波発生素子20に入力される。テラヘルツ波発生素子20では、ポンプ光の入力に応じてテラヘルツ波が発生し出力される。テラヘルツ波発生素子20から出力されたテラヘルツ波は、空間伝播することなく直ちに第1プリズム310の入射面310aに入力される。
第1プリズム310の入射面310aに入力されてから出射面310bから出力されるまでのテラヘルツ波の伝播については、第1実施形態の場合と同様である。すなわち、第1プリズム310の凹部に第2プリズム320の凸部が嵌合していないとき、第1プリズム310の入射面310aに入力したテラヘルツ波は、第1プリズム310の第1副反射面310d,反射面310cおよび第2副反射面310eの順に反射され、第1プリズム310の出射面310bから外部へ出力される。一方、第1プリズム310の凹部に第2プリズム320の凸部が嵌合しているとき、第1プリズム310の入射面310aに入力したテラヘルツ波は、第1プリズム310の第1副反射面310d,第2プリズム320の内部空間320cおよび第1プリズム310の第2副反射面310eの順に透過し、第1プリズム310の出射面310bから外部へ出力される。
第1プリズム310の出射面310bから出力されたテラヘルツ波は、空間伝播することなく直ちに、第1プリズム310の出射面310bに一体化されて設けられたテラヘルツ波検出素子40に入力される。一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8およびビームスプリッタ17により順次に反射されて、テラヘルツ波検出素子40に入力される。ビームスプリッタ17からテラヘルツ波検出素子40に入力されたプローブ光は、テラヘルツ波検出素子40を通過した後に、第1プリズム310の出射面310bで反射され、再びテラヘルツ波検出素子40を通過してビームスプリッタ17へ出力される。
テラヘルツ波およびプローブ光は、互いに同軸となるように、略同一タイミングでテラヘルツ波検出素子40に入力される。テラヘルツ波およびプローブ光が入力されたテラヘルツ波検出素子40では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光の偏光状態が変化する。テラヘルツ波検出素子40からビームスプリッタ17へ出力されたプローブ光は、ビームスプリッタ17を透過する。そして、プローブ光の偏光状態は、1/4波長板51、偏光分離素子52、光検出器53A、光検出器53B、差動増幅器54およびロックイン増幅器55により検出される。このようにして、テラヘルツ波検出素子40におけるプローブ光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、第1プリズム310の反射面310cまたは第2プリズム320の内部空間320cに配置された測定対象物の特性が得られる。
この第2実施形態に係るテラヘルツ波測定装置2は、第1実施形態に係るテラヘルツ波測定装置1が奏する効果と同様の効果を奏する他、以下のような効果をも奏することができる。すなわち、第2実施形態に係るテラヘルツ波測定装置2は、テラヘルツ波発生素子20およびテラヘルツ波検出素子40が第1プリズム310に一体化されて設けられているので、これらの取り扱いが容易であり、容易に測定することができ、また、小型化が可能である。また、テラヘルツ波発生素子20からテラヘルツ波検出素子40に到るまでテラヘルツ波が空間伝播することなく第1プリズム310内部を伝播するので、窒素パージを行う必要がなく、この点でも容易に測定することができ、また、小型化が可能である。さらに、第1プリズム310の入射面310aおよび出射面310bそれぞれにおけるテラヘルツ波の損失が低減されるので、この点でも高感度に測定することができる。
(第3実施形態)
次に、本発明の第3実施形態に係るテラヘルツ波測定装置3について説明する。図12は、第3実施形態に係るテラヘルツ波測定装置3の構成図である。この図に示されるテラヘルツ波測定装置3は、透過測定法と全反射測定法との間の切り替えが可能でテラヘルツ波を用いて測定対象物の情報を取得するものであって、光源11、分岐部12、光路長差調整部14、テラヘルツ波発生素子21、第1プリズム313、第2プリズム323、テラヘルツ波検出素子41、信号発生部56および同期検出部57を備える。
図13は、第3実施形態に係るテラヘルツ波測定装置3に含まれる第1プリズム313および第2プリズム323の周辺の構成図である。同図(a)は、第1プリズム313と第2プリズム323とが互いに分離されている状態を示し、また、同図(b)は、第1プリズム313と第2プリズム323とが互いに嵌合されている状態を示す。
第1プリズム313は、いわゆる無収差プリズムであって、入射面313a,出射面313b,反射面313c,第1副反射面313dおよび第2副反射面313eを有する。入射面313aおよび出射面313bは互いに平行である。これら入射面313aおよび出射面313bに対して反射面313cは垂直である。第1プリズム313において、第1副反射面313dおよび第2副反射面313eは、反射面313cに対向する側に有り、凹部を形成している。
第2プリズム323は、入射面323a,出射面323bおよび内部空間323cを有する。入射面323aおよび出射面323bは、第1プリズム313の凹部に嵌合し得る形状を有する凸部を形成している。内部空間323cには測定対象物が入れられる。
第1プリズム313の凹部と第2プリズム323の凸部とが嵌合することで、第1プリズム313と第2プリズム323とは一体のプリズムとなることができる。これら第1プリズム313および第2プリズム323それぞれは、屈折率が互いに等しく、互いに同じ材料からなるのが好ましい。第2プリズム323は第1プリズム313に対して着脱自在であり、これにより、透過測定法と全反射測定法との間の切り替えが可能となる。
第1プリズム313および第2プリズム323それぞれは、テラヘルツ波発生素子21から出力されるテラヘルツ波の波長において透明であって、反射面313cの上に配置される測定対象物Sの屈折率より高い屈折率を有する材料からなり、例えばシリコンからなるのが好ましい。
第1プリズム313の凹部と第2プリズム323の凸部とが嵌合しているとき、両者間のテラヘルツ波伝播経路上に水分が無い又は少ないことが望ましい。そこで、両者間のテラヘルツ波伝播経路上から気体を排除する接合用部材が挿入されるのが好ましい。また、この接合用部材は、第1プリズム313および第2プリズム323それぞれの屈折率と略等しい屈折率を有するのが好ましい。接合用部材として好適にはアセトンが用いられる。
第1プリズム313の入射面313aにテラヘルツ波発生素子21が一体に設けられており、また、第1プリズム313の出射面313bにテラヘルツ波検出素子41が一体に設けられている。テラヘルツ波発生素子21およびテラヘルツ波検出素子41それぞれとして、図14に示されるような光導電アンテナ素子が用いられる。
図14に示される光導電アンテナ素子100は、テラヘルツ波発生素子21またはテラヘルツ波検出素子41として用いられるものであって、例えば、半絶縁性のGaAs基板101と、このGaAs基板101上に形成されたGaAs層102と、このGaAs層102上に形成された1対の電極103および電極104と、を有する。GaAs層102は、MBEにより低温(例えば200〜250℃)でエピタキシャル成長されたものであり、例えば厚さ1〜3μmである。電極103および電極104は、AuGe/Au等のオーミック電極であり、アンテナの長さが例えば20μm〜2mmであり、両者間の間隔が例えば3〜10μmである。低温エピタキシャル成長で形成されたGaAs層102は、キャリアの寿命が短く、キャリアの移動度が高く、また、インピーダンスが高い。
テラヘルツ波発生素子21としての光導電アンテナ素子100では、電極103と電極104との間に電圧が印加されているときに、電極103と電極104との間のGaAs層102の領域にポンプ光が照射されると、GaAs層102内で電子正孔対が発生する。この電子は、電極103と電極104との間に印加されている電圧により加速されて移動する。これにより、電極103と電極104との間に電流が生じるとともに、テラヘルツ波が発生する。テラヘルツ波発生素子21としての光導電アンテナ素子100の電極103と電極104との間には、信号発生部56により一定周期の電圧が印加される。
テラヘルツ波検出素子41としての光導電アンテナ素子100では、テラヘルツ波およびプローブ光の入射に応じて、両者の相関を表す電流が電極103と電極104との間に生じる。この相関に基づいてテラヘルツ波のスペクトルを求めることができ、さらに測定対象物の情報を得ることができる。テラヘルツ波検出素子41としての光導電アンテナ素子100の電極103と電極104との間に生じる電流は、同期検出部57により、テラヘルツ波発生素子21におけるテラヘルツ波発生の周期(すなわち、信号発生部56による電圧印加の周期)に同期して検出される。なお、ポンプ光を光チョッパーで変調しテラヘルツ波発生素子21としての光導電アンテナ100において電極103,104間にDC電圧を加えることによっても同様に検出可能である。
このように、テラヘルツ波発生素子21としての光導電アンテナ素子100では、電極103と電極104との間にポンプ光が入力され、電極103と電極104との間で発生したテラヘルツ波が発散するので、そのテラヘルツ波をコリメートする必要がある。また、テラヘルツ波検出素子41としての光導電アンテナ素子100では、電極103と電極104との間にテラヘルツ波を集光して入力させる必要がある。
そこで、図13に示されるように、第1プリズム313の第1副反射鏡313dに、第1プリズム313の内部を伝播するテラヘルツ波に対してコリメート作用を奏する光学素子として軸外し放物面鏡が形成されている。第1プリズム313の第2副反射鏡313eに、第1プリズム313の内部を伝播するテラヘルツ波に対して集光作用を奏する光学素子として軸外し放物面鏡が形成されている。第2プリズム323において内部空間323cに入力するテラヘルツ波に対してコリメート作用を奏する光学素子としてレンズ323pが形成されている。また、第2プリズム323において内部空間323cから出力されるテラヘルツ波に対して集光作用を奏する光学素子としてレンズ323qが形成されている。
このようなコリメート作用または集光作用を奏する光学素子(軸外し放物面鏡、レンズ)が形成されていることで、全反射測定の際に第1プリズム313の反射面313cで全反射されるテラヘルツ波は平行光とされ、また、透過測定の際には第2プリズム323の内部空間323cを通過するテラヘルツ波は平行光とされ、さらに、全反射測定および透過測定の何れのときにもテラヘルツ波検出素子41に入力されるテラヘルツ波は集光される。
このような第2プリズム323は、図15で説明されるような工程を経て製造され得る。なお、この図は、レンズ323qの形成方法を示している。初めに、第2プリズム323と外形が同じであるプリズムが用意され、レンズ323qが設けられるべき中心位置で該プリズムが切断されて部材323A,323Bとされる。次に、部材323A,323Bの何れかの切断面に凹部を形成し、その凹部に樹脂や粉末を充填し、部材323A,323Bを元通りに接合して、樹脂の硬化または粉末の押し固めを行う。このようにして、内部全反射プリズム34を製造することができる。
なお、レンズ323p、323qの形状は、上記凹部に充填される樹脂の屈折率とプリズムの屈折率との関係に依る。すなわち、テラヘルツ波長においてプリズムの屈折率より樹脂の屈折率が高い場合には、レンズ323p,323qの形状は凸レンズとされる。逆にプリズムの屈折率より樹脂の屈折率が低い場合には、レンズ323p,323qの形状は凹レンズとされる。例えば、プリズムはシリコンからなり、凹部に充填される樹脂はポリエチレンからなる。
その他、第1プリズム313の入射面または出射面の側の内部または表面にレンズが形成されていてもよい。また、第1プリズム313の入射面または出射面の側の内部または表面にフレネルレンズが形成されていてもよい。これらの場合、第1プリズム313の内部を伝播しているテラヘルツ波に対してコリメート作用または集光作用を奏することができるので、第2プリズム323の側にコリメート作用または集光作用を奏する光学素子を設ける必要はない。内部にフレネルレンズを形成する場合、レーザ加工により形成することも可能であるし、また、図15で説明した工程と同様にして、プリズムを切断し、その切断面にフレネルレンズを形成し、その後に元通りに接合すればよい。このようにレンズが形成されていることにより、テラヘルツ波をコリメートまたは集光することができ、また、イメージを転送することもできる。
このテラヘルツ波測定装置3は以下のように動作する。光源11から出力されたパルス光は、分岐部12により2分岐されてポンプ光およびプローブ光とされる。分岐部12から出力されたポンプ光は、ミラーM1〜M3により順次に反射されて、第1プリズム313の入射面313aに一体化されて設けられたテラヘルツ波発生素子21に入力される。テラヘルツ波発生素子21としての光導電アンテナ素子100では、電極103と電極104との間に一定周期の電圧が信号発生部56により印加されており、電極103と電極104との間にポンプ光が入力され、これによりテラヘルツ波が発生する。テラヘルツ波発生素子21から出力されたテラヘルツ波は、空間伝播することなく直ちに第1プリズム313の入射面313aに入力される。
第1プリズム313の入射面313aに入力されてから出射面313bから出力されるまでのテラヘルツ波の伝播については、第1実施形態の場合と略同様であるが、コリメートおよび集光の点で相違する。すなわち、第1プリズム313の凹部に第2プリズム323の凸部が嵌合していないとき、第1プリズム313の入射面313aに入力したテラヘルツ波は、第1プリズム313の第1副反射面313dでの反射時にコリメートされ、反射面313cで全反射され、第2副反射面313eでの反射時に集光され、第1プリズム313の出射面313bから外部へ出力される。一方、第1プリズム313の凹部に第2プリズム323の凸部が嵌合しているとき、第1プリズム313の入射面313aに入力したテラヘルツ波は、第1プリズム313の第1副反射面313dを経て、第2プリズム323のレンズ323pによりコリメートされ、第2プリズム323の内部空間323cを通過し、第2プリズム323のレンズ323qにより集光され、第1プリズム313の第2副反射面313eを経て、第1プリズム313の出射面313bから外部へ出力される。
第1プリズム313の出射面313bから出力されたテラヘルツ波は、空間伝播することなく直ちに、第1プリズム313の出射面313bに一体化されて設けられたテラヘルツ波検出素子41に入力される。一方、分岐部12から出力されたプローブ光は、ミラーM4〜M8およびビームスプリッタ17により順次に反射されて、テラヘルツ波検出素子41に入力される。これらテラヘルツ波およびプローブ光は、テラヘルツ波検出素子41としての光導電アンテナ素子100の電極103と電極104との間に入力される。
テラヘルツ波検出素子41としての光導電アンテナ素子100では、テラヘルツ波およびプローブ光の入射に応じて、両者の相関を表す電流が電極103と電極104との間に生じる。この電流は、同期検出部57により、信号発生部56による電圧印加の周期に同期して検出される。これにより、第1プリズム313の反射面313cまたは第2プリズム323の内部空間323cに配置された測定対象物の特性が得られる。
この第3実施形態に係るテラヘルツ波測定装置3は、第2実施形態に係るテラヘルツ波測定装置2が奏する効果と同様の効果を奏することができる。
第1比較例に係るテラヘルツ波測定装置8の構成図である。 第2比較例に係るテラヘルツ波測定装置9の構成図である。 第1実施形態に係るテラヘルツ波測定装置1の構成図である。 第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム320の構成図である。 第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム321の構成図である。 第1実施形態に係るテラヘルツ波測定装置1に含まれる第1プリズム310および第2プリズム322の構成図である。 第1プリズム310の反射面310cに測定対象物Sを押え付ける機構60を説明する図である。 第2プリズム320の内部空間320cに測定対象物を押し込む機構61を説明する図である。 第2実施形態に係るテラヘルツ波測定装置2の構成図である。 テラヘルツ波発生素子20およびテラヘルツ波検出素子40が一体に設けられた第1プリズム310ならびに第2プリズム320の断面図である。 テラヘルツ波発生素子20およびテラヘルツ波検出素子40が一体に設けられた第1プリズム310の斜視図である。 第3実施形態に係るテラヘルツ波測定装置3の構成図である。 第3実施形態に係るテラヘルツ波測定装置3に含まれる第1プリズム313および第2プリズム323の周辺の構成図である。 光導電アンテナ素子の斜視図である。 第2プリズム323の製造工程を説明する図である。
符号の説明
1〜3…テラヘルツ波測定装置、11…光源、12…分岐部、13…チョッパ、14…光路長差調整部、15…偏光子、16…合波部、17…ビームスプリッタ、20,21…テラヘルツ波発生素子、310,313…第1プリズム、320〜323…第2プリズム、330…接合用部材、40,41…テラヘルツ波検出素子、51…1/4波長板、52…偏光分離素子、53A,53B…光検出器、54…差動増幅器、55…ロックイン増幅器、56…信号発生部、57…同期検出部、M1〜M9…ミラー、S…測定対象物。

Claims (10)

  1. 光を出力する光源と、
    前記光源から出力された光を2分岐して、その2分岐した光のうち一方をポンプ光とし他方をプローブ光として出力する分岐部と、
    前記分岐部から出力されたポンプ光を入力することでテラヘルツ波を発生し出力するテラヘルツ波発生素子と、
    前記テラヘルツ波発生素子から出力されるテラヘルツ波を入力する入射面と、前記テラヘルツ波を全反射させる反射面と、前記テラヘルツ波を外部へ出力する出射面と、凹部を形成する第1副反射面および第2副反射面と、を有する第1プリズムと、
    前記第1プリズムの前記凹部に嵌合し得る形状を有する凸部を含み、前記第1プリズムに対して着脱自在であり、内部空間を有する第2プリズムと、
    前記第1プリズムの前記出射面から出力されたテラヘルツ波と、前記分岐部から出力されたプローブ光とを入力し、これらテラヘルツ波とプローブ光との間の相関を検出するテラヘルツ波検出素子と、
    を備え、
    前記第1プリズムの前記凹部に前記第2プリズムの前記凸部が嵌合していないときに、前記第1プリズムの前記入射面に入力したテラヘルツ波を、前記第1プリズムの前記第1副反射面,前記反射面および前記第2副反射面の順に反射させ、前記第1プリズムの前記出射面から外部へ出力することで、前記第1プリズムの前記反射面に配置された測定対象物についての情報を、テラヘルツ波の全反射の際に生じる該テラヘルツ波のエバネセント成分により取得し、
    前記第1プリズムの前記凹部に前記第2プリズムの前記凸部が嵌合しているときに、前記第1プリズムの前記入射面に入力したテラヘルツ波を、前記第1プリズムの前記第1副反射面,前記第2プリズムの前記内部空間および前記第1プリズムの前記第2副反射面の順に透過させ、前記第1プリズムの前記出射面から外部へ出力することで、前記第2プリズムの前記内部空間に配置された測定対象物についての情報を、前記内部空間を透過するテラヘルツ波により取得する、
    ことを特徴とするテラヘルツ波測定装置。
  2. 前記第1プリズムの前記凹部と前記第2プリズムの前記凸部との嵌合の際に両者間のテラヘルツ波伝播経路上から気体を排除する接合用部材が挿入されることを特徴とする請求項1記載のテラヘルツ波測定装置。
  3. 前記分岐部から前記テラヘルツ波検出素子に到るまでのポンプ光およびテラヘルツ波の光路と、前記分岐部から前記テラヘルツ波検出素子に到るまでのプローブ光の光路との、差を調整する光路長差調整部を更に備えることを特徴とする請求項1記載のテラヘルツ波測定装置。
  4. 前記第2プリズムにおいてテラヘルツ波が入射または出射する面に、テラヘルツ波のうち特定方位の偏光成分を反射または透過させる偏光子が形成されている、ことを特徴とする請求項1記載のテラヘルツ波測定装置。
  5. 前記第1プリズムの前記入射面に前記テラヘルツ波発生素子が一体に設けられていることを特徴とする請求項1記載のテラヘルツ波測定装置。
  6. 前記第1プリズムの前記出射面に前記テラヘルツ波検出素子が一体に設けられていることを特徴とする請求項1記載のテラヘルツ波測定装置。
  7. 前記第1プリズムの前記入射面の側に、前記第1プリズムの内部を伝播するテラヘルツ波に対してコリメート作用を奏する光学素子が形成されている、ことを特徴とする請求項1記載のテラヘルツ波測定装置。
  8. 前記第1プリズムの前記出射面の側に、前記第1プリズムの内部を伝播するテラヘルツ波に対して集光作用を奏する光学素子が形成されている、ことを特徴とする請求項1記載のテラヘルツ波測定装置。
  9. 前記第2プリズムにおいて前記内部空間に入力するテラヘルツ波に対してコリメート作用を奏する光学素子が形成されている、ことを特徴とする請求項1記載のテラヘルツ波測定装置。
  10. 前記第2プリズムにおいて前記内部空間から出力されるテラヘルツ波に対して集光作用を奏する光学素子が形成されている、ことを特徴とする請求項1記載のテラヘルツ波測定装置。
JP2007063890A 2007-03-13 2007-03-13 テラヘルツ波測定装置 Expired - Fee Related JP4800244B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063890A JP4800244B2 (ja) 2007-03-13 2007-03-13 テラヘルツ波測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063890A JP4800244B2 (ja) 2007-03-13 2007-03-13 テラヘルツ波測定装置

Publications (2)

Publication Number Publication Date
JP2008224451A JP2008224451A (ja) 2008-09-25
JP4800244B2 true JP4800244B2 (ja) 2011-10-26

Family

ID=39843255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063890A Expired - Fee Related JP4800244B2 (ja) 2007-03-13 2007-03-13 テラヘルツ波測定装置

Country Status (1)

Country Link
JP (1) JP4800244B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680898B2 (en) 2020-07-08 2023-06-20 Samsung Electronics Co., Ltd. Hybrid probe, physical property analysis apparatus including the same, and method of measuring semiconductor device using the apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723643B2 (ja) * 2011-03-22 2015-05-27 浜松ホトニクス株式会社 全反射分光計測方法
EP2693200B1 (en) * 2011-03-29 2019-06-12 Hamamatsu Photonics K.K. Terahertz-wave spectrometer
JP5607566B2 (ja) * 2011-03-29 2014-10-15 浜松ホトニクス株式会社 テラヘルツ波分光計測装置
EP2693199B1 (en) 2011-03-29 2018-07-11 Hamamatsu Photonics K.K. Terahertz-wave spectrometer and prism member
JP5957294B2 (ja) * 2012-05-29 2016-07-27 浜松ホトニクス株式会社 プリズム部材、テラヘルツ波分光計測装置、及びテラヘルツ波分光計測方法
WO2015174463A1 (ja) * 2014-05-14 2015-11-19 コニカミノルタ株式会社 検出デバイスおよびその製造方法
JP6367753B2 (ja) * 2015-05-11 2018-08-01 日本電信電話株式会社 誘電分光センサ
JP6955462B2 (ja) * 2018-03-02 2021-10-27 浜松ホトニクス株式会社 光学計測装置及び光学計測方法
JP2019144276A (ja) * 2019-06-11 2019-08-29 パイオニア株式会社 テラヘルツ波計測装置
JP6913261B2 (ja) * 2019-09-04 2021-08-04 パイオニア株式会社 計測装置、計測方法及びコンピュータプログラム
JP2019203905A (ja) * 2019-09-04 2019-11-28 パイオニア株式会社 計測装置、計測方法及びコンピュータプログラム
JP7505948B2 (ja) 2020-09-23 2024-06-25 浜松ホトニクス株式会社 テラヘルツ波全反射減衰分光方法、テラヘルツ波全反射減衰分光装置及び圧力付与装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039569B2 (ja) * 1991-03-29 2000-05-08 株式会社島津製作所 顕微全反射測定用プリズム
JPH05332937A (ja) * 1992-05-27 1993-12-17 Olympus Optical Co Ltd オプティカルイオンセンサー
JPH11271217A (ja) * 1998-03-20 1999-10-05 Hoechst Reseach & Technology Kk 光学的センサ
JP3933959B2 (ja) * 2002-02-26 2007-06-20 スターライト工業株式会社 化学マイクロデバイス
JP3950818B2 (ja) * 2003-05-29 2007-08-01 アイシン精機株式会社 反射型テラヘルツ分光測定装置及び測定方法
JP4154388B2 (ja) * 2004-12-27 2008-09-24 キヤノン株式会社 被対象物を透過した電磁波の状態を検出するための検出装置
JP4538364B2 (ja) * 2005-04-18 2010-09-08 株式会社オハラ 屈折率測定用具、屈折率測定装置及び屈折率測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680898B2 (en) 2020-07-08 2023-06-20 Samsung Electronics Co., Ltd. Hybrid probe, physical property analysis apparatus including the same, and method of measuring semiconductor device using the apparatus

Also Published As

Publication number Publication date
JP2008224451A (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4800244B2 (ja) テラヘルツ波測定装置
JP4871176B2 (ja) 全反射テラヘルツ波測定装置
JP5231538B2 (ja) 全反射テラヘルツ波測定装置
JP2008224452A (ja) 全反射テラヘルツ波測定装置
US5952818A (en) Electro-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
JP3950818B2 (ja) 反射型テラヘルツ分光測定装置及び測定方法
JP5546789B2 (ja) 統合デュアルレーザモジュールを備えた、テラヘルツ周波数領域分光計
US6111416A (en) Electro-optical and magneto-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
US7781736B2 (en) Terahertz frequency domain spectrometer with controllable phase shift
US8129683B2 (en) Waveform information acquisition apparatus and waveform information acquisition method
US5789750A (en) Optical system employing terahertz radiation
JP6238058B2 (ja) テラヘルツ分光システム
US8759769B2 (en) Terahertz-wave device, method of generating and detecting terahertz-waves with the device, and imaging apparatus equipped with the device
US10775149B1 (en) Light source failure identification in an optical metrology device
JP7393397B2 (ja) テラヘルツ波分光計測装置
WO2012029534A1 (en) Electromagnetic thz wave generating device, electromagnetic thz wave detecting device, and time -domain spectroscopy apparatus
US9696206B2 (en) Terahertz-wave spectrometer
WO2009146561A1 (en) Dual mode terahertz spectroscopy and imaging systems and methods
US9080913B2 (en) Terahertz-wave spectrometer and prism member
CN208026605U (zh) 一种小型化的太赫兹时域光谱仪装置
JP2017009296A (ja) 電磁波伝搬装置及び情報取得装置
CN108680500A (zh) 一种小型化的太赫兹时域光谱仪装置及分析方法
JP2009512865A (ja) テラヘルツの帯域幅を有する電磁波センサー
JP2024534140A (ja) テラヘルツ相互相関装置
WO2009084712A1 (en) Waveform information acquisition apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees