JP4792189B2 - フルオロカーボン原料の処理 - Google Patents

フルオロカーボン原料の処理 Download PDF

Info

Publication number
JP4792189B2
JP4792189B2 JP2001558392A JP2001558392A JP4792189B2 JP 4792189 B2 JP4792189 B2 JP 4792189B2 JP 2001558392 A JP2001558392 A JP 2001558392A JP 2001558392 A JP2001558392 A JP 2001558392A JP 4792189 B2 JP4792189 B2 JP 4792189B2
Authority
JP
Japan
Prior art keywords
plasma
reaction chamber
gas
plasmatron
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001558392A
Other languages
English (en)
Other versions
JP2003522747A (ja
Inventor
デル ヴァルト、アイザック、ヤコブス ファン
ハインツァー、クラウス
レール、ゲルノート
Original Assignee
サウス アフリカン ニュークリア エナージィ コーポレイション リミテッド
3エム イノベイティブ プロパティーズ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サウス アフリカン ニュークリア エナージィ コーポレイション リミテッド, 3エム イノベイティブ プロパティーズ カンパニー filed Critical サウス アフリカン ニュークリア エナージィ コーポレイション リミテッド
Publication of JP2003522747A publication Critical patent/JP2003522747A/ja
Application granted granted Critical
Publication of JP4792189B2 publication Critical patent/JP4792189B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • C07C17/367Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms by depolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0096Cleaning
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
本発明は、フルオロカーボン原料の処理に関するものである。詳細には、フルオロカーボン原料の処理方法、フルオロカーボン原料の処理装置、及び、その方法及びその装置で使用するための急冷プローブに関する。
【0002】
本発明の第一の見地によると、下記工程を含む、フルオロカーボン原料の処理方法が提供される:
少なくとも1つのカソードと少なくとも1つのアノードとの間の、高温ゾーンに電気アークを生成させる工程、
高温ゾーンに、電気アーク及びプラズマガスによって、尾炎を有する上向きに燃焼する熱プラズマを生成させる工程、
少なくとも1種のフルオロカーボン化合物を含む固体粒状のフルオロカーボン原料を、熱プラズマの尾炎を用いて、反応性熱混合物を形成させて、フルオロカーボン化合物を少なくとも1種のフルオロカーボン前駆体又は反応性種に解離させる工程、及び、
反応性熱混合物を冷却して、フルオロカーボン前駆体又は反応性種から、少なくとももう1種の望まれるフルオロカーボン化合物を形成させる工程。
【0003】
プラズマガスは、本発明の1つの実施態様において、アルゴン、窒素、ヘリウム、又はそれらの混合物等の不活性ガスであり得る。この様な不活性ガスは、加熱源として及びプラズマを持続させるためにのみ作用し、フルオロカーボン前駆体又は反応性種と反応しない。しかしながら、本発明の他の実施態様においては、プラズマガスは、熱プラズマ中で、その後反応性熱混合物中で、種を含むフッ素及び種を含む炭素に解離させ、反応性熱混合物を冷却する際に、フルオロカーボン前駆体又は反応性種と反応して、少なくとももう1種の所望のフルオロカーボン化合物を形成させるであろう、テトラフルオロメタン(CF4)等の反応性ガスであってもよい。本発明の更に他の実施態様においては、プラズマガスは、本明細書中のこれまでに記載される通り、不活性ガス及び反応性ガスの混合物からなってもよい。
【0004】
特に、原料は、充填された物質であっても、充填されていない物質であってもよく、それは直接的に使用され得るものではなく、例えば、ポリテトラフルオロエチレン(「PTFE」)、テトラフルオロエチレンヘキサフルオロプロピレンビニリデンフルオライド(「THV」)、フッ素化されたエチレン−プロピレン共重合体(「FEP」)、パーフルオロアルコキシ共重合体(「PFA」)等である。「充填された」は、フルオロカーボン原料が、特定の特性を与えるために、フルオロカーボン物質にもともと添加されていた、シリカ、銅、炭素等の元素又は物質を含有し得ることを意味する。この様な物質が使用され、従って直接は使用され得ないが、本発明の方法において原料として使用するのに適すれば、それはこれらの元素を更に含有するであろう。本発明の方法において、これらの物質、及びより望まれ得るフルオロカーボン化合物、又は、それから形成されるその様な化合物の混合物は、解重合される。
【0005】
望む場合又は必要な場合には、固体粒状原料は、油及びほこり等の表面の汚染物質を除去するために、例えば溶媒抽出によって、予備処理されてもよい。
【0006】
得られ得る典型的な生成物は、テトラフルオロメタン(CF4)、テトラフルオロエチレン(C24)、ヘキサフルオロエタン(C26)、ヘキサフルオロプロピレン(C36)、ヘキサフルオロブチレン(C46)、環状オクタフルオロブタン(c−C4)、デカフルオロブタン(C410)、オクタフルオロプロパン(C3)、及び、他のCxy鎖(式中、x及びyは整数である)である。
【0007】
従って、カソード及びアノード、即ち電極は、電力供給によって駆動させられるプラズマトーチ又はプラズマトロンの電極であり得る。高温ゾーンは、プラズマトーチ又はプラズマトロンのアーク、即ち電極間のアークの中、周り、及びすぐ近くの領域であり得る。
【0008】
原則として、如何なる適するプラズマトロン又はトーチを使用してもよい。例えば、プラズマトロンは、単一の水で冷却される熱カソード及び3つまでの水で冷却されるアノードのバッテリーを含み得り、従って該アークがカソードとアノードとの間を通過する。カソードは、タングステン又はグラファイト挿入物等の、適する挿入物を含んでいてもよい。
【0009】
原料は、プラズマトロン又はトーチの出口で形成するプラズマの尾炎に導入され得る。プラズマガスは、トーチ又はプラズマトロンを通って高温ゾーンに、即ち電極間のトーチに、別々に供給され得る。
【0010】
従って、熱プラズマの生成、フルオロカーボン化合物の解離、及び、反応性熱混合物の冷却は、プラズマ反応器中で行われ得る。従って、例えばグラファイトで裏打ちされ得る反応器は、熱プラズマの尾炎が膨張させられ、フルオロカーボン化合物が解離させられ、かつ反応性熱混合物が冷却される反応チャンバーを含み、熱プラズマの尾炎の膨張及びフルオロカーボン化合物の解離が、反応チャンバーの第一のゾーンで行われ、反応性熱混合物の冷却が、反応チャンバーの第二のゾーンで行われるであろう。従って、プラズマトロンは、プラズマの生成及び尾炎の膨張が、反応チャンバーの第一のゾーンで行われ得るように、反応チャンバーの第一のゾーンに隣接する反応器に載置されるであろう。反応チャンバーは、逆円錐形状であってもよく、トーチ又はプラズマトロンは反応チャンバーの底に置かれる。
【0011】
反応チャンバーの第二のゾーンの冷却は、急冷プローブによって行われ得り、それは自浄式急冷プローブであってもよい。自浄式急冷プローブは、中央に通路を備え、その通路を通過する熱ガス又は反応性熱混合物を冷却するように適合させられた、反応器に載置された外側円柱状構成部材;該外側構成部材から該通路に内向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー、;該構成部材間の周囲の隙間に沿って通過する熱ガス又は反応性熱混合物を冷却するようにも適合された、外側構成部材の内側にクリアランスをもって置かれる内側円柱状構成部材;外側構成部材上の歯又はスクレーパーに対して互い違いに配列された、該内側構成部材から該通路に外向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー;及び他方の円柱状構成部材に対して振動するように、一方の円柱状構成部材を駆動するための駆動手段を含有し得る。駆動手段は、例えば、バネを載せたピストンで駆動するアームからなり得る。
【0012】
しかしながら、代わりに、生成ガスの急速な膨張、冷たい他のガスによってガスを急冷する等の、如何なる他の適する急冷手段も、使用することができる。
【0013】
従って、プラズマトロン、反応器、及び、急冷プローブを含む反応器装置は、プラズマトロンが反応チャンバーの底に置かれ、形成する熱プラズマが上向きに燃焼する様に配置させられており、かつ、該急冷プローブが、プラズマトロンの真上の、反応チャンバーの上側末端部分に突出している、所謂、噴流層反応器装置であってもよい。急冷プローブは通常垂直に置かれるが、それは、必要とされる生成物、製造パラメーター等に依存して、垂直に対して異なる角度で置かれてもよい。反応チャンバーは、本明細書中のこれまでに記載される通り、特に逆円錐形状であり得る。
【0014】
高温ゾーンへのプラズマガスの供給は、反応器の反応ゾーン内に渦状に安定化させられた熱プラズマをガス流が形成する様な方法で、電極間のトーチにガスを注入することによって行われ得る。更には、プラズマガスは、並行するアノード間に導入されて、反応チャンバーの膨張領域の渦を高めかつ持続させ得る。
【0015】
尾炎は、垂真上向きに向けられ、急冷プローブは垂直に延びるか、又は本明細書中のこれまでに記載される通り或る角度を持って延びる。
【0016】
原則的に、固体粒状原料は、いずれかの所望の方法で、反応チャンバーのキャビティー又は第一のゾーンに導入され得るが、比較的大きい原料粒子、例えば1〜20mm、好ましくは8〜15mmの大きさの範囲の粒子を、容易に用いることができるので、特には、重力供給が使用され得る。従って、原料は、トーチの真上に、重力下でチャンバーに垂直に供給され得る。
【0017】
反応器への原料の供給は、バッチ法で行われてもよいし、半連続法で行われてもよいし、又は連続法で行われてもよい。「バッチ」は、予め決められた量のフルオロカーボンが、反応器に装填され、熱プラズマガスを用いて完了するまで反応させることを意味する。「半連続」は、ホッパーが原料で充填され、次いでこの原料が連続して、通常は一定の供給速度で、ホッパーが空になるまで反応器に供給され、その後ホッパーが再装填され得ることを意味する。「連続」は、原料が、通常はおおよそ一定の供給速度で、反応器に連続して供給されることを意味する。連続供給操作は、比較的高い蒸発速度を有する原料で有益に使用され得ると考えられる。典型的には、この様な原料は、1000℃未満の沸点を有する。
【0018】
反応チャンバーは、特定の反応に依存して、即ち原料及び形成され得る所望のフルオロカーボン化合物に依存して、ほぼ真空から昇圧の範囲に渡る圧力下で操作され得る。排気は、急冷プローブによって行われ得る。
【0019】
通常、多くのフルオロカーボンは、生成物として形成するであろう。次いで、この方法は、互いから様々な生成物を分離することを含み得る。
【0020】
本発明の第二の見地によると、下記を含むことを特徴とする、フルオロカーボン原料を処理するための装置が提供される:
上側外向きに広がる反応チャンバーを有する反応器、
反応チャンバーの底のプラズマ生成手段、及び、
使用中に反応チャンバー内に形成する、反応性熱混合物を急冷又は冷却するための、プラズマ生成手段の上の反応チャンバー内の急冷手段。
【0021】
とりわけ、反応チャンバーは、逆円錐形状であり得り、プラズマ生成手段は、反応チャンバーの頂部に置かれ、かつ、急冷手段は、反応チャンバーの上側部分又はゾーン中の、プラズマ生成手段の真上に置かれ得る。
【0022】
反応器は、本明細書中のこれまでに記載される通り、例えばグラファイトで裏打ちされ得り、反応チャンバーに原料を供給するための入口、及び、反応チャンバーから生成物を抜きガスための出口を備え得る。
【0023】
プラズマ生成手段は、本明細書中のこれまでに記載される通り、カソード及びアノードを含有し得り、従って本明細書中のこれまでに記載される通り、プラズマトーチ又はプラズマトロンであり得る。
【0024】
急冷手段は、本明細書中のこれまでに記載される通り、反応器の出口に置かれた、細長い急冷プローブであり得る。急冷プローブは、垂直に置かれてもよい。
【0025】
本発明の第三の見地によると、下記を含む、急冷プローブが提供される:
中心に通路を備え、該通路を通過する熱ガスを冷却するように適合させられた、外側円柱状構成部材、
該外側構成部材から該通路に内向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー、
該構成部材間の周囲の隙間に沿って通過する熱ガスを冷却するように適合させられた、外側構成部材の内側にクリアランスをもって置かれる内側円柱状構成部材、
外側構成部材上の歯又はスクレーパーに対して互い違いに配列された、該内側構成部材から該通路に外向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー及び、
他方の構成部材に対して振動するように、一方の構成部材を駆動するための駆動手段。
【0026】
内側構成部材は、外側構成部材の中心に、又は、外側構成部材の同心円に置かれ得る。同じ数の歯又はスクレーパーが、内側及び外側構成部材上に備えられ得る。歯又はスクレーパーは、それらの構成部材上に等距離離れて置かれ得る。歯又はスクレーパーは、互いに並行に延び得る。
【0027】
構成部材は、中空であってもよいし、及び/又は、熱ガスを冷却又は急冷するために、水等の冷却流体がそれらを通過し得る通路を備えていてもよい。
【0028】
駆動手段もまた、本明細書中のこれまでに記載される通り、円柱状構成部材の一方に結合した、バネを載せたピストンで駆動するアームからなり得る。
【0029】
他方に対する一方の構成部材の振動により、各構成部材間の環状の隙間をガスが通る際に、その表面に蒸着された、固まった又は昇華した物質の除去が、達成される。
【0030】
急冷プローブは、本明細書中のこれまでに記載される通り、プラズマ反応器において使用するのに特に適している。しかしながら、この様な使用法にのみ限定されるものではない。通常、外側構成部材は、反応器に固定され、内側構成部材は、外側構成部材に対して振動するであろう。
【0031】
本発明はここで、添付の図式図を参照して、実施例によって記載されるであろう。
図面中、参照番号10は一般的には、本発明によるフルオロカーボン原料の処理方法を行うための装置を指す。
【0032】
装置10は、一般的には参照番号12で示される、反応器を包含する。反応器12は、グラファイト16で内部に裏打ちされたシェル14からなる。一般的には参照番号20で示される反応チャンバーは、反応器12の内側に備えられている。反応チャンバー20は、逆円錐形状である。垂直に延びる供給導管24は、キャビティー20に至り、供給導管26は、導管24に取り付けられている。
【0033】
装置10は、一般的には参照番号30で示される、プラズマトーチ又はプラズマトロンを含有する。プラズマトーチ又はプラズマトロン30は、水で冷却される熱カソード(図示せず)及び3つまでの水で冷却されるアノードのバッテリー(図示せず)からなる。熱カソードは、タングステン挿入物を含む(図示せず)。プラズマガス注入の流動線32は、プラズマトーチ30に至る。使用中、プラズマガスは、得られるガス流が渦状に安定化させられたプラズマを形成し、また上向きに向けられた尾炎を有する様な方法で、カソードとアノードの間の流動線32によって、トーチに注入される。
【0034】
装置10は、反応器12の下側末端に突出する、一般的には参照番号40で示される、自浄式急冷プローブも含有する。自浄式急冷プローブ40は、細長い水で冷却される円柱状の外側構成部材42を有し、それは反応器12に固定されている。従って、外側構成部材42は、中心に通路を有し、その中に、等間隔を置いた細長い放射状内向きに突出する歯又はスクレーパー44が突出する。外側構成部材42の通路の内側に、周囲にクリアランスをもって、細長い水で冷却される円柱状の内側構成部材46が置かれる。等間隔を置いた細長い放射状に外側に突出する歯又はスクレーパー48は、内側構成部材46の上に備えられており、歯48は歯44から円周に間隔を置いている。
【0035】
歯44及び48は、構成部材42、46の全長さに延び得り、構成部材42、46は、実質的に同じ長さである。内側構成部材46は、矢印50で示される通り、外側構成部材42に対してそれを振動させるように運転するための、バネを載せたピストンで駆動するアーム等の駆動手段(図示せず)を備えている。従って、構成部材42、46からの固体の汚染物質の除去は、振動する歯44、48によって達成される。急冷プローブ40を上下に動かすことによって、反応チャンバーの有効長さが、増えるか、又は減り、それによって反応チャンバーの長さを最適化し得る。
【0036】
この様に、急冷プローブ40は、約105℃/秒の速度で、200℃以下まで、本明細書中のこれまでに記載される通り、反応チャンバー20の内側で形成するプラズマガス又は反応性熱混合物を冷却するように設計された、二重管の水で冷却されるプローブである。固まった又は昇華した物質が、使用中にプローブの表面に形成するので、それらの閉塞を防ぐために、プローブは、自浄式である。
【0037】
流動線(図示せず)は、急冷プローブ40の上側末端からフィルター(図示せず)まで至り、流動線(図示せず)はフィルターから真空ポンプ(図示せず)まで至る。生成物の抜き出し線(図示せず)は、ポンプ吐出から至っている。従って、真空ポンプによって、真空は、反応チャンバー20上に出される。
【0038】
使用中、アルゴン等のプラズマガスを流動線32によってプラズマトーチ30に供給する際に、プラズマは、カソードとアノードとの間で生じさせられる。プラズマは、上向きに燃焼し、上向きに動くプラズマの尾炎が、反応チャンバー20内に形成される。原料は、反応チャンバー20へ、導管26、24を通って重力で供給される。反応チャンバー20は、逆円錐の形状であるので、原料粒子は、ほぼ連続的にかつ激しく渦を巻き、プラズマの尾炎に戻され通常再利用される。従って、プラズマは反応チャンバー20に上向きに燃焼するので、原料粒子は図1の破線で示される通り渦を巻き、プラズマの尾炎内に閉じ込められ、即ちプラズマとの接触が最大になる。これにより、原料全体が転換され、所望の生成物化合物を含有するオフガスが、反応チャンバーの頂上で急冷されながら、排気され、急冷プローブ40によって急冷される。
【0039】
充填されていない重合体物質を原料として使用する場合、重合体状化合物は、急速に蒸発し、それらの単量体成分に解重合する。充填された重合体物質もまた、充填剤が、反応器中の作動温度で比較的不活性であるか、又はフルオロカーボン前駆体又は種の反応に悪影響を与えないという条件下で、原料として使用され得る。或る用途において、グラファイトのライニング16もまた、特に原料が炭素物質を含有し、CF4プラズマが使用される場合に、反応に参加し得る。
【0040】
本明細書中の以下で議論される特定の実施例において、30kWのプラズマトーチ又はプラズマトロンが使用された。約3kg/時のプラズマガスの流速が使用された。試験又は実験を始める前に、その系は、約10kPaまで排気され、アルゴンを用いて流された。プラズマは、高ボルトのスターター(図示せず)によって開始され、30kWの電力供給によって維持された。アルゴンプラズマの開始が完了した後、所望のプラズマガスへの切り替えが行われた。しかしながら、他の反応器系では、プラズマトロンの設計に依存して、プラズマトロンが所望のプラズマガスに直接開始させられ得ることを、認識するであろう。
【0041】
(実施例)
実施例1
アルゴンプラズマで作動する装置10が使用された。原料は、固体粒状THVであった。70分後、閉塞が経験された。反応器が、厚さ7mmまでの脆い炭素層からなる柔らかい被覆で覆われたことが判った。この試験は、半連続基準で行われた。
【0042】
実施例2
実施例1と同じ装置10を使用した。従って、この実施例もまた、半連続基準で行われ、同じ原料が使用された。このケースにおいては、原料は、実施例1と同じ条件下で、CF4プラズマを使用して転換させられた。CF4プラズマにより、90分後に、炭素からなる非常に硬質の薄い層が与えられた。殆ど閉塞は生じなかった。
得られた結果を、表1及び2に記載する。
【0043】
【表1】
Figure 0004792189
【0044】
Arプラズマでのトーチの効率は、CF4プラズマでの場合より低かった。この理由は、噴流層反応器でのArトーチが、まだ最適化されておらず、更にはCF4トーチは、Arプラズマ運転のために使用されたことであると考えられる。表1から、Ar運転における被覆物の質量は、CF4運転における質量よりも僅かに高いことが判り得る。
【0045】
実施例1及び2の炭素被覆物の性質に実質的に差異があった。Ar運転(実施例1)からの殆どの炭素は、ガス相に入らなかったと思われる。一方、CF4運転(実施例2)から被覆された炭素は、ガス相に入った。CF4プラズマは、Arプラズマよりも熱く、これは、転換機構にとって有利である。これらの予備実験において使用された噴流層反応器では、より冷た目のアルゴンプラズマを使用する場合、急冷プローブ及び炭素フィルター等の全ての冷たい表面上に過剰に炭素が被覆する結果として、TFE収率(C24)がArプラズマでより大きいにもかかわらず、反応器が非常に早く閉塞したので、CF4を使用することがより有利であることが判った(実施例1、表2)。
【0046】
【表2】
Figure 0004792189
【0047】
* 実施例2のCF4運転と比較するために、実施例1と同様であるが、Arで標準化した。
【0048】
本発明の方法は、特に、直接的には使用できない固体物質を、比較的低コストで使用可能な高価値の生成物に転換するのに適すると考えられる。
【図面の簡単な説明】
【図1】 本発明によるフルオロカーボン原料の処理方法を行うための、簡略化された流れ図の形体の装置を示すものである。
【図2】 図1の反応器の急冷プローブの3次元図を示すものである。

Claims (20)

  1. 下記工程を含む、固体粒状フルオロポリマーの処理方法:
    少なくとも1つのカソードと少なくとも1つのアノードとの間の、高温ゾーンに電気アークを生成させる工程、
    高温ゾーンに、電気アーク及びプラズマガスによって、尾炎を有する上向きに燃焼する熱プラズマを生成させる工程、
    該固体粒状フルオロポリマーを、熱プラズマの尾炎を用いて、反応性熱混合物を形成させて、フルオロポリマーを少なくとも1種のフルオロカーボン前駆体又は反応性種に解離させる工程、及び、
    フルオロカーボン前駆体又は反応性種を含むガス相を急冷させて、少なくとも1種の単量体フルオロカーボン化合物を形成させる工程。
  2. 該固体粒状フルオロポリマーが、過フッ素化ポリマーである、請求項1に記載の方法。
  3. 該固体粒状フルオロポリマーが、部分的にフッ素化されたポリマーである、請求項1に記載の方法。
  4. 該固体粒状フルオロポリマーが、充填された物質である、請求項2又は3に記載の方法。
  5. 形成される該単量体フルオロカーボン化合物が、テトラフルオロエチレンを含む、請求項1〜4のいずれか一項に記載の方法。
  6. 該プラズマガスが、加熱源として、及び、プラズマを持続させるためにのみ作用する不活性ガスであり、フルオロカーボン前駆体又は反応性種と反応しない、請求項1〜5のいずれか一項に記載の方法。
  7. 該プラズマガスが、熱プラズマ中で、その後反応性熱混合物中で、種を含むフッ素及び種を含む炭素に解離させ、ガス相を急冷する際に、フルオロカーボン前駆体又は反応性種と反応して、単量体フルオロカーボン化合物を形成させる反応性ガスである、請求項1〜5のいずれか一項に記載の方法。
  8. 該プラズマガスが、不活性ガス及び反応性ガスの混合物からなる、請求項1〜5のいずれか一項に記載の方法。
  9. 該カソード及びアノードが、電力供給によって駆動させられるプラズマトーチ又はプラズマトロンの電極であり、高温ゾーンが電極間のアークの中、周り、及びすぐ近くの領域である、請求項1〜8のいずれか一項に記載の方法。
  10. 該プラズマトロンが、水で冷却される単一の熱カソードび水で冷却される3つまでのアノードのバッテリーを含み、従って該アークがカソードとアノードとの間を通過する、請求項9に記載の方法。
  11. 該固体粒状フルオロポリマーが、プラズマトロン又はトーチの出口で形成するプラズマの尾炎に導入され、該プラズマガスがトーチ又はプラズマトロンの電極の間の高温ゾーンに別に供給される、請求項10に記載の方法。
  12. 該固体粒状フルオロポリマーが、プラズマトロン又はトーチの真上の、プラズマの尾炎に垂直にかつ重力下で供給される、請求項11に記載の方法。
  13. 熱プラズマの生成、フルオロポリマーの解離、及び、ガス相の急冷が、熱プラズマの尾炎が膨張させられ、フルオロポリマーが解離させられ、かつガス相が急冷される反応チャンバーを含む、プラズマ反応器中で行われ、熱プラズマの尾炎の膨張及びフルオロポリマーの解離が、反応チャンバーの第一のゾーンで行われ、ガス相の急冷が、反応チャンバーの第二のゾーンで行われ、トーチ又はプラズマトロンが、反応チャンバーの第一のゾーンに隣接する反応器に載置される、請求項11又は12に記載の方法。
  14. 該反応チャンバーが逆円錐形状であり、トーチ又はプラズマトロンが反応チャンバーの底に置かれる、請求項13に記載の方法。
  15. 該反応チャンバーの第二のゾーンの冷却が、自浄式急冷プローブによって行われる、請求項13又は14に記載の方法。
  16. 該自浄式急冷プローブが、中央に通路を備え、その通路を通過する熱ガス相を冷却するように適合された、反応器に載置された外側円柱状構成部材;該外側構成部材から該通路に内向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー;該構成部材間の周囲の隙間に沿って通過する熱ガス相を冷却するようにも適合させられた、外側構成部材の内側にクリアランスをもって置かれる内側円柱状構成部材;外側構成部材上の歯又はスクレーパーに対して互い違いに配列された、該内側構成部材から該通路に外向きに突き出る、多数の円周に間隔を置いた細長い歯又はスクレーパー;及び他方の円柱状構成部材に対して振動するように、一方の円柱状構成部材を駆動するための駆動手段を含有することを特徴とする、請求項15に記載の方法。
  17. 該プラズマトロン、反応器、及び、急冷プローブが、プラズマトロンが反応チャンバーの底に置かれ、形成する熱プラズマが上向きに燃焼する様に配置させられており、かつ、該急冷プローブが、プラズマトロンの真上の、反応チャンバーの上側末端部分に突出している、噴流層反応器装置の一部である、請求項15又は16に記載の方法。
  18. 高温ゾーンへのプラズマガスの供給が、電極間のトーチにプラズマガスを注入することによって行われ、このガスの流れが、反応器の反応チャンバー内に渦状に安定化させられた熱プラズマを形成し、
    プラズマガスが、並行するアノード間にも導入されて、反応チャンバーの膨張領域の渦を高めかつ持続させる請求項15〜17のいずれか一項に記載の方法。
  19. 該尾炎が、垂真上向きに向けられ、急冷プローブが垂直に延びる、請求項15〜18のいずれか一項に記載の方法。
  20. 下記を含むことを特徴とする、請求項1に記載された方法を用いて固体粒状フルオロポリマーを処理し、単量体フルオロカーボン化合物を得るための装置:
    上側外向きに広がる反応チャンバーを有する反応器、
    電気アークがその間から生じさせられ得る、少なくとも1つのカソード及び少なくとも1つのアノードを有する、反応チャンバーの底のプラズマトロン、
    プラズマトロンの出口で形成される、尾炎を有する上向きに燃焼する熱プラズマが、使用中に、反応チャンバーの底で生じる様に、カソードとアノードとの間にプラズマガスを注入するためのプラズマガス注入手段、
    固体粒状フルオロポリマーがプラズマトロンの出口で形成するプラズマの尾炎に供給され得る、反応器中の供給口、及び、
    使用中に反応チャンバー内で形成するガス相を急冷するための、プラズマトロン上の反応チャンバー中の急冷プローブ。
JP2001558392A 2000-02-10 2001-02-09 フルオロカーボン原料の処理 Expired - Fee Related JP4792189B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA200000637 2000-02-10
ZA2000/0637 2000-02-10
PCT/IB2001/000156 WO2001058840A2 (en) 2000-02-10 2001-02-09 Treatment of fluorocarbon feedstocks

Publications (2)

Publication Number Publication Date
JP2003522747A JP2003522747A (ja) 2003-07-29
JP4792189B2 true JP4792189B2 (ja) 2011-10-12

Family

ID=25588616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001558392A Expired - Fee Related JP4792189B2 (ja) 2000-02-10 2001-02-09 フルオロカーボン原料の処理

Country Status (14)

Country Link
US (1) US7252744B2 (ja)
EP (1) EP1263702B1 (ja)
JP (1) JP4792189B2 (ja)
KR (1) KR100808979B1 (ja)
CN (1) CN1273423C (ja)
AU (2) AU3399401A (ja)
BR (1) BR0108216A (ja)
CA (1) CA2398476C (ja)
DE (1) DE60139673D1 (ja)
MX (1) MXPA02007659A (ja)
PL (1) PL202777B1 (ja)
RU (1) RU2262501C2 (ja)
WO (1) WO2001058840A2 (ja)
ZA (1) ZA200206472B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919015B2 (en) * 2002-12-16 2005-07-19 3M Innovative Properties Company Process for manufacturing fluoroolefins
GB2419132B (en) * 2004-10-04 2011-01-19 C Tech Innovation Ltd Method of production of fluorinated carbon nanostructures
GB0817873D0 (en) 2008-10-01 2008-11-05 3M Innovative Properties Co Process of making fluoroelefins by thermal decomposition of fluorinated materials
CN102095609B (zh) * 2010-11-18 2012-08-22 山西省电力公司电力科学研究院 烟气采样脱水装置
KR101448449B1 (ko) 2014-01-13 2014-10-13 주식회사 테라텍 고밀도 구속 플라즈마 소스를 이용한 과불화탄소 및 유해 가스 분해 장치
CN108129253B (zh) * 2017-12-21 2020-05-12 上海微谱化工技术服务有限公司 一种epdm的分析方法
JP7223915B2 (ja) 2019-12-23 2023-02-16 スリーエム イノベイティブ プロパティズ カンパニー フッ素化アイオノマーの熱分解によるフルオロオレフィンの製造方法
US11795126B2 (en) 2020-02-21 2023-10-24 3M Innovative Properties Company Upcycling perfluoropolymers into fluorinated olefins
JPWO2021241371A1 (ja) * 2020-05-29 2021-12-02
CN114288961A (zh) * 2021-12-08 2022-04-08 核工业西南物理研究院 一种热等离子体还原氟化物的装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1131556A (fr) * 1955-05-19 1957-02-25 Du Pont Procédé de préparation du tétrafluoréthylène
US3555823A (en) * 1967-11-17 1971-01-19 Fairchild Hiller Corp Solid propellant electric rocket
US3622493A (en) * 1968-01-08 1971-11-23 Francois A Crusco Use of plasma torch to promote chemical reactions
CA943973A (en) 1970-06-24 1974-03-19 Farbwerke Hoechst Aktiengesellschaft Vormals Meister Lucius And Bruning Process for the preparation of perfluorated compounds
JPS5684754A (en) * 1979-12-14 1981-07-10 Denki Kagaku Kogyo Kk Cooler for carbon black and the like
US4423303A (en) * 1980-05-06 1983-12-27 Tokyo Shibaura Denki Kabushiki Kaisha Apparatus for treating powdery materials utilizing microwave plasma
FR2526141B1 (fr) * 1982-04-30 1988-02-26 Electricite De France Procede et installation de chauffage d'un lit fluidise par injection de plasma
US4606760A (en) * 1985-05-03 1986-08-19 Huron Valley Steel Corp. Method and apparatus for simultaneously separating volatile and non-volatile metals
DE3730065A1 (de) * 1987-03-14 1988-09-22 Bayer Ag Verfahren zur plasmapolymerisation
JP2656349B2 (ja) * 1989-05-30 1997-09-24 宇部興産株式会社 プラズマ粉体処理装置
US5008511C1 (en) * 1990-06-26 2001-03-20 Univ British Columbia Plasma torch with axial reactant feed
RU2017037C1 (ru) * 1991-02-26 1994-07-30 Омское научно-производственное объединение "Сибкриотехника" Зубчато-фрикционная передача
US5399833A (en) * 1993-07-02 1995-03-21 Camacho; Salvador L. Method for vitrification of fine particulate matter and products produced thereby
US5611896A (en) * 1993-10-14 1997-03-18 Atomic Energy Corporation Of S. Africa Limited Production of fluorocarbon compounds
PL201719B1 (pl) * 2000-02-10 2009-05-29 3 M Innovative Properties Comp Sposób obróbki surowca fluorowęglowodorowego

Also Published As

Publication number Publication date
PL363508A1 (en) 2004-11-29
EP1263702B1 (en) 2009-08-26
BR0108216A (pt) 2004-01-06
ZA200206472B (en) 2004-01-28
US7252744B2 (en) 2007-08-07
DE60139673D1 (de) 2009-10-08
KR100808979B1 (ko) 2008-03-03
CA2398476A1 (en) 2001-08-16
KR20020084124A (ko) 2002-11-04
JP2003522747A (ja) 2003-07-29
CN1273423C (zh) 2006-09-06
PL202777B1 (pl) 2009-07-31
AU2001233994B2 (en) 2005-12-15
WO2001058840A2 (en) 2001-08-16
AU3399401A (en) 2001-08-20
RU2002122412A (ru) 2004-01-10
RU2262501C2 (ru) 2005-10-20
CN1398248A (zh) 2003-02-19
EP1263702A2 (en) 2002-12-11
CA2398476C (en) 2009-11-24
WO2001058840A3 (en) 2002-02-14
MXPA02007659A (es) 2004-08-23
US20030114600A1 (en) 2003-06-19

Similar Documents

Publication Publication Date Title
KR100808978B1 (ko) 플루오로카본 공급원료의 처리법
JP4792189B2 (ja) フルオロカーボン原料の処理
EP0648530A1 (en) Production of fluorocarbon compounds
JP5872899B2 (ja) フッ素化材料の熱分解によるフルオロオレフィンの製造プロセス
US11795126B2 (en) Upcycling perfluoropolymers into fluorinated olefins
AU2001233994A1 (en) Treatment of fluorocarbon feedstocks
JP5178980B2 (ja) 炭化フッ素供給原料の処理方法
EP1481957A1 (en) Process for producing fluoromonomer
AU2001228749A1 (en) Treatment of fluorocarbon feedstocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees