JP4788871B2 - Super hydrophilic member - Google Patents

Super hydrophilic member Download PDF

Info

Publication number
JP4788871B2
JP4788871B2 JP2005020423A JP2005020423A JP4788871B2 JP 4788871 B2 JP4788871 B2 JP 4788871B2 JP 2005020423 A JP2005020423 A JP 2005020423A JP 2005020423 A JP2005020423 A JP 2005020423A JP 4788871 B2 JP4788871 B2 JP 4788871B2
Authority
JP
Japan
Prior art keywords
oxide
silicone
modified organopolysiloxane
compound
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005020423A
Other languages
Japanese (ja)
Other versions
JP2006205531A (en
Inventor
浩一 朝倉
章裕 黒田
日香里 武重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2005020423A priority Critical patent/JP4788871B2/en
Publication of JP2006205531A publication Critical patent/JP2006205531A/en
Application granted granted Critical
Publication of JP4788871B2 publication Critical patent/JP4788871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、不揮発性シリコーン中に微粒子金属酸化物を分散させた分散液を基材上に塗布し、焼成して得られる超親水性を示すことを特徴とする部材に関する。
さらに詳しくは、本発明は、部材の表面に微粒子金属酸化物を担持した二酸化珪素(シリカ)ベースの塗膜を形成させることで、焼成後に機械的に安定で、精製水との接触角が10度以下の超親水性を示すことを特徴とする部材に関する。
The present invention relates to a member characterized by exhibiting super hydrophilicity obtained by applying a dispersion liquid in which fine particle metal oxides are dispersed in non-volatile silicone on a base material and baking it.
More specifically, the present invention forms a silicon dioxide (silica) -based coating film carrying a particulate metal oxide on the surface of a member so that it is mechanically stable after firing and has a contact angle with purified water of 10 The present invention relates to a member characterized by exhibiting superhydrophilicity of a degree or less.

従来、各種部材の表面を超親水性にする技術はいろいろと試みられている。例えば、光触媒性のある酸化チタンと、珪素とチタンとの複合酸化物を含有する層が形成されている、あるいは光触媒性のある酸化チタン含有層が形成され、さらにその上に珪素とチタンとの複合酸化物を含有する層が形成されている光触媒性親水性部材(特許文献1)のように光触媒を用いて超親水性を得る方法が最近話題になっている。また、チタンアルコキシド及び2-メチル-2,4-ペンタンジオールから得られる脱水縮重合可能なチタニアゾルと、脱水縮重合して非晶質の酸化物との複合体及びシリカ微粒子を含有する被膜を形成することを特徴とする親水性被膜の製造方法(特許文献2)のようにアルコキシシランやアルコキシチタンなどの有機金属化合物自体を溶媒とし、それを焼成して親水性の被膜を形成する方法が知られている。後者の場合、焼成時にシリカ微粒子を含有する被膜を形成することができる。   Conventionally, various techniques for making surfaces of various members superhydrophilic have been tried. For example, a layer containing a photocatalytic titanium oxide and a composite oxide of silicon and titanium is formed, or a photocatalytic titanium oxide-containing layer is formed, and a layer of silicon and titanium is further formed thereon. Recently, a method for obtaining super hydrophilicity using a photocatalyst, such as a photocatalytic hydrophilic member (Patent Document 1) in which a layer containing a composite oxide is formed, has become a hot topic. Also, a dehydration-condensable titania sol obtained from titanium alkoxide and 2-methyl-2,4-pentanediol and a film containing a composite of amorphous oxide and silica fine particles by dehydration-condensation polymerization. And a method of forming a hydrophilic coating by baking an organometallic compound such as alkoxysilane or alkoxytitanium itself as a solvent, as in a method for producing a hydrophilic coating characterized in that (Patent Document 2). It has been. In the latter case, a film containing silica fine particles can be formed during firing.

同様に珪素のアルコキシドを焼成して親水性被膜を形成するものとしては、二酸化チタン、酸化クロム又は酸化鉄等と共存させて珪素のアルコキシドと酸化剤である硝酸からなる化合物を焼成して親水性被膜の形成(特許文献3)、及びその被膜の熱交換器や蒸発器への適用(特許文献4)が開示されており、これらの焼成した膜に更なる珪素のアルコキシドを塗布・焼成することによる親水性膜の形成法(特許文献5)が開示されている。また、チタニアを含む金属酸化物ゾルとコロイダルシリカからなる複合溶液を基材上に塗布・焼成する親水性被膜の製造方法(特許文献6)が開示されており、コロイダルシリカ、コロイダルアルミナ、ケイ酸ナトリウム、ケイ酸カリウム、コロイダルジルコニアの複合物を塗布・焼成する親水性部材(特許文献7)も開示されているが、いずれも超親水性を示す部材ではない。   Similarly, a silicon alkoxide is baked to form a hydrophilic film, and a compound comprising silicon alkoxide and nitric acid as an oxidizing agent is baked in the presence of titanium dioxide, chromium oxide, iron oxide or the like to make hydrophilic film. The formation of a coating (Patent Document 3) and the application of the coating to a heat exchanger and an evaporator (Patent Document 4) are disclosed, and further baking and baking of silicon alkoxide on these baked films Discloses a method for forming a hydrophilic film by the method (Patent Document 5). Also disclosed is a method for producing a hydrophilic coating (patent document 6) in which a composite solution comprising a titania-containing metal oxide sol and colloidal silica is applied and baked on a substrate, and disclosed as colloidal silica, colloidal alumina, silicic acid. A hydrophilic member (Patent Document 7) for applying and baking a composite of sodium, potassium silicate, and colloidal zirconia is also disclosed, but none is a member exhibiting super hydrophilicity.

特開平10−085610号公報Japanese Patent Laid-Open No. 10-085610 特開2003−176426号公報JP 2003-176426 A 特開平05−302173号公報JP 05-302173 A 特開平05−302174号公報Japanese Patent Laid-Open No. 05-302174 特開平05−305691号公報Japanese Patent Laid-Open No. 05-306991 特開平10−060665号公報JP-A-10-060665 特開2001−294849号公報JP 2001-294849 A

しかしながら、光触媒は、親水性発現の原理にラジカルを用いていることから、経時的に基材になっている樹脂を劣化させたり、光(紫外線)が当たらないと性能が発揮できないといった問題があった。また、有機金属化合物を用いて塗膜を形成する場合、有機金属化合物は価格が高い上に、揮発性や引火性が高い場合があり、工場での作業性に問題があり、さらに加水分解反応を製造工程のどこかの段階で導入しなければならないなど製造工程が複雑になって製造コストが高くなるという問題があった。   However, since photocatalysts use radicals for the principle of hydrophilic expression, there are problems such as deterioration of the resin that is the base material over time, and performance cannot be exhibited unless exposed to light (ultraviolet rays). It was. In addition, when forming a coating film using an organometallic compound, the organometallic compound is expensive and may have high volatility and flammability. There is a problem that the manufacturing process becomes complicated and the manufacturing cost becomes high, such as having to be introduced at some stage of the manufacturing process.

本発明者らは、これらの問題に鑑み、鋭意研究した結果、有機金属化合物から焼成により無機酸化物を得るのではなく、安定で安価なシリコーン系化合物を用いて焼成することでより簡単に、安全に親水性被膜を形成できることを見出した。さらに、シリコーン系化合物を焼成しただけでは超親水性を示さないが、ここに微粒子金属酸化物を導入することにより超親水性が発現することを見出した。そして、得られる部材は無機酸化物粒子を取り込んだシリカ被膜になるため、無機酸化物の種類、粒径や含有量を変更することにより、外観が透明〜不透明の範囲で任意に調整可能であり、かつ紫外線防止効果や塗膜の光散乱性などをコントロールできることを見出した。   As a result of diligent research in view of these problems, the inventors of the present invention do not obtain an inorganic oxide from an organometallic compound by firing, but more easily by firing using a stable and inexpensive silicone compound. It was found that a hydrophilic film can be formed safely. Furthermore, it has been found that superhydrophilicity is manifested by introducing a fine particle metal oxide here, although it does not show superhydrophilicity only by firing a silicone compound. And since the member obtained is a silica film incorporating inorganic oxide particles, the appearance can be arbitrarily adjusted in the range of transparent to opaque by changing the type, particle size and content of the inorganic oxide. In addition, the present inventors have found that it is possible to control the ultraviolet ray preventing effect and the light scattering property of the coating film.

本願に記載された発明は、以下の第1〜第9の発明(以下、特にことわりのない限り「本発明」と総称する)よりなるものである。すなわち、本願の第1の発明は、不揮発性シリコーン中に微粒子金属酸化物を分散させた分散液を基材上に塗布し、焼成して得られる超親水性を示すことを特徴とする部材にある。   The invention described in the present application includes the following first to ninth inventions (hereinafter collectively referred to as “the present invention” unless otherwise specified). That is, the first invention of the present application is a member characterized by exhibiting super hydrophilicity obtained by applying a dispersion liquid in which a fine particle metal oxide is dispersed in nonvolatile silicone onto a base material and baking it. is there.

本願の第2の発明は、不揮発性シリコーンがメチルハイドロジェンポリシロキサン、ジメチルポリシロキサンメチルハイドロジェンポリシロキサン共重合体又はシリコーン樹脂から選ばれることを特徴とする上記の部材にある。   According to a second aspect of the present invention, the nonvolatile silicone is selected from methyl hydrogen polysiloxane, dimethyl polysiloxane methyl hydrogen polysiloxane copolymer or silicone resin.

本願の第3の発明は、不揮発性シリコーン中に分散する微粒子金属酸化物の平均一次粒子径が1nm〜100μmの範囲にあることを特徴とする上記の部材にある。   According to a third aspect of the present invention, there is provided the above member, wherein the average primary particle diameter of the fine particle metal oxide dispersed in the nonvolatile silicone is in the range of 1 nm to 100 μm.

本願の第4の発明は、微粒子金属酸化物が、酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化セリウム、酸化タングステン、酸化コバルト又は酸化錫の少なくとも1種を含むことを特徴とする上記の部材にある。   In a fourth invention of the present application, the fine particle metal oxide contains at least one of titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide, iron oxide, cerium oxide, tungsten oxide, cobalt oxide, or tin oxide. There exists in said member characterized by these.

本願の第5の発明は、微粒子金属酸化物が、二酸化珪素、シリコーン化合物又はシラン化合物の少なくとも1種を含む表面処理剤で表面処理されていることを特徴とする上記の部材にある。   A fifth invention of the present application resides in the above member, wherein the fine particle metal oxide is surface-treated with a surface treatment agent containing at least one of silicon dioxide, a silicone compound or a silane compound.

本願の第6の発明は、分散液の焼成温度が300〜1200℃の範囲にあることを特徴とする上記の部材にある。   A sixth invention of the present application resides in the above member, wherein the firing temperature of the dispersion is in the range of 300 to 1200 ° C.

本願の第7の発明は、分散剤として、ポリエーテル変性オルガノポリシロキサン、アルキル・ポリエーテル変性オルガノポリシロキサン、ポリグリセリル変性オルガノポリシロキサン又はアルキル変性オルガノポリシロキサンの少なくとも1種から選ばれる変性オルガノポリシロキサンが配合されていることを特徴とする上記の部材にある。   The seventh invention of the present application is a modified organopolysiloxane selected from at least one of a polyether-modified organopolysiloxane, an alkyl / polyether-modified organopolysiloxane, a polyglyceryl-modified organopolysiloxane, or an alkyl-modified organopolysiloxane as a dispersant. Is contained in the member described above.

本願の第8の発明は、分散液を焼成して形成された被膜表面と精製水との接触角が10度以下であることを特徴とする上記の部材にある。   The eighth invention of the present application resides in the above-mentioned member, wherein the contact angle between the surface of the coating formed by firing the dispersion and purified water is 10 degrees or less.

本願の第9の発明は、基材がガラス、タイル、セラミックス、金属板又はレンガから選ばれる少なくとも1種からなることを特徴とする上記の部材にある。   A ninth invention of the present application resides in the above member, wherein the base material is made of at least one selected from glass, tile, ceramics, metal plate or brick.

以上説明するように、本発明では、不揮発性シリコーン中に微粒子金属酸化物を分散させた分散液を基材上に塗布し、焼成して得られる超親水性を示すことを特徴とする部材が得られる。そして、塗膜中に金属酸化物粒子が入っていることによって、超親水性が発現するが、これは焼成時にシリコーン樹脂が体積収縮、燃焼ガスの発生などの反応時に、塗膜表面に微細構造が形成され、超親水性が発現していると考えられる。また、本発明で得られる部材の使用可能な用途としては、水滴のつかない窓ガラス、曇りにくいガラス、汚れにくいタイル、外壁材などが挙げられる。   As described above, in the present invention, there is provided a member that exhibits super hydrophilicity obtained by applying a dispersion liquid in which fine particle metal oxides are dispersed in non-volatile silicone on a base material and baking the dispersion. can get. Superhydrophilicity is manifested by the presence of metal oxide particles in the coating film. This is because the silicone resin undergoes volumetric shrinkage during firing and the reaction on the coating film surface during reaction such as generation of combustion gases. It is considered that superhydrophilicity is expressed. In addition, examples of usable applications of the member obtained in the present invention include window glass that does not have water droplets, glass that is not easily fogged, tiles that are not easily soiled, and exterior wall materials.

本発明で用いる不揮発性シリコーンとは、常温常圧下で不揮発性のシリコーン化合物を示し、例えばメチルハイドロジェンポリシロキサン、ジメチルポリシロキサンメチルハイドロジェンポリシロキサン共重合体、シリコーン樹脂、ジメチルポリシロキサン、アルキル変性オルガノポリシロキサン、アミノ変性オルガノポリシロキサン、ジメチコノール又はジメチルポリシロキサンガムなどのシリコーン化合物が挙げられるが、特に反応性を有し、焼成時の昇温過程で基材上に強固な被膜を形成し、高温でも流動しにくい特性をもつメチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン共重合体又はシリコーン樹脂の少なくとも1種から選ばれることが好ましい。不揮発性シリコーンの粘度は特に限定されず、ガム状など高粘度であっても溶剤を用いて希釈するなどの方法にて使用することが可能である。   The non-volatile silicone used in the present invention refers to a non-volatile silicone compound at room temperature and normal pressure. For example, methyl hydrogen polysiloxane, dimethyl polysiloxane methyl hydrogen polysiloxane copolymer, silicone resin, dimethyl polysiloxane, alkyl-modified Silicone compounds such as organopolysiloxanes, amino-modified organopolysiloxanes, dimethiconols or dimethylpolysiloxane gums are mentioned, but they are particularly reactive and form a strong film on the substrate during the temperature rising process during firing, It is preferably selected from at least one of methyl hydrogen polysiloxane, dimethyl polysiloxane, methyl hydrogen polysiloxane copolymer or silicone resin, which has the property of hardly flowing at high temperatures. The viscosity of the non-volatile silicone is not particularly limited, and it can be used by a method of diluting with a solvent even if it has a high viscosity such as gum.

不揮発性シリコーンの粘度調整に用いる溶媒としては、デカメチルシクロペンタシロキサン、メチルトリメチコン、テトラキストリメチルシロキシシラン、トルエン、キシレン又は軽質イソパラフィンの少なくとも1種から選ばれることが好ましく、特に作業上安全性が高い1気圧下での沸点が、100〜260℃の範囲にある溶媒を用いることが好ましい。この範囲であると、機械的粉砕時の作業上の安全性が高いというメリットがある。これらの例としては、デカメチルシクロペンタシロキサン(沸点210℃)、メチルトリメチコン(沸点190℃)又はテトラキストリメチルシロキシシラン(沸点222℃)が挙げられる。   The solvent used for adjusting the viscosity of the non-volatile silicone is preferably selected from at least one of decamethylcyclopentasiloxane, methyltrimethicone, tetrakistrimethylsiloxysilane, toluene, xylene or light isoparaffin. It is preferable to use a solvent having a high boiling point under 1 atm of 100 to 260 ° C. Within this range, there is a merit that the safety in operation at the time of mechanical grinding is high. Examples of these include decamethylcyclopentasiloxane (boiling point 210 ° C.), methyltrimethicone (boiling point 190 ° C.) or tetrakistrimethylsiloxysilane (boiling point 222 ° C.).

本発明で用いる微粒子金属酸化物には、平均一次粒子径が1nm〜100μmの範囲にある金属酸化物を用いることができ、その形状としては、球状、略球状、棒状、紡錘状、板状、不定形状などいずれの形状であっても差し支えない。微粒子金属酸化物の例としては、例えば酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化セリウム、酸化タングステン、酸化コバルト又は酸化錫の少なくとも1種を含むことが好ましく、特に酸化チタン、酸化亜鉛、二酸化珪素、酸化アルミニウム、酸化ジルコニウム又は酸化セリウムの少なくとも1種を含むことが好ましい。これらの金属酸化物は安全であり、焼成時の安定性に優れる特性がある。   As the fine metal oxide used in the present invention, a metal oxide having an average primary particle diameter in the range of 1 nm to 100 μm can be used, and the shape thereof is spherical, substantially spherical, rod-shaped, spindle-shaped, plate-shaped, Any shape such as indefinite shape is acceptable. Examples of the particulate metal oxide preferably include at least one of, for example, titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide, iron oxide, cerium oxide, tungsten oxide, cobalt oxide, or tin oxide. It is preferable to contain at least one of titanium oxide, zinc oxide, silicon dioxide, aluminum oxide, zirconium oxide or cerium oxide. These metal oxides are safe and have excellent properties during firing.

また、本発明では、これらの微粒子金属酸化物は二酸化珪素、シリコーン化合物又はシラン化合物の少なくとも1種を含む表面処理剤で表面処理されていることが好ましい。例えば、シラン化合物の1種であるオクチルシラン処理された微粒子金属酸化物や、シリコーン化合物の1種であるメチルハイドロジェンポリシロキサン処理された微粒子金属酸化物では、分散時の媒体となる不揮発性シリコーンとの馴染みがよく、安定した分散液が形成できるメリットがある。また、微粒子金属酸化物に光触媒活性など活性があった場合、経時で塗膜が劣化する恐れがあるが、二酸化珪素、シリコーン化合物又はシラン化合物で処理されていると、その光触媒活性は大幅に低下し、塗膜の長期の安定性に良い影響を与える特徴がある。   In the present invention, these fine particle metal oxides are preferably surface-treated with a surface treatment agent containing at least one of silicon dioxide, a silicone compound or a silane compound. For example, in the case of octylsilane-treated fine particle metal oxide which is one kind of silane compound and methylhydrogenpolysiloxane-treated fine particle metal oxide which is one kind of silicone compound, nonvolatile silicone which becomes a medium at the time of dispersion And has the merit of forming a stable dispersion. Also, if the particulate metal oxide has an activity such as photocatalytic activity, the coating film may deteriorate over time. However, if it is treated with silicon dioxide, a silicone compound or a silane compound, the photocatalytic activity significantly decreases. However, there is a feature that positively affects the long-term stability of the coating film.

本発明では、不揮発性シリコーン中に微粒子金属酸化物を分散させた分散液を基材上に塗布するが、不揮発性シリコーン中に微粒子金属酸化物を分散させる方法としては、微粒子金属酸化物の表面を表面処理剤で表面処理して分散安定性を高めたものを用いる方法、界面活性剤を用いて微粒子金属酸化物の安定性を高める方法など、機械的な分散力を用いる方法を組み合わせて使用することが好ましい。   In the present invention, a dispersion in which fine particle metal oxide is dispersed in non-volatile silicone is applied on a substrate. As a method of dispersing fine particle metal oxide in non-volatile silicone, the surface of fine particle metal oxide is used. Used in combination with a method that uses mechanical dispersion, such as a method that uses a surface treatment agent to improve dispersion stability by using a surface treatment agent, or a method that uses a surfactant to increase the stability of particulate metal oxides. It is preferable to do.

ここで用いる界面活性剤としては、焼成後にシリカに転換できる特性を有するシリコーン系の界面活性剤が好ましく、例えば、ポリエーテル変性オルガノポリシロキサン、アルキル・ポリエーテル変性オルガノポリシロキサン、ポリグリセリル変性オルガノポリシロキサン又はアルキル変性オルガノポリシロキサンの少なくとも1種から選ばれる変性オルガノポリシロキサンを用いることが好ましい。   The surfactant used herein is preferably a silicone-based surfactant having a characteristic that it can be converted to silica after firing. For example, polyether-modified organopolysiloxane, alkyl-polyether-modified organopolysiloxane, polyglyceryl-modified organopolysiloxane Alternatively, it is preferable to use a modified organopolysiloxane selected from at least one of alkyl-modified organopolysiloxanes.

また、機械的に分散する方法としては、ディスパーやアトライターやホモミキサーなどを用いて分散させる方法、スラリーを高圧噴射する方法、ペイントシェーカー、サンドミル又はペブルミルなどの媒体型粉砕機、さらにはロールミルなどを用いる方法などが挙げられる。ディスパーやアトライターやホモミキサーなどを用いて分散させる方法は、安価で作業が簡単なメリットがあり、スラリーを高圧噴射する方法、ペイントシェーカー、サンドミル又はペブルミルなどの媒体型粉砕機、さらにはロールミルなどを用いる方法などは高分散が可能であり、塗膜の透明性や外観を重視する場合には好ましい方法である。   Further, as a mechanical dispersion method, a dispersion method using a disper, an attritor, a homomixer, or the like, a method of spraying a slurry at high pressure, a medium type pulverizer such as a paint shaker, a sand mill or a pebble mill, a roll mill, etc. And the like. Dispersing using a disper, attritor, homomixer, etc. has the advantage of being inexpensive and easy to work, a method of spraying slurry at high pressure, a medium type crusher such as a paint shaker, sand mill or pebble mill, roll mill, etc. The method of using can be highly dispersed, and is a preferable method when importance is attached to the transparency and appearance of the coating film.

本発明の分散液は、その組成100重量部中に微粒子金属酸化物を1〜60重量部、不揮発性シリコーンを1〜99重量部の範囲で配合していることが好ましく、特に微粒子金属酸化物:不揮発性シリコーンの重量比が1:99〜60:40の範囲にあることが好ましい。この範囲にあれば、微粒子金属酸化物が不揮発性シリコーンから転化したシリカに固定されやすい。   The dispersion of the present invention preferably contains 1 to 60 parts by weight of fine particle metal oxide and 1 to 99 parts by weight of non-volatile silicone in 100 parts by weight of the composition, particularly fine particle metal oxide. The weight ratio of non-volatile silicone is preferably in the range of 1:99 to 60:40. If it exists in this range, a particulate metal oxide will be easily fixed to the silica converted from the non-volatile silicone.

本発明で用いる塗布方法としては、アプリケーター又はロールコーターなどを用いて均一な厚みで塗布しても刷毛などを用いて塗布しても、また分散液中に基材を浸漬するなどいずれの方法を用いても構わない。
但し、厚く塗ると、塗膜の強度にムラがでたり、強度が弱くなる問題があり、可能であれば焼成後の塗膜の厚さが500μm以下の厚さになるように塗布するのが好ましい。
As the coating method used in the present invention, any method such as coating with a uniform thickness using an applicator or a roll coater, coating with a brush or the like, or immersing the substrate in a dispersion liquid is used. You may use.
However, when thickly applied, there is a problem that the strength of the coating film becomes uneven or the strength is weakened. If possible, the coating film after baking should be applied to a thickness of 500 μm or less. preferable.

本発明では、上記のように分散液を基材上に塗布した部材を焼成する。本発明で用いる焼成条件としては、酸素含有雰囲気中で焼成温度が300〜1200℃の範囲にあること、さらに好ましくは、300〜600℃の範囲が好ましい。1200℃を越えると、基材がゆがんだり、割れたり、融けたりする問題があるため、可能ならば600℃程以下することが好ましい。但し、基材の耐熱性が充分で塗膜表面の強度が必要な場合は、それ以上の温度で融着させてもよい。   In this invention, the member which apply | coated the dispersion liquid on the base material as mentioned above is baked. As the firing conditions used in the present invention, the firing temperature in the oxygen-containing atmosphere is in the range of 300 to 1200 ° C, more preferably in the range of 300 to 600 ° C. If the temperature exceeds 1200 ° C., there is a problem that the base material is distorted, cracked or melted. However, when the heat resistance of the substrate is sufficient and the strength of the coating film surface is required, it may be fused at a temperature higher than that.

また、焼成時間としては、工程管理上適切な0.5〜48時間の範囲で設定し、焼成の温度は多段階的に昇温させても構わないし、ゆっくりと昇温させても構わない。焼成時の炉内温度が100〜250℃の範囲に30分以上置かれていると、この段階で不揮発性シリコーンとして反応性を有するシリコーンを用いていた場合では反応が進み、緻密な塗膜を形成するので好ましい。また、急冷すると、基材が割れるなどの問題があるため、徐冷することが好ましい。   Further, the firing time is set in a range of 0.5 to 48 hours suitable for process control, and the firing temperature may be raised in multiple steps or may be raised slowly. If the furnace temperature at the time of firing is placed in the range of 100 to 250 ° C for 30 minutes or more, the reaction proceeds if a reactive silicone is used as a non-volatile silicone at this stage, and a dense coating film is formed. Since it forms, it is preferable. Moreover, since there are problems such as cracking of the base material when rapidly cooled, it is preferable to cool slowly.

本発明に用いる基材としては、例えばガラス、タイル、セラミックス、金属板、レンガなどが挙げられるが、特にガラス、タイル又はセラミックスから選ばれる少なくとも1種からなる基材が好ましい。   Examples of the base material used in the present invention include glass, tile, ceramics, metal plate, brick, and the like, and a base material composed of at least one selected from glass, tile, or ceramics is particularly preferable.

本発明では、分散液を塗布・焼成して得られた部材が超親水性を示す必要がある。本発明で言う超親水性とは、部材被膜表面と精製水との静的接触角が10度以下であることを示し、さらに好ましくは6度以下である。   In the present invention, it is necessary that the member obtained by applying and baking the dispersion exhibits super hydrophilicity. The term “superhydrophilic” as used in the present invention means that the static contact angle between the member coating surface and purified water is 10 degrees or less, and more preferably 6 degrees or less.

次に、本発明の超親水性のメカニズムの予測について示す。通常、平滑な基材にシリカ粒子を塗布し、シリカ粒子表面と精製水との接触角を測定すると、超親水性を示す場合がある。この場合、シリカ粒子は基材上に固定されていないので、風が吹けば飛び去ってしまうため工業部材としては使用できないので、次にシリコーン樹脂を基材上に塗布した後、焼成し、基材上にシリカの被膜を形成してみると、親水性にはなるものの、超親水性は示さない。   Next, prediction of the superhydrophilic mechanism of the present invention will be shown. Usually, when silica particles are coated on a smooth substrate and the contact angle between the surface of the silica particles and purified water is measured, super hydrophilicity may be exhibited. In this case, since the silica particles are not fixed on the base material, they can be used as an industrial member because they fly away if the wind blows. When a silica film is formed on the material, it becomes hydrophilic but does not show super hydrophilicity.

さらに、ガラス板の表面はシリカと類似構造を有し、シラノールで覆われているが、超親水性は示さない。このことから、同じシリカであっても挙動に違いがあることがわかる。このことからシリカ粒子を塗布した場合は、水の毛細管力を利用して超親水性が発現している可能性が高い。   Furthermore, the surface of the glass plate has a structure similar to silica and is covered with silanol, but does not exhibit super hydrophilicity. This shows that there is a difference in behavior even with the same silica. For this reason, when silica particles are applied, it is highly possible that superhydrophilicity is manifested using the capillary force of water.

本発明の部材について見てみると、この塗膜は上記シリコーン樹脂を塗布・焼成した塗膜の中に金属酸化物粒子が入っているだけの違いであるが、超親水性が発現する。焼成時にシリコーン樹脂は体積収縮、燃焼ガスの発生など多くの反応を起こすが、この際に塗膜表面に微細構造が形成され、毛管力がこの構造と何らかの相互作用をすることで、超親水性が発現している可能性が考えられる。   Looking at the members of the present invention, this coating film is different in that the metal oxide particles are contained in the coating film obtained by applying and baking the silicone resin, but it exhibits super hydrophilicity. Silicone resin undergoes many reactions such as volume shrinkage and generation of combustion gas during firing. At this time, a fine structure is formed on the surface of the coating film, and the capillary force interacts with this structure in some way, making it super hydrophilic. It is possible that is expressed.

本発明で得られる部材の使用可能な用途としては、水滴のつかない窓ガラス、曇りにくいガラス、汚れにくいタイル又は外壁材などが挙げられる。   Applications that can be used for the member obtained in the present invention include window glass that does not have water droplets, glass that resists fogging, tiles or exterior wall materials that resist dirt, and the like.

以下、実施例及び比較例によって本発明を詳細に説明する。
また、実施例及び比較例で用いた評価方法を以下に示す。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples.
Moreover, the evaluation method used by the Example and the comparative example is shown below.

接触角の測定方法
協和界面科学社製DropMaster500型接触角測定装置を用いて試料の測定を行った。また水としては蒸留水を使用した。測定時の水滴量は1.5μLとし、接触角の解析には同社製解析ソフトウェアFAMASを使用した。また、測定に用いた試料を再度乾燥して接触角の測定を繰り返し、水との接触の繰り返しにより超親水性が維持されるか否かを確認した。また、塗工はドクターブレードを用い、塗工厚0.013mmで実施した。
Contact angle measurement method The sample was measured using a DropMaster500 contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. Distilled water was used as water. The amount of water droplets during measurement was 1.5 μL, and analysis software FAMAS manufactured by the same company was used for contact angle analysis. Moreover, the sample used for the measurement was dried again, and the measurement of the contact angle was repeated, and it was confirmed whether or not the superhydrophilicity was maintained by repeated contact with water. The coating was performed using a doctor blade with a coating thickness of 0.013 mm.

〔実施例1〕
平均一次粒子径35nmのオクチルシリル化表面処理微粒子酸化チタンを35重量%の濃度でデカメチルシクロペンタンシロキサン(揮発性シリコーン)中に高分散させたスラリーを24重量部と、ジメチルポリシロキサン(信越化学工業社KF-96A 20cs、不揮発性シリコーン)を10重量部と、デカメチルシクロペンタシロキサンを66重量部とを混合したスラリーをガラス板に塗工し、50℃の送風下に乾燥させた後、500℃にて1時間焼成した。焼成前の接触角は、104度であったものが、焼成後は5度未満となり、超親水性を示した。また、本部材は接触角測定を繰り返し実施し、塗膜強度を確認する試験にも安定に超親水性を再現できた。
[Example 1]
24 parts by weight of a slurry of highly dispersed decylmethylcyclopentanesiloxane (volatile silicone) in a concentration of 35% by weight of octylsilylated surface-treated fine particle titanium oxide having an average primary particle size of 35 nm and dimethylpolysiloxane (Shin-Etsu Chemical) After applying a slurry obtained by mixing 10 parts by weight of KF-96A 20cs, non-volatile silicone) and 66 parts by weight of decamethylcyclopentasiloxane on a glass plate, the slurry was dried under an air flow of 50 ° C. Baked at 500 ° C. for 1 hour. The contact angle before firing was 104 degrees, but after firing was less than 5 degrees, indicating super hydrophilicity. Moreover, this member repeatedly performed contact angle measurement, and was able to reproduce super hydrophilicity stably also in the test which confirms coating-film strength.

〔実施例2〕
平均一次粒子径10nmのオクチルシリル化表面処理微粒子酸化亜鉛を35重量%の濃度でデカメチルシクロペンタシロキサン中に高分散させたスラリーを24重量部と、メチルハイドロジェンポリシロキサン(信越化学工業社製KF-99P)を10重量部と、デカメチルシクロペンタシロキサンを66重量部とを混合したスラリーをガラス板上に塗工し、50℃の送風下に乾燥させた後、500℃にて1時間焼成した。焼成前の接触角は89度であったが、焼成後は6度となり、超親水性を示した。また、本部材は接触角測定を繰り返し実施し、塗膜強度を確認する試験にも安定に超親水性を再現し、確認できた。
[Example 2]
24 parts by weight of a slurry of highly dispersed octylsilylated surface-treated fine particle zinc oxide having an average primary particle size of 10 nm in decamethylcyclopentasiloxane at a concentration of 35% by weight, and methylhydrogenpolysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.) A slurry in which 10 parts by weight of KF-99P) and 66 parts by weight of decamethylcyclopentasiloxane were mixed was coated on a glass plate, dried under an air flow of 50 ° C, and then at 500 ° C for 1 hour. Baked. The contact angle before firing was 89 degrees, but after firing it was 6 degrees, indicating super hydrophilicity. Moreover, this member repeatedly performed contact angle measurement, and was able to reproduce and confirm super hydrophilicity stably also in the test which confirms coating-film strength.

〔実施例3〕
平均一次粒子径30nmの未処理シリカを24重量部とデカメチルシクロペンタシロキサン66重量部とメチルハイドロジェンポリシロキサン(信越化学工業社製KF-9901)10重量部を混合したペーストをガラス板上に塗工し、50℃の送風下に乾燥させた後、700℃にて1時間焼成した。焼成前の接触角は17度であったが焼成後は5度未満となり、超親水性を示した。また、本部材は接触角測定を繰り返し実施し、塗膜強度を確認する試験にも安定に超親水性を示した。
Example 3
A paste containing 24 parts by weight of untreated silica with an average primary particle size of 30 nm, 66 parts by weight of decamethylcyclopentasiloxane, and 10 parts by weight of methyl hydrogen polysiloxane (KF-9901 manufactured by Shin-Etsu Chemical Co., Ltd.) on a glass plate After coating and drying under an air flow of 50 ° C., baking was performed at 700 ° C. for 1 hour. The contact angle before firing was 17 degrees, but after firing was less than 5 degrees, indicating super hydrophilicity. Moreover, this member repeatedly performed contact angle measurement, and also showed super hydrophilicity stably also in the test which confirms coating-film strength.

〔実施例4〕
造粒した二次粒子径1μmのシリカをシリコーン処理したものを24重量部と、トリメチルシロキシケイ酸(シリコーン樹脂)の50重量%デカメチルシクロペンタシロキサン液20重量部と、デカメチルシクロペンタシロキサン56重量部を混合したスラリーを50℃の送風下に乾燥させた後、500℃にて1時間焼成した。焼成前の接触角は109度であったが、焼成後は5度未満となり、超親水性を示した。また、本部材は接触角測定を繰り返し実施し、塗膜強度を確認する試験においても安定に超親水性を確認できた。
Example 4
24 parts by weight of granulated silica with a secondary particle size of 1 μm, 24 parts by weight, 20 parts by weight of 50% by weight trimethylsiloxysilicic acid (silicone resin) decamethylcyclopentasiloxane, and decamethylcyclopentasiloxane 56 The slurry mixed with parts by weight was dried under blowing at 50 ° C. and then fired at 500 ° C. for 1 hour. The contact angle before firing was 109 degrees, but after firing, it was less than 5 degrees, indicating super hydrophilicity. Moreover, this member repeatedly performed contact angle measurement, and was able to confirm super hydrophilicity stably also in the test which confirms coating-film intensity | strength.

〔比較例1〕
微粒子金属酸化物を配合せず、トリメチルシロキシケイ酸(シリコーン樹脂)の50重量%デカメチルシクロペンタシロキサン液を直接ガラスに塗工し、50℃の送風下に乾燥させた後、500℃にて1時間焼成した。焼成前の接触角は108度あり、焼成後の接触角は20度であり、親水性ではあるものの、超親水性は示さなかった。
[Comparative Example 1]
Applying 50% by weight of decamethylcyclopentasiloxane solution of trimethylsiloxysilicic acid (silicone resin) directly to glass without blending fine particle metal oxide, and drying under blowing at 50 ° C, then at 500 ° C Baked for 1 hour. The contact angle before firing was 108 degrees, the contact angle after firing was 20 degrees, and although it was hydrophilic, it did not show super hydrophilicity.

〔比較例2〕
平均一次粒子径30nmの未処理シリカを直接ガラスに塗布し、接触角を測定したところ、接触角は5度未満となり、超親水性を示したが、風が吹いただけで粒子は散逸し、親水性部材としては利用できなかった。
[Comparative Example 2]
When untreated silica with an average primary particle size of 30 nm was applied directly to glass and the contact angle was measured, the contact angle was less than 5 degrees, indicating super hydrophilicity. It could not be used as a sex member.

〔比較例3〕
平均一次粒子径30nmの未処理シリカを24重量部とデカメチルシクロペンタシロキサン66重量部とパラメトキシ桂皮酸オクチル(油剤)10重量部を混合したペーストをガラス板上に塗工し、50℃の送風下に乾燥させた後、500℃にて1時間焼成した。焼成前の接触角は15度であったが、焼成後は5度未満となり、超親水性を示した。しかしながら、本部材は指を接触した程度で塗膜が破壊され強度に問題があった。
[Comparative Example 3]
A paste prepared by mixing 24 parts by weight of untreated silica with an average primary particle size of 30 nm, 66 parts by weight of decamethylcyclopentasiloxane, and 10 parts by weight of octyl paramethoxycinnamate (oil) on a glass plate was blown at 50 ° C. After drying down, it was fired at 500 ° C. for 1 hour. Although the contact angle before firing was 15 degrees, it became less than 5 degrees after firing, indicating super hydrophilicity. However, this member had a problem in strength because the coating film was broken by the degree of contact with the finger.

Claims (4)

メチルハイドロジェンポリシロキサン、ジメチルポリシロキサンメチルハイドロジェンポリシロキサン共重合体又はシリコーン樹脂から選ばれた1種以上の不揮発性シリコーン中に、二酸化珪素、シリコーン化合物又はシラン化合物の少なくとも1種を含む表面処理剤で表面処理されている平均一次粒子径が1nm〜100μmの範囲にある、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化セリウム、酸化タングステン、酸化コバルト、酸化錫、及び、シリコーン化合物又はシラン化合物の少なくとも1種を含む表面処理剤で表面処理されている平均一次粒子径が1nm〜100μmの範囲にある、二酸化珪素、の中から選択された少なくとも1種を含む微粒子金属酸化物を分散させた分散液を基材上に塗布し、焼成して得られる被膜表面と精製水との接触角が10度以下であることを特徴とする部材。 Surface treatment containing at least one of silicon dioxide, silicone compound or silane compound in one or more kinds of non-volatile silicone selected from methyl hydrogen polysiloxane, dimethyl polysiloxane methyl hydrogen polysiloxane copolymer or silicone resin Titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, iron oxide, cerium oxide, tungsten oxide, cobalt oxide, tin oxide , and silicone, whose average primary particle size is surface-treated with an agent is in the range of 1 nm to 100 μm Particulate metal oxide containing at least one selected from silicon dioxide having an average primary particle diameter in the range of 1 nm to 100 μm which is surface-treated with a surface treatment agent containing at least one of a compound or a silane compound It is obtained by applying a dispersion with dispersed on a substrate and baking it. A member having a contact angle between the coating surface and purified water of 10 degrees or less. 焼成温度が、300〜1200℃の範囲にあることを特徴とする請求項1記載の部材。   The member according to claim 1, wherein the firing temperature is in the range of 300 to 1200 ° C. 分散剤として、ポリエーテル変性オルガノポリシロキサン、アルキル・ポリエーテル変性オルガノポリシロキサン、ポリグリセリル変性オルガノポリシロキサン又はアルキル変性オルガノポリシロキサンの少なくとも1種から選ばれた変性オルガノポリシロキサンが配合されていることを特徴とする請求項1又は2記載の部材。   As a dispersant, a modified organopolysiloxane selected from at least one of polyether-modified organopolysiloxane, alkyl-polyether-modified organopolysiloxane, polyglyceryl-modified organopolysiloxane, or alkyl-modified organopolysiloxane is blended. The member according to claim 1 or 2, characterized in that: 基材が、ガラス、タイル、セラミックス、金属板又はレンガから選ばれる少なくとも1種からなることを特徴とする請求項1〜3のいずれか記載の部材。   The member according to any one of claims 1 to 3, wherein the substrate is made of at least one selected from glass, tile, ceramics, metal plate or brick.
JP2005020423A 2005-01-27 2005-01-27 Super hydrophilic member Expired - Fee Related JP4788871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020423A JP4788871B2 (en) 2005-01-27 2005-01-27 Super hydrophilic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020423A JP4788871B2 (en) 2005-01-27 2005-01-27 Super hydrophilic member

Publications (2)

Publication Number Publication Date
JP2006205531A JP2006205531A (en) 2006-08-10
JP4788871B2 true JP4788871B2 (en) 2011-10-05

Family

ID=36962877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020423A Expired - Fee Related JP4788871B2 (en) 2005-01-27 2005-01-27 Super hydrophilic member

Country Status (1)

Country Link
JP (1) JP4788871B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110236A1 (en) * 2008-03-04 2009-09-11 株式会社 東芝 Hydrophilic member and hydrophilic articles made by using the same
EP2380860A1 (en) 2010-04-23 2011-10-26 Rockwood Italia SpA Polysiloxane-coated iron oxide pigments

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145536A (en) * 1979-04-28 1980-11-13 Sharp Corp Hydrophillic coating having oxidation catalytic action
JPS6344445A (en) * 1986-07-29 1988-02-25 養命酒製造株式会社 Method of treating mouth section of vessel
JPH11100234A (en) * 1996-12-09 1999-04-13 Nippon Sheet Glass Co Ltd Defogging article and its production
JP2002338245A (en) * 2001-05-16 2002-11-27 Tayca Corp Dispersion with high concentration of particulate titanium oxide
JP4256662B2 (en) * 2001-11-08 2009-04-22 日本板硝子株式会社 Film-coated article and method for producing the same
JP4733917B2 (en) * 2002-10-22 2011-07-27 花王株式会社 Cosmetics
JP4635217B2 (en) * 2003-09-17 2011-02-23 学校法人慶應義塾 Surface treatment agent and material, and surface treatment method

Also Published As

Publication number Publication date
JP2006205531A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
ES2711899T3 (en) Alkalinity-resistant coating on light metal surfaces
KR100706928B1 (en) Method for preparation of hydrophilic, anti-fogging, and anti-staining thin film and method for preparation of mirror having the film
JP2005290369A (en) Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP3796403B2 (en) Photocatalytic oxide-containing composition, thin film and composite
KR101965022B1 (en) Glass article provided with photocatalyst film
WO2011090035A1 (en) Water-repellent base and process for producing same
JP5677144B2 (en) Water repellent member, manufacturing method thereof, and air conditioner outdoor unit
JP2009067998A (en) Paint for heat radiation film and method for forming heat radiation film
JP2008040171A (en) Optical element with antireflection film having self-cleaning effect and method for manufacturing the same
JP4048912B2 (en) Surface antifouling composite resin film, surface antifouling article, decorative board
JP2002080830A (en) Hydrophilic member and its production method
JP4738367B2 (en) Water-based organic / inorganic composite composition
JP5368720B2 (en) Photocatalyst coating film and photocatalyst composition
JP4778714B2 (en) Coating solutions and their use
JP4788871B2 (en) Super hydrophilic member
JP2008119924A (en) Article having water-repellent surface
JP2007277072A (en) Oxide microparticle dispersion and method for producing the same
JP7376239B2 (en) Hydrophilic members, lenses using the same, in-vehicle cameras, resin films, and windows
JP4572150B2 (en) Method for producing water-repellent glass material
JP2005081292A (en) Production method of substrate bearing coating having fine recessed part and liquid composition to be used therefor
JP4501562B2 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR PRODUCING THE SAME
JP4725072B2 (en) Coating material composition and painted product
JP2013119511A (en) Coated member
JP2009161579A (en) Coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100708

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110225

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees