JP4780781B2 - Seismic reinforcement method for existing concrete pier - Google Patents

Seismic reinforcement method for existing concrete pier Download PDF

Info

Publication number
JP4780781B2
JP4780781B2 JP2006335446A JP2006335446A JP4780781B2 JP 4780781 B2 JP4780781 B2 JP 4780781B2 JP 2006335446 A JP2006335446 A JP 2006335446A JP 2006335446 A JP2006335446 A JP 2006335446A JP 4780781 B2 JP4780781 B2 JP 4780781B2
Authority
JP
Japan
Prior art keywords
hole
reinforcing member
concrete pier
seismic reinforcement
existing concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335446A
Other languages
Japanese (ja)
Other versions
JP2007239440A (en
Inventor
石橋忠良
菅野貴浩
松尾伸二
幸田和明
鈴木裕隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2006335446A priority Critical patent/JP4780781B2/en
Publication of JP2007239440A publication Critical patent/JP2007239440A/en
Application granted granted Critical
Publication of JP4780781B2 publication Critical patent/JP4780781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既設コンクリート橋脚の耐震補強工法に関するものである。   The present invention relates to a seismic reinforcement method for existing concrete piers.

近年、大地震により高架橋のコンクリート橋脚が甚大な被害を受ける事案が多数発生し、既設のコンクリート橋脚の耐震性向上の必要性が求められている。従来の既設のコンクリート橋脚の耐震補強工法として、特開平9−71908号には、既設のコンクリート橋脚の周囲土壌をフーチングまで掘削し、橋脚躯体の周壁を鋼板からなる補強筒体で囲繞し、橋脚躯体の周壁と補強筒体との間の環状空間に複合ポリマーエマルジョンを主剤とする接着剤を充填し、橋脚躯体と補強筒体を一体化する既設コンクリート橋脚の耐震補強工法が開示されている。   In recent years, there have been many incidents of severe damage to viaduct concrete piers due to large earthquakes, and the need to improve the earthquake resistance of existing concrete piers has been demanded. As a conventional seismic reinforcement method for existing concrete piers, Japanese Patent Application Laid-Open No. Hei 9-71908 excavates the surrounding soil of the existing concrete piers to footings, surrounds the peripheral walls of the pier frame with a steel plate made of steel plate, A seismic reinforcement method for an existing concrete pier is disclosed in which an annular space between a peripheral wall of a frame and a reinforcing cylinder is filled with an adhesive mainly composed of a composite polymer emulsion, and the pier frame and the reinforcing cylinder are integrated.

また、特開2001−107319号公報には、既設のコンクリート橋脚の周囲土壌をフーチングまで掘削し、橋脚躯体の外周に鉄筋コンクリートからなる耐震補強部を巻き立て、耐震補強部と橋脚躯体とを複数のアンカーボルトで連結して一体化する既設コンクリート橋脚の耐震補強工法が開示されている。
特開平9−71908号公報 特開2001−107319号公報
Japanese Patent Laid-Open No. 2001-107319 discloses excavating soil around an existing concrete pier to footing, winding up an earthquake-resistant reinforcing portion made of reinforced concrete on the outer periphery of the pier housing, and installing a plurality of seismic reinforcing portions and pier housings. A seismic reinforcement method for an existing concrete pier that is integrated by anchor bolts is disclosed.
JP-A-9-71908 JP 2001-107319 A

しかし、従来の既設コンクリート橋脚の耐震補強工法は、橋脚躯体の周囲土壌をフーチングまで掘削しなければならず、掘削の為、重機が必要であり、さらに、掘削された環状空間の保持のためや、橋脚が水中から伸びている場合は、橋脚の耐震補強箇所をドライな環境にするため、鋼矢板を連結した止水壁を形成する必要があり、施工期間が長く施工コストが高価になるという問題がある。特に、既設のコンクリート橋脚が河川の堤防に構築されている場合、堤防を掘削するためには、工事期間中の河川の増水対策として既存の堤防の外側に仮堤防を構築しなければならず、施工期間の長期化と莫大な施工費が必要となる。   However, the conventional seismic reinforcement method for existing concrete piers requires excavation of the soil surrounding the pier frame to footing, which requires heavy machinery, and for maintaining the excavated annular space. When the pier is extended from the water, it is necessary to form a water stop wall connected with steel sheet piles to make the seismic reinforcement part of the pier dry, and the construction period is long and the construction cost is expensive There's a problem. In particular, when existing concrete piers are built on river dikes, in order to excavate the dike, a temporary dike must be built outside the existing dike as a measure to increase river water during the construction period. A long construction period and enormous construction costs are required.

本発明は、前記課題を解決する、橋脚周囲土壌を深くまで掘削することなく、止水壁を形成する必要がない、施工期間を短縮でき、施工費が低コストとなる既設コンクリート橋脚の耐震補強工法を提供することを目的とする。   The present invention solves the above-mentioned problems, without excavating the soil around the pier deeply, without needing to form a water blocking wall, shortening the construction period, and reducing the construction cost, making the earthquake-proof reinforcement of the existing concrete pier The purpose is to provide a method of construction.

課題を解決するために、既設コンクリート橋脚の耐震補強工法において、フーチング、コンクリート橋脚躯体及び上部桁からなる既設コンクリート橋脚の耐震補強工法において、前記コンクリート橋脚躯体の地上部近傍又は水上部の外周部の位置から前記コンクリート橋脚躯体内に斜め下方に前記コンクリート橋脚躯体を貫通することなく下端部が前記コンクリート橋脚躯体下部まで伸びる孔を形成し、前記孔異形鉄筋、PC鋼線、PC鋼より線、異形PC鋼線、PC鋼棒のいずれかからなる補強部材を挿入し固化材により一体化し、前記補強部材の先端外周に補強部材の径より径の大きい突起物を固定することを特徴とする。 In order to solve the problem, in the seismic reinforcement method for existing concrete piers, in the seismic reinforcement method for existing concrete piers composed of footings, concrete pier frames and upper girders , lower end without penetrating the concrete pier skeleton obliquely downward to the concrete pier skeleton body has a hole extending to the bottom of the concrete pier building frame from the position, the line from the deformed bar, PC steel wire, PC steel into the hole A reinforcing member made of either a deformed PC steel wire or a PC steel rod is inserted and integrated with a solidifying material, and a protrusion having a diameter larger than the diameter of the reinforcing member is fixed to the outer periphery of the tip of the reinforcing member. To do.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔の中に未固化の固化材を注入した後、補強部材を挿入し一体化することを特徴とする。 The seismic reinforcement method for an existing concrete pier according to the present invention is characterized in that after injecting an unsolidified solidified material into the hole, a reinforcing member is inserted and integrated.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔の中に補強材を挿入した後、未固化の固化材を注入し固化させ一体化することを特徴とする。 The seismic reinforcement method for an existing concrete pier according to the present invention is characterized in that after a reinforcing material is inserted into the hole, an unsolidified solidifying material is injected and solidified to be integrated.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔補強部材を挿入し固化材により一体化した後、地上部又は水上部の補強部材の端部を定着材により橋脚に固定することを特徴とする。 Also, seismic Retrofit for existing concrete piers of the present invention, after integrated by inserting solidified material the reinforcing member into the hole, also ground portion for fixing a pier by the fixing member end portion of the reinforcing member of the water part It is characterized by that.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔の中に一本又は複数の補強部材を束ねたものを挿入することを特徴とする。 The seismic reinforcement method for an existing concrete pier according to the present invention is characterized in that a bundle of one or a plurality of reinforcing members is inserted into the hole.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔中に複数の補強部材を挿入する場合、前記補強部材の先端部外周に固定される突起物の位置を前記孔の軸方向に千鳥状にずらして配置することを特徴とする。 Further, according to the seismic reinforcement method for an existing concrete pier according to the present invention, when a plurality of reinforcing members are inserted into the holes, the positions of the protrusions fixed to the outer periphery of the tip of the reinforcing member are staggered in the axial direction of the holes. It is characterized by being shifted in a shape.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔に補強部材を挿入し固化材が固化後、補強部材に引張力を付加し地上部又は水上部の補強部材の端部を定着材により前記コンクリート橋脚躯体に固定することを特徴とする。 Further, the seismic reinforcement method for an existing concrete pier according to the present invention is such that after the reinforcing member is inserted into the hole and the solidified material is solidified, a tensile force is applied to the reinforcing member to fix the end portion of the reinforcing member on the ground or above the water And fixed to the concrete pier frame .

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記斜め方向に伸びる孔を同一方向に高さを変えて複数段形成することを特徴とする。 Moreover, the seismic reinforcement method for an existing concrete pier according to the present invention is characterized in that the holes extending in the oblique direction are formed in a plurality of stages by changing the height in the same direction.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔に充填される固化材が所要の強度、流動性、材料分離抵抗性、ノンブリーディング性を備え、必要に応じて膨張材が混入されることを特徴とする。 Further, according to the seismic reinforcement method for an existing concrete pier of the present invention, the solidified material filled in the hole has required strength, fluidity, material separation resistance, non-bleeding property, and an expansion material is mixed as necessary. It is characterized by that.

また、本発明の既設コンクリート橋脚の耐震補強工法は、前記孔中に挿入される一本又は複数の補強部材を束ねたものの外周に螺旋状に鋼材を巻き付けることを特徴とする。 The seismic strengthening method for an existing concrete pier according to the present invention is characterized in that a steel material is spirally wound around the outer periphery of a bundle of one or a plurality of reinforcing members inserted into the hole.

フーチング、コンクリート橋脚躯体及び上部桁からなる既設コンクリート橋脚の耐震補強工法において、前記コンクリート橋脚躯体の地上部近傍又は水上部の外周部の位置から前記コンクリート橋脚躯体内に斜め下方に前記コンクリート橋脚躯体を貫通することなく下端部が前記コンクリート橋脚躯体下部まで伸びる孔を形成し、前記孔に異形鉄筋、PC鋼線、PC鋼より線、異形PC鋼線、PC鋼棒のいずれかからなる補強部材を挿入し固化材により一体化し、前記補強部材の先端外周に補強部材の径より径の大きい突起物を固定する構成により、橋脚周囲の土壌の深くまでの掘削や止水壁の構築をすることなく、既設コンクリート橋脚の剪断耐力、曲げ耐力及びじん性を向上させ耐震能力を大幅に増加することができ、施工期間の短縮と施工コストの低減化が可能な既設コンクリート橋脚の耐震補強工法を提供することができる。また、補強部材を異形鉄筋、PC鋼線、PC鋼より線、異形PC鋼線、PC鋼棒のいずれかとする構成により、補強部材の選択の自由度を増すことができる。また、補強部材の先端外周に補強部材の径より径の大きい突起物を固定する構成により、補強部材の孔中の定着が強化され、補強効果を大きくすることができる。
孔の中に未固化の固化材を注入した後、補強部材を挿入し一体化する構成により、補強部材を挿入後に固化材を注入するのに比較し、固化材の孔への注入が容易となる。
孔の中に補強部材を挿入し固化材により一体化した後、地上部近傍又は水上部分の補強部材の端部を定着材により橋脚に固定する構成により、橋脚躯体の補強部材の端部の露出部を定着材で覆い橋脚躯体表面の見栄えを良くすると共に、補強部材の大気中への露出させないことにより、補強部材の腐食を防止することができる。
孔の中に一本又は複数の補強部材を束ねたものを挿入する構成により、孔の径、耐震補強の程度に応じて補強部材の挿入本数を自由に選択できる。
孔中に複数の補強部材を挿入する場合、前記補強部材の先端部外周に固定される突起物の位置を前記孔の軸方向に千鳥状にずらして配置する構成により、突起物による孔内での干渉を防止することができ、径の小さい孔でも突起物を固定した複数の補強部材を挿入することができる。
孔に補強部材を挿入し固化材の固化後、補強部材に引張力を付加し地上部又は水上部の補強部材の端部を定着材により橋脚に固定する構成により、既設コンクリート橋脚の剪断耐力や曲げ耐力、じん性をより向上させ耐震能力を増加することができる。
斜め方向に伸びる孔を同一方向に高さを変えて複数段形成する構成により、橋脚の規模に応じた耐震補強が可能となる。また、孔や補強部材に沿ったひび割れを分散させる効果もある。
孔に充填される固化材が所要の強度、流動性、材料分離抵抗性、ノンブリーディング性を備え、必要に応じて膨張材を混入する構成により、孔内の補強部材と固化材の充填性が向上し、補強効果を大きくすることができる。
孔中に挿入される一本又は複数の補強部材を束ねたものの外周に螺旋状に鋼材を巻き付ける構成により、孔や補強部材に沿ったひび割れの進展を防止できる。
Footing, in Seismic Retrofit for existing concrete piers consisting concrete piers skeleton and an upper girder, the concrete pier skeleton obliquely downward to the concrete pier skeleton body from the position of the outer peripheral portion of the ground in the vicinity or water above the concrete pier skeleton A reinforcing member having a bottom end extending to the lower part of the concrete pier frame without penetrating, and formed of any one of a deformed reinforcing bar, a PC steel wire, a PC steel wire, a deformed PC steel wire, and a PC steel rod. Is constructed by solidifying and solidifying, and by fixing a protrusion having a diameter larger than the diameter of the reinforcing member to the outer periphery of the tip of the reinforcing member , excavation deep in the soil around the pier and construction of a water blocking wall Without increasing the shear strength, bending strength and toughness of existing concrete piers, it can greatly increase the seismic capacity and shorten the construction period. It can reduce the construction cost to provide a seismic Retrofit for existing concrete piers possible. Moreover, the freedom member of the selection of a reinforcement member can be increased by the structure which uses any one of a deformed reinforcing bar, PC steel wire, PC steel strand, a deformed PC steel wire, and a PC steel rod as a reinforcement member. Further, by fixing a protrusion having a diameter larger than the diameter of the reinforcing member on the outer periphery of the distal end of the reinforcing member, fixing in the hole of the reinforcing member is strengthened, and the reinforcing effect can be increased.
After injecting unsolidified solidified material into the hole, the structure in which the reinforcing member is inserted and integrated makes it easier to inject the solidified material into the hole compared to injecting the solidified material after inserting the reinforcing member. Become.
After the reinforcement member is inserted into the hole and integrated with the solidified material, the end of the reinforcement member in the pier frame is exposed by fixing the edge of the reinforcement member near the ground or on the surface with the fixing material. parts as well as improve the appearance of the covering piers skeleton surface with the fixing member, and by not to exposure to the atmosphere of the reinforcing member, it is possible to prevent corrosion of the reinforcing member.
By inserting a bundle of one or more reinforcing members into the hole, the number of reinforcing members to be inserted can be freely selected according to the diameter of the hole and the degree of seismic reinforcement.
When a plurality of reinforcing members are inserted into the holes, the positions of the protrusions fixed to the outer periphery of the front end of the reinforcing member are staggered in the axial direction of the holes. Interference can be prevented, and a plurality of reinforcing members to which protrusions are fixed can be inserted even in a hole having a small diameter.
After solidifying the solidified material by inserting the reinforcing member into the hole, the tensile strength is applied to the reinforcing member, and the end of the above-ground part or the upper-side reinforcing member is fixed to the pier by the fixing material. Bending strength and toughness can be further improved and seismic capacity can be increased.
Seismic reinforcement in accordance with the scale of the pier can be achieved by forming a plurality of holes extending in an oblique direction at different heights in the same direction. In addition, there is an effect of dispersing cracks along the holes and the reinforcing member.
The solidified material filled in the holes has the required strength, fluidity, material separation resistance, and non-bleeding properties, and the expansion material is mixed as needed, so that the reinforcing material in the hole and the solidified material can be filled. It can improve and the reinforcement effect can be enlarged.
The structure in which one or a plurality of reinforcing members to be inserted into the hole is bundled and the steel material is spirally wound around the outer periphery can prevent the cracks from progressing along the hole and the reinforcing member.

本発明の実施の形態を図により説明する。図1(a)(b)(c)は、既設コンクリート橋脚の設置状態を示すものである。図において、1はコンクリート橋脚躯体、2は、上部桁、3はフーチングである。図1(a)は、コンクリート橋脚躯体1の上部まで地下に埋設された状態を示し、図1(b)は、コンクリート橋脚1が水中から立設している状態を示し、図1(c)は、コンクリート橋脚躯体1が河川等の堤防から立設している状態を示すものである。   Embodiments of the present invention will be described with reference to the drawings. Fig.1 (a) (b) (c) shows the installation state of the existing concrete pier. In the figure, 1 is a concrete pier frame, 2 is an upper girder, and 3 is a footing. FIG. 1 (a) shows a state where the upper part of the concrete pier housing 1 is buried underground, FIG. 1 (b) shows a state where the concrete pier 1 is erected from the water, and FIG. 1 (c). Shows a state where the concrete pier frame 1 is erected from a dike such as a river.

このような状態で立設している既設コンクリート橋脚の耐震補強工法として、従来、既設のコンクリート橋脚躯体の周囲土壌をフーチング3まで掘削し、コンクリート橋脚躯体の周壁を鋼板からなる補強筒体で囲繞し、コンクリート橋脚躯体の周壁と補強筒体との間の環状空間に接着剤を充填し、コンクリート橋脚躯体と補強筒体を一体化するものや、既設のコンクリート橋脚躯体の周囲土壌をフーチング3まで掘削し、コンクリート橋脚躯体の外周に鉄筋コンクリートからなる耐震補強部を巻き立て、耐震補強部とコンクリート橋脚躯体とを複数のアンカーボルトで連結して一体化するものが知られている。従来工法では、図1(a)の状態では、コンクリート橋脚躯体1の下部フーチング3まで掘削する必要があり、掘削のための重機が必要であり、施工期間が長期化し、施工コストが高価になる。図1(b)の状態では、コンクリート橋脚躯体1が水中から立設しているため、コンクリート橋脚躯体1の周囲を補強するためコンクート橋脚躯体1の外周をドライな作業空間とする必要があり、コンクリート橋脚躯体1の外周に鋼矢板を連設した止水壁を構築しなければならず、施工期間が長期となり施工コストが高価になる。図1(c)の状態では、コンクリート橋脚躯体1が河川等の堤防に立設しているため、コンクリート橋脚躯体1の耐震補強のため堤防を掘削する必要があり、工事中の洪水を防止するために既存の堤防の外側に仮堤防を構築しなければならず、莫大な施工費を必要とする。   As a seismic reinforcement method for existing concrete piers standing in such a state, conventionally, the surrounding soil of the existing concrete pier frame is excavated to the footing 3 and the peripheral wall of the concrete pier frame is surrounded by a reinforcing cylinder made of steel plate. Then, an adhesive is filled in the annular space between the peripheral wall of the concrete pier frame and the reinforcing cylinder, and the concrete pier frame and the reinforcing cylinder are integrated, or the surrounding soil of the existing concrete pier frame is up to the footing 3 It is known to excavate and wind up a seismic reinforcement part made of reinforced concrete on the outer periphery of a concrete pier frame, and connect the seismic reinforcement part and the concrete pier frame with a plurality of anchor bolts. In the conventional construction method, in the state of FIG. 1 (a), it is necessary to excavate to the lower footing 3 of the concrete pier frame 1, which requires heavy machinery for excavation, and the construction period becomes longer and the construction cost becomes expensive. . In the state of FIG. 1 (b), the concrete pier frame 1 is erected from the water. Therefore, the outer periphery of the concrete pier frame 1 needs to be a dry work space in order to reinforce the periphery of the concrete pier frame 1. It is necessary to construct a water blocking wall in which steel sheet piles are continuously provided on the outer periphery of the concrete pier frame 1, so that the construction period becomes long and the construction cost becomes expensive. In the state of FIG. 1 (c), since the concrete bridge pier body 1 is erected on a river bank or the like, it is necessary to excavate the embankment for seismic reinforcement of the concrete bridge pier body 1 and prevent flooding during construction. Therefore, a temporary embankment must be constructed outside the existing embankment, which requires enormous construction costs.

図2は、従来の既設コンクリート橋脚の耐震補強工法のもつ課題を解決する本発明の一実施形態の耐震補強の施工後の状態を示すものである。本発明の耐震補強工法の特徴は、コンクリート橋脚躯体1の周囲の土壌の深くまでの掘削や止水壁の構築の必要のない既設コンクリート橋脚の耐震補強工法としたことである。   FIG. 2 shows a state after the construction of the seismic reinforcement of one embodiment of the present invention that solves the problems of the conventional seismic reinforcement method for existing concrete piers. The feature of the seismic strengthening method of the present invention is that it is an seismic strengthening method for an existing concrete pier which does not require deep excavation of the soil around the concrete pier frame 1 or construction of a water blocking wall.

そのため、コンクリート橋脚躯体1の地上部近傍又は水上部の外周部の位置から、削孔装置により、斜め下方にコンクリート製橋脚躯体1の下部まで伸びる孔4を形成する。孔4は、コンクリート橋脚躯体1を貫通することなく盲孔状とする。孔4は、コンクリート橋脚躯体1に1本又は複数本形成する。コンクリート橋脚躯体1の地上部近傍又は水上部の外周部の位置から形成される孔4の径、本数は、コンクリート製橋脚躯体1の断面形状や、断面積や、フーチング3からの高さ等を考慮した耐震補強設計により決定する。削孔作業にあたり、コンクリート製橋脚躯体1中の既存の補強鉄筋に大きな損傷を与えないように、既設コンクリート橋脚の構築時の設計図に基づき補強鉄筋の配置を事前に確認して実施するのが望ましい。   For this reason, a hole 4 extending obliquely downward to the lower part of the concrete pier housing 1 is formed by a drilling device from the position near the ground portion of the concrete pier housing 1 or the outer peripheral portion of the upper part of the water. The hole 4 has a blind hole shape without penetrating the concrete pier housing 1. One or a plurality of holes 4 are formed in the concrete pier housing 1. The diameter and number of the holes 4 formed from the vicinity of the ground part of the concrete pier frame 1 or the position of the outer periphery of the water are the cross-sectional shape, cross-sectional area, height from the footing 3, etc. of the concrete pier frame 1. Determined by the seismic reinforcement design that takes into account. In drilling work, it is necessary to confirm the arrangement of reinforcing bars in advance based on the design drawings when building existing concrete piers so that the existing reinforcing bars in the concrete pier frame 1 will not be damaged greatly. desirable.

削孔装置としては、コンクリート橋脚躯体1の周囲の地盤の安定度や、傾斜や、作業空間の確保等の条件により決定する。コンクリート橋脚躯体1が水中から立設している場合や、周囲地盤が傾斜しているような場合や、作業空間が狭いような場合、コンクリート橋脚躯体1の周囲土壌を浅く掘削したり、コンクリート橋脚躯体1の周囲に作業足場を構築して削孔作業を実施する。   The hole drilling device is determined by conditions such as the stability of the ground around the concrete pier frame 1, the inclination, and the securing of the work space. When the concrete pier frame 1 is standing from the water, the surrounding ground is inclined, or the work space is narrow, the soil around the concrete pier frame 1 is excavated shallowly, or the concrete pier A work scaffold is constructed around the frame 1 to perform drilling work.

削孔装置によりコンクリート橋脚躯体1中に孔4が形成されると、盲孔状の孔4内にエアージェット又は圧力水を噴射し、孔4内の削孔屑を除去するためのクリーニング作業をする。クリーニングが終了した孔4の中に補強部材5を挿入する。補強部材5としては、異形鉄筋、PC鋼線、PC鋼より線、異形PC鋼線、PC鋼棒のいずれかを用いる。   When the hole 4 is formed in the concrete pier frame 1 by the hole drilling device, an air jet or pressure water is injected into the blind hole-shaped hole 4 to perform a cleaning operation for removing the hole debris in the hole 4. To do. The reinforcing member 5 is inserted into the hole 4 that has been cleaned. As the reinforcing member 5, any one of a deformed reinforcing bar, a PC steel wire, a PC steel stranded wire, a deformed PC steel wire, and a PC steel rod is used.

孔4と補強部材5との環状空間には固化材6が充填される。固化材6としては、モルタル、エポキシ樹脂等の樹脂系接着剤、モルタルと樹脂系接着剤の混合物等を用いる。固化材を選択する条件としては、コンクリート橋脚躯体1を構成するコンクリートとの定着性、補強部材5としての鋼材との定着性、固化の際の収縮性等を考慮して選択する。さらに、孔4の中に補強部材5を挿入後に未固化の固化材6を注入充填する場合、注入を容易にするため、固化材6として流動性の高いものを選択する。他の実施形態としては、クリーニング終了後の削孔4中に未固化の固化材6を注入充填した後、補強部材5を挿入しても良い。補強部材5の挿入前であるので、未固化の固化材6の注入充填作業が容易となる。固化材6に求められる条件をまとめると、所要の強度、良好な流動性、材料分離抵抗性、ノンブリーディング性を備えるものである。必要に応じて膨張材を混入すると充填性がより向上する。   An annular space between the hole 4 and the reinforcing member 5 is filled with a solidifying material 6. As the solidifying material 6, a resin adhesive such as mortar and epoxy resin, a mixture of mortar and resin adhesive, or the like is used. The conditions for selecting the solidifying material are selected in consideration of the fixing property with the concrete constituting the concrete pier skeleton 1, the fixing property with the steel material as the reinforcing member 5, and the shrinkage property at the time of solidification. Further, when the unsolidified solidified material 6 is injected and filled after the reinforcing member 5 is inserted into the hole 4, a material having high fluidity is selected as the solidified material 6 in order to facilitate injection. As another embodiment, the reinforcing member 5 may be inserted after injecting and filling an unsolidified solidified material 6 into the hole 4 after completion of cleaning. Since the reinforcing member 5 is not yet inserted, the filling and filling operation of the unsolidified solidified material 6 is facilitated. When the conditions required for the solidifying material 6 are summarized, the required strength, good fluidity, material separation resistance, and non-bleeding properties are provided. When the expansion material is mixed as necessary, the filling property is further improved.

補強部材5の孔4中での固化材6によるコンクリート橋脚躯体1との一体化が終了後、つまり固化材6の養生期間を含む固化工程が終了した後、コンクリート橋脚躯体1の地上部近傍又は水上部の外周面の補強部材5の端部を定着材7により橋脚に固定する。定着材7としては鋼製、アルミ製、モルタル、コンクリート等である。補強部材5と定着材7との固定手段としては、溶接、接着剤等の手段を用いる。そうすることで、補強部材5の外周面からの突出による外見の悪さを解決すると共に、補強部材5の大気中への露出による腐食を防止できる。   After the integration of the solidifying material 6 in the hole 4 of the reinforcing member 5 with the concrete pier body 1 is completed, that is, after the solidification process including the curing period of the solidifying material 6 is completed, the vicinity of the ground portion of the concrete pier body 1 or The end of the reinforcing member 5 on the outer peripheral surface of the water is fixed to the pier by the fixing material 7. The fixing material 7 is made of steel, aluminum, mortar, concrete, or the like. As a fixing means between the reinforcing member 5 and the fixing material 7, means such as welding and an adhesive are used. By doing so, the poor appearance due to the protrusion from the outer peripheral surface of the reinforcing member 5 can be solved, and corrosion due to the exposure of the reinforcing member 5 to the atmosphere can be prevented.

図3は、本発明の他の実施形態の耐震補強の施工後の状態を示すものである。この実施形態においては、孔4に挿入される補強部材5の先端外周に突起物8を固定する。突起物8の固定は、例えば、補強部材5の先端に断面C形の部材を挿入して断面C形の部材を工具でかしめて固定したり、管状部材を補強部材5の先端に挿入し、補強部材5と管状部材との環状空間にエポキシ等の接着剤を注入して固化させ固定する。補強部材5の先端に突起物8を固定することにより、突起物8の補強部材5の先端に固定後の径は、補強部材5の径より若干大径とするが、橋脚躯体1に削設される孔4の径は、小径が望ましいので、突起物8の径はできるだけ小径とする。補強部材5の先端外周に突起物8を固定することにより、固化材6の固化により補強部材5と固化材の定着性が向上し、補強効果を向上すことができる。   FIG. 3 shows a state after construction of seismic reinforcement according to another embodiment of the present invention. In this embodiment, the protrusion 8 is fixed to the outer periphery of the tip of the reinforcing member 5 inserted into the hole 4. The protrusion 8 is fixed by, for example, inserting a C-shaped member at the tip of the reinforcing member 5 and caulking the C-shaped member with a tool, or inserting a tubular member at the tip of the reinforcing member 5. An adhesive such as epoxy is injected into the annular space between the reinforcing member 5 and the tubular member to be solidified and fixed. By fixing the protrusion 8 to the tip of the reinforcing member 5, the diameter of the protrusion 8 after being fixed to the tip of the reinforcing member 5 is slightly larger than the diameter of the reinforcing member 5. Since the diameter of the hole 4 to be formed is desirably a small diameter, the diameter of the protrusion 8 is made as small as possible. By fixing the protrusion 8 to the outer periphery of the tip of the reinforcing member 5, the fixing property of the reinforcing member 5 and the solidifying material is improved by the solidification of the solidifying material 6, and the reinforcing effect can be improved.

図4(a)、(b)は、孔4中に挿入される補強部材5の実施形態を示す。図4(a)は、孔4中に複数の補強鋼材5を束ねて挿入する実施形態を示し、図4(b)は、孔4中に1本の補強部材5を挿入する実施形態を示す。図3に示されるように、孔4中に先端に突起物8を固定した補強部材5を複数束ねて挿入する場合、突起物8の位置を孔4の軸方向に対して千鳥状に配置する。突起物8を千鳥状に配置することにより、小径の孔4であっても、突起物8同士の干渉を防止することができる。 FIGS. 4A and 4B show an embodiment of the reinforcing member 5 inserted into the hole 4. 4 (a) shows an embodiment of inserting a bundle of a plurality of reinforcing steel 5 in the pores 4, FIG. 4 (b) shows an embodiment of inserting the reinforcing member 5 of the one in the hole 4 . As shown in FIG. 3 , when a plurality of reinforcing members 5 each having a protrusion 8 fixed at the tip thereof are inserted into the hole 4 in a bundle, the protrusions 8 are arranged in a staggered manner with respect to the axial direction of the hole 4. . By arranging the protrusions 8 in a staggered manner, interference between the protrusions 8 can be prevented even if the holes 4 have a small diameter.

孔4中に1本又は複数の補強部材5を束ねて挿入し、孔4中に固化材6を充填し、固化材6が固化した後、引張力を付加し、引張力の付加された状態の補強部材5の端部を定着材7で固定する。補強部材5に引張力を付加することにより、既設コンクリート橋脚の剪断耐力や曲げ耐力、じん性を向上させ耐震能力をより向上することができる。   A state in which one or a plurality of reinforcing members 5 are bundled and inserted into the hole 4, the solidified material 6 is filled into the hole 4, and after the solidified material 6 is solidified, a tensile force is applied and a tensile force is applied. The end of the reinforcing member 5 is fixed with the fixing material 7. By applying a tensile force to the reinforcing member 5, the shear strength, bending strength, and toughness of the existing concrete pier can be improved, and the earthquake resistance can be further improved.

図6(a)、(b)は、孔4中に1本又は複数の補強部材5を束ねて挿入する場合、1本又は束ねた複数の補強部材5の外周に鋼線等の鋼材9を螺旋状に巻き付け配置した実施形態を示す。鋼材9を螺旋状に巻き付け配置することにより、孔4や補強部材5に沿ったひび割れの進展を防止することができる。 6 (a) and 6 (b), when one or a plurality of reinforcing members 5 are bundled and inserted into the hole 4, a steel material 9 such as a steel wire is attached to the outer periphery of the one or a plurality of the reinforcing members 5 bundled. The embodiment wound and arranged spirally is shown. By winding and arranging the steel material 9 in a spiral shape, it is possible to prevent the cracks from progressing along the holes 4 and the reinforcing members 5.

図5は、本発明の他の実施形態の耐震補強の施工後の状態を示すものである。この実施形態においては、コンクリート橋脚躯体1に斜め方向に伸びる孔4を同一方向で高さを変えて複数段形成する。橋脚躯体1の規模、耐震補強の程度に応じて孔4の削孔数を決定する。他の構成は前述の実施形態と同様である。 FIG. 5 shows a state after the construction of the seismic reinforcement according to another embodiment of the present invention. In this embodiment, holes 4 extending in an oblique direction are formed in the concrete bridge pier housing 1 in a plurality of stages by changing the height in the same direction. The number of drilled holes 4 is determined according to the size of the pier body 1 and the degree of seismic reinforcement. Other configurations are the same as those of the above-described embodiment.

上記のように、本発明の既設コンクリート橋脚の耐震補強工法は、橋脚躯体1の周囲の地盤の深くまでの掘削や、橋脚躯体1周囲への止水壁の構築の必要がなく、橋脚躯体1に形成された斜め下方に伸びる孔4中に挿入固定される補強材5により、剪断耐力や曲げ耐力、じん性が向上し耐震性能を著しく向上することができる。   As described above, the seismic reinforcement method for an existing concrete pier according to the present invention does not require deep excavation of the ground around the pier frame 1 or construction of a water blocking wall around the pier frame 1, and the pier frame 1 With the reinforcing member 5 inserted and fixed in the hole 4 formed obliquely downward, the shear strength, bending strength, and toughness are improved, and the earthquake resistance can be remarkably improved.

(a)(b)(c)本発明の実施形態を示す図である。(A) (b) (c) It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。 (A) (b) It is a figure which shows embodiment of this invention.

符号の説明Explanation of symbols

1:コンクリート橋脚躯体、2:上部桁、3:フーチング、4:孔、5:補強部材
6:固化材、7:定着材、8:突起物、9:鋼材
1: concrete pier frame, 2: upper girder, 3: footing, 4: hole, 5: reinforcing member, 6: solidified material, 7: fixing material, 8: protrusion, 9: steel material

Claims (10)

フーチング、コンクリート橋脚躯体及び上部桁からなる既設コンクリート橋脚の耐震補強工法において、前記コンクリート橋脚躯体の地上部近傍又は水上部の外周部の位置から前記コンクリート橋脚躯体内に斜め下方に前記コンクリート橋脚躯体を貫通することなく下端部が前記コンクリート橋脚躯体の下部まで伸びる孔を形成し、前記孔に異形鉄筋、PC鋼線、PC鋼より線、異形PC鋼線、PC鋼棒のいずれかからなる補強部材を挿入し固化材により一体化し、前記補強部材の先端外周に補強部材の径より径の大きい突起物を固定することを特徴とする既設コンクリート橋脚の耐震補強工法。 Footing, in Seismic Retrofit for existing concrete piers consisting concrete piers skeleton and an upper girder, the concrete pier skeleton obliquely downward to the concrete pier skeleton body from the position of the outer peripheral portion of the ground in the vicinity or water above the concrete pier skeleton lower end without penetrating to form a hole extending to the lower portion of the concrete pier building frame, deformed bar into the hole, PC steel wire, PC steel stranded wires, profiles PC steel wire, consisting of either PC steel bar reinforcement A seismic reinforcement method for an existing concrete pier , wherein a member is inserted and integrated with a solidifying material, and a protrusion having a diameter larger than the diameter of the reinforcing member is fixed to the outer periphery of the tip of the reinforcing member . 前記孔の中に未固化の固化材を注入した後、補強部材を挿入し一体化することを特徴とする請求項1に記載の既設コンクリート橋脚の耐震補強工法。   The method for seismic reinforcement of an existing concrete pier according to claim 1, wherein after the unsolidified solidified material is injected into the hole, a reinforcing member is inserted and integrated. 前記孔の中に補強材を挿入した後、未固化の固化材を注入し固化させ一体化することを特徴とする請求項1に記載の既設コンクリート橋脚の耐震補強工法。   The seismic reinforcement method for an existing concrete pier according to claim 1, wherein after the reinforcing material is inserted into the hole, an unsolidified solidifying material is injected, solidified and integrated. 前記孔に補強部材を挿入し固化材により一体化した後、地上部又は水上部の補強部材の端部を定着材により橋脚に固定することを特徴とする請求項1〜3のいずれかに記載の既設コンクリート橋脚の耐震補強工法。   The reinforcing member is inserted into the hole and integrated with a solidifying material, and then the end portion of the reinforcing member on the ground or above the water is fixed to the bridge pier with a fixing material. Seismic reinforcement method for existing concrete piers. 前記孔の中に一本又は複数の補強部材を束ねたものを挿入することを特徴とする請求項1〜のいずれかに記載の既設コンクリート橋脚の耐震補強工法。 The seismic reinforcement method for an existing concrete pier according to any one of claims 1 to 4 , wherein a bundle of one or more reinforcing members is inserted into the hole. 前記孔中に複数の補強部材を挿入する場合、前記補強部材の先端部外周に固定される突起物の位置を前記孔の軸方向に千鳥状にずらして配置することを特徴とする請求項記載の既設コンクリート橋脚の耐震補強工法。 When inserting a plurality of reinforcing members in said holes, claim, characterized in placing the position of the projection which is fixed to the distal end outer periphery of the reinforcing member is shifted in a zigzag pattern in the axial direction of the hole 5 Seismic reinforcement method for existing concrete piers. 前記孔に補強部材を挿入し固化材が固化後、補強部材に引張力を付加し地上部又は水上部の補強部材の端部を定着材により前記コンクリート橋脚躯体に固定することを特徴とする請求項1〜いずれかに記載の既設コンクリート橋脚の耐震補強工法。 After the reinforcing member is inserted into the hole and the solidified material is solidified, a tensile force is applied to the reinforcing member, and the end portion of the reinforcing member on the ground or above the water is fixed to the concrete pier frame by a fixing material. Item 7. A seismic reinforcement method for an existing concrete pier according to any one of items 1 to 6 . 前記斜め方向に伸びる孔を同一方向に高さを変えて複数段形成することを特徴とする請求項1〜のいずれかに記載の既設コンクリート橋脚の耐震補強工法。 The seismic reinforcement method for existing concrete piers according to any one of claims 1 to 7 , wherein the holes extending in the oblique direction are formed in a plurality of stages with different heights in the same direction. 前記孔に充填される固化材が所要の強度、流動性、材料分離抵抗性、ノンブリーディング性を備え、必要に応じて膨張材が混入されることを特徴とする請求項1〜いずれかに記載の既設コンクリート橋脚の耐震補強工法。 Solidifying material is required strength to be filled into the hole, flowable, material separation resistance, comprising a non-bleeding property, either claims 1-8, characterized in that the expandable material is mixed if necessary Seismic reinforcement method for existing concrete piers. 前記孔中に挿入される一本又は複数の補強部材を束ねたものの外周に螺旋状に鋼材を巻き付けることを特徴とする請求項5ないし9のいずれかに記載の既設コンクリート橋脚の耐震補強工法。 10. The seismic reinforcement method for an existing concrete pier according to claim 5 , wherein a steel material is spirally wound around an outer periphery of a bundle of one or a plurality of reinforcing members inserted into the hole.
JP2006335446A 2006-02-07 2006-12-13 Seismic reinforcement method for existing concrete pier Expired - Fee Related JP4780781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335446A JP4780781B2 (en) 2006-02-07 2006-12-13 Seismic reinforcement method for existing concrete pier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006029454 2006-02-07
JP2006029454 2006-02-07
JP2006335446A JP4780781B2 (en) 2006-02-07 2006-12-13 Seismic reinforcement method for existing concrete pier

Publications (2)

Publication Number Publication Date
JP2007239440A JP2007239440A (en) 2007-09-20
JP4780781B2 true JP4780781B2 (en) 2011-09-28

Family

ID=38585239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335446A Expired - Fee Related JP4780781B2 (en) 2006-02-07 2006-12-13 Seismic reinforcement method for existing concrete pier

Country Status (1)

Country Link
JP (1) JP4780781B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247302A (en) * 2006-03-17 2007-09-27 Central Japan Railway Co Reinforcement structure and reinforcement construction method of bridge pier
JP5247648B2 (en) * 2009-10-06 2013-07-24 株式会社ジェイアール総研エンジニアリング Reinforcing method for existing concrete structures
JP5528217B2 (en) * 2010-05-31 2014-06-25 公益財団法人鉄道総合技術研究所 Abutment reinforcement method
CN103103930B (en) * 2013-02-01 2016-06-08 北京交通大学 Add preliminary tension drag-line after a kind of and add solid method
CN113756182B (en) * 2021-09-05 2024-03-19 中建三局第一建设工程有限责任公司 Pier stud maintenance device and laminating construction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1238205A (en) * 1985-04-26 1988-06-21 Cerminco Inc. Structural rod for reinforcing concrete material
JPH0220747A (en) * 1988-07-08 1990-01-24 Kajima Corp Anchoring method for fiber reinforced tension material
JPH0433736A (en) * 1990-05-25 1992-02-05 Mitsubishi Electric Corp Method for bending piled conductors
JP3500810B2 (en) * 1995-11-27 2004-02-23 三菱化学株式会社 Method and structure for reinforcing concrete structure
JPH11107276A (en) * 1997-10-03 1999-04-20 Okabe Co Ltd Executing method for ground anchor and ground anchor
JP4194894B2 (en) * 2003-07-08 2008-12-10 日鉄コンポジット株式会社 Method for reinforcing concrete structures
JP4320430B2 (en) * 2003-09-24 2009-08-26 学校法人日本大学 RC structure with improved running vibration durability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007239440A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
KR101014796B1 (en) Top-down underground construction method using prefabricated concrete column member as temporary bridge column
AU2005200758A1 (en) Earth Retention and Piling Systems
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP2007051541A (en) Retaining wall and construction method therefor
KR100986548B1 (en) The engineering work method and sloping surface use earth anchor
KR102218604B1 (en) Earth retaining construction method for using pile and inclined ground anchor
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP4663541B2 (en) Seismic reinforcement method for existing concrete pier
JP2010037864A (en) Cast-in-place pile and construction method
KR20140013497A (en) Method for constructing block type reinforced retaining wall in cut site
KR20090007826A (en) Process of blocking water penetration and blocking earth collapsing by using impermeable wall without strut
JP3689840B2 (en) Seismic reinforcement method for existing structure foundation
JP4852450B2 (en) Reinforcing method of existing building and reinforcing structure of existing building
KR101005193B1 (en) Pile for cofferdam
JP5145738B2 (en) Seismic construction method for structures, seismic structure for structures
JP2000352296A (en) Method o constructing passage just under underground structure
JP4017766B2 (en) Hollow cylindrical body and its construction method
JP3603130B2 (en) Root-wound reinforcement structure for column bases such as steel columns
KR102111153B1 (en) Retaining Wall Panel Structure using PC Strand
JP2002188157A (en) Aseismatic reinforcing method for foundation of existing structure
JP5423134B2 (en) Foundation structure
CN212506313U (en) Combined foundation pit supporting structure
KR100711054B1 (en) A construction method of concrete retaining wall using anchor
KR20200137297A (en) Construction method of sheathing temporary facility
JPH1077644A (en) Earthquake resisting pile foundation construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees