JP2002188157A - Aseismatic reinforcing method for foundation of existing structure - Google Patents

Aseismatic reinforcing method for foundation of existing structure

Info

Publication number
JP2002188157A
JP2002188157A JP2000390895A JP2000390895A JP2002188157A JP 2002188157 A JP2002188157 A JP 2002188157A JP 2000390895 A JP2000390895 A JP 2000390895A JP 2000390895 A JP2000390895 A JP 2000390895A JP 2002188157 A JP2002188157 A JP 2002188157A
Authority
JP
Japan
Prior art keywords
pile
ready
improved body
footing
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000390895A
Other languages
Japanese (ja)
Other versions
JP3448629B2 (en
Inventor
Kenjiro Oka
憲二郎 岡
Takeshi Oshita
武志 大下
Jiro Fukui
次郎 福井
Tetsuo Matsuda
哲夫 松田
Takeo Miki
健男 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTAN KENSETSU GIJUTSU CT
TONE GEO TECH CO Ltd
Zenitaka Corp
Toray Engineering Co Ltd
Konoike Construction Co Ltd
Japan Foundation Engineering Co Ltd
Advanced Construction Technology Center ACTEC
National Research and Development Agency Public Works Research Institute
Original Assignee
SENTAN KENSETSU GIJUTSU CT
TONE GEO TECH CO Ltd
Public Works Research Institute
Zenitaka Corp
Toyo Construction Co Ltd
Konoike Construction Co Ltd
Japan Foundation Engineering Co Ltd
Advanced Construction Technology Center ACTEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTAN KENSETSU GIJUTSU CT, TONE GEO TECH CO Ltd, Public Works Research Institute, Zenitaka Corp, Toyo Construction Co Ltd, Konoike Construction Co Ltd, Japan Foundation Engineering Co Ltd, Advanced Construction Technology Center ACTEC filed Critical SENTAN KENSETSU GIJUTSU CT
Priority to JP2000390895A priority Critical patent/JP3448629B2/en
Publication of JP2002188157A publication Critical patent/JP2002188157A/en
Application granted granted Critical
Publication of JP3448629B2 publication Critical patent/JP3448629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To augment the bearing power in the vertical direction and the horizontal direction of the foundation of an existing structure and increase the reliability of aseismatic reinforcement. SOLUTION: A composite column 10 is formed in the ground 3 around existing piles 4 supporting the footing 2 of an existing pier 1, and the composite column 10 and the existing footing 2 are integrally connected by an extension footing 11. The composite column 10 comprises a large-diameter improvement body 12 generated by a high-pressure injecting/stirring method, existing piles 14 inserted into the vertical holes 13 provided in the improvement body 12, and a fixing layer 15 of hardening agent grout fixing the existing piles 14 to the improvement body 12. Each existing pile 14 is formed into a large-diameter section 16 on the upper side only, and its shape has nodes 18 over the whole length so that the improvement body 12 and the existing piles 14 integrally exert large bearing force in the horizontal direction and the vertical direction. After the composite column 10 is formed, the extension footing 11 is placed to enclose the pile head sections 14a of the existing piles 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、橋脚、ビル等の既
設構造物の基礎を耐震補強するための耐震補強工法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic retrofitting method for seismic retrofitting a foundation of an existing structure such as a pier or a building.

【0002】[0002]

【従来の技術】従来、既設構造物基礎の補強工法の代表
的なものとしては、既存の杭基礎の周囲に増し杭(場所
打ち杭)を打設し、この増し杭と既設フーチングとを一
体化する増し杭工法、増し杭の代わりに鋼管矢板を打設
して、これと既設フーチングとを一体化する鋼管矢板基
礎増設工法があった。
2. Description of the Related Art Conventionally, as a typical method of reinforcing a foundation of an existing structure, an additional pile (cast-in-place pile) is cast around an existing pile foundation, and this additional pile is integrated with an existing footing. There has been a steel pile pile foundation method in which steel pipe sheet piles are cast in place of pile piles and integrated with existing footings.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した増し
杭工法によれば、所望の鉛直方向の支持力を得ようとす
ると、地中深くに存在する支持層まで杭を打設しなけれ
ばならず、一方、水平方向の支持力を高めようとする
と、大口径の杭を打設しなければならず、鉛直方向およ
び水平方向に大きな支持力が要求される場合には、施工
が大がかりとなるばかりか、工期の延長や工費の上昇が
避けられない、という問題があった。また、鉛直方向の
支持力が高まったとしても、それは、専ら先端支持に依
存してのことであり、押込み方向の支持力は十分となっ
ても引抜き方向の支持力は期待できず、地震により構造
物が大きく横揺れを起こすような場合は、引抜き方向の
支持力が不足して、耐震補強としては不十分であった。
また、上記鋼管矢板基礎増設工法によれば、大口径の鋼
管の使用により水平方向の支持力は十分となるものの、
一般には圧入方式での打設を採用するため鉛直方向の支
持力特に引抜き方向の支持力は期待できず、上記した増
し杭工法と同様に耐震補強の面で不十分であった。
However, according to the above-mentioned additional pile method, in order to obtain a desired vertical supporting force, the pile must be driven to a support layer existing deep underground. On the other hand, in order to increase the horizontal supporting force, a large-diameter pile must be cast, and if a large vertical and horizontal supporting force is required, the construction will be large In addition, there was a problem that the construction period and the construction cost were inevitable. Also, even if the vertical supporting force is increased, it depends exclusively on the tip support.Even if the supporting force in the pushing direction is sufficient, the supporting force in the pulling-out direction cannot be expected. In the case where the structure caused a large roll, the supporting force in the pull-out direction was insufficient, and the structure was insufficient for earthquake-resistant reinforcement.
In addition, according to the steel pipe sheet pile foundation extension method, the use of large-diameter steel pipes provides sufficient horizontal support,
In general, since a press-fitting method is used, a vertical supporting force, particularly a pulling-out supporting force, cannot be expected, and the seismic reinforcement is insufficient in the same manner as the additional pile method described above.

【0004】本発明は、上記従来の問題点を解決するた
めになされたもので、その目的とするところは、大がか
りな施工を行うことなく鉛直方向(押込み、引抜き両方
向)および水平方向の支持力を十分に高めることがで
き、もって耐震補強の面で有用な既設構造物基礎の補強
工法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a vertical (both pushing and pulling) and horizontal supporting force without large-scale construction. Therefore, it is an object of the present invention to provide a method for reinforcing an existing structure foundation which is sufficiently effective in terms of seismic reinforcement.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、地盤中に高圧噴射攪拌工法により改良体
を造成した後、この改良体内に既製杭を建込んで複合杭
を形成する施工を、既設構造物のフーチング下の基礎の
周りで行って、該基礎の周りに前記複合杭を間隔を置い
て配置し、しかる後、前記既製杭の杭頭部を包むように
前記フーチングを増設することを特徴とする。
In order to achieve the above object, the present invention is to form an improved body in a ground by a high-pressure jet stirring method, and then construct a composite pile by building a ready-made pile in the improved body. Performing the construction around the foundation under the footing of the existing structure, arranging the composite piles at intervals around the foundation, and then expanding the footing to wrap the pile head of the ready-made pile It is characterized by doing.

【0006】高圧噴射攪拌工法は、注入ロッドを地盤中
に回転および軸方向移動させながら、その先端の噴射ノ
ズルから注入ロッドと直角方向へグラウト(地盤改良
材)を単独に、あるいは高圧水または圧縮エアと混合し
て高圧噴射し、地盤改良材と周辺土砂とを攪拌混合して
改良体を造成する工法で、小型の施工機械を用いて大径
の改良体を造成できる利点がある。本発明は、この高圧
噴射攪拌工法により造成した改良体に既製杭を建込んで
複合杭とするもので、本発明によれば、各既製杭は、大
径の改良体に支持されて鉛直方向(押込み、引抜き両方
向)および水平方向に大きな支持力を発揮するものとな
る。
[0006] In the high-pressure injection stirring method, grout (ground improvement material) is applied to the injection rod at the tip thereof in a direction perpendicular to the injection rod while rotating and axially moving the injection rod into the ground, or by high-pressure water or compression. This is a construction method in which the ground improvement material and the surrounding earth and sand are mixed by stirring and mixing the ground improvement material and the surrounding earth and sand to form an improved body. The present invention is to construct a composite pile by building a ready-made pile on the improved body created by this high-pressure injection stirring method. According to the present invention, each of the ready-made piles is supported by the large-diameter improved body in the vertical direction. (Both pushing and pulling directions) and a large supporting force in the horizontal direction.

【0007】本発明は、上記複合杭を、鉛直杭として形
成してもよいが、この鉛直杭の一部または全部を斜杭で
置換するようにしてもよいものである。斜杭は、水平方
向に大きな支持力を発揮することが知られており、複合
杭の一部または全部を斜杭とすることで、耐震補強の面
で有利に働く。ただし、斜杭の傾斜角度は、あまり小さ
いと前記した効果が小さく、逆にあまり大きいと施工機
械と既設構造物との干渉等の問題や隣接構造物への侵害
の問題が生じて施工性が低下するので、10〜20°程
度とするのが望ましい。
In the present invention, the composite pile may be formed as a vertical pile, but a part or all of the vertical pile may be replaced with a slant pile. It is known that a slanted pile exerts a large supporting force in the horizontal direction. By using a part or all of the composite pile as a slanted pile, it works advantageously in terms of seismic reinforcement. However, if the inclination angle of the inclined pile is too small, the above-described effect is small, and if it is too large, problems such as interference between the construction machine and the existing structure and problems of infringement on adjacent structures occur, and the workability is deteriorated. It is preferable to set the angle to about 10 to 20 ° because the angle decreases.

【0008】本発明において、上記改良体内に既製杭を
建込む方法は任意であるが、比較的小口径(500mm以下)
の既製杭を用いる場合は、改良体内に事前に縦穴を掘削
し、この縦穴に既製杭を挿入すると共に該既製杭の周り
の空隙にグラウトを充填するのが望ましく、これにより
既製杭が改良体内に強固に定着される。この場合、水平
方向の支持力は既製杭の上部側部分が負担するので、既
製杭としては、上部側部分(例えば、全長のほぼ1/3〜1
/2長に相当する部分)をその下部側部分より大径とした
異径杭を用いることにより、既製杭の重量が全体として
軽減され、コスト的に有利となる。
[0008] In the present invention, the method of erection of the ready-made pile in the above-mentioned improved body is optional, but a relatively small diameter (500 mm or less)
When using the ready-made pile of the above, it is preferable to excavate a vertical hole in the improved body in advance, insert the ready-made pile into this vertical hole, and fill the gap around the ready-made pile with grout, whereby the ready-made pile is Is firmly established. In this case, since the horizontal supporting force is borne by the upper portion of the ready-made pile, the upper portion (for example, approximately 1/3 to 1
By using a different-diameter pile whose diameter is larger than that of the lower part (corresponding to the length corresponding to the length of / 2), the weight of the ready-made pile is reduced as a whole, which is advantageous in cost.

【0009】本発明は、水平方向の支持力をより高める
べく、比較的大口径(500〜1000mm)の既製杭を改良体
内に建込むようにしてもよいものであるが、このような
大口径の既製杭の建込みに際しては、上記のように高圧
噴射攪拌工法により改良体を造成した後、この改良体が
未硬化のうちに該改良体内に既製杭を直接圧入するよう
にしてもよい。この場合は、上記した改良体に対する事
前削孔およびグラウト充填を省略することができる。
According to the present invention, in order to further increase the horizontal supporting force, a relatively large diameter (500 to 1000 mm) prefabricated pile may be built in the improved body. When building the pile, after the improved body is formed by the high-pressure injection stirring method as described above, the ready-made pile may be directly pressed into the improved body while the improved body is not yet cured. In this case, the pre-drilling and grout filling for the improved body described above can be omitted.

【0010】本発明において、既製杭は、上記した口径
の大きさ如何にかかわらず、節付きとするのが望まし
く、これにより鉛直方向(押込み、引抜き両方向)の支
持力がより一層高まるようになる。
In the present invention, it is desirable that the ready-made pile is knotted irrespective of the size of the above-mentioned diameter, whereby the supporting force in the vertical direction (both pushing and pulling directions) is further increased. .

【0011】本発明は、地盤中に液状化危険層が存在す
る場合、上記フーチングの増設に先行して、該液状化危
険層に対して複合杭と連接するように高圧噴射攪拌工法
により改良体を増設するのが望ましく、これにより既設
構造物のフーチング下の液状化危険層が改良体からなる
複合杭で囲まれ、既設構造物下への地震波の侵入が抑制
されて、既設構造物下の地盤の液状化が未然に防止され
る。本発明は、この液状化対策として、上記改良体の増
設に代えて、中空ドレーン材(ドレーンパイプ)を打設
するようにしてもよく、中空ドレーン材を鉛直方向はも
ちろん、既設構造物下の液状化危険層に向けて斜めに打
設することで、地震時に液状化危険層に発生する過剰間
隙水が中空ドレーン材を通して地上へ排出され、既設構
造物下の地盤の液状化が未然に防止される。
According to the present invention, when a liquefaction-risk layer is present in the ground, prior to the addition of the footing, an improved body is connected to the liquefaction-risk layer by a high-pressure jet stirring method so as to be connected to the composite pile. The liquefaction hazardous layer under the footing of the existing structure is surrounded by a composite pile consisting of an improved body, and the penetration of seismic waves under the existing structure is suppressed. The liquefaction of the ground is prevented beforehand. In the present invention, as a countermeasure against liquefaction, a hollow drain material (drain pipe) may be cast instead of adding the above-mentioned improved body. By slanting the liquefaction hazard layer toward the liquefaction hazard layer, excess pore water generated in the liquefaction hazard layer during an earthquake is discharged to the ground through the hollow drain material, preventing the liquefaction of the ground under the existing structure Is done.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を添付図面
に基いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1乃至図3は、本発明に係る耐震補強工
法の第1の実施の形態を示したものである。本第1の実
施の形態は、既設構造物としての橋脚1の基礎を対象に
なされたもので、橋脚1は、その底部に一体に設けたフ
ーチング2を地盤3中に打設した複数の杭4上に載せた
状態で据付け固定されている。各杭4は、それぞれの先
端が支持層5に到達するまで地盤3内に打込まれてお
り、その複数がまとまって一つの杭基礎6を構成し、所
定の耐力(支持力)を発揮するようになっている。この
杭基礎6の周りには本工法による複数の複合杭(鉛直
杭)10が形成され、一方、地盤3の地表面側には、各
複合杭10の上端部と橋脚1のフーチング(既設フーチ
ング)2とを連接一体化するフーチング(増設フーチン
グ)11が増設されている。
FIGS. 1 to 3 show a first embodiment of a seismic retrofitting method according to the present invention. The first embodiment is directed to a foundation of a pier 1 as an existing structure. The pier 1 has a plurality of piles in which a footing 2 integrally provided on the bottom thereof is cast into a ground 3. 4 and mounted and fixed. Each pile 4 is driven into the ground 3 until its tip reaches the support layer 5, and a plurality of the piles 4 collectively constitute one pile foundation 6 and exhibit a predetermined proof strength (supporting force). It has become. A plurality of composite piles (vertical piles) 10 are formed around the pile foundation 6 by the present construction method, while on the ground surface side of the ground 3, the upper end of each composite pile 10 and the footing of the pier 1 (existing footing). 2) is additionally provided with a footing (additional footing) 11 for connecting and integrating the two.

【0014】上記複合杭10は、後述する高圧噴射攪拌
工法により地盤3中に造成された大径の改良体12と、
この改良体12の軸心位置に形成した縦穴13内に挿入
された既製杭14と、この既製杭14の周りの空所に充
填された定着層15とからなっており、その改良体12
は前記既設フーチング2の側方位置と前記支持層5より
も浅い位置との間に造成されている。既製杭14は、そ
の上端部(杭頭部)14aが改良体12の上端より若干
突出するように設けられており、前記増設フーチング1
1は、この既製杭14の杭頭部14aを包むように打設
されている。なお、既製杭14の杭頭部14aは、各複
合杭10の相互間で鉄筋、フレーム等の連結部材(図示
略)により連結された状態で増設フーチング11に包ま
れており、これにより、各複合杭10と既設フーチング
2とは増設フーチング11を介して強固に一体化されて
いる。
The composite pile 10 includes a large-diameter improved body 12 formed in the ground 3 by a high-pressure jet stirring method described below,
The improved body 12 includes a ready-made pile 14 inserted into a vertical hole 13 formed at an axial center position of the improved body 12 and a fixing layer 15 filled in a space around the ready-made pile 14.
Is formed between a lateral position of the existing footing 2 and a position shallower than the support layer 5. The ready-made pile 14 is provided so that its upper end (pile head) 14a slightly protrudes from the upper end of the improved body 12, and the additional footing 1
1 is installed so as to cover the pile head 14a of the ready-made pile 14. In addition, the pile head 14a of the ready-made pile 14 is wrapped in the extension footing 11 in a state where the composite piles 10 are connected to each other by a connecting member (not shown) such as a reinforcing bar or a frame. The composite pile 10 and the existing footing 2 are firmly integrated via an additional footing 11.

【0015】ここで、上記既製杭14は、その全長の1/
3〜1/2長に相当する上部側部分を比較的大口径(一例と
して、250〜500mm)の大径部16とすると共に、それよ
り下部側部分を比較的小口径(一例として、150〜250m
m)の小径部17とする異径杭として提供されている。
既製杭14はまた、その全長にわたって所定ピッチで節
18を設けた節付き杭として提供されている。
Here, the ready-made pile 14 has a length of 1 /
The upper portion corresponding to 3 to 1/2 length is a large diameter portion 16 having a relatively large diameter (for example, 250 to 500 mm), and the lower portion is relatively small diameter (for example, 150 to 150 mm). 250m
m) is provided as a small diameter section 17 having a small diameter.
The ready-made stake 14 is also provided as a knotted stake provided with knots 18 at a predetermined pitch over its entire length.

【0016】本工法の実施に際しては、図4に示すよう
に、先端に噴射ノズル20を有する注入ロッド(単管ま
たは二重管)21を用意し、先ず、この注入ロッド21
を回転させながら地盤3中に貫入させ、その先端の噴射
ノズル20が計画改良域の上限深さD1 (ここでは、既
設フーチング2の側方)に達したら、注入ロッド21内
に超高圧(30〜40MPa 程度)の水を供給し(圧縮空気
を併用する場合もある)、その噴射ノズル20から水平
方向へ超高圧水を噴射させる。この超高圧水の噴射によ
り地盤3が広範囲に切削攪拌(プレカッティング)さ
れ、地盤3内には大径の切削攪拌層Aが形成され、この
切削攪拌層Aは、注入ロッド21の回転下降に応じて下
方へ拡大する()。なお、この時発生する余剰スライ
ムは注入ロッド21の周りの空隙を通して地上へ排出さ
れる。
In implementing this method, as shown in FIG. 4, an injection rod (single pipe or double pipe) 21 having an injection nozzle 20 at its tip is prepared.
Is rotated and penetrated into the ground 3. When the injection nozzle 20 at the tip reaches the upper limit depth D 1 of the planned improvement area (here, the side of the existing footing 2), the super-high pressure ( Water (about 30 to 40 MPa) is supplied (compressed air may be used in some cases), and ultra high-pressure water is jetted from the jet nozzle 20 in the horizontal direction. The ground 3 is cut and agitated (precutted) over a wide area by the injection of the ultrahigh-pressure water, and a large-diameter cutting and stirring layer A is formed in the ground 3. It expands downward accordingly (). The surplus slime generated at this time is discharged to the ground through a space around the injection rod 21.

【0017】そして、前記切削攪拌層Aの形成が計画改
良域の下限深さD2 (ここでは、支持層5より浅い位
置)に達したら、前記超高圧水をグラウト(セメントミ
ルク:水セメント比W/C =60〜70程度)に切替え、噴射
ノズル1から超高圧(40MPa程度)のグラウトを水平
方向へ噴射させながら(圧縮空気を併用する場合もあ
る)、注入ロッド21を回転上昇させる()。このグ
ラウトの高圧噴射により、前記切削攪拌層A内の土砂は
グラウトと攪拌混合されてグラウト混合層Bに変質し、
このグラウト混合層Bは注入ロッド21の回転上昇に応
じて上方へ拡大する。この時、余剰スライムは地上へ誘
導排出されるが、この段階では水の噴射が停止されてい
るので、その誘導排出の程度はわずかであり、グラウト
の無駄な消費が抑えられる。このようにしてグラウト混
合層Bの形成が計画改良域の上限深さD1 に達したら、
注入ロッド21に対するグラウトの供給を停止し、注入
ロッド21を地盤3から引抜き、そのまま養生させる。
この養生によりグラウト混合層Bが硬化し、計画改良域
には前記した大径の改良体12()が造成される。
When the formation of the cutting stirring layer A reaches the lower limit depth D 2 (here, a position shallower than the support layer 5) of the planned improvement area, the ultrahigh-pressure water is grouted (cement milk: water cement ratio). (W / C = approximately 60 to 70), and the injection rod 21 is rotated upward while injecting an ultra-high pressure (approximately 40 MPa) grout from the injection nozzle 1 in the horizontal direction (in some cases, compressed air is used together) ( ). Due to the high-pressure injection of the grout, the earth and sand in the cutting and stirring layer A is stirred and mixed with the grout and transformed into the grout mixed layer B,
The grout mixed layer B expands upward as the injection rod 21 rotates upward. At this time, the surplus slime is guided and discharged to the ground. At this stage, since the injection of water is stopped, the degree of the guided discharge is small, and wasteful consumption of grout is suppressed. When the formation of the grout mixed layer B reaches the upper limit depth D 1 of the planned improvement area in this way,
The supply of grout to the injection rod 21 is stopped, and the injection rod 21 is pulled out of the ground 3 and cured as it is.
By this curing, the grout mixed layer B is hardened, and the above-described large-diameter improved body 12 () is formed in the planned improvement area.

【0018】次に、上記のように造成された改良体12
に、例えばアースオーガー23を用いて前記縦穴13を
掘削する。この縦穴13の掘削は、改良体12の底面近
傍まで行い、掘削終了後、アースオーガー23を改良体
12から引抜き()、次に、この縦穴13内に、例え
ば体積膨張型グラウト24を所定量供給する()。そ
の後、縦穴13内に、前記節18付きの、先端閉じの既
製杭(異径杭)14を挿入する。すると、予め供給され
ていたグラウト24が既製杭14と縦穴13の内壁との
空隙内にオーバーフローし、該空隙にグラウト24が充
填される。このグラウト24は、所定時間養生させるこ
とで体積膨張しながら硬化して前記定着層15となり、
この定着層15により既製杭14は、強固に改良体12
に接合一体化される。
Next, the improved body 12 constructed as described above is used.
Then, the vertical hole 13 is excavated using, for example, an earth auger 23. The excavation of the vertical hole 13 is performed to the vicinity of the bottom surface of the improved body 12, and after the excavation is completed, the earth auger 23 is pulled out from the improved body 12 (). Supply (). Thereafter, a ready-made pile (different-diameter pile) 14 with the joint 18 and having a closed end is inserted into the vertical hole 13. Then, the grout 24 supplied in advance overflows into the gap between the ready-made pile 14 and the inner wall of the vertical hole 13, and the grout 24 is filled in the gap. The grout 24 cures while being expanded in volume by being cured for a predetermined time to become the fixing layer 15,
The prefabricated pile 14 is firmly fixed by the fixing layer 15 with the improved body 12.
And integrated.

【0019】このようにして複合杭10の一つが完成
し、以降、上記施工を繰り返して、前記既設フーチング
2下の杭基礎6の周りに複数の複合杭10を所定の間隔
を置いて形成する。そして、一連の複合杭10の形成が
完了したら、先ず、この上の地表面を掘削して既製杭1
4の杭頭部14aと既設フーチング2とを露出させ、次
に、各既製杭14の杭頭部14aを相互に連結部材を用
いて連結する。また、これと並行して既設フーチング2
の表面をはつり、場合によっては鉄筋を露出させる。鉄
筋を露出させた場合は、その鉄筋および杭頭部14a同
士を連結する連結部材に接続する状態で、既設フーチン
グ2の周りに新規の鉄筋を組込み、これら鉄筋、既設杭
14の杭頭部14a、既設フーチング2を包むように前
記増設フーチング11を打設する。
In this way, one of the composite piles 10 is completed, and thereafter, the above construction is repeated to form a plurality of composite piles 10 at predetermined intervals around the pile foundation 6 below the existing footing 2. . When the formation of the series of composite piles 10 is completed, first, the ground surface on which the composite piles 10 are formed is excavated to prepare the ready-made piles 1.
Then, the pile head 14a and the existing footing 2 are exposed, and then the pile heads 14a of the respective ready-made piles 14 are connected to each other using a connecting member. In parallel with this, the existing footing 2
Remove the rebar from the surface of the steel bar. When the rebar is exposed, a new rebar is incorporated around the existing footing 2 in a state where the rebar and the pile head 14a are connected to a connecting member that connects the rebar and the pile head 14a. The additional footing 11 is cast so as to surround the existing footing 2.

【0020】この結果、各複合杭10が増設フーチング
11を介して既設フーチング2に強固に一体化される
が、高圧噴射攪拌工法により形成した改良体12に既製
杭14を建込むので、各既製杭14は、支持層5まで建
込まなくても鉛直方向に大きな支持力を発揮するものと
なる。また、各既製杭14は、大径の改良体12と一体
となって水平方向に大きく抵抗するので、水平方向にも
大きな支持力を発揮するものとなり、既設構造物として
の橋脚1の基礎の耐力(支持力)が著しく増大し、地震
時の揺れにも十分に耐えるようになる。
As a result, each composite pile 10 is firmly integrated with the existing footing 2 via the additional footing 11, but since the ready-made pile 14 is built in the improved body 12 formed by the high-pressure jet stirring method, each of the ready-made piles 14 is installed. The pile 14 exerts a large supporting force in the vertical direction without being built up to the support layer 5. Further, since each of the ready-made stakes 14 is integrated with the large-diameter improved body 12 and greatly resists in the horizontal direction, it also exerts a large supporting force in the horizontal direction, and serves as a foundation for the pier 1 as an existing structure. The proof strength (bearing capacity) is remarkably increased, and it can sufficiently withstand the shaking during an earthquake.

【0021】特に、本第1の実施の形態では、改良体1
2の縦穴13内に既製杭14を建込む際、グラウト24
として体積膨張型のものを用いているので、定着層18
が既製杭14の周りの空隙を十分に埋め、しかも、既製
杭14が節18を有する形状となっているので、これと
定着層15との摩擦抵抗が著しく増大し、既製杭14は
鉛直方向に著しく大きな支持力を発揮するものとなる。
また、既製杭14は、地震による水平力を受ける上部側
の1/3〜1/2長部分が大径部16となっているので、水平
方向の支持力を犠牲にすることなく、全体の軽量化を図
ることができ、コスト的に有利となっている。
In particular, in the first embodiment, the improved body 1
When the ready-made pile 14 is built in the vertical hole 13 of the second
Since the volume expansion type is used as the fixing layer 18,
However, since the space around the ready-made pile 14 is sufficiently filled and the ready-made pile 14 has a shape having the nodes 18, the frictional resistance between the pile and the fixing layer 15 is significantly increased, and the ready-made pile 14 is It will exhibit a remarkably large supporting force.
In addition, since the large-diameter portion 16 is formed on the upper part of the ready-made pile 14 which receives the horizontal force due to the earthquake, the entire length thereof is 1/3 to 1/2. The weight can be reduced, which is advantageous in terms of cost.

【0022】図5は、本発明に係る補強工法の第2の実
施の形態を示したものである。本第2の実施の形態の特
徴とするところは、上記第1の実施の形態における複合
杭10を鉛直方向に対して所定の傾斜角度θ(=10〜
20°)で形成した点にある。なお、この複合杭10の
構造は、既製杭14としてストレート杭を用いている他
は、第1の実施の形態と基本的に同じであるので、ここ
では、同一部分に同一符号を付することとする。また、
この複合杭10の形成方法も第1の実施の形態と同じで
あるので、ここでは、その形成方法も省略する。
FIG. 5 shows a second embodiment of the reinforcing method according to the present invention. The feature of the second embodiment is that the composite pile 10 in the first embodiment is inclined at a predetermined inclination angle θ (= 10 to the vertical direction).
20 °). The structure of the composite pile 10 is basically the same as that of the first embodiment except that a straight pile is used as the ready-made pile 14, so that the same reference numerals are given to the same parts here. And Also,
Since the method of forming the composite pile 10 is the same as that of the first embodiment, the method of forming the composite pile 10 is omitted here.

【0023】本第2の実施の形態においては、複合杭1
0が斜杭として形成されているので、水平方向に大きな
支持力を発揮するものとなり、耐震補強を図る上で極め
て有用となる。また、第1の実施の形態のように鉛直杭
(複合杭)10と同等の水平方向支持力を確保しようと
する場合は、既製杭14としてより小口径のものを用い
ることが可能になり、その分、コスト的に有利となる。
In the second embodiment, the composite pile 1
Since 0 is formed as a slanted pile, it exerts a large supporting force in the horizontal direction, which is extremely useful for seismic reinforcement. In addition, when trying to secure a horizontal supporting force equivalent to that of the vertical pile (composite pile) 10 as in the first embodiment, it is possible to use a smaller-diameter one as the ready-made pile 14, This is advantageous in terms of cost.

【0024】ところで、既設フーチング2下の地盤3中
には、図6に示すように液状化危険層30が存在する場
合があり、このような液状化危険層30が存在すると、
上記第1の実施の形態のように杭基礎6の周りに断続的
に複合杭10を配列しただけでは、既設フーチング2下
の地盤に地震波が侵入し、地盤のせん断変形による液状
化を防止することはできない。
Incidentally, there is a case where the liquefaction risk layer 30 exists in the ground 3 under the existing footing 2 as shown in FIG.
Just by arranging the composite piles 10 intermittently around the pile foundation 6 as in the first embodiment, seismic waves enter the ground below the existing footing 2 and prevent liquefaction due to shear deformation of the ground. It is not possible.

【0025】本発明に係る補強工法の第3の実施の形態
は、このような液状化危険層30が存在する場合に好適
となるもので、図6および図7に示すように、上記した
高圧噴射攪拌工法により杭基礎6の周りに改良体12を
造成する際、前記液状化危険層30に対して、複合杭1
0として用いられる改良体12と連接するように高圧噴
射攪拌工法によりサブ改良体31を相互にラップさせて
造成し、杭基礎6に含まれる液状化危険層30の周り
を、改良体12およびサブ改良体31を連接してなる連
続壁32で囲むようにする。本第3の実施の形態におい
て、前記した連続壁32を造成した後は、第1の実施の
形態と同様の手順で、各改良体12に対する縦穴13の
掘削、縦穴13内へのグラウト24の供給および縦穴1
3内への既製杭14の挿入を行って(図4〜)、複
合杭10を完成させ、さらに増設フーチング11の打設
を行う。
The third embodiment of the reinforcing method according to the present invention is suitable when such a liquefaction-resistant layer 30 is present. As shown in FIGS. When forming the improved body 12 around the pile foundation 6 by the injection stirring method, the composite pile 1
The sub-improved body 31 is wrapped with each other by a high-pressure injection stirring method so as to be connected to the improved body 12 used as the base material 0, and the area around the liquefaction risk layer 30 included in the pile foundation 6 is improved. The improved body 31 is surrounded by a continuous wall 32 that is connected. In the third embodiment, after the above-described continuous wall 32 is formed, the vertical holes 13 are excavated for each improved body 12 and the grout 24 is inserted into the vertical holes 13 in the same procedure as in the first embodiment. Supply and vertical hole 1
The composite pile 10 is completed by inserting the ready-made pile 14 into the inside 3 (FIG. 4 to FIG. 4), and the additional footing 11 is driven.

【0026】本第3の実施の形態によれば、上記第1の
実施の形態と同様に鉛直方向および水平方向の支持力が
十分になることに加え、既設フーチング2下の液状化危
険層30を囲む連続壁32が地震波の侵入を抑えて、該
液状化危険層30の液状化を防止するので、耐震補強の
面できわめて有用となる。
According to the third embodiment, similarly to the first embodiment, the vertical and horizontal supporting forces are sufficient, and the liquefaction risk layer 30 under the existing footing 2 is provided. Of the liquefaction-resistant layer 30 is prevented by the continuous wall 32 that surrounds the seismic wave, which is extremely useful in terms of seismic reinforcement.

【0027】ここで、地盤3中に液状化危険層30が存
在する場合は、上記第3の実施の形態におけるサブ改良
体31(図6、7)の打設に代えて、図8に示すよう
に、中空ドレーン材(ドレーンパイプ)35を打設する
ようにしてもよい。本発明に係る補強工法の第4の実施
の形態は、この中空ドレーン材35を打設する工法を含
むもので、中空ドレーン材の打設工法としては、例えば
特許第2920501号公報に記載の工法を採用するこ
とができる。この工法は、先端にカッタを取付けたガイ
ド管を回転および軸方向移動させて地盤に穴を削孔した
後、このガイド管内に中空ドレーン材を挿入し、しかる
後、中空ドレーン材の上端を押えながらガイド管を地盤
から引抜くようにするもので、前記した高圧噴射攪拌工
法、あるいはマイクロパイル打設工法と同様の小型機械
を用いて簡単に中空ドレーン材を打設できる利点を有し
ている。
Here, when the liquefaction danger layer 30 exists in the ground 3, instead of the sub-improved body 31 (FIGS. 6 and 7) in the third embodiment, it is shown in FIG. As described above, the hollow drain material (drain pipe) 35 may be cast. The fourth embodiment of the reinforcing method according to the present invention includes a method of driving the hollow drain material 35. As a method of driving the hollow drain material, for example, a method described in Japanese Patent No. 2920501 is disclosed. Can be adopted. In this method, a guide tube with a cutter attached to its tip is rotated and moved in the axial direction to cut a hole in the ground, then a hollow drain material is inserted into this guide tube, and then the upper end of the hollow drain material is pressed. While pulling out the guide tube from the ground, there is an advantage that the hollow drain material can be easily cast by using a small machine similar to the high-pressure injection stirring method or the micropile driving method described above. .

【0028】本第4の実施の形態においては、前記第1
または第2の実施の形態におけると同様の手順で杭基礎
6の周りに複合杭10を形成した後、各複合杭10の間
のスペースを利用して上記中空ドレーン材の打設工法を
実施し、図8に示すように、液状化危険層30に対して
複数の中空ドレーン材35を打設し、この際、鉛直方向
はもちろん、既設構造物下の液状化危険層30へ向かう
傾斜方向へも複数の中空ドレーン材35を打設するよう
にする。また、フーチング2の周りの地盤3中に、例え
ば砕石等を用いて環状の排水溝36を構築すると共に、
この排水溝36と各中空ドレーン材35の上端部とを連
絡する連絡溝37を構築する。このように、中空ドレー
ン材35を打設することで、地震時に液状化危険層30
に過剰間隙水が発生すると、この過剰間隙水は中空ドレ
ーン材35を通して排水溝36へ排出され、該液状化危
険層30の液状化が未然に防止されて、前記第3の実施
の形態と同様に、耐震補強の面できわめて有用となる。
In the fourth embodiment, the first
Alternatively, after forming the composite pile 10 around the pile foundation 6 in the same procedure as in the second embodiment, the above-described method of placing the hollow drain material is performed using the space between the composite piles 10. As shown in FIG. 8, a plurality of hollow drain members 35 are cast on the liquefaction danger layer 30, and in this case, not only in the vertical direction but also in the inclined direction toward the liquefaction danger layer 30 below the existing structure. Also, a plurality of hollow drain members 35 are cast. Further, in the ground 3 around the footing 2, an annular drain groove 36 is constructed using, for example, crushed stone or the like,
A communication groove 37 that connects the drain groove 36 and the upper end of each hollow drain member 35 is constructed. By placing the hollow drain material 35 in this manner, the liquefaction-resistant layer 30 can be used during an earthquake.
When excessive pore water is generated, the excessive pore water is discharged through the hollow drain material 35 to the drainage groove 36, and liquefaction of the liquefaction-risk layer 30 is prevented beforehand, as in the third embodiment. In addition, it is extremely useful in terms of seismic reinforcement.

【0029】なお、上記各実施の形態においては、改良
体12中への既製杭14の建込みに際し、予め縦穴13
内に定着用グラウト24を供給して、このグラウト24
を既製杭14の挿入に応じてその周りの空隙にオーバー
フローさせるようにしたが(図4)、本発明は、既製杭
として逆止弁付きの杭を用いて、杭内部から注入機(パ
ッカー)を用いて逆止弁を通じて杭周りにグラウトを噴
出させる、いわゆるマイクロパイル打設工法を採用する
ようにしてもよいものである。
In each of the above-described embodiments, when the ready-made pile 14 is installed in the improved body 12,
The grout 24 for fixing is supplied to the inside of the grout 24.
Is made to overflow into the space around the pile according to the insertion of the ready-made pile 14 (FIG. 4). However, the present invention uses a pile with a check valve as a ready-made pile, and an injection machine (packer) from inside the pile. A so-called micropile driving method in which grout is spouted around a pile through a check valve by using a check valve may be employed.

【0030】さらに、上記各実施の形態においては、高
圧噴射攪拌工法により造成した改良体12に機械的に縦
穴13を形成し、この縦穴13内に既製杭14を建込む
ようにしたが、本発明は、高圧噴射攪拌工法で使用する
グラウトに硬化を遅らせる遅延剤を添加して、この改良
体が未硬化のうちに該改良体内に既製杭を直接圧入する
ようにしてもよい。この場合は、上記した改良体12に
対する縦穴13の削孔が不要になることに加え、縦穴1
3内への定着用グラウト24の供給が不要になり、効率
のよい施工が可能になる。しかも、縦穴13を削孔する
必要がないので、500〜1000mm程度の大口径の既製杭の
建込みも可能となり、このような大口径の既製杭を改良
体12に建込むことで、水平方向の支持力も著しく高ま
るようになる。
Further, in each of the above embodiments, the vertical hole 13 is mechanically formed in the improved body 12 formed by the high-pressure jet stirring method, and the ready-made pile 14 is erected in the vertical hole 13. According to the present invention, a grout used in the high-pressure jet stirring method may be added with a retarder for delaying the curing so that the ready-made pile is directly pressed into the improved body before the improved body is cured. In this case, it is not necessary to drill the vertical hole 13 for the improved body 12 described above.
It is not necessary to supply the grout 24 for fixing into the inside 3, and efficient construction can be performed. In addition, since it is not necessary to drill the vertical hole 13, it is possible to build a large-diameter ready-made pile of about 500 to 1000 mm, and by building such a large-diameter ready-made pile in the improved body 12, the horizontal direction is improved. Will also increase significantly.

【0031】[0031]

【発明の効果】以上、説明したように、本発明に係る既
設構造物基礎の耐震補強工法によれば、高圧噴射攪拌工
法により造成した大径の改良体内に既製杭を建込んだ複
合杭を既設フーチングの補強に用いるようにしたので、
増し杭工法や鋼管矢板基礎増設工法などによる場合に比
べて、鉛直方向および水平方向の支持力が著しく増強さ
れ、耐震補強に対する信頼性の向上に大きく寄与するも
のとなる。また、高圧噴射攪拌工法による改良体の造成
は簡単な施工機械を用いて行うことができるので、施工
が大がかりになることもなく、工期の短縮や工費の低減
も可能になる。さらに、地盤中に液状化危険層が存在す
る場合には、該液状化危険層に対して複合杭と連接する
ように高圧噴射攪拌工法により改良体を増設し、あるい
は複合杭の相互間を通して中空ドレーン材を打設するこ
とにより、簡単に液状化対策を行うことができ、総じて
本発明の利用価値は大なるものがある。
As described above, according to the seismic retrofitting method for an existing structure foundation according to the present invention, a composite pile in which a ready-made pile is built in a large-diameter improved body formed by a high-pressure jet stirring method is used. Since it was used to reinforce the existing footing,
The vertical and horizontal bearing capacity is remarkably increased compared to the case of the additional pile method or the steel pipe sheet pile foundation method, which greatly contributes to the improvement of the reliability of the seismic reinforcement. In addition, since the formation of the improved body by the high-pressure injection stirring method can be performed using a simple construction machine, the construction does not become large and the construction period can be shortened and the construction cost can be reduced. Furthermore, if there is a liquefaction hazard layer in the ground, an improved body is added to the liquefaction hazard layer by a high-pressure jet stirring method so as to be connected to the composite pile, or a hollow body is inserted between the composite piles. By arranging the drain material, liquefaction countermeasures can be easily performed, and the utility value of the present invention is large in general.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る耐震補強工法の第1の実施の形態
を示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a seismic retrofitting method according to the present invention.

【図2】図1の要部を拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing a main part of FIG.

【図3】第1の実施の形態における補強状態を平面的に
示す模式図である。
FIG. 3 is a schematic plan view showing a reinforcing state in the first embodiment in a plan view.

【図4】第1の実施の形態における複合杭形成の施工手
順を示す断面図である。
FIG. 4 is a cross-sectional view showing a construction procedure for forming a composite pile according to the first embodiment.

【図5】本発明に係る耐震補強工法の第2の実施の形態
を示す断面図である。
FIG. 5 is a sectional view showing a second embodiment of the seismic retrofitting method according to the present invention.

【図6】本発明に係る耐震補強工法の第3の実施の形態
を示す断面図である。
FIG. 6 is a sectional view showing a third embodiment of the seismic retrofitting method according to the present invention.

【図7】第3の実施の形態における補強状態を平面的に
示す模式図である。
FIG. 7 is a schematic diagram showing a reinforcing state in a third embodiment in a plan view.

【図8】本発明に係る耐震補強工法の第4の実施の形態
を示す断面図である。
FIG. 8 is a sectional view showing a fourth embodiment of the seismic retrofitting method according to the present invention.

【符号の説明】[Explanation of symbols]

1 橋脚(既設構造物) 2 既設フーチング 3 地盤 4 既設杭 5 支持層 10 複合杭 11 増設フーチング 12 改良体 13 縦穴 14 既製杭 15 定着層 16 既製杭の大径部 17 既製杭の小径部 18 既製杭の節 30 液状化危険層 31 サブ改良体 32 連続壁 35 中空ドレーン材 DESCRIPTION OF SYMBOLS 1 Bridge pier (existing structure) 2 Existing footing 3 Ground 4 Existing pile 5 Support layer 10 Composite pile 11 Additional footing 12 Improved body 13 Vertical hole 14 Existing pile 15 Fixing layer 16 Large diameter portion of existing pile 17 Small diameter portion of existing pile 18 Existing Node of pile 30 Dangerous layer for liquefaction 31 Sub-improved body 32 Continuous wall 35 Hollow drain material

───────────────────────────────────────────────────── フロントページの続き (71)出願人 390036515 株式会社鴻池組 大阪府大阪市此花区伝法4丁目3番55号 (71)出願人 000148346 株式会社銭高組 大阪府大阪市西区西本町2丁目2番11号 (71)出願人 391058657 利根地下技術株式会社 東京都大田区南蒲田2丁目16番2号 (71)出願人 000230788 日本基礎技術株式会社 大阪府大阪市北区松ヶ枝町6番22号 (72)発明者 岡 憲二郎 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 (72)発明者 大下 武志 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 福井 次郎 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 松田 哲夫 東京都文京区大塚2丁目15番6号 財団法 人先端建設技術センター内 (72)発明者 三木 健男 大阪府大阪市中央区高麗橋4丁目1番1号 東洋建設株式会社内 Fターム(参考) 2D041 AA03 BA13 BA18 BA53 CA03 DB03 EA04 EA05 2D046 DA03 DA11 DA17  ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 390036515 Konoikegumi Co., Ltd. 4-55, Konohana-ku, Osaka, Osaka (71) Applicant 000148346 Sentakagumi Co., Ltd. 2-2-1, Nishihoncho, Nishi-ku, Osaka, Osaka (71) Applicant 391058657 Tone Underground Technology Co., Ltd. 2- 16-2 Minami Kamata, Ota-ku, Tokyo (71) Applicant 000230788 Japan Basic Technology Co., Ltd. 6-22 Matsugaeda-cho, Kita-ku, Osaka-shi, Osaka ( 72) Inventor Kenjiro Oka 4-1-1 Koraibashi, Chuo-ku, Osaka-shi, Osaka Toyo Construction Co., Ltd. (72) Inventor Takeshi Oshita 1 Asahi, Oaza, Tsukuba-shi, Ibaraki Pref. Jiro Fukui 1 Asahi, Asahi, Tsukuba, Ibaraki Pref. Public Works Research Institute, Ministry of Construction (72) Tetsuo Matsuda 2-15-6 Otsuka, Bunkyo-ku, Tokyo設技 surgery in the center (72) inventor Takeo Miki, Chuo-ku, Osaka-shi Kōraibashi 4 chome No. 1 Toyo Construction Co., Ltd. in the F-term (reference) 2D041 AA03 BA13 BA18 BA53 CA03 DB03 EA04 EA05 2D046 DA03 DA11 DA17

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 地盤中に高圧噴射攪拌工法により改良体
を造成した後、この改良体内に既製杭を建込んで複合杭
を形成する施工を、既設構造物のフーチング下の基礎の
周りで行って、該基礎の周りに前記複合杭を間隔を置い
て配置し、しかる後、前記既製杭の杭頭部を包むように
前記フーチングを増設することを特徴とする既設構造物
基礎の耐震補強工法。
After constructing an improved body in the ground by a high-pressure injection stirring method, a prefabricated pile is built in the improved body to form a composite pile around a foundation under a footing of an existing structure. The composite piles are arranged at intervals around the foundation, and then the footing is added so as to cover the pile heads of the ready-made piles.
【請求項2】 複合杭を、鉛直杭として形成することを
特徴とする請求項1に記載の耐震補強工法。
2. The seismic retrofitting method according to claim 1, wherein the composite pile is formed as a vertical pile.
【請求項3】 鉛直杭の一部または全部を斜杭で置換す
ることを特徴とする請求項2に記載の耐震補強工法。
3. The seismic retrofitting method according to claim 2, wherein a part or all of the vertical pile is replaced with a slanted pile.
【請求項4】 斜杭の傾斜角度が、10〜20°である
ことを特徴とする請求項3に記載の耐震補強工法
4. The seismic retrofitting method according to claim 3, wherein the inclination angle of the inclined pile is 10 to 20 °.
【請求項5】 改良体内に既製杭を建込む際、改良体内
に事前に縦穴を掘削し、この縦穴に既製杭を挿入すると
共に該既製杭の周りの空隙にグラウトを充填することを
特徴とする請求項1乃至4の何れか1項に記載の耐震補
強工法。
5. When a ready-made pile is built in the improved body, a vertical hole is excavated in advance in the improved body, the ready-made pile is inserted into the vertical hole, and a grout is filled in a space around the ready-made pile. The seismic retrofitting method according to any one of claims 1 to 4.
【請求項6】 既製杭として、その上部側部分を下部側
部分より大径とした異径杭を用いることを特徴とする請
求項5に記載の耐震補強工法。
6. The seismic retrofitting method according to claim 5, wherein a pile having a different diameter is used as the ready-made pile, the upper part of which is larger in diameter than the lower part.
【請求項7】 改良体内に既製杭を建込む際、改良体が
未硬化のうちに該改良体内に既製杭を圧入することを特
徴とする請求項1乃至4の何れか1項に記載の耐震補強
工法。
7. The method according to claim 1, wherein when the ready-made pile is built in the improved body, the ready-made pile is press-fitted into the improved body while the improved body is not yet cured. Seismic reinforcement method.
【請求項8】 既製杭が、節付きであることを特徴とす
る請求項1乃至7の何れか1項に記載の耐震補強工法。
8. The seismic retrofitting method according to claim 1, wherein the ready-made pile is knotted.
【請求項9】 地盤中に液状化危険層が存在する場合、
フーチングの増設に先行して、該液状化危険層に対して
複合杭と連接するように高圧噴射攪拌工法により改良体
を増設することを特徴とする請求項1乃至8の何れか1
項に記載の耐震補強工法。
9. When a liquefaction risk layer exists in the ground,
9. An improvement body according to any one of claims 1 to 8, wherein prior to the extension of the footing, an improved body is extended by a high-pressure jet stirring method so as to be connected to the composite pile with respect to the liquefaction-risk layer.
Seismic retrofitting method described in section.
【請求項10】 地盤中に液状化危険層が存在する場
合、フーチングの増設に先行して、該液状化危険層に対
して複合杭の相互間を通して中空ドレーン材を打設する
ことを特徴とする請求項1乃至8の何れか1項に記載の
耐震補強工法。
10. When a liquefaction-risk layer is present in the ground, prior to the extension of the footing, a hollow drain material is poured into the liquefaction-risk layer through a space between the composite piles. The seismic retrofitting method according to any one of claims 1 to 8.
JP2000390895A 2000-12-22 2000-12-22 Seismic retrofitting method for existing structure foundation Expired - Fee Related JP3448629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390895A JP3448629B2 (en) 2000-12-22 2000-12-22 Seismic retrofitting method for existing structure foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390895A JP3448629B2 (en) 2000-12-22 2000-12-22 Seismic retrofitting method for existing structure foundation

Publications (2)

Publication Number Publication Date
JP2002188157A true JP2002188157A (en) 2002-07-05
JP3448629B2 JP3448629B2 (en) 2003-09-22

Family

ID=18857164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390895A Expired - Fee Related JP3448629B2 (en) 2000-12-22 2000-12-22 Seismic retrofitting method for existing structure foundation

Country Status (1)

Country Link
JP (1) JP3448629B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG103365A1 (en) * 2002-10-08 2004-04-29 Abv Engineering Pte Ltd Repairing or reinforcing building foundations
JP2006265844A (en) * 2005-03-22 2006-10-05 Penta Ocean Constr Co Ltd Reinforcing structure of underwater foundation of existing structure and its reinforcing construction method
JP2006316490A (en) * 2005-05-12 2006-11-24 Shimizu Corp Seismic strengthening structure and seismic strengthening method for pile foundation
CN102235008A (en) * 2010-05-07 2011-11-09 浙江海洋学院 Engineering pile deviation preventing structure of soft soil foundation and pretreatment method
JP2016196734A (en) * 2015-04-02 2016-11-24 株式会社エスエスティー協会 Method for creating ground improvement foundation
JP2017096045A (en) * 2015-11-27 2017-06-01 株式会社竹中土木 Liquefaction countermeasure construction method of underground structure
CN110593328A (en) * 2017-09-15 2019-12-20 广州市台实防水补强有限公司 Pile foundation reinforcing method for building engineering construction
CN114182716A (en) * 2021-10-28 2022-03-15 河北工程大学 Method for manufacturing U-shaped precast sheet pile of anti-liquefaction reinforced permeable concrete for existing building
CN116220016A (en) * 2023-05-06 2023-06-06 中铁建工集团第二建设有限公司 Anti-seismic building pile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG103365A1 (en) * 2002-10-08 2004-04-29 Abv Engineering Pte Ltd Repairing or reinforcing building foundations
JP2006265844A (en) * 2005-03-22 2006-10-05 Penta Ocean Constr Co Ltd Reinforcing structure of underwater foundation of existing structure and its reinforcing construction method
JP4571878B2 (en) * 2005-03-22 2010-10-27 五洋建設株式会社 Reinforcement method for underwater foundation of existing structure
JP2006316490A (en) * 2005-05-12 2006-11-24 Shimizu Corp Seismic strengthening structure and seismic strengthening method for pile foundation
CN102235008A (en) * 2010-05-07 2011-11-09 浙江海洋学院 Engineering pile deviation preventing structure of soft soil foundation and pretreatment method
JP2016196734A (en) * 2015-04-02 2016-11-24 株式会社エスエスティー協会 Method for creating ground improvement foundation
JP2017096045A (en) * 2015-11-27 2017-06-01 株式会社竹中土木 Liquefaction countermeasure construction method of underground structure
CN110593328A (en) * 2017-09-15 2019-12-20 广州市台实防水补强有限公司 Pile foundation reinforcing method for building engineering construction
CN110593328B (en) * 2017-09-15 2020-10-20 精立建设有限公司 Pile foundation reinforcing method for building engineering construction
CN114182716A (en) * 2021-10-28 2022-03-15 河北工程大学 Method for manufacturing U-shaped precast sheet pile of anti-liquefaction reinforced permeable concrete for existing building
CN116220016A (en) * 2023-05-06 2023-06-06 中铁建工集团第二建设有限公司 Anti-seismic building pile
CN116220016B (en) * 2023-05-06 2023-07-25 中铁建工集团第二建设有限公司 Anti-seismic building pile

Also Published As

Publication number Publication date
JP3448629B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
KR100866162B1 (en) Chair-type self-supported earth retaining wall constructing method
JP3769637B2 (en) Slope stabilization method
CN105649090B (en) A kind of construction method of steel sheet pile combination mixing pile supporting
JP2007154413A (en) Soldier pile type earth retaining anchor type retaining wall and its construction method
JP5582497B2 (en) Slope stabilization method and landslide steel pipe restraint pile
JP4663541B2 (en) Seismic reinforcement method for existing concrete pier
JP3689840B2 (en) Seismic reinforcement method for existing structure foundation
KR101021915B1 (en) A method for constructing cut-off temporary structure for sheathing work
JP2002188157A (en) Aseismatic reinforcing method for foundation of existing structure
KR101078080B1 (en) Earth retaining wall and it's construction method using the precast pile and ground reinforcement
JP2000352296A (en) Method o constructing passage just under underground structure
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP2003119775A (en) Construction of foundation pile
JP3385876B2 (en) Cast-in-place pile construction method just below the existing foundation
JPH02232416A (en) Foundation pile structure
KR101864857B1 (en) Construction method of foundation pile with reinforced casing structure
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
JP4269301B2 (en) Cross-section expansion method for existing tunnels
JP3213240B2 (en) Support pile reinforcement structure of existing structure and its reinforcement method
JP2001064958A (en) Foundation constructing method
KR100996444B1 (en) Method for carrying out improved micro pile and improved micro pile and ribbed section pipe of the improved micro pile
JP2001081770A (en) Pile foundation work
JP2651893B2 (en) Foundation pile structure
JP2790038B2 (en) Reinforcement method of existing pile foundation building
JPH04115024A (en) Sheathing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

R150 Certificate of patent or registration of utility model

Ref document number: 3448629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees