JP5247648B2 - Reinforcing method for existing concrete structures - Google Patents

Reinforcing method for existing concrete structures Download PDF

Info

Publication number
JP5247648B2
JP5247648B2 JP2009232898A JP2009232898A JP5247648B2 JP 5247648 B2 JP5247648 B2 JP 5247648B2 JP 2009232898 A JP2009232898 A JP 2009232898A JP 2009232898 A JP2009232898 A JP 2009232898A JP 5247648 B2 JP5247648 B2 JP 5247648B2
Authority
JP
Japan
Prior art keywords
existing
assumed
strength
shear
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009232898A
Other languages
Japanese (ja)
Other versions
JP2011080239A (en
Inventor
昭彦 西村
礼夫 木村
秀朋 星
晋士郎 大本
靖広 大越
省二 島崎
朝実 小平
義行 村田
典男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Kajima Corp
Kumagai Gumi Co Ltd
Original Assignee
Neturen Co Ltd
Kajima Corp
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Kajima Corp, Kumagai Gumi Co Ltd filed Critical Neturen Co Ltd
Priority to JP2009232898A priority Critical patent/JP5247648B2/en
Publication of JP2011080239A publication Critical patent/JP2011080239A/en
Application granted granted Critical
Publication of JP5247648B2 publication Critical patent/JP5247648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、耐震のための既設コンクリート構造物の補強方法に関する。   The present invention relates to a method for reinforcing an existing concrete structure for earthquake resistance.

基礎の上面に対して略垂直に複数穿孔された所定深さの孔と、これら孔内に挿入された棒状の補強部材と、これら孔内に充填された自己硬化型充填材とを備えたコンクリート構造物が知られている(例えば、特許文献1,2など参照)。   Concrete comprising a plurality of holes having a predetermined depth perforated substantially perpendicularly to the upper surface of the foundation, rod-shaped reinforcing members inserted into these holes, and self-curing fillers filled in these holes Structures are known (see, for example, Patent Documents 1 and 2).

特開2007−247302号公報JP 2007-247302 A 特開2007−239440号公報JP 2007-239440 A

しかしながら、上述したコンクリート構造物では、補強が必要である場合、地震荷重により打ち継ぎ面でずれることを抑制する補強を行うのが適しているのか、それとも、コンクリート構造物の曲げによる破壊を抑制する補強をするのが良いのかを決めることができないという問題があった。
本発明は、コンクリート構造物の補強の要否を判定するとともに、補強が必要な場合には打ち継ぎ面でずれることを抑制する補強を行うのか、または、コンクリート構造物の曲げによる破壊を抑制する補強を行うのかを決める既設コンクリート構造物の補強方法を提供する。
However, in the above-described concrete structure, if reinforcement is required, is it appropriate to reinforce that suppresses displacement at the joint surface due to seismic load, or suppresses breakage due to bending of the concrete structure? There was a problem that it was not possible to decide whether or not to reinforce.
The present invention determines whether or not a concrete structure needs to be reinforced, and if reinforcement is required, performs reinforcement to suppress displacement at the joint surface, or suppresses breakage due to bending of the concrete structure. A method of reinforcing an existing concrete structure that determines whether to reinforce is provided.

想定する地震時の想定せん断力と想定する地震時の想定曲げモーメントとを算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力と既設コンクリート構造物の実際の現有曲げ耐力とを算出し、想定せん断力と現有せん断伝達耐力とを比較するとともに想定曲げモーメントと現有曲げ耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であるとともに想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行い、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物にプレストレスを導入する補強を行うので、補強が必要な場合には打ち継ぎ面でずれることを抑制する補強を行うのか、または、既設コンクリート構造物の曲げによる破壊を抑制する補強を行うのかを決めることができる。
また、もう一つの発明によれば、想定する地震時の想定せん断力を算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力を算出し、想定せん断力と現有せん断伝達耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行うので、地震により打ち継ぎ面でずれる既設コンクリート構造物の補強の要否を決めることができる。また、既設コンクリート構造物が地震荷重により打ち継ぎ面でずれることを防ぐことができる。
また、もう一つの発明によれば、想定する地震時の想定曲げモーメントを算出し、既設コンクリート構造物の実際の現有曲げ耐力を算出し、想定曲げモーメントと現有曲げ耐力とを比較し、想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物にプレストレスを導入する補強を行うので、地震荷重に対して既設コンクリート構造物にじん性、曲げ耐力を向上させる補強を行うことができる。
また、もう一つの発明によれば、想定する地震時の想定せん断力と想定する地震時の想定曲げモーメントとを算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力と既設コンクリート構造物の実際の現有曲げ耐力とを算出し、想定せん断力と現有せん断伝達耐力とを比較するとともに想定曲げモーメントと現有曲げ耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であるとともに想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行い、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物に鋼管による補強を行うので、コンクリート構造物の曲げに対する補強を行うことができる。
Calculate the assumed shear force at the time of the assumed earthquake and the assumed bending moment at the time of the earthquake, and calculate the existing shear transmission strength of the actual joint surface of the existing concrete structure and the actual existing bending strength of the existing concrete structure. Calculate and compare the assumed shear force with the existing shear transmission strength and compare the assumed bending moment with the existing bending strength. If the assumed shear force is less than the current shear transmission strength and the assumed bending moment is less than the current bending strength, If the assumed shear force is greater than the existing shear transmission strength, the steel material is reinforced. If the assumed bending moment is greater than the existing bending strength, the existing concrete structure is reinforced to introduce prestress. Therefore, if reinforcement is required, reinforce to prevent displacement at the joint surface, or use existing concrete structures. You can decide perform suppress reinforcing destruction due to bending of the object.
Further, according to another invention, the assumed shear force at the time of the assumed earthquake is calculated, the existing shear transmission strength of the actual joint surface of the existing concrete structure is calculated, and the assumed shear force and the existing shear transmission strength If the assumed shear force is less than the existing shear transmission capacity, reinforcement will not be performed, and if the assumed shear force is greater than the existing shear transmission capacity, steel will be used to reinforce the existing concrete. The necessity of reinforcing the structure can be determined. Moreover, it can prevent that an existing concrete structure slip | deviates by a joining surface by an earthquake load.
According to another invention, the assumed bending moment at the time of the assumed earthquake is calculated, the actual existing bending strength of the existing concrete structure is calculated, the assumed bending moment is compared with the existing bending strength, and the assumed bending moment is calculated. If the moment is less than the existing bending strength, it will not be reinforced, and if the assumed bending moment is greater than the existing bending strength, the existing concrete structure will be reinforced to introduce prestress, so that the existing concrete structure will be protected against seismic loads. Reinforcement that improves the toughness and bending strength can be performed.
Further, according to another invention, the assumed shear force at the time of the assumed earthquake and the assumed bending moment at the time of the earthquake are calculated, and the existing shear transmission strength of the actual joint surface of the existing concrete structure and the existing concrete are calculated. Calculate the actual existing bending strength of the structure, compare the assumed shear force with the existing shear transmission strength, compare the assumed bending moment with the existing bending strength, and the assumed shear force is less than the existing shear transmission strength. If the assumed bending moment is less than the existing bending strength, reinforcement is not performed.If the assumed shear force is greater than the existing shear transmission strength, reinforcement is performed with steel.If the assumed bending moment is greater than the existing bending strength, the existing concrete structure Since the object is reinforced with steel pipes, it can be reinforced against bending of concrete structures.

打ち継ぎ面を備えた既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier provided with the joint surface (Embodiment 1). コンクリート層が地震荷重により打ち継ぎ面でずれる状態を示す既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier which shows the state from which a concrete layer shifts | deviates by a joint surface by an earthquake load (embodiment 1). 既設橋脚が地震荷重によって曲がる状態を示す既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier which shows the state in which an existing pier bends by an earthquake load (embodiment 1). 既設橋脚の地震荷重と変位量との関係を表す特性図(実施形態1)。The characteristic view showing the relationship between the seismic load and displacement of an existing pier (Embodiment 1). 既設橋脚の補強要否判定方法のフローチャート(実施形態1)。The flowchart (embodiment 1) of the determination method of necessity of reinforcement of an existing pier. 打ち継ぎ面のずれを抑制する補強を行った既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier which performed the reinforcement which suppresses the shift | offset | difference of a joining surface (Embodiment 1). 既設橋脚の曲げ破壊を抑制する補強を行った既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier which performed the reinforcement which suppresses the bending fracture of the existing pier (Embodiment 1). 緊張材をアンボンド鋼材とした既設橋脚の断面図(実施形態1)。Sectional drawing of the existing pier which used the tension material as the unbonded steel material (Embodiment 1). 既設橋脚の補強方法のフローチャート(実施形態2)。The flowchart of the reinforcement method of the existing pier (embodiment 2). 既設橋脚の補強方法のフローチャート(実施形態3)。The flowchart of the reinforcement method of the existing pier (embodiment 3). 補強体として鋼管を用いた場合の橋脚を示す断面図(実施形態4)。Sectional drawing which shows the pier at the time of using a steel pipe as a reinforcement body (embodiment 4). 補強体として鋼管を用いた場合の橋脚を示す断面図(実施形態5)。Sectional drawing which shows the pier at the time of using a steel pipe as a reinforcement body (Embodiment 5). 補強体として鋼管を用いた場合の橋脚を示す断面図(実施形態4)。Sectional drawing which shows the pier at the time of using a steel pipe as a reinforcement body (embodiment 4). 補強体として鋼管を用いた場合の橋脚の施工方法を示す図(実施形態5)。The figure which shows the construction method of the pier at the time of using a steel pipe as a reinforcement body (embodiment 5). 補強体として鋼管を用いた場合の橋脚の施工方法を示す図(実施形態6)。The figure which shows the construction method of the pier at the time of using a steel pipe as a reinforcement body (embodiment 6).

実施形態1
図1に示すように、既設コンクリート構造物としての既設橋脚1は、基礎部2と橋脚本体3とにより形成される。
基礎部2は例えばフーチング基礎であり、地盤10に設けられる。
橋脚本体3は、基礎部2上に、コンクリートを複数回に分けて打ち継いで形成される。橋脚本体3の高さは例えば2〜3m以上である。
基礎部2及び橋脚本体3は、コンクリートを複数回に分けて打ち継いで形成された打ち継ぎコンクリート構造体14を構成する。打ち継ぎコンクリート構造体14は、鉄筋コンクリート構造、または、無筋コンクリート構造である。当該打ち継ぎコンクリート構造体14は、水平断面形状が、例えば、円形状または矩形状または多角形状に形成される。
上述の既設橋脚1が地震荷重に対する補強が必要である場合、地震荷重により打ち継ぎ面でずれることを抑制する鋼材による補強を行うのが適しているのか、それとも、コンクリート構造物の曲げによる破壊を抑制する既設コンクリート構造物に圧縮力を加える補強を行うのかを判別して、既設橋脚1の補強を行う。
Embodiment 1
As shown in FIG. 1, an existing pier 1 as an existing concrete structure is formed by a foundation portion 2 and a pier body 3.
The foundation part 2 is a footing foundation, for example, and is provided on the ground 10.
The pier main body 3 is formed on the foundation portion 2 by piercing the concrete into a plurality of times. The height of the pier body 3 is, for example, 2 to 3 m or more.
The foundation 2 and the pier body 3 constitute a joint concrete structure 14 formed by jointing the concrete into a plurality of times. The joint concrete structure 14 is a reinforced concrete structure or an unreinforced concrete structure. The joint concrete structure 14 has a horizontal cross-sectional shape, for example, a circular shape, a rectangular shape, or a polygonal shape.
If the existing pier 1 needs to be reinforced against seismic load, is it appropriate to reinforce it with steel that suppresses displacement at the joint surface due to seismic load, or breaks the concrete structure by bending? The existing pier 1 is reinforced by discriminating whether to apply a compressive force to the existing concrete structure to be suppressed.

図1に基づいて具体的に説明する。
橋脚本体3は、例えば、コンクリートを3回に分けて打ち継いで形成される。まず、基礎部2の上面8にコンクリートを打ち継いで所定高さの第1コンクリート層11を形成した後に1日以上放置してから第1コンクリート層11の上に同様に第2コンクリート層12を形成する。以後同様に、第2コンクリート層12の上に第3コンクリート層13を形成する。つまり、水平方向に延長する打ち継ぎ面21;21,22;22が、上下方向に所定の間隔を隔てて3箇所に設けられる。
第1コンクリート層〜第3コンクリート層11;12;13同士、または、基礎部2と橋脚本体3とが一体化されていない既設橋脚1(1A)の場合、地震が発生し、打ち継ぎ面21;21,22;22同士のせん断伝達耐力(以後、現有せん断伝達耐力Puという)よりも大きなせん断力を受けると、打ち継ぎ面21;21,22;22の上部に設置された第1コンクリート層11〜第3コンクリート層13が打ち継ぎ面21;21,22;22でずれることがある。例えば、図2の破線で示すように、地震荷重Pとしてのせん断力が打ち継ぎ面21;21の現有せん断伝達耐力Puよりも大きい場合には、打ち継ぎ面21;21の上部に設置された第1コンクリート層11及び第2コンクリート層12とが打ち継ぎ面21;21に沿ってずれることがある。また、第1コンクリート層〜第3コンクリート層11;12;13同士、または、基礎部2と橋脚本体3とが一体化するようにコンクリートが打ち継がれて形成された既設橋脚1(1B)、または、第1コンクリート層〜第3コンクリート層11;12;13同士、または、基礎部2と橋脚本体3とが一体化するようにコンクリートが打ち継がれて形成されたと仮定する既設橋脚1(1B)の場合、図3の破線で示すように、地震が発生して、既設橋脚1の弾性耐力(以後現有曲げ耐力Muという)よりも大きな曲げモーメントを受けると既設橋脚1が破壊されることがある。
実施形態1では、どちらの既設橋脚1(1A,1B)であっても補強の要否を判定する。つまり、当該打ち継ぎ面21;21,22;22のずれを抑制するために、想定する地震時のせん断力(以下、想定せん断力Pdという)を算出し、既設橋脚1の補強要否の判定を行うとともに、既設橋脚1の破壊を防ぐために、想定する地震時の既設橋脚1の曲げモーメント(以後、想定曲げモーメントMdという)を算出し既設橋脚1の補強要否の判定を行う。
A specific description will be given based on FIG.
The pier main body 3 is formed by, for example, dividing concrete into three parts. First, after the concrete is cast on the upper surface 8 of the foundation portion 2 to form the first concrete layer 11 having a predetermined height, the second concrete layer 12 is similarly formed on the first concrete layer 11 after being left for one day or more. Form. Thereafter, similarly, the third concrete layer 13 is formed on the second concrete layer 12. That is, the joining surfaces 21; 21, 22; 22 extending in the horizontal direction are provided at three positions with a predetermined interval in the vertical direction.
In the case of the existing pier 1 (1A) in which the first concrete layer to the third concrete layer 11; 12; 13 or the foundation portion 2 and the pier body 3 are not integrated, an earthquake occurs and the joining surface 21 The first concrete layer installed on the upper part of the joint surface 21; 21, 22; 22 when subjected to a shearing force greater than the shear transmission strength between the two (22, 22; 22) (hereinafter referred to as the current shear transmission resistance Pu); The 11th-3rd concrete layers 13 may shift | deviate by the joining surface 21; 21,22; 22. For example, as shown by a broken line in FIG. 2, when the shearing force as the seismic load P is larger than the existing shear transmission resistance Pu of the joint surface 21; 21, it is installed on the upper part of the joint surface 21; 21. The 1st concrete layer 11 and the 2nd concrete layer 12 may shift | deviate along the joining surface 21; 21. Moreover, the existing pier 1 (1B) formed by the concrete being handed over so that the first concrete layer to the third concrete layer 11; 12; 13 or the foundation portion 2 and the pier body 3 are integrated. Alternatively, the existing pier 1 (1B) assuming that the first concrete layer to the third concrete layer 11; 12; 13, or the concrete is handed over so that the foundation portion 2 and the pier body 3 are integrated. 3), as shown by the broken line in FIG. 3, the existing pier 1 may be destroyed if an earthquake occurs and a bending moment greater than the elastic strength of the existing pier 1 (hereinafter referred to as the existing bending strength Mu) is applied. is there.
In the first embodiment, the necessity of reinforcement is determined for any existing pier 1 (1A, 1B). That is, in order to suppress the displacement of the joint surfaces 21; 21, 22, and 22, the shear force at the time of the assumed earthquake (hereinafter referred to as the assumed shear force Pd) is calculated, and the necessity of reinforcement of the existing pier 1 is determined. In addition, in order to prevent destruction of the existing pier 1, the bending moment of the existing pier 1 at the time of the assumed earthquake (hereinafter referred to as an assumed bending moment Md) is calculated to determine whether the existing pier 1 needs to be reinforced.

既設橋脚1の補強要否を判定する方法を説明する。
図4に示すように、想定せん断力Pdが既設橋脚1の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puより大きい、または、想定曲げモーメントMdが既設橋脚1の現有曲げ耐力Muより大きければ既設橋脚1の補強を行う。また、想定せん断力Pdが既設橋脚1の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Pu未満であるとともに、想定曲げモーメントMdが既設橋脚1の現有曲げ耐力Mu未満であれば補強を行わない。尚、現有曲げ耐力Muは既設橋脚の降伏点My、後述の数式3、数式4により算出する。
尚、打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puは打ち継ぎ面21;21,22;22の上部に設置されたコンクリート層の自重と打ち継ぎ面21;21,22;22の摩擦係数μとを乗算した値により求められる。例えば、図2;図3に示すように、打ち継ぎ面21b;21bの現有せん断伝達耐力Puは、打ち継ぎ面21b;21bの摩擦係数μと、第1コンクリート層11と第2コンクリート層12との自重の和とを乗算した値により求められる。
尚、摩擦係数μの固体接触に関する平均値は0.45である。打ち継ぎ面21;21,22;22の不確実性を考慮してもμ=0.45/2程度は確保できると推測し、安全率を考慮して摩擦係数μは0.20を用いる。
A method for determining whether or not the existing pier 1 is to be reinforced will be described.
As shown in FIG. 4, the assumed shear force Pd is greater than the existing shear transmission strength Pu of the joint surfaces 21; 21, 22; 22 of the existing pier 1, or the assumed bending moment Md is the existing bending strength Mu of the existing pier 1. If it is larger, the existing pier 1 is reinforced. Further, if the assumed shearing force Pd is less than the existing shearing transmission strength Pu of the joint surfaces 21; 21, 22; 22 of the existing pier 1 and the assumed bending moment Md is less than the existing bending strength Mu of the existing pier 1, reinforcement is performed. Do not do. The existing bending strength Mu is calculated from the yield point My of the existing pier, Equations 3 and 4 described later.
It should be noted that the existing shear transmission strength Pu of the joining surfaces 21; 21, 22; 22 is the weight of the concrete layer installed on the upper portions of the joining surfaces 21; 21, 22; 22, and the joining surfaces 21; 21, 22; Is obtained by multiplying by the coefficient of friction μ. For example, as shown in FIG. 2; FIG. 3, the existing shear transfer resistance Pu of the joining surface 21b; 21b is the friction coefficient μ of the joining surface 21b; 21b, the first concrete layer 11 and the second concrete layer 12 Is obtained by multiplying by the sum of its own weights.
In addition, the average value regarding the solid contact of the coefficient of friction μ is 0.45. Even considering the uncertainties of the joining surfaces 21; 21, 22; 22, it is assumed that μ = 0.45 / 2 can be secured, and the friction coefficient μ is 0.20 in consideration of the safety factor.

次に、既設橋脚1の補強要否判定方法を図5のフローチャートに基づいて詳説する。
まず、想定せん断力Pdと想定曲げモーメントMdとを算定する(ステップS1)。次に、既設橋脚1の現有耐力の算定を行う。すなわち、既設橋脚1の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puの算定を行う(ステップS2)。そして、既設橋脚の現有曲げ耐力Muの算定を行う(ステップS3)。次に、現有せん断伝達耐力Puと想定せん断力Pdとを比較するとともに、現有曲げ耐力Muと想定曲げモーメントMdとを比較する(ステップS4)。現有せん断伝達耐力Puが想定せん断力Pd以上であるとともに、現有曲げ耐力Muが想定曲げモーメントMd以上であれば、既設橋脚1に補強を行わない(ステップS4のYes)。次に、現有せん断伝達耐力Puが想定せん断力Pd未満、もしくは、現有曲げ耐力Muが想定曲げモーメントMd未満の場合には、既設橋脚1に補強を行う。現有せん断伝達耐力Puが想定せん断力Pd未満の場合、想定せん断力Pdを超える現有せん断伝達耐力Puとして必要せん断耐力Pudを算定する。また、現有曲げ耐力Muが想定曲げモーメントMd未満の場合、想定曲げモーメントMdを超える現有曲げ耐力Muとして必要曲げ耐力Mudを算定する(ステップS5)。次に、現有せん断伝達耐力Puと想定せん断力Pdとを比較する(ステップS6)。現有せん断伝達耐力Puが想定せん断力Pd未満の場合(ステップS6のNo)、既設橋脚1を打ち継ぎ面21;21,22;22でずれる既設橋脚1Aとして、必要せん断耐力Pudを満たす既設橋脚1Aの補強のための設計を行う。この既設橋脚1Aの補強のための設計は、例えば、補強材としての鋼材の断面積の設定、鋼材の設置箇所の設定、鋼材の設置本数の設定等により行われる(ステップS7)。尚、ステップS6で現有せん断伝達耐力Puが想定せん断力Pdより大きい場合、既設橋脚1を打ち継ぎ面21;21,22;22でずれることのない既設橋脚1Bであると想定する。この既設橋脚1BはステップS4のNoを経由しており、当該既設橋脚1Bの現有曲げ耐力Muが想定曲げモーメントMd未満である。このため、既設橋脚1Bに想定曲げモーメントMdを超える必要曲げ耐力Mudを満たす補強のための設計を行う。この既設橋脚1Bの補強の設計は、例えば、既設橋脚1Bに圧縮力を与える補強材としての緊張材に加える圧縮力、緊張材の断面積の設定、緊張材の設置箇所の設定、緊張材の設置本数の設定等により行われる(ステップS8)。次に、鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdの算定、または、既設橋脚1Bに圧縮力を加えるための挿入緊張材周辺のコンクリートの押し抜きせん断耐力Vpcdの算定を行う。尚、コンクリートの押し抜きせん断耐力Vpcdの算定は後述の数式により求められる(ステップS9)。次に、押し抜きせん断耐力Vpcdと想定せん断力Pdとを比較する(ステップS10)。既設橋脚1Aの補強である鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdが想定せん断力Pd未満であれば、(ステップS7を経由したステップS10がNo)鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdを満たすように既設橋脚1Aの補強のための設計をやり直す(ステップ7に戻る)。また、既設橋脚1Bの補強のための緊張材周辺の押し抜きせん断耐力Vpcdが想定せん断力Pd未満であれば、(ステップS8を経由したステップS10がNo)緊張材周辺のコンクリートの押し抜きせん断耐力Vpcdを満たすように既設橋脚1Bの補強のための設計をやり直す(ステップ8に戻る)。鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdが想定せん断力Pd以上の場合、既設橋脚1Aが地震荷重により打ち継ぎ面21;21,22;22でずれることを抑制する補強を行うことができる。または、緊張材周辺のコンクリートの押し抜きせん断耐力Vpcdが想定せん断力Pd以上の場合、既設橋脚1Bが地震荷重による打ち継ぎコンクリート構造体14の曲げによる破壊を抑制する補強を行うことができる(ステップS10のYES)。
Next, a method for determining the necessity of reinforcement of the existing pier 1 will be described in detail based on the flowchart of FIG.
First, an assumed shear force Pd and an assumed bending moment Md are calculated (step S1). Next, the existing strength of the existing pier 1 is calculated. That is, the existing shear transmission resistance Pu of the joining surfaces 21; 21, 22; 22 of the existing pier 1 is calculated (step S2). Then, the existing bending strength Mu of the existing pier is calculated (step S3). Next, the existing shear transmission strength Pu and the assumed shear force Pd are compared, and the existing bending strength Mu and the assumed bending moment Md are compared (step S4). If the existing shear transmission strength Pu is equal to or greater than the assumed shear force Pd and the current bending strength Mu is equal to or greater than the expected bending moment Md, the existing pier 1 is not reinforced (Yes in step S4). Next, when the existing shearing transmission strength Pu is less than the assumed shearing force Pd or the existing bending strength Mu is less than the assumed bending moment Md, the existing pier 1 is reinforced. When the current shear transmission strength Pu is less than the assumed shear force Pd, the required shear strength Pud is calculated as the current shear transmission strength Pu exceeding the assumed shear force Pd. If the current bending strength Mu is less than the assumed bending moment Md, the required bending strength Mud is calculated as the current bending strength Mu exceeding the assumed bending moment Md (step S5). Next, the existing shear transmission resistance Pu and the assumed shear force Pd are compared (step S6). When the existing shear transmission strength Pu is less than the assumed shear force Pd (No in step S6), the existing pier 1A satisfying the required shear strength Pud is used as the existing pier 1A that is displaced by the joining surfaces 21; 21, 22, and 22. Design for reinforcement. The design for reinforcing the existing pier 1A is performed, for example, by setting the cross-sectional area of the steel material as the reinforcing material, setting the installation location of the steel material, setting the number of steel materials to be installed (step S7). When the existing shear transmission resistance Pu is larger than the assumed shear force Pd in step S6, it is assumed that the existing pier 1 is an existing pier 1B that does not deviate on the joining surfaces 21; 21, 22, and 22. The existing pier 1B passes through No of step S4, and the existing bending proof Mu of the existing pier 1B is less than the assumed bending moment Md. For this reason, the design for the reinforcement which satisfy | fills the required bending strength Mud exceeding the assumption bending moment Md to the existing pier 1B is performed. The design of the reinforcement of the existing pier 1B is, for example, a compression force applied to a tension material as a reinforcement material that gives a compression force to the existing pier 1B, a setting of a cross-sectional area of the tension material, a setting position of the tension material, This is done by setting the number of installations (step S8). Next, the punching shear strength V pcd of the concrete around the steel material is calculated, or the punching shear strength V pcd of the concrete around the insertion tension material for applying a compressive force to the existing pier 1B is calculated. In addition, calculation of the punching shear strength V pcd of concrete is calculated | required by the below-mentioned numerical formula (step S9). Next, the punching shear strength V pcd and the assumed shearing force Pd are compared (step S10). If the punching shear strength V pcd of the concrete around the steel material that is the reinforcement of the existing pier 1A is less than the assumed shearing force Pd (No in step S10 via step S7), the punching shear strength V pcd of the concrete around the steel material The design for reinforcing the existing pier 1A is performed again so as to satisfy the condition (return to step 7). If the punching shear strength V pcd around the tension member for reinforcing the existing pier 1B is less than the assumed shearing force Pd (No in step S10 via step S8), the punching shear of the concrete around the tension member The design for reinforcing the existing pier 1B is performed again so as to satisfy the proof stress V pcd (return to step 8). When the punching shear strength V pcd of the concrete around the steel material is equal to or greater than the assumed shear force Pd, reinforcement can be performed to prevent the existing pier 1A from being displaced at the joint surfaces 21; 21, 22, and 22 due to seismic load. Alternatively, when the punching shear strength V pcd of the concrete around the tendon is equal to or greater than the assumed shear force Pd, the existing pier 1B can be reinforced to suppress breakage due to bending of the joint concrete structure 14 due to seismic load ( YES of step S10).

補強体(鋼材,緊張材)の押し抜きせん断耐力Vpcdは次の数式1により算定する。 The punching shear strength V pcd of the reinforcing body (steel material, tension material) is calculated by the following formula 1.

Figure 0005247648
Figure 0005247648

ここで、
τα1:コンクリートの許容押し抜きせん断応力度で0.8〜1.1
γ:部材係数で1.3
Aτ:せん断抵抗面積
とする。
せん断抵抗面積Aτは次の数式2により算定する。
here,
τ α1 : 0.8 to 1.1 in terms of allowable punching shear stress of concrete
γ b : 1.3 in terms of member coefficient
Aτ: Shear resistance area.
The shear resistance area Aτ is calculated by the following formula 2.

Figure 0005247648
Figure 0005247648

ここで、
n:鋼棒(鋼材)本数
d:鋼棒(鋼材)中心から外縁までの距離
φ:鋼棒(鋼材)の直径
L:鋼棒(鋼材)の純間隔(=鋼棒芯間隔−φ)
とする。
緊張材周辺のコンクリートの押し抜きせん断耐力Vpcdの算定は、前述の数式の説明で用いられた「鋼棒(鋼材)」を「緊張材」と読み替えて求めればよい。
here,
n: number of steel bars (steel materials) d: distance from the center of the steel bars (steel materials) to the outer edge φ: diameter of the steel bars (steel materials) L: pure interval between the steel bars (steel materials) (= steel bar core interval−φ)
And
Calculation of the punching shear strength V pcd of the concrete around the tendon may be obtained by replacing “steel rod (steel)” used in the description of the above-described mathematical formula with “ tensile ”.

現有曲げ耐力Muは次の数式3,数式4に算定する。尚、数式4は簡易式である。   The existing bending strength Mu is calculated by the following formulas 3 and 4. Formula 4 is a simple formula.

Figure 0005247648
Figure 0005247648

Figure 0005247648
Figure 0005247648

ここで、
:鋼棒(鋼材)の断面積(mm
pud:アンボンド鋼棒(緊張材)の設計引張強度(N/mm
pyd:アンボンド鋼棒(緊張材)の設計引張降伏強度(N/mm
d:有効高さ(mm)
:引張鋼材比(鉄筋)
f’cd:コンクリートの設計圧縮強度(N/mm
とする。
here,
A s: cross-sectional area of the steel bar (steel) (mm 2)
f pud : Design tensile strength of unbonded steel bar (tensile material) (N / mm 2 )
f pyd : design tensile yield strength (N / mm 2 ) of unbonded steel bar (tensile material)
d: Effective height (mm)
pt : Tensile steel ratio (rebar)
f ′ cd : Design compressive strength of concrete (N / mm 2 )
And

既設橋脚1Aの補強について説明する。
図6に示すように、既設橋脚1Aの補強は、孔4と補強体5と、充填材6とにより形成される。
The reinforcement of the existing pier 1A will be described.
As shown in FIG. 6, the reinforcement of the existing pier 1 </ b> A is formed by the hole 4, the reinforcing body 5, and the filler 6.

孔4は、打ち継ぎコンクリート構造体14の外面に開口した有底孔である。例えば、孔4は、打ち継ぎコンクリート構造体14の上端面7から基礎部2に延長するように形成され、橋脚本体3中に形成された1つ以上の打ち継ぎ面21;21及び基礎部2の上面8と橋脚本体3との境界である打ち継ぎ面22;22を貫通するように設けられた一端有底で他端開口の有底孔により形成される。
補強体5は、すべての打ち継ぎ面21;21,22;22を貫通するように孔4内に設置される。補強体5としては、鋼材(鋼棒50)、その他の棒材などが用いられる。
充填材6は、打ち継ぎコンクリート構造体14の打ち継ぎ面21;21,22;22を貫通するように孔4内に設置された補強体5と孔4の内壁9との間に充填される。充填材6としては、高流動性、不分離性、無収縮性を有したモルタルやセメントミルクなどを用いる。
The hole 4 is a bottomed hole opened on the outer surface of the joint concrete structure 14. For example, the hole 4 is formed so as to extend from the upper end surface 7 of the jointed concrete structure 14 to the foundation part 2, and one or more joining surfaces 21; 21 and the foundation part 2 formed in the pier body 3. Are formed by a bottomed hole having one end and a bottom end provided so as to pass through the joining surface 22;
The reinforcing body 5 is installed in the hole 4 so as to penetrate all the joining surfaces 21; 21, 22; As the reinforcing body 5, a steel material (steel bar 50), other bar materials, or the like is used.
The filler 6 is filled between the reinforcing body 5 installed in the hole 4 and the inner wall 9 of the hole 4 so as to penetrate the joint surfaces 21; 21, 22; 22 of the joint concrete structure 14. . As the filler 6, mortar or cement milk having high fluidity, non-separability, and non-shrinkage is used.

図6に基づいて具体的に説明する。
孔4の形成場所は施工条件により決め、孔4の個数は設計に基づき決めればよい。例えば、孔4は、橋脚本体3の上端面7から下方に鉛直に延長し、3箇所の打ち継ぎ面21;21,22;22を貫通するように形成される。
そして、補強体5を一端側から孔4内に挿入し、補強体5の一端を孔4の孔底20に接触させて補強体5の他端部を孔4の他端開口41より孔4外に突出させた状態、または、他端部を他端開口41より孔4内に挿入した状態、または、他端部を打ち継ぎコンクリート構造体14の上端面7と面一となるような状態に設置させる。そして、当該補強体5が挿入された孔4内に充填材6を充填する。充填材6は、孔4の内壁9と孔4内に設置された補強体5の外周面との間に充填される。つまり、充填材6は、補強体5が挿入された孔4内全体に充填される。尚、孔4内への充填材6の充填は実施形態4で説明する充填装置42を用いて行えばよい。孔4を打ち継ぎコンクリート構造体14の上端面7に開口した有底孔により形成したので、孔4の形成が容易となり、また、孔4及び補強体5を鉛直または鉛直に近い状態に設置できるようになるので、地震力に対するせん断耐力や曲げ耐力、じん性がより向上する橋脚100を形成することができる。さらに、補強体5が挿入された孔4内全体に充填材6を容易に充填することができるようになり、作業性を向上できる。
また、補強体5が挿入された孔4内全体に充填材を充填したので、地震力が加わった場合、孔4内に空間がある場合に比べて補強体5のずれ防止効果が向上する。
This will be specifically described with reference to FIG.
The place where the holes 4 are formed is determined according to the construction conditions, and the number of the holes 4 may be determined based on the design. For example, the hole 4 extends vertically downward from the upper end surface 7 of the pier body 3 and is formed so as to penetrate the three joint surfaces 21; 21, 22;
The reinforcing body 5 is inserted into the hole 4 from one end side, one end of the reinforcing body 5 is brought into contact with the hole bottom 20 of the hole 4, and the other end of the reinforcing body 5 is inserted into the hole 4 from the other end opening 41 of the hole 4. A state of projecting outside, a state in which the other end is inserted into the hole 4 from the other end opening 41, or a state in which the other end is flush with the upper end surface 7 of the cast-in concrete structure 14 To install. And the filler 6 is filled in the hole 4 in which the said reinforcement body 5 was inserted. The filler 6 is filled between the inner wall 9 of the hole 4 and the outer peripheral surface of the reinforcing body 5 installed in the hole 4. That is, the filler 6 is filled in the whole hole 4 in which the reinforcing body 5 is inserted. The filling of the filler 6 into the hole 4 may be performed using the filling device 42 described in the fourth embodiment. Since the hole 4 is formed by the bottomed hole opened in the upper end surface 7 of the joint concrete structure 14, the formation of the hole 4 is facilitated, and the hole 4 and the reinforcing body 5 can be installed in a vertical or nearly vertical state. As a result, the pier 100 can be formed in which the shear strength, bending strength, and toughness against seismic force are further improved. Furthermore, the filler 6 can be easily filled in the entire hole 4 in which the reinforcing body 5 is inserted, and workability can be improved.
In addition, since the filling material is filled in the entire hole 4 in which the reinforcing body 5 is inserted, when the seismic force is applied, the effect of preventing the displacement of the reinforcing body 5 is improved as compared with the case where there is a space in the hole 4.

次に、既設橋脚1Bの補強について説明する。図7に示すように、既設橋脚1Bの補強は既設橋脚1Bにプレストレスを導入する補強であって、孔4と補強体5と、充填材6と、定着部材56とにより形成される。
補強体5としては、緊張材が用いられる。緊張材としては、PC鋼材、炭素繊維により形成された緊張材等が用いられる。PC鋼材としては、例えば、PC鋼棒(直径10mm以上の高強度鋼)、PC鋼より線(直径8mm以下の高強度鋼であるPC鋼線をより合わせたもの)などが用いられる。
定着部材56は、補強体5の一端部に取付けられる一端側定着部材57と、補強体5の他端部に取付けられる他端側定着部材58とにより構成される。一端側定着部材57は、補強体5の一端部の周面より突出する突出体により形成される。突出体は、例えば補強体5の一端部の周面に形成された図外のねじ部に螺着されて当該補強体5の一端部に固定されるナット部材により形成される。他端側定着部材58は、孔4の他端開口41を覆うように打ち継ぎコンクリート構造体14の上端面7に設置されるプレート58aと、プレート58aの中央に形成された貫通孔58bを貫通する補強体5の他端部の周面に形成された図外のねじ部に螺着されて当該補強体5の一端部に固定されるナット部材58cとにより形成される。
Next, reinforcement of the existing pier 1B will be described. As shown in FIG. 7, the reinforcement of the existing pier 1 </ b> B is a reinforcement that introduces prestress into the existing pier 1 </ b> B, and is formed by the hole 4, the reinforcing body 5, the filler 6, and the fixing member 56.
As the reinforcing body 5, a tendon is used. As the tension material, a PC steel material, a tension material formed of carbon fiber, or the like is used. As the PC steel material, for example, a PC steel rod (high strength steel having a diameter of 10 mm or more), a PC steel wire (a combination of PC steel wires which are high strength steel having a diameter of 8 mm or less), and the like are used.
The fixing member 56 includes a first end side fixing member 57 attached to one end portion of the reinforcing body 5 and a second end side fixing member 58 attached to the other end portion of the reinforcing body 5. The one end-side fixing member 57 is formed by a projecting body that projects from the peripheral surface of one end of the reinforcing body 5. The protruding body is formed by a nut member that is screwed to a screw portion (not shown) formed on the peripheral surface of one end portion of the reinforcing body 5 and fixed to the one end portion of the reinforcing body 5, for example. The other end side fixing member 58 passes through a plate 58a installed on the upper end surface 7 of the joint concrete structure 14 so as to cover the other end opening 41 of the hole 4 and a through hole 58b formed in the center of the plate 58a. It is formed by a nut member 58 c that is screwed to a screw portion (not shown) formed on the peripheral surface of the other end portion of the reinforcing body 5 and is fixed to one end portion of the reinforcing body 5.

補強体5の設置された孔4内に充填材6を充填して、孔4外に突出する補強体5の他端部にプレート58aの貫通孔58bを通すとともにナット部材58cを螺着し、充填材6が固化した後に補強体5の他端を図外の引張装置により引張った状態でナット部材58cをプレート58aに締結することにより、既設橋脚1に圧縮力を加える。すなわち、打ち継ぎコンクリート構造体14のコンクリートは、予め圧縮力が加えられて打ち継ぎ面21;21,22;22同士の摩擦力が増加したプレストレスコンクリートに形成される。   Filling the hole 4 in which the reinforcing body 5 is installed with the filler 6, passing the through hole 58b of the plate 58a to the other end of the reinforcing body 5 protruding outside the hole 4, and screwing the nut member 58c; After the filler 6 is solidified, a compression force is applied to the existing pier 1 by fastening the nut member 58c to the plate 58a in a state where the other end of the reinforcing body 5 is pulled by a tension device (not shown). That is, the concrete of the joint concrete structure 14 is formed into prestressed concrete in which a compressive force is applied in advance and the frictional force between the joint surfaces 21; 21, 22; 22 is increased.

図7に基づいて具体的に説明する。
一端側定着部材57を取付けた補強体5を一端側から孔4内に挿入し、補強体5の一端を孔4の孔底20に接触させて補強体5の他端部を孔4の他端開口41より孔4外に突出させた状態で、当該補強体5が挿入された孔4内に充填材6を充填する。充填材6は、孔4の内壁9と孔4内に設置された補強体5及び一端側定着部材57の外周面との間に充填される。つまり、充填材6は、一端側定着部材57を取付けた補強体5が挿入された孔4内全体に充填される。尚、孔4内への充填材6の充填は実施形態4で説明する充填装置42を用いて行えばよい。そして、孔4外に突出する補強体5の他端部にプレート58aの貫通孔58bを通すとともにナット部材58cを螺着する。充填材6が固化した後に、補強体5の他端部に図外の引張装置を取付けて補強体5を引張った状態でナット部材58cをプレート58aに締結する。これにより、充填材6が補強体5の一端部に取付けられた一端側定着部材57によって圧縮され、この圧縮力が充填材6と孔4の内壁9との付着部を介して打ち継ぎコンクリート構造体14のコンクリートに伝達される。よって、打ち継ぎコンクリート構造体14は、上記圧縮力が加えられて打ち継ぎ面21;21,22;22同士の摩擦力が増加したプレストレスコンクリートに形成されることになる。
This will be specifically described with reference to FIG.
The reinforcing body 5 to which the one end side fixing member 57 is attached is inserted into the hole 4 from one end side, one end of the reinforcing body 5 is brought into contact with the hole bottom 20 of the hole 4, and the other end of the reinforcing body 5 is connected to the hole 4. In a state where the reinforcing body 5 is inserted from the end opening 41 to the outside of the hole 4, the filler 6 is filled into the hole 4. The filler 6 is filled between the inner wall 9 of the hole 4 and the outer peripheral surface of the reinforcing member 5 and the one end side fixing member 57 installed in the hole 4. That is, the filler 6 is filled in the entire hole 4 in which the reinforcing body 5 to which the one end side fixing member 57 is attached is inserted. The filling of the filler 6 into the hole 4 may be performed using the filling device 42 described in the fourth embodiment. Then, the through hole 58b of the plate 58a is passed through the other end of the reinforcing body 5 protruding outside the hole 4, and the nut member 58c is screwed. After the filler 6 is solidified, a tension device (not shown) is attached to the other end of the reinforcing body 5 and the nut member 58c is fastened to the plate 58a in a state where the reinforcing body 5 is pulled. As a result, the filler 6 is compressed by the one-end-side fixing member 57 attached to one end of the reinforcing body 5, and this compressive force is applied to the jointed concrete structure via the adhesion between the filler 6 and the inner wall 9 of the hole 4. It is transmitted to the concrete of the body 14. Therefore, the joint concrete structure 14 is formed into prestressed concrete in which the compressive force is applied and the frictional force between the joint surfaces 21; 21, 22; 22 is increased.

既設橋脚1Bの補強によれば、プレストレスの導入により打ち継ぎコンクリート構造体14の打継ぎ面21;21,22;22同士の摩擦力が大きくなり、打ち継ぎコンクリート構造体14の打ち継ぎ面のずれ防止効果が高い橋脚100となる。
また、一端側定着部材57を取付けた補強体5が挿入された孔4内全体に充填材6を充填したので、補強体5の定着が安定する。
According to the reinforcement of the existing bridge pier 1B, the introduction of pre-stress increases the frictional force between the joint surfaces 21; 21, 22; 22 of the joint concrete structure 14, and the joint surface of the joint concrete structure 14 is improved. The pier 100 has a high slip prevention effect.
In addition, since the filler 6 is filled in the entire hole 4 in which the reinforcing body 5 to which the one-end-side fixing member 57 is attached is inserted, the fixing of the reinforcing body 5 is stabilized.

図8に示すように、既設橋脚1Bの緊張材としてアンボンド鋼材69を用いてもよい。アンボンド鋼材69としてはアンボンド鋼棒、アンボンド鋼より線等が用いられる。
アンボンド鋼材69は、PC棒体70と、被覆部75とを備える。被覆部75はPC棒体70の周面76に塗布した塗布材、あるいは、PC棒体70の周面76に被覆した被覆材によって形成される。塗布材は、例えば、アスファルト系ポリマーが用いられる。被覆材は、防錆材とポリプロピレンとポリエチレンシース等が用いられる。被覆材はPC棒体70の周面に巻きつけられる。
As shown in FIG. 8, an unbonded steel material 69 may be used as a tension member for the existing pier 1B. As the unbonded steel material 69, an unbonded steel rod, an unbonded steel strand or the like is used.
The unbonded steel material 69 includes a PC bar 70 and a covering portion 75. The covering portion 75 is formed by a coating material applied to the peripheral surface 76 of the PC rod 70 or a covering material coated on the peripheral surface 76 of the PC rod 70. As the coating material, for example, an asphalt polymer is used. As the covering material, a rust preventive material, polypropylene, polyethylene sheath and the like are used. The covering material is wound around the peripheral surface of the PC bar 70.

アンボンド鋼材69を用いることによって、緊張材を用いる効果に加えて、以下の効果が得られる。アンボンド鋼材69を用いた場合、被覆部75によってPC棒体70と充填材6とが縁切りされるので、PC棒体70の中間部が充填材6に付着せず、図外の引張装置でPC棒体70を容易に引張ることができるので、容易にPC棒体70に緊張力を加えることができる。また、硬化した充填材6とPC棒体70との付着を防止できるので、PC棒体70を引張って緊張させる場合において、硬化した充填材6が破壊されにくくなり、品質の良い橋脚100となる。   By using the unbonded steel material 69, in addition to the effect of using the tendon material, the following effect can be obtained. When the unbonded steel material 69 is used, the PC rod 70 and the filler 6 are cut off by the covering portion 75, so that the intermediate portion of the PC rod 70 does not adhere to the filler 6, and the PC is used by a tension device (not shown). Since the rod body 70 can be easily pulled, tension can be easily applied to the PC rod body 70. Moreover, since adhesion between the hardened filler 6 and the PC rod body 70 can be prevented, when the PC rod body 70 is pulled and tensioned, the hardened filler material 6 is not easily destroyed, and the pier 100 with high quality is obtained. .

尚、既設橋脚1Aと既設橋脚1Bとの補強に際して、後述するスペーサ兼吊り部23と同様の図外のスペーサを補強体5の外周面に溶接などで取り付けておけば、孔4内に補強体5を設置した場合に補強体5の中心軸と孔4の中心軸とを一致させることができ、補強体5が傾いて孔4内に設置されることを防止できて好ましい。図外のスペーサは、少なくとも、補強体5の一端部の外周面と補強体5の他端部の外周面とに設けておけば、補強体5が傾いて孔4内に設置されることを効果的に防止できて好ましい。   In addition, when reinforcing the existing pier 1A and the existing pier 1B, if a spacer (not shown) similar to the spacer / hanging portion 23 to be described later is attached to the outer peripheral surface of the reinforcing member 5 by welding or the like, the reinforcing member is placed in the hole 4. When 5 is installed, it is preferable that the central axis of the reinforcing body 5 and the central axis of the hole 4 can coincide with each other, and the reinforcing body 5 can be prevented from being inclined and installed in the hole 4. If spacers outside the figure are provided at least on the outer peripheral surface of one end of the reinforcing member 5 and the outer peripheral surface of the other end of the reinforcing member 5, the reinforcing member 5 is inclined and installed in the hole 4. This is preferable because it can be effectively prevented.

実施形態1によれば、想定する地震時の想定せん断力Pdと既設橋脚の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puとを算定するとともに、想定する地震時の想定曲げモーメントMdと既設橋脚の現有曲げ耐力Muとを算定する。また、想定せん断力Pdと打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puとを比較するとともに、想定曲げモーメントMdと現有曲げ耐力Muとを比較する。これにより、既設橋脚1Aまたは既設橋脚1Bに地震荷重Pに耐えるための補強が必要かどうかを判別することができる。また、地震荷重Pに対して適した補強の設計を決めることができる。つまり、既設橋脚1にずれ対策の補強を行うか、破壊防止のための曲げ抑制の補強を行うかを決めることができる。また、必要せん断耐力Pudを算定することにより既設橋脚1に想定せん断力Pdに耐える補強を行うことができ、必要曲げ耐力Mudを算定することにより、既設橋脚1に想定曲げモーメントMdに耐える補強を行える。尚、コンクリートの押し抜きせん断耐力Vpcdを算定し、コンクリートの押し抜きせん断耐力Vpcdと想定せん断力Pdとを比較をしたので、補強体5が打ち継ぎコンクリート構造体14に挿入された補強体5の周辺のコンクリートにひび割れを発生させる押し抜き破壊の発生を防止できる。 According to the first embodiment, the assumed shear force Pd at the time of the assumed earthquake and the existing shear transmission capacity Pu of the joint surfaces 21; 21, 22; 22 of the existing pier are calculated, and the assumed bending moment at the time of the assumed earthquake. Calculate Md and the existing bending strength Mu of the existing pier. Further, the assumed shear force Pd is compared with the existing shear transmission strength Pu of the joining surfaces 21; 21, 22; 22, and the assumed bending moment Md is compared with the existing bending strength Mu. Thereby, it can be determined whether the existing pier 1A or the existing pier 1B needs to be reinforced to withstand the seismic load P. In addition, a reinforcement design suitable for the seismic load P can be determined. That is, it is possible to decide whether to strengthen the existing bridge pier 1 as a countermeasure against displacement or to reinforce bending suppression to prevent breakage. Further, by calculating the required shear strength Pud, the existing pier 1 can be reinforced to withstand the assumed shear force Pd, and by calculating the required bending strength Mud, the existing pier 1 can be reinforced to withstand the expected bending moment Md. Yes. Incidentally, calculated the punching shear strength V pcd concrete, since the comparison between punching shear strength V pcd and assumed shear Pd concrete, reinforcing member is a reinforcing member 5 is inserted in the concrete structure 14 joint strike It is possible to prevent the occurrence of punching fractures that generate cracks in the concrete around the 5.

実施形態2
実施形態1では、既設橋脚1A,1Bの両方について補強の要否を判定したが、実施形態2では、打ち継ぎ面21;21,22;22のずれを抑制するために、想定せん断力Pdを算出し、既設橋脚1Aの補強要否の判定を行う。この場合は、図9のフローチャートに従えばよい。
Embodiment 2
In the first embodiment, the necessity of reinforcement is determined for both of the existing piers 1A and 1B. However, in the second embodiment, in order to suppress the displacement of the joining surfaces 21; Calculate and determine whether the existing pier 1A needs to be reinforced. In this case, what is necessary is just to follow the flowchart of FIG.

既設橋脚1Aの補強の要否を判定する方法を説明する。
想定せん断力Pdが既設橋脚1Aの打ち継ぎ面21;21,22;22の実際の現有せん断伝達耐力Puより大きければ既設橋脚1Aの補強を行うと判定する。また、想定せん断力Pdが既設橋脚1Aの打ち継ぎ面21;21,22;22の現有せん断伝達耐力Pu未満であれば補強を行わないと判定する。
A method for determining the necessity of reinforcing the existing pier 1A will be described.
If the assumed shear force Pd is larger than the actual existing shear transmission resistance Pu of the joint surfaces 21; 21, 22, and 22 of the existing pier 1A, it is determined that the existing pier 1A is to be reinforced. Further, if the assumed shear force Pd is less than the existing shear transmission resistance Pu of the joint surface 21; 21, 22; 22 of the existing pier 1A, it is determined that the reinforcement is not performed.

次に、図9のフローチャートに基づいて詳説する。
まず、想定せん断力Pdを算定する(ステップS21)。次に、既設橋脚1Aの現有耐力の算定を行う。すなわち、既設橋脚1Aの現有せん断伝達耐力Puの算定を行う(ステップS22)。次に、現有せん断伝達耐力Puと想定せん断力Pdとを比較する(ステップS23)。現有せん断伝達耐力Puが想定せん断力Pd以上であれば、既設橋脚1の補強を行わない(ステップS23のYes)。次に、現有せん断伝達耐力Puが想定せん断力Pd未満の場合には、既設橋脚1Aの補強を行う。そして、想定せん断力Pdを超える現有せん断伝達耐力Puとして必要せん断耐力Pudを算定する(ステップS24)。次に、必要せん断耐力Pudを満たす既設橋脚1Aの補強の設計を行う(ステップS25)。次に、鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdの算定を行う。尚、コンクリートの押し抜きせん断耐力Vpcdの算定は前述の数式1、数式2とにより求められる(ステップS26)。次に、押し抜きせん断耐力Vpcdと想定せん断力Pdとを比較する(ステップS27)。押し抜きせん断耐力Vpcdが想定せん断力Pd未満であれば(ステップS27のNo)、押し抜きせん断耐力Vpcdを満たすような補強ができるように設計しなおす(ステップS25に戻る)。鋼材周辺のコンクリートの押し抜きせん断耐力Vpcdが想定せん断力Pd以上の場合、既設橋脚1Aが地震荷重Pにより打ち継ぎ面21;21,22;22でずれることを抑制する補強を行うことができる(ステップS27のYES)。
Next, a detailed description will be given based on the flowchart of FIG.
First, the assumed shear force Pd is calculated (step S21). Next, the existing strength of the existing pier 1A is calculated. That is, the existing shear transmission resistance Pu of the existing pier 1A is calculated (step S22). Next, the existing shear transmission resistance Pu and the assumed shear force Pd are compared (step S23). If the existing shear transmission resistance Pu is equal to or greater than the assumed shear force Pd, the existing pier 1 is not reinforced (Yes in step S23). Next, when the existing shear transmission resistance Pu is less than the assumed shear force Pd, the existing pier 1A is reinforced. Then, the required shear strength Pud is calculated as the existing shear transmission strength Pu exceeding the assumed shear force Pd (step S24). Next, the reinforcement design of the existing pier 1A that satisfies the required shear strength Pud is performed (step S25). Next, the punching shear strength V pcd of the concrete around the steel material is calculated. In addition, calculation of the punching shear strength V pcd of concrete is calculated | required by the above-mentioned Numerical formula 1 and Numerical formula 2 (step S26). Next, the punching shear strength V pcd and the assumed shear force Pd are compared (step S27). If the punching shear strength V pcd is less than the assumed shearing force Pd (No in step S27), the design is redesigned so as to satisfy the punching shear strength V pcd (return to step S25). When the punching shear strength V pcd of the concrete around the steel material is greater than or equal to the assumed shear force Pd, reinforcement can be performed to prevent the existing pier 1A from being displaced at the joint surfaces 21; 21, 22; (YES in step S27).

実施形態2によれば、想定する地震時の想定せん断力Pdと既設橋脚の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puとを算定して、想定せん断力Pdと打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puとを比較するので、既設橋脚1Aに地震荷重Pに耐えるための補強が必要かどうかを判別することができる。また、必要せん断耐力Pudを算定することにより、既設橋脚1Aは、想定せん断力Pdに耐える補強を行える。また、コンクリートの押し抜きせん断耐力Vpcdを算定し、コンクリートの押し抜きせん断耐力Vpcdと想定せん断力Pdとを比較したので、補強体5が地震時の想定せん断力Pdによって打ち継ぎコンクリート構造体14に挿入さされた補強体5の周辺のコンクリートににひび割れを発生させる押し抜き破壊の発生を防止できる。 According to the second embodiment, the assumed shear force Pd at the time of the assumed earthquake and the existing shear transmission capacity Pu of the existing pier joint surfaces 21; 21, 22; 22 are calculated, and the assumed shear force Pd and the joint surface are calculated. 21; 21, 22; 22 are compared with the existing shear transmission strength Pu, so that it is possible to determine whether the existing pier 1A needs to be reinforced to withstand the seismic load P. Further, by calculating the required shear strength Pud, the existing pier 1A can be reinforced to withstand the assumed shear force Pd. In addition, to calculate the punching shear strength V pcd of concrete, because the comparison between the punching shear strength V pcd and assumed shear force Pd of concrete, concrete structure reinforcement member 5 is spliced out by the assumed shear force Pd at the time of earthquake Therefore, it is possible to prevent the occurrence of the punching breakage that causes cracks in the concrete around the reinforcing body 5 inserted into 14.

実施形態3
実施形態1では、既設橋脚1A,1Bの両方について補強の要否を判定したが、実施形態3では、既設橋脚1の現有曲げ耐力Muよりも大きな地震による曲げモーメントを受けることによる既設橋脚1の破壊を防ぐために、想定曲げモーメントMdを算出し、既設橋脚1Bの補強要否の判定を行う。この場合は、図10のフローチャートに従えばよい。
Embodiment 3
In the first embodiment, the necessity of reinforcement is determined for both the existing piers 1A and 1B. In the third embodiment, the existing pier 1 is subjected to a bending moment due to an earthquake greater than the existing bending strength Mu of the existing pier 1. In order to prevent destruction, an assumed bending moment Md is calculated, and it is determined whether the existing pier 1B needs to be reinforced. In this case, what is necessary is just to follow the flowchart of FIG.

既設橋脚1Bの補強の要否を判定する方法を説明する。
想定曲げモーメントMdが既設橋脚1の実際の現有曲げ耐力Muより大きければ既設橋脚1Bの補強を行うと判定する。また、想定曲げモーメントMdが既設橋脚1Bの現有曲げ耐力Mu未満であれば補強を行わないと判定する。
A method for determining whether the existing pier 1B needs to be reinforced will be described.
If the assumed bending moment Md is larger than the actual existing bending strength Mu of the existing pier 1, it is determined that the existing pier 1B is to be reinforced. Further, if the assumed bending moment Md is less than the existing bending strength Mu of the existing pier 1B, it is determined that reinforcement is not performed.

次に、図10のフローチャートに基づいて詳説する。
まず、想定曲げモーメントMdを算定する(ステップS31)。次に、既設橋脚1Bの現有耐力の算定を行う。すなわち、既設橋脚1Bの現有曲げ耐力Muの算定を行う(ステップS32)。次に、現有曲げ耐力Muと想定曲げモーメントMdとを比較する(ステップS33)。現有曲げ耐力Muが想定曲げモーメントMd以上であれば、既設橋脚1Bの補強を行わない(ステップS33のYes)。次に、現有曲げ耐力Muが想定曲げモーメントMd未満の場合には、既設橋脚1Bの補強を行う。つまり、想定曲げモーメントMdを超える必要曲げ耐力Mudを算定する(ステップS34)。次に、必要曲げ耐力Mudを満たすための既設橋脚1Bの補強のための設計を行う(ステップS35)。
Next, a detailed description will be given based on the flowchart of FIG.
First, an assumed bending moment Md is calculated (step S31). Next, the existing strength of the existing pier 1B is calculated. That is, the existing bending strength Mu of the existing pier 1B is calculated (step S32). Next, the present bending strength Mu and the assumed bending moment Md are compared (step S33). If the existing bending strength Mu is greater than or equal to the assumed bending moment Md, the existing pier 1B is not reinforced (Yes in step S33). Next, when the existing bending strength Mu is less than the assumed bending moment Md, the existing pier 1B is reinforced. That is, the required bending strength Mud exceeding the assumed bending moment Md is calculated (step S34). Next, a design for reinforcing the existing pier 1B to satisfy the required bending strength Mud is performed (step S35).

実施形態3によれば、想定曲げモーメントMdと既設橋脚1Bの現有曲げ耐力Muとを算定して、想定曲げモーメントMdと既設橋脚1Bの現有曲げ耐力Muとを比較するので、既設橋脚1に地震荷重Pに耐えるための補強が必要かどうかを判別することができる。尚、必要曲げ耐力Mudを算定することにより、既設橋脚1Bに想定曲げモーメントMdに耐えうる補強を行うことができる。つまり、既設橋脚1Bにじん性、曲げ耐力を向上させる補強を行うことができる。   According to the third embodiment, the assumed bending moment Md and the existing bending strength Mu of the existing pier 1B are calculated, and the estimated bending moment Md and the existing bending strength Mu of the existing pier 1B are compared. It is possible to determine whether or not reinforcement for withstanding the load P is necessary. By calculating the required bending strength Mud, the existing pier 1B can be reinforced to withstand the assumed bending moment Md. That is, the existing pier 1B can be reinforced to improve toughness and bending strength.

実施形態4
図11に示すように、想定する地震時の想定せん断力Pdと想定する地震時の想定曲げモーメントMdとを算出し、打ち継ぎコンクリート構造体14の実際の打ち継ぎ面21;21,22;22の現有せん断伝達耐力Puと打ち継ぎコンクリート構造体14の実際の現有曲げ耐力Muとを算出し、想定せん断力Pdと現有せん断伝達耐力Puとを比較するとともに想定曲げモーメントMdと現有曲げ耐力Muとを比較し、想定せん断力Pdが現有せん断伝達耐力Pu未満であるとともに想定曲げモーメントMdが現有曲げ耐力Mu未満であれば補強を行わず、想定せん断力Pdが現有せん断伝達耐力Pu以上であれば、鋼材による補強を行い、想定曲げモーメントMdが現有曲げ耐力Mu以上であれば、打ち継ぎコンクリート構造体14に鋼管15による補強を行う。つまり、補強体5としての管体を用いる。管体として鋼管15を用いる場合は、打ち継ぎコンクリート構造体14にプレストレスを導入しない。鋼管15は、孔4の径よりも外径が小さく、かつ、孔4の長さよりも短い全長の鋼管15を用いる。鋼管15の外周面には、孔4内に鋼管15を設置した場合に鋼管15の中心軸と孔の中心軸とを一致させるためのスペーサ兼吊り部23が溶接されて設けられる。このスペーサ兼吊り部23は、少なくとも、鋼管15の一端部の外周面と鋼管15の他端部の外周面とに設けておけば、鋼管15が傾いて孔4内に設置されることを効果的に防止できて好ましい。また、鋼管15を用いることにより打ち継ぎコンクリート構造体14の曲げに対する補強を行うことができる。
Embodiment 4
As shown in FIG. 11, the assumed shear force Pd at the time of the assumed earthquake and the assumed bending moment Md at the time of the assumed earthquake are calculated, and the actual joint surface 21 of the joint concrete structure 14; 21, 22, 22 Current shear transmission strength Pu and actual actual bending strength Mu of the jointed concrete structure 14 are calculated, and the assumed shear force Pd and the existing shear transmission strength Pu are compared, and the assumed bending moment Md and the existing bending strength Mu are calculated. If the assumed shear force Pd is less than the existing shear transmission strength Pu and the assumed bending moment Md is less than the current bending strength Mu, no reinforcement is performed, and if the assumed shear force Pd is greater than or equal to the existing shear transmission strength Pu. If the assumed bending moment Md is equal to or greater than the existing bending strength Mu, steel is added to the joint concrete structure 14. Carry out the reinforcement by 15. That is, a tubular body as the reinforcing body 5 is used. When the steel pipe 15 is used as the pipe body, no prestress is introduced into the jointed concrete structure 14. As the steel pipe 15, a steel pipe 15 having a full length that is smaller than the diameter of the hole 4 and shorter than the length of the hole 4 is used. On the outer peripheral surface of the steel pipe 15, when the steel pipe 15 is installed in the hole 4, a spacer / hanging portion 23 is provided by welding so that the central axis of the steel pipe 15 and the central axis of the hole coincide with each other. If this spacer / hanging portion 23 is provided at least on the outer peripheral surface of one end of the steel pipe 15 and the outer peripheral surface of the other end of the steel pipe 15, it is effective that the steel pipe 15 is inclined and installed in the hole 4. Therefore, it can be prevented. In addition, the use of the steel pipe 15 can reinforce the bending concrete structure 14 against bending.

実施形態4の既設橋脚1を施工する方法は打ち継ぎコンクリート構造体14を形成した後に、図13(a)に示すように、橋脚本体3の上端面7に鋼管支持台25を設け、鋼管支持台25より吊るした吊り具26を孔4内に設置される鋼管15のスペーサ兼吊り部23に取付けることで鋼管15を孔4内に吊るす。すなわち、鋼管15の下端16が孔底20から離れた状態に維持される。そして、充填装置42を用いて孔4内に充填材6を充填する。充填装置42は、注入管24、第1連結管17、開閉弁装置27、第2連結管18、ポンプ28、第3連結管19、充填材貯蔵部29を備える。   In the method of constructing the existing pier 1 of the fourth embodiment, a steel pipe support 25 is provided on the upper end surface 7 of the pier body 3 as shown in FIG. The steel pipe 15 is hung in the hole 4 by attaching the hanger 26 hung from the base 25 to the spacer / hanging portion 23 of the steel pipe 15 installed in the hole 4. That is, the lower end 16 of the steel pipe 15 is maintained in a state separated from the hole bottom 20. Then, the filler 6 is filled into the hole 4 using the filling device 42. The filling device 42 includes an injection tube 24, a first connection tube 17, an on-off valve device 27, a second connection tube 18, a pump 28, a third connection tube 19, and a filler storage unit 29.

充填装置42を用いた充填方法について説明する。鋼管15内に可撓性を有した注入管24の一端側を挿入し、注入管24の下端16を孔底20から離れた状態に維持させ、注入管24の他端は孔4の一端開口41より上方に突出させた状態とする。第1連結管17の一端が注入管24の他端に着脱可能に繋げられ、第1連結管17の他端が開閉弁装置27の出口に繋げられる。第2連結管18の一端が開閉弁装置27の入口に繋げられ、第2連結管18の他端がポンプ28の吐出し口に繋げられる。第3連結管19の一端がポンプ28の吸込み口に繋げられ、第3連結管19の他端が充填材貯蔵部29の出口に繋げられる。開閉弁装置27の開閉弁を開いてポンプ28を駆動することで、充填材6が、充填材貯蔵部29から第3;2;1連結管19;18;17及び注入管24を経由して注入管24の下端開口30から鋼管15の外周面と孔4の内壁9との間に充填される。充填材6が橋脚本体3の上端面7まで到達したら、図13(b)に示すように、第1連結管17の一端を注入管24よりはずし、孔4の一端開口41より上方に突出させた注入管24の他端を切断する。以上により、充填材6が、孔4の内壁9と鋼管15の外周面との間、及び、鋼管15の管内に充填された橋脚100が完成する(図11;図13(c)参照)。   A filling method using the filling device 42 will be described. One end of the flexible injection tube 24 is inserted into the steel tube 15, and the lower end 16 of the injection tube 24 is kept away from the hole bottom 20, and the other end of the injection tube 24 is one end opening of the hole 4. It is in a state of projecting upward from 41. One end of the first connection pipe 17 is detachably connected to the other end of the injection pipe 24, and the other end of the first connection pipe 17 is connected to the outlet of the on-off valve device 27. One end of the second connection pipe 18 is connected to the inlet of the on-off valve device 27, and the other end of the second connection pipe 18 is connected to the discharge port of the pump 28. One end of the third connection pipe 19 is connected to the suction port of the pump 28, and the other end of the third connection pipe 19 is connected to the outlet of the filler storage unit 29. By opening the on-off valve of the on-off valve device 27 and driving the pump 28, the filler 6 passes through the third; 2; 1 connecting pipe 19; 18; 17 and the injection pipe 24 from the filler storage section 29. It fills between the outer peripheral surface of the steel pipe 15 and the inner wall 9 of the hole 4 from the lower end opening 30 of the injection pipe 24. When the filler 6 reaches the upper end surface 7 of the pier body 3, as shown in FIG. 13B, one end of the first connecting pipe 17 is removed from the injection pipe 24 and protrudes upward from the one end opening 41 of the hole 4. The other end of the injection tube 24 is cut. Thus, the pier 100 in which the filler 6 is filled between the inner wall 9 of the hole 4 and the outer peripheral surface of the steel pipe 15 and in the pipe of the steel pipe 15 is completed (see FIG. 11; FIG. 13C).

実施形態4の既設橋脚1によれば、孔4を打ち継ぎコンクリート構造体14の上端面7に開口した有底孔により形成したので、孔4の形成が容易となり、また、孔4及び補強体5を鉛直または鉛直に近い状態に設置できるようになるので、地震力に対するせん断耐力や曲げ耐力、じん性がより向上する橋脚100となる。
さらに、鋼管15の管内経由で孔4内全体に充填材6を速く容易に充填することができるようになり、作業性を向上できる。
According to the existing pier 1 of the fourth embodiment, since the hole 4 is formed by the bottomed hole opened in the upper end surface 7 of the joint concrete structure 14, the formation of the hole 4 is facilitated, and the hole 4 and the reinforcing body are formed. 5 can be installed vertically or nearly vertically, so that the pier 100 is further improved in shear strength, bending strength, and toughness against seismic force.
Furthermore, it becomes possible to quickly and easily fill the entire inside of the hole 4 via the inside of the steel pipe 15 and improve workability.

実施形態5
図12に示すように、補強体5として下端側の周壁に管の充填材排出口31を備えた管体を用いた橋脚100とした。管体としては、鋼管35を用いる。鋼管35は、充填材排出口31を備える他は上記鋼管15と同じである。充填材排出口31は、例えば、図14(c)に示すように、鋼管35の下端部における周壁の一部を除去することにより形成される。
実施形態5の既設橋脚1を施工する方法は、まず、図14(a)に示すように、既設橋脚1の上端面7から孔4内に鋼管35を挿入し、鋼管35の下端36を孔底20に突き付ける。そして、上述した充填装置42を用いて孔4内に充填材6を充填することにより、充填材6が、鋼管35の管内及び充填材排出口31を経由して孔4の内壁9と鋼管35の外周面との間に充填される。よって、鋼管35の管内及び孔4の内壁9と鋼管35の外周面との間に充填材が充填された橋脚100が完成する(図12;図14(b)参照)。
Embodiment 5
As shown in FIG. 12, the pier 100 using a tubular body provided with a tubular filler discharge port 31 on the peripheral wall on the lower end side as the reinforcing body 5 was used. A steel pipe 35 is used as the pipe body. The steel pipe 35 is the same as the steel pipe 15 except that the steel pipe 35 includes the filler discharge port 31. For example, as shown in FIG. 14C, the filler discharge port 31 is formed by removing a part of the peripheral wall at the lower end portion of the steel pipe 35.
In the method of constructing the existing pier 1 of the fifth embodiment, first, as shown in FIG. 14 (a), the steel pipe 35 is inserted into the hole 4 from the upper end surface 7 of the existing pier 1, and the lower end 36 of the steel pipe 35 is inserted into the hole. Press against the bottom 20. Then, by filling the hole 4 with the filler 6 using the above-described filling device 42, the filler 6 passes through the pipe of the steel pipe 35 and the filler discharge port 31, and the inner wall 9 of the hole 4 and the steel pipe 35. It is filled between the outer peripheral surfaces. Therefore, the pier 100 in which the filler is filled in the steel pipe 35 and between the inner wall 9 of the hole 4 and the outer peripheral surface of the steel pipe 35 is completed (see FIG. 12; FIG. 14B).

実施形態5によれば、実施形態4の効果に加えて、吊り具26が不要となるので、作業性が向上する。
尚、鋼管35の外周面に上述と同様のスペーサを設けておけば、孔4内に鋼管35を設置した場合に鋼管35の中心軸と孔4の中心軸とを一致させることができ、鋼管35が傾いて孔4内に設置されることを効果的に防止できて好ましい。
According to the fifth embodiment, in addition to the effects of the fourth embodiment, the lifting tool 26 is not necessary, and thus workability is improved.
If the same spacer as described above is provided on the outer peripheral surface of the steel pipe 35, when the steel pipe 35 is installed in the hole 4, the central axis of the steel pipe 35 and the central axis of the hole 4 can coincide with each other. It is preferable that 35 is inclined and can be effectively prevented from being installed in the hole 4.

充填材排出口31は、鋼管35の下端の周壁に管の内外に貫通する貫通孔により形成してもよい。また、充填材排出口31は、鋼管35の下端部に鋼管35の下端より突出する突出部を設けることによって突出部の下端を鋼管35の下端36として孔底20に突き付ける場合には、鋼管35の下端(突出部の下端)36と孔底20との間に形成される空間により形成される。   The filler discharge port 31 may be formed in the peripheral wall at the lower end of the steel pipe 35 by a through-hole penetrating in and out of the pipe. In addition, the filler discharge port 31 is provided with a protruding portion that protrudes from the lower end of the steel pipe 35 at the lower end portion of the steel pipe 35, so that the lower end of the protruding portion hits the hole bottom 20 as the lower end 36 of the steel pipe 35. Is formed by a space formed between the lower end (lower end of the protruding portion) 36 and the hole bottom 20.

実施形態6
上述したように、鋼管15;35を用いる場合は、図15に示すように短尺な鋼管15aや図外の鋼棒を継ぎ足していくようにしてもよい。
実施形態6によれば、実施形態3の効果に加えて、鋼管15aや図外の鋼棒を孔4内に挿入する作業が容易となる。
Embodiment 6
As described above, when the steel pipes 15 and 35 are used, a short steel pipe 15a or a steel rod outside the figure may be added as shown in FIG.
According to the sixth embodiment, in addition to the effects of the third embodiment, the work of inserting the steel pipe 15a and a steel rod outside the figure into the hole 4 becomes easy.

補強体5として孔4の長さと同程度の全長の鋼管を用いてもよい。当該鋼管を用いる場合には、鋼管の下端(一端)36を孔底20に突き付けて鋼管を孔4内に設置する。そして、孔4内に設置された補強体5と孔4の内壁9との間と、鋼管の管内とに充填材6を充填させればよい。   A steel pipe having the same length as the length of the hole 4 may be used as the reinforcing body 5. When using the steel pipe, the lower end (one end) 36 of the steel pipe is abutted against the hole bottom 20 and the steel pipe is installed in the hole 4. And the filler 6 should just be filled between the reinforcement body 5 installed in the hole 4, and the inner wall 9 of the hole 4, and the inside of a steel pipe.

尚、本発明は、複数回のコンクリートの打継ぎにより施工されるコンクリート構造物に適用でき、橋脚以外に、橋台、擁壁のようなコンクリート構造物にも適用できる。   The present invention can be applied to a concrete structure constructed by a plurality of times of concrete joining, and can be applied to a concrete structure such as an abutment or a retaining wall in addition to a bridge pier.

既設橋脚1は打ち継ぎ面21;21,22;22の無い橋脚としてもよい。すなわち、既設橋脚1は、連続したコンクリートの打設(例えば1回)で打ち継ぎコンクリート構造体14を形成する。   The existing pier 1 may be a pier without the joint surfaces 21; 21, 22; 22. That is, the existing bridge pier 1 forms the joint concrete structure 14 by continuous placing of concrete (for example, once).

1 既設コンクリート構造物(既設橋脚)、21;22 打ち継ぎ面、
Mu 現有曲げ耐力、Md 想定曲げモーメント、Pd 想定せん断力、
Pu 現有せん断伝達耐力。
1 Existing concrete structure (existing pier), 21; 22 Joint surface,
Mu Current bending strength, Md assumed bending moment, Pd assumed shear force,
Pu Current shear transmission strength.

Claims (4)

想定する地震時の想定せん断力と想定する地震時の想定曲げモーメントとを算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力と既設コンクリート構造物の実際の現有曲げ耐力とを算出し、想定せん断力と現有せん断伝達耐力とを比較するとともに想定曲げモーメントと現有曲げ耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であるとともに想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行い、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物にプレストレスを導入する補強を行うことを特徴とした既設コンクリート構造物の補強方法。   Calculate the assumed shear force at the time of the assumed earthquake and the assumed bending moment at the time of the earthquake, and calculate the existing shear transmission strength of the actual joint surface of the existing concrete structure and the actual existing bending strength of the existing concrete structure. Calculate and compare the assumed shear force with the existing shear transmission strength and compare the assumed bending moment with the existing bending strength. If the assumed shear force is less than the current shear transmission strength and the assumed bending moment is less than the current bending strength, If the assumed shear force is greater than the existing shear transmission strength, the steel material is reinforced. If the assumed bending moment is greater than the existing bending strength, the existing concrete structure is reinforced to introduce prestress. A method for reinforcing an existing concrete structure characterized by the above. 想定する地震時の想定せん断力を算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力を算出し、想定せん断力と現有せん断伝達耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行うことを特徴とした既設コンクリート構造物の補強方法。   Calculate the assumed shear force at the time of the assumed earthquake, calculate the existing shear transmission strength of the actual joint surface of the existing concrete structure, compare the assumed shear force with the existing shear transmission strength, and the assumed shear force is the existing shear strength A method for reinforcing an existing concrete structure, characterized in that if the assumed shear force is equal to or greater than the existing shear transmission strength, the steel material is reinforced if the assumed shear force is not greater than the transmission strength. 想定する地震時の想定曲げモーメントを算出し、既設コンクリート構造物の実際の現有曲げ耐力を算出し、想定曲げモーメントと現有曲げ耐力とを比較し、想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物にプレストレスを導入する補強を行うことを特徴とした既設コンクリート構造物の補強方法。   Calculate the assumed bending moment at the time of the assumed earthquake, calculate the actual existing bending strength of the existing concrete structure, compare the expected bending moment with the existing bending strength, and reinforce if the assumed bending moment is less than the existing bending strength If the assumed bending moment is equal to or greater than the existing bending strength, the existing concrete structure is reinforced by introducing prestress into the existing concrete structure. 想定する地震時の想定せん断力と想定する地震時の想定曲げモーメントとを算出し、既設コンクリート構造物の実際の打ち継ぎ面の現有せん断伝達耐力と既設コンクリート構造物の実際の現有曲げ耐力とを算出し、想定せん断力と現有せん断伝達耐力とを比較するとともに想定曲げモーメントと現有曲げ耐力とを比較し、想定せん断力が現有せん断伝達耐力未満であるとともに想定曲げモーメントが現有曲げ耐力未満であれば補強を行わず、想定せん断力が現有せん断伝達耐力以上であれば、鋼材による補強を行い、想定曲げモーメントが現有曲げ耐力以上であれば、既設コンクリート構造物に鋼管による補強を行うことを特徴とした既設コンクリート構造物の補強方法。   Calculate the assumed shear force at the time of the assumed earthquake and the assumed bending moment at the time of the earthquake, and calculate the existing shear transmission strength of the actual joint surface of the existing concrete structure and the actual existing bending strength of the existing concrete structure. Calculate and compare the assumed shear force with the existing shear transmission strength and compare the assumed bending moment with the existing bending strength. If the assumed shear force is less than the current shear transmission strength and the assumed bending moment is less than the current bending strength, If the assumed shear force is greater than the existing shear transmission strength, the steel material is reinforced, and if the assumed bending moment is greater than the existing bending strength, the existing concrete structure is reinforced with a steel pipe. Reinforcing method for existing concrete structures.
JP2009232898A 2009-10-06 2009-10-06 Reinforcing method for existing concrete structures Active JP5247648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232898A JP5247648B2 (en) 2009-10-06 2009-10-06 Reinforcing method for existing concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232898A JP5247648B2 (en) 2009-10-06 2009-10-06 Reinforcing method for existing concrete structures

Publications (2)

Publication Number Publication Date
JP2011080239A JP2011080239A (en) 2011-04-21
JP5247648B2 true JP5247648B2 (en) 2013-07-24

Family

ID=44074545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232898A Active JP5247648B2 (en) 2009-10-06 2009-10-06 Reinforcing method for existing concrete structures

Country Status (1)

Country Link
JP (1) JP5247648B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155576A (en) * 2012-01-31 2013-08-15 East Japan Railway Co Structure for reinforcing bridge pier and method for reinforcing the same
JP6745679B2 (en) * 2016-08-29 2020-08-26 西日本旅客鉄道株式会社 Strut movement limiter and bridge pier
JP2019019601A (en) * 2017-07-20 2019-02-07 東日本旅客鉄道株式会社 Reinforcement structure of masonry structure
JP7092288B2 (en) * 2017-10-24 2022-06-28 株式会社竹中工務店 Structural reinforcement method
JP7330003B2 (en) * 2019-07-19 2023-08-21 清水建設株式会社 Method for reinforcing masonry structures
JP7350797B2 (en) 2021-03-04 2023-09-26 公益財団法人鉄道総合技術研究所 How to lift bridge girders

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013458A (en) * 2001-07-04 2003-01-15 Nippon Chuzo Kk Pilaster-section design assisting device, pilaster-section design assisting program and computer readable recording medium on which its program is recorded
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system
JP4780781B2 (en) * 2006-02-07 2011-09-28 東日本旅客鉄道株式会社 Seismic reinforcement method for existing concrete pier
JP4890069B2 (en) * 2006-03-29 2012-03-07 株式会社フジタ Pile head joint design method

Also Published As

Publication number Publication date
JP2011080239A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5247648B2 (en) Reinforcing method for existing concrete structures
JP4750562B2 (en) Connection structure between pile head and precast girder
EP0870092B1 (en) Method and apparatus for forming piles in-situ
JP5388785B2 (en) Construction method for concrete structures
AU2009211249B2 (en) Masonry with vertical reinforced concrete strengthening
KR100899372B1 (en) Connection method of micropile cap to existing concrete footing structure, reinforced method using same and structure thereof
JP6691880B2 (en) Precast wall balustrade mounting structure and mounting method
WO2010097642A1 (en) Hydraulic tie rod for construction projects
KR101112195B1 (en) Steel-concrete composite crossbeam having wire mesh and construction method using the same
KR101056027B1 (en) Combined structure of edge prestressed concrete composite pile with tension member and expansion foundation
WO2016181669A1 (en) Rigid connection structure for bottom end of pillar and concrete pile
JP5553702B2 (en) Connection method and connection structure of precast slab with loop joint
JP5142329B2 (en) Reinforced structure
JP6532906B2 (en) Installation structure of precast wall column
KR100922121B1 (en) Construction Structure of Footing using Hybrid Pile having Various Cross-section
KR100908901B1 (en) Removable prestressed saw nailing construction
KR200422931Y1 (en) A pile head reinforcement structure of steel pile
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab
JP4890069B2 (en) Pile head joint design method
KR20110116905A (en) Structure for reinforcing head of a steel pipe pile for a construction
Svoboda et al. Strengthening and Rehabilitation of U‐Shaped RC Bridges Using Substitute Cable Ducts
KR20090055731A (en) The connectors for steel pile head embedded inconcrete footing with double cap and thereof structure
JP6733905B2 (en) Double pipe structure of pile head and its designing method
KR20020066608A (en) Anchoring joint for steel pile head and concrete footing and thereof construction structure
JP2019044473A (en) Quay wall or revetment structure, and construction method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250