JP6733905B2 - Double pipe structure of pile head and its designing method - Google Patents

Double pipe structure of pile head and its designing method Download PDF

Info

Publication number
JP6733905B2
JP6733905B2 JP2016131481A JP2016131481A JP6733905B2 JP 6733905 B2 JP6733905 B2 JP 6733905B2 JP 2016131481 A JP2016131481 A JP 2016131481A JP 2016131481 A JP2016131481 A JP 2016131481A JP 6733905 B2 JP6733905 B2 JP 6733905B2
Authority
JP
Japan
Prior art keywords
pile
outer pipe
main
head
pile head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016131481A
Other languages
Japanese (ja)
Other versions
JP2018003432A (en
Inventor
寿昭 新井
寿昭 新井
康浩 郡司
康浩 郡司
竹内 章博
章博 竹内
岡 賢治
賢治 岡
由紀 山名
由紀 山名
博史 崎浜
博史 崎浜
晃一 内田
晃一 内田
正晃 西
正晃 西
宏謙 堀井
宏謙 堀井
利弘 森
利弘 森
正美 遠藤
正美 遠藤
敦 小川
敦 小川
裕 西村
裕 西村
繁尚 松江
繁尚 松江
加藤 洋一
洋一 加藤
雅樹 横山
雅樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Kumagai Gumi Co Ltd
Hazama Ando Corp
Mitani Sekisan Co Ltd
Toyo Asano Foundation Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Kumagai Gumi Co Ltd
Hazama Ando Corp
Mitani Sekisan Co Ltd
Toyo Asano Foundation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Kumagai Gumi Co Ltd, Hazama Ando Corp, Mitani Sekisan Co Ltd, Toyo Asano Foundation Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2016131481A priority Critical patent/JP6733905B2/en
Publication of JP2018003432A publication Critical patent/JP2018003432A/en
Application granted granted Critical
Publication of JP6733905B2 publication Critical patent/JP6733905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は、鉛直荷重を支持する本杭の頭部に、地震時水平力の一部を負担する外管を被せるように設置する杭頭部の二重管構造と、その設計方法に関する。 The present invention relates to a pile pipe double pipe structure in which a head portion of a main pile supporting a vertical load is covered with an outer pipe that bears a part of horizontal force during an earthquake, and a design method thereof.

一般に大きな地震時水平力を受ける本杭は、耐震性の高いSC杭等を選ぶことや、杭頭部を大径化したり、径が大きいと既製杭をあきらめて場所打ち杭に変更するなどの方法があったが、性能やコスト面などで課題を残すものであった。 Generally, for the main pile that receives a large horizontal force during an earthquake, select SC piles with high seismic resistance, increase the diameter of the pile head, change the existing pile to a cast-in-place pile if the diameter is large, etc. There was a method, but it left a problem in terms of performance and cost.

そこで、杭頭部のみを耐震補強する構造が考えられ、例えば、建物基礎の下に、主に鉛直荷重を受ける本杭と、主に水平荷重を受けて本杭の負担を軽減する役割を持つ水平抵抗部材とを両方配置することが既に様々な形態で実施されている。
その主なものとして、スペース節約や施工効率が良いことから、杭頭部の外側もしくは内側に、円筒状の水平抵抗部材を本杭と同一中心軸として配置し、その隙間をコンクリート等で充填するなどした合成構造が好まれている。
Therefore, a structure in which only the pile head is reinforced with earthquake resistance is conceivable. For example, it has a role to reduce the load on the main pile mainly receiving a vertical load and a horizontal load under the building foundation. Arranging both the horizontal resistance member and the horizontal resistance member has already been implemented in various forms.
The main thing is that space saving and construction efficiency are good, so a cylindrical horizontal resistance member is placed on the outside or inside of the pile head as the same central axis as the main pile, and the gap is filled with concrete etc. Such synthetic structures are preferred.

しかし、従来の合成構造は、本杭と水平抵抗部材とが一体化したものとして、杭体及びパイルキャップとの接合部を設計するものであり、杭体の設計が面倒であることに加えて、設計上の制約が多いものであった。 However, the conventional composite structure is one in which the pile and the horizontal resistance member are integrated to design the joint between the pile body and the pile cap, and in addition to the cumbersome design of the pile body, However, there were many design restrictions.

そして、従来の本杭の杭頭接合部は、杭外周、杭頂部、杭体内のいずれかに定着筋を設置するか、もしくは定着筋を設置せずに、杭体をパイルキャップ内に杭径程度埋め込む方法のいずれかで杭頭部の応力をパイルキャップに伝達させている。
建築分野では、定着筋を設置する方法が主流であるが、杭1本に作用する地震時水平力が大きく、定着筋の設置だけで杭頭応力をパイルキャップに伝達できない場合には、パイルキャップ内に杭頭を埋込み、杭側面のコンクリートによる抵抗分を減じた応力に対して定着筋を設置している。
And, the pile head joint part of the conventional main pile is installed with anchorages at the pile periphery, the top of the pile, or inside the pile, or without installing anchorages, the piles are piled inside the pile cap. The pile head stress is transmitted to the pile cap by one of the methods of embedding to some extent.
In the construction field, the method of installing anchorages is the mainstream method. However, if the horizontal stress of one pile is large during an earthquake and it is not possible to transmit the pile head stress to the pile cap only by installing anchorages, the pile cap will be used. The pile heads are embedded in the piles, and anchoring bars are installed for the stress that reduces the resistance due to the concrete on the side of the piles.

このような従来の既製杭に対して、特許文献1において、水平抵抗部材を管体で構成し、この管体の内部に杭が貫通するように設置することで、上部構造からの水平力による杭の破壊、特に杭頭での破壊を防止することが可能な杭の免震構造が提案されている。
この免震構造では、杭頭部と管体との間に弾性材(ゴム体)が充填される。
In contrast to such a conventional ready-made pile, in Patent Document 1, a horizontal resistance member is configured by a pipe body, and the pile is installed inside the pipe body so that the horizontal resistance member is caused by a horizontal force from the upper structure. A seismic isolation structure for piles has been proposed which can prevent the destruction of the piles, particularly the destruction at the pile heads.
In this seismic isolation structure, an elastic material (rubber body) is filled between the pile head and the pipe body.

また、特許文献2において、鉛直力を本杭に、水平力を外管にそれぞれ負担させて、鉛直力と水平力の負担を分担させ、本杭の頭部の周囲と外管の周囲との間にコンクリートが充填される構造に加えて、外管の頭部に外管と基礎との接合のための接続材を配置する異径組合せ杭及びその施工方法が提案されている。
この特許文献2で提案されている杭頭接合部は、杭頭部に生じる応力に対して、本杭と外管が一体化した合成構造として抵抗するものと考えられ、水平力に対して抵抗できる鉄筋量を、本杭と外管間に充填するコンクリート内に配置することが必要となる。
In Patent Document 2, the vertical force is applied to the main pile and the horizontal force is applied to the outer pipe to share the vertical force and the horizontal force. In addition to a structure in which concrete is filled in between, a different diameter combination pile in which a connecting material for joining the outer pipe and the foundation is arranged on the head of the outer pipe and a construction method thereof have been proposed.
The pile head joint proposed in Patent Document 2 is considered to resist the stress generated in the pile head as a composite structure in which the main pile and the outer pipe are integrated, and resists horizontal force. It is necessary to arrange the amount of rebar that can be formed in the concrete that is filled between the main pile and the outer pipe.

なお、既存の本杭の上端部外側に外管をジャッキにより圧入して被せる耐震補強構造において、従来は、本杭及び外管の面一の上端部を基礎に僅かに埋め込んで、特許文献2と同様、本杭及び外管の間にコンクリートを充填していた。 In a seismic retrofit structure in which an outer pipe is press-fitted onto the outside of an upper end of an existing main pile by a jack, conventionally, the flush upper end of the main pile and the outer pipe are slightly embedded in a foundation, and Patent Document 2 Similarly to the above, concrete was filled between the main pile and the outer pipe.

特許第3575733号公報Japanese Patent No. 3575733 特開2001−107356号公報JP 2001-107356 A

しかしながら、特許文献1では、本杭の上端部のみが上部構造物に僅かに埋め込まれているだけで、パイルキャップとの杭頭接合部の具体的な構造は示されておらず、杭頭接合部を設計することができない。
また、特許文献2では、本杭の上端部のみが基礎に僅かに埋め込まれていて、本杭と外管間に配置できる鉄筋量は限られており、杭頭接合部の耐力が、本杭と外管がコンクリートで一体化した耐力よりも小さい場合には、本構造の性能を十分に発揮できない可能性がある。
However, in Patent Document 1, only the upper end portion of the main pile is slightly embedded in the upper structure, and the concrete structure of the pile head joint portion with the pile cap is not shown. I can't design the department.
Further, in Patent Document 2, only the upper end of the main pile is slightly embedded in the foundation, the amount of reinforcing bars that can be arranged between the main pile and the outer pipe is limited, and the proof stress of the pile head joint is If the outer pipe and the outer pipe are smaller than the proof stress integrated with concrete, the performance of this structure may not be sufficiently exhibited.

そして、特許文献1や特許文献2のように、本杭と外管との間に弾性材またはコンクリートを充填した構造では、地震時水平力が外管から弾性材またはコンクリートを経て本杭に伝達されてしまう問題がある。 And in the structure which filled the elastic material or concrete between the main pile and the outer pipe like patent document 1 or patent document 2, the horizontal force at the time of an earthquake is transmitted to the main pile from an outer pipe through an elastic material or concrete. There is a problem that will be done.

本発明の課題は、鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造において、地震時水平力が外管から本杭に伝達されるのを低減することである。 An object of the present invention is to provide a pile head double pipe structure including an outer pipe that is installed so as to cover the head of a main pile that supports a vertical load and bears a part of horizontal force during an earthquake. It is to reduce the transfer of horizontal force from the outer pipe to the main pile.

以上の課題を解決するため、請求項1に記載の発明は、
鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造であって、
前記本杭は外殻鋼管付きコンクリート杭、遠心力プレストレスト鉄筋コンクリート杭またはプレテンション方式遠心力高強度プレストレスコンクリート杭であり、
前記本杭頭部の天端を前記外管の天端よりも突出させて、前記本杭頭部の天端と前記外管の天端をパイルキャップに埋め込んで、
前記パイルキャップ下の前記本杭頭部と前記外管の間に一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントが形成されるか、または水・土・泥水もしくは空隙が形成されており、
前記外管の天端外周面に定着筋の下端を溶接して、この定着筋を前記パイルキャップに埋め込み、前記外管の前記パイルキャップへの埋め込み深さを、前記外管に溶接した前記定着筋の必要溶接長に被りを加えた値、かつ100mm以上とし、
前記本杭頭部の天端外周面に定着筋の下端を溶接、あるいは天端上面に定着筋の下端を溶接もしくはネジ嵌合して、この定着筋を前記パイルキャップに埋め込み、前記本杭の前記パイルキャップへの埋め込み深さを、前記外管の前記埋め込み深さに、100mm以上を加えたものとすることを特徴とする。
In order to solve the above problems, the invention described in claim 1 is
A double-pipe structure of a pile head that is installed so as to cover the head of a main pile that supports a vertical load and that has an outer pipe that bears a part of horizontal force during an earthquake,
The main pile is a concrete pile with an outer shell steel pipe, a centrifugal force prestressed reinforced concrete pile or a pretension system centrifugal force high strength prestressed concrete pile,
By projecting the top end of the main pile head from the top end of the outer pipe, and embedding the top end of the main pile head and the top end of the outer pipe in a pile cap,
Soil cement having a uniaxial compressive strength of 0.1 to 5.0 N/mm 2 is formed between the pile head under the pile cap and the outer pipe , or water, soil, muddy water or voids are formed. Has been formed ,
The lower end of the fixing streak is welded to the outer peripheral surface of the top end of the outer tube, the fixing streak is embedded in the pile cap, and the depth of the outer tube embedded in the pile cap is welded to the outer tube by the fixing. A value obtained by adding a cover to the required welding length of the streak, and 100 mm or more,
The lower end of the fixing bar is welded to the outer peripheral surface of the top end of the main pile head, or the lower end of the fixing bar is welded or screw-fitted to the upper surface of the top end, and the fixing bar is embedded in the pile cap. The depth of embedding into the pile cap is 100 mm or more added to the depth of embedding of the outer tube .

請求項に記載の発明は、
請求項に記載の杭頭部の二重管構造を設計する方法であって、
前記外管が負担する水平荷重による前記外管頂部の杭頭曲げモーメントM1、前記外管の杭頭接合部曲げ耐力T1、前記外管に溶接した前記定着筋の引張圧縮抵抗と前記外管の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式
M1<T1=A×α ・・・式〔1〕
を満足するよう前記外管に溶接した前記定着筋の仕様及び本数を決定して設計することを特徴とする。
The invention according to claim 2 is
A method of designing a double pipe structure for a pile head according to claim 1 ,
The pile head bending moment M1 of the outer pipe top due to the horizontal load borne by the outer pipe, the pile head joint bending strength T1 of the outer pipe, the tensile compression resistance of the anchoring line welded to the outer pipe, and the outer pipe. In the relationship between the vertical compression resistance A and the interaction coefficient α, the following equation M1<T1=A×α (Equation [1]
The specifications and the number of the fixing bars welded to the outer pipe are determined and designed so as to satisfy the above condition.

請求項に記載の発明は、
請求項に記載の杭頭部の二重管構造を設計する方法であって、
前記本杭が負担する水平荷重による前記本杭頂部の杭頭曲げモーメントM2、前記本杭の杭頭接合部曲げ耐力T2、前記本杭に溶接またはネジ嵌合した前記定着筋の引張圧縮抵抗と前記本杭の鉛直方向の圧縮抵抗B、前記本杭の側面抵抗C、相互作用係数βの関係に
おいて、下式
M2<T2=B+C×β ・・・式〔2〕
を満足するよう前記本杭に溶接またはネジ嵌合した前記定着筋の仕様及び本数、本杭の埋込み深さを決定して設計することを特徴とする。
The invention according to claim 3 is
A method of designing a double pipe structure for a pile head according to claim 1 ,
A pile head bending moment M2 of the top of the main pile due to a horizontal load borne by the main pile, a bending strength T2 of a pile head joint portion of the main pile, and a tensile compression resistance of the anchor bar welded or screw fitted to the main pile. In the relationship of the vertical compression resistance B of the main pile, the side surface resistance C of the main pile, and the interaction coefficient β, the following formula M2<T2=B+C×β... Formula [2]
The specifications and the number of the anchoring bars welded or screw-fitted to the main pile and the embedding depth of the main pile are determined so as to satisfy the above condition.

本発明によれば、鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造において、地震時水平力が外管から本杭に伝達されるのを低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, in the double pipe structure of the pile head provided with the outer pipe which is installed so that it may cover the head of the main pile which supports a vertical load and bears a part of horizontal force at the time of an earthquake, It is possible to reduce the transmission of horizontal force from the outer pipe to the main pile.

本発明を適用した杭頭部の二重管構造の一実施形態の構成を示すもので、杭頭部の概略斜視図である。1 is a schematic perspective view of a pile head, showing a configuration of an embodiment of a double pipe structure of a pile head to which the present invention is applied. 図1の杭全体を示す一部断面の概略側面図である。It is a schematic side view of the cross section which shows the whole pile of FIG. 本杭に生じる曲げモーメントを示すグラフである。It is a graph which shows the bending moment which arises in this pile. 実施例1の杭頭接合構造を示す一部断面の概略側面図である。It is a schematic side view of the partial cross section which shows the pile head connection structure of Example 1. 実施例2の杭頭接合構造を示す一部断面の概略側面図である。It is a schematic side view of the partial cross section which shows the pile head connection structure of Example 2. 杭頭補強構造の設計のフローチャートである。It is a flowchart of design of a pile head reinforcement structure. 本杭と外管の水平荷重分担割合を示すグラフである。It is a graph which shows the horizontal load share ratio of this pile and an outer pipe. 外管の曲げ耐力算定を説明する概略側面図(a)と、仮想円柱の平面図(b)である。It is the schematic side view (a) explaining the bending strength calculation of an outer pipe, and the top view (b) of a virtual cylinder. 相互作用係数αを示すグラフである。It is a graph which shows interaction coefficient (alpha). 外管の杭頭曲げモーメントM1と耐力T1(実験値M1と計算値T1)の比較を示すグラフである。6 is a graph showing a comparison between a pile head bending moment M1 of an outer pipe and a proof stress T1 (experimental value M1 and calculated value T1). 外管の曲げ耐力算定のフローチャートである。It is a flow chart of bending strength calculation of an outer pipe. 本杭の曲げ耐力算定を説明する概略側面図(a)と、仮想円柱の平面図(b)である。It is a schematic side view (a) explaining the bending strength calculation of this pile, and the top view (b) of a virtual cylinder. 相互作用係数βを示すグラフである。It is a graph which shows interaction coefficient (beta). 本杭の杭頭曲げモーメントM2と耐力T2(実験値M2と計算値T2)の比較を示すグラフである。It is a graph which shows comparison of pile head bending moment M2 of this pile, and proof stress T2 (experimental value M2 and calculation value T2). 本杭の曲げ耐力算定のフローチャートである。It is a flowchart of calculation of bending strength of this pile.

(概要)
本発明では、鉛直荷重を負担する杭と水平荷重を負担する杭を一体化させた合成構造とした考え方に基づく杭頭接合構造とは異なり、本杭と外管がそれぞれ水平力を負担する二重管杭の性能を発揮させるための杭頭補強構造と、本杭と外管それぞれの負担水平力に応じて、別々に杭頭接合部を設計する。
(Overview)
In the present invention, unlike the pile head joint structure based on the concept of a composite structure in which a pile that bears a vertical load and a pile that bears a horizontal load are integrated, the main pile and the outer pipe respectively bear a horizontal force. A pile head reinforcement structure for exhibiting the performance of heavy pipe piles and pile head joints are designed separately according to the horizontal load of the main pile and outer pipe.

本発明は、外管天端よりも本杭天端を突出させること、本杭と外管の杭頭に定着筋を配置して、建物基礎、より具体的には、杭頭と建物基礎を連結するパイルキャップへ定着することを特徴とする。
これにより、本杭と外管とを各々独立して構造設計できるようになり、課題であった杭頭接合部の設計を容易とする。
ここで、杭頭接合部とは、それぞれパイルキャップに埋め込まれている本杭と外管と定着筋からなる。
The present invention makes the top end of the main pile project from the top end of the outer pipe, and arranges the anchoring lines on the main pile and the pile head of the outer pipe to connect the building foundation, more specifically, the pile head and the building foundation. It is characterized by being fixed to the pile cap.
As a result, the main pile and the outer pipe can be designed independently of each other, which facilitates the design of the pile head joint, which is a problem.
Here, the pile head joint portion is composed of the main pile, the outer pipe, and the anchoring line which are respectively embedded in the pile cap.

以下、図を参照して本発明を実施するための形態を詳細に説明する。
(実施形態)
図1及び図2は本発明を適用した杭頭部の二重管構造の一実施形態の構成を示すもので、1は本杭、2は外管、3はパイルキャップである。
Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings.
(Embodiment)
1 and 2 show the structure of an embodiment of a double pipe structure of a pile head to which the present invention is applied, in which 1 is a main pile, 2 is an outer pipe, and 3 is a pile cap.

図示のように、既製杭による本杭1の頭部外周に、本杭1よりも大径且つ長さの短い鋼管による外管2が設けられて、その本杭1及び外管2の天端はパイルキャップ3に埋め込まれている。
そして、本杭1及び外管2ともに、パイルキャップ3と接合するための鉄筋4・5を設置する。すなわち、パイルキャップ3には、本杭1の天端あるいは外周に設けた定着筋4と、外管2の天端外周面に設けた定着筋5も埋め込まれている。
As shown in the figure, an outer pipe 2 made of a steel pipe having a larger diameter and a shorter length than the main pile 1 is provided on the outer circumference of the head of the main pile 1 made of ready-made piles, and the top ends of the main pile 1 and the outer pipe 2 are provided. Are embedded in the pile cap 3.
Then, both the main pile 1 and the outer pipe 2 are provided with reinforcing bars 4 and 5 for joining to the pile cap 3. That is, the pile cap 3 is also embedded with the fixing streak 4 provided on the top end or the outer circumference of the main pile 1 and the fixing streak 5 provided on the outer peripheral surface of the top end of the outer tube 2.

また、本杭1の下端に、根固め液を注入して撹拌固化した先端根固め部6が形成されて、本杭1及び外管2の周囲に、杭周固定液を注入して撹拌固化した杭周固定部7が形成されて、本杭1の頭部と外管2との間には固化した後の一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントまたは水・土・泥水8が形成されているほか、土・空隙で構成されていてもよい。 In addition, a tip root solidification portion 6 is formed at the lower end of the main pile 1 by injecting a rooting liquid and stirring and solidifying it, and injecting a pile circumference fixing liquid around the main pile 1 and the outer pipe 2 to solidify by stirring. Soil cement or water in which the uniaxial compressive strength after solidification between the head of the main pile 1 and the outer tube 2 is 0.1 to 5.0 N/mm 2 by forming the pile peripheral fixing portion 7 formed. -Soil/muddy water 8 may be formed, and it may be composed of soil/voids.

図3は本杭1に生じる曲げモーメントを示すグラフで、図示のように、二重管杭の本杭1に生じる地震時応力(破線で示した曲げモーメント)を従来の既製杭に生じる地震時応力(実線で示した曲げモーメント)よりも低減させることで、今まで設計できなかった地震時水平力に対しても、既製コンクリート杭で設計可能となる。
また、在来工法に比べて、杭の仕様あるいは杭径を低減できることから、杭のコストダウンが可能になる。
Fig. 3 is a graph showing the bending moment generated in the main pile 1, and as shown in the figure, the earthquake stress (bending moment shown by the broken line) in the main pile 1 of the double pipe pile is generated in the conventional ready-made pile during the earthquake. By reducing the stress (bending moment shown by the solid line), it is possible to design with ready-made concrete piles even for horizontal forces during earthquakes that could not be designed until now.
Moreover, since the specification of the pile or the diameter of the pile can be reduced as compared with the conventional construction method, the cost of the pile can be reduced.

次に、本発明の杭頭接合構造の具体的な仕様を図4と図5に示す。 Next, specific specifications of the pile head joint structure of the present invention are shown in FIGS. 4 and 5.

(実施例1)
図4は実施例1の杭頭接合構造を示すもので、本杭がSC杭(Steel Composite Concrete Piles;外殻鋼管付きコンクリート杭)の場合である。
実施例1では、図示のように、本杭1頭部の天端外周面に定着筋4の下端を溶接もしくは天端上面に溶接あるいはネジ嵌合して、外管2の天端外周面に定着筋5の下端を溶接して、これら本杭1頭部の天端及び定着筋4と外管2の天端及び定着筋5をパイルキャップ3に埋め込む。
(Example 1)
FIG. 4 shows a pile head joint structure of Example 1, and is a case where this pile is an SC pile (Steel Composite Concrete Piles; concrete pile with steel pipes for outer shell).
In the first embodiment, as shown in the drawing, the lower end of the fixing bar 4 is welded to the top end outer peripheral surface of the head of the main pile 1 or welded or screw-fitted to the top end upper surface so that the top end outer peripheral surface of the outer pipe 2 is attached. The lower end of the fixing bar 5 is welded, and the top end of the head of the main pile 1 and the fixing bar 4 and the top end of the outer tube 2 and the fixing bar 5 are embedded in the pile cap 3.

(実施例2)
図5は実施例2の杭頭接合構造を示すもので、本杭がPRC杭(Pretensioned & Reinforced Spun High Strength Concrete Piles;遠心力プレストレスト鉄筋コンクリート杭)・PHC杭(Pretensioned Spun High Strength Concrete Piles;プレテンション方式遠心力高強度プレストレスコンクリート杭)の場合である。
実施例2では、図示のように、本杭1頭部の天端上面に定着筋4の下端を溶接あるいはネジ嵌合して、外管2の天端外周面に定着筋5の下端を溶接して、これら本杭1頭部の天端及び定着筋4と外管2の天端及び定着筋5をパイルキャップ3に埋め込む。
(Example 2)
FIG. 5 shows a pile head joint structure of Example 2, in which the main pile is a PRC pile (Pretensioned & Reinforced Spun High Strength Concrete Piles) and a PHC pile (Pretensioned Spun High Strength Concrete Piles). Method centrifugal force high strength prestressed concrete pile).
In the second embodiment, as shown in the figure, the lower end of the fixing bar 4 is welded or screwed to the upper surface of the top of the head of the main pile 1 and the lower end of the fixing bar 5 is welded to the outer peripheral surface of the outer tube 2. Then, the top end of the head of the main pile 1 and the fixing line 4 and the top end of the outer tube 2 and the fixing line 5 are embedded in the pile cap 3.

以上において、図4及び図5に示すように、パイルキャップ3内に埋め込む外管2天端よりも本杭1天端を突出させる。その突出高さは、100mm以上、かつ本杭1に設置する定着筋4の必要溶接長さ以上とする。
ここで、パイルキャップ3への外管2の埋め込み深さは、外管2に設置する定着筋5の必要溶接長に被りを加えた値、かつ100mm以上とする。
In the above, as shown in FIGS. 4 and 5, the top end of the main pile 1 is made to protrude from the top end of the outer tube 2 to be embedded in the pile cap 3. The projecting height is 100 mm or more, and is more than the required welding length of the fixing bar 4 installed in the main pile 1.
Here, the depth of embedding the outer tube 2 in the pile cap 3 is set to a value obtained by adding a cover to the required welding length of the fixing streak 5 installed in the outer tube 2 and 100 mm or more.

すなわち、実施例1のSC杭の場合は、図4に示すように、パイルキャップ3への本杭1の埋め込み深さは、外管2の埋め込み深さに、本杭1に設置する定着筋4の必要溶接長、かつ100mm以上を加えたものとする。 That is, in the case of the SC pile of Example 1, as shown in FIG. 4, the embedding depth of the main pile 1 into the pile cap 3 is the same as the embedding depth of the outer tube 2, and the anchorages installed in the main pile 1 are as follows. The required welding length of 4 and 100 mm or more are added.

また、実施例2のPRC杭・PHC杭の場合は、図5に示すように、パイルキャップ3への本杭1の埋め込み深さは、外管2の埋め込み深さに、100mm以上を加えたものとする。 Further, in the case of the PRC pile/PHC pile of Example 2, as shown in FIG. 5, the embedding depth of the main pile 1 in the pile cap 3 was 100 mm or more in addition to the embedding depth of the outer tube 2. I shall.

図6は杭頭補強構造の設計のフローチャートで、先ず、本杭1と外管2の負担水平力を算定する(ステップS1)。次に、外管2の定着筋5の仕様・必要本数を仮定する(ステップS2)。次に、本杭1の定着筋4の仕様・必要本数、パイルキャップ3への埋込み深さを仮定する(ステップS3)。次に、相互作用係数αを算定する(ステップS4)。次に、相互作用係数βを算定する(ステップS5)。次に、外管2の定着筋5の仕様・本数を決定する(ステップS6)。次に、本杭1の定着筋4の仕様・本数、必要埋め込み深さを決定する(ステップS7)。
なお、相互作用係数とは、本杭1と外管2それぞれが水平力を負担することによって、パイルキャップ3内で変形することから、外管2に及ぼす本杭1の影響を相互作用係数α、本杭1に及ぼす外管2の影響を相互作用係数βとする。
FIG. 6 is a flowchart for designing the pile head reinforcement structure. First, the horizontal load to be applied to the main pile 1 and the outer pipe 2 is calculated (step S1). Next, it is assumed that the specifications and the required number of the fixing muscles 5 of the outer tube 2 are satisfied (step S2). Next, it is assumed that the specifications/required number of anchoring streaks 4 of the main pile 1 and the depth of embedding in the pile cap 3 (step S3). Next, the interaction coefficient α is calculated (step S4). Next, the interaction coefficient β is calculated (step S5). Next, the specifications and the number of the fixing muscles 5 of the outer tube 2 are determined (step S6). Next, the specifications and number of anchoring lines 4 of the main pile 1 and the required embedding depth are determined (step S7).
The interaction coefficient means that the main pile 1 and the outer pipe 2 are deformed in the pile cap 3 by bearing a horizontal force. Therefore, the effect of the main pile 1 on the outer pipe 2 is an interaction coefficient α. , The effect of the outer pipe 2 on the main pile 1 is defined as the interaction coefficient β.

ここで、本杭1は、本杭1が負担する水平荷重(全体荷重の50〜20%)によって本杭1頂部に生じる杭頭曲げモーメントを上回るような曲げ耐力を有するように、杭頭接合部(定着筋4の仕様・本数やパイルキャップ3への埋め込み深さ等)を設計する。 Here, the pile head joining is performed so that the main pile 1 has a bending proof strength that exceeds a pile head bending moment generated at the top of the main pile 1 due to a horizontal load (50 to 20% of the total load) that the main pile 1 bears. Design the parts (specification/number of anchor lines 4 and depth of embedding into the pile cap 3).

また、外管2は、外管2が負担する水平荷重(50〜80%)によって外管2頂部に生じる杭頭曲げモーメントを上回るような曲げ耐力を有するように、杭頭接合部(定着筋5の本数等)を設計する。 In addition, the outer pipe 2 has a bending resistance that exceeds the pile head bending moment generated at the top of the outer pipe 2 due to the horizontal load (50 to 80%) that the outer pipe 2 bears. Design the number of 5).

具体的には、以下の手順により本杭1と外管2の杭頭接合部の構造設計を行う。
なお、本杭1と外管2それぞれに水平荷重が作用することにより、相互作用が生じることから、その影響を考慮した構造設計方法とする。
Specifically, the structural design of the pile head joint between the main pile 1 and the outer pipe 2 is performed by the following procedure.
Since a horizontal load is applied to each of the main pile 1 and the outer pipe 2 to cause an interaction, the structure design method is to consider the influence.

1)本杭1と外管2の負担水平力を算定する(ステップS1)。
同一中心軸の本杭1と外管2の一組が受ける地震時水平力に対して、本杭1の仕様(径、長さ、コンクリート強度など)及び外管2の仕様(径、長さ、肉厚など)に、地盤の状態(地質、深さ、N値など)を考慮した応力解析モデルを構築して、本杭1と外管2の水平荷重分担割合(例えば、図7)を算定する。
具体的には、杭頭補強構造を実際に現場で構築し、水平載荷試験を実施した結果、本杭1と外管2の水平荷重分担割合は、図7に示すとおり、本杭:外管=5:5〜2:8の範囲であることが示された。従って、この水平荷重分担割合を参考に、応力解析結果に基づいて、本杭1と外管2の杭頭接合部を設計する。
1) Calculate the load horizontal force of the main pile 1 and the outer pipe 2 (step S1).
Specifications of the main pile 1 (diameter, length, concrete strength, etc.) and specifications of the outer pipe 2 (diameter, length) with respect to the horizontal force at the time of a set of the main pile 1 and the outer pipe 2 having the same center axis , Wall thickness, etc.), a stress analysis model considering the ground condition (geology, depth, N value, etc.) is constructed, and the horizontal load sharing ratio (for example, FIG. 7) between the main pile 1 and the outer pipe 2 is set. Calculate.
Specifically, as a result of actually constructing a pile head reinforcement structure on-site and carrying out a horizontal load test, the horizontal load sharing ratio between the main pile 1 and the outer pipe 2 is as shown in FIG. =5:5 to 2:8. Therefore, the pile head joint between the main pile 1 and the outer pipe 2 is designed based on the stress analysis result with reference to the horizontal load sharing ratio.

2)外管2の定着筋5の仕様・必要本数を仮定する(ステップS2)。
仮定段階では、例えば、相互作用係数を無視して、一般の設計方法に準じて定着筋の仕様および必要本数を仮定する。
なお、外管2のパイルキャップ3への埋め込み深さL1は、定着筋5の溶接長+被りを考慮した値、かつ100mm以上とする。
ここで、上記一般の設計方法とは、外管径D2+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力が、外管2の負担水平力による曲げモーメントを上回るように鉄筋の仕様および本数を決定する。
2) Assuming the specifications and the required number of anchoring muscles 5 of the outer tube 2 (step S2).
At the hypothesis stage, for example, the interaction coefficient is ignored, and the specifications and required number of anchorage muscles are assumed according to a general design method.
The depth L1 of embedding the outer tube 2 in the pile cap 3 is set to a value that takes into consideration the welding length of the fixing streak 5 + the overburden and is 100 mm or more.
Here, the above-mentioned general design method means that the bending strength of the reinforced concrete section assuming a virtual cylinder of the outer pipe diameter D2+(100 to 200) mm exceeds the bending moment of the horizontal force borne by the outer pipe 2 so that the bending strength of the rebar is increased. Determine specifications and number.

3)本杭1の定着筋4の仕様・必要本数、パイルキャップ3への埋込み深さを仮定する(ステップS3)。
仮定段階では、例えば、相互作用係数を無視して、一般の設計方法に準じて定着筋の仕様および必要本数と埋込み深さを仮定する。
本杭1のパイルキャップ3への埋め込み深さL2は、例えばSC杭の場合(図4)には、本杭1への定着筋4の溶接長を考慮して、外管2の埋め込み深さL1に、本杭1に設置する定着筋4の必要溶接長、かつ100mm以上を加えたものとする。
3) It is assumed that the specifications/required number of anchoring lines 4 of the main pile 1 and the depth of embedding in the pile cap 3 (step S3).
In the hypothesis stage, for example, the interaction coefficient is ignored, and the specifications and required number of anchoring muscles and the embedding depth are assumed according to a general design method.
The embedding depth L2 of the main pile 1 into the pile cap 3 is, for example, in the case of the SC pile (FIG. 4 ), the embedding depth of the outer tube 2 in consideration of the welding length of the anchoring line 4 to the main pile 1. It is assumed that the required welding length of the fixing bar 4 installed on the main pile 1 and 100 mm or more are added to L1.

また、PRC杭・PHC杭の場合(図5)には、本杭1のパイルキャップ3への埋め込み深さL2は、外管2の埋め込み深さL1に、100mm以上を加えたものとする。
ここで、上記一般の設計方法とは、本杭径D1+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力が、本杭1の負担水平力による曲げモーメントを上回るように鉄筋の仕様および本数を決定する。
In the case of PRC piles/PHC piles (FIG. 5), the embedding depth L2 of the main pile 1 in the pile cap 3 is the embedding depth L1 of the outer tube 2 plus 100 mm or more.
Here, the above-mentioned general design method means that the bending strength of the reinforced concrete section assuming a virtual column of the main pile diameter D1+(100 to 200) mm exceeds the bending moment of the horizontal load borne by the main pile 1 so that Determine specifications and number.

4)相互作用係数αを算定する(ステップS4)。
外管2に及ぼす本杭1の影響係数である相互作用係数αは、図8に示すように、パイルキャップ3への外管2の埋め込み深さL1と、本杭1と外管2の埋め込み深さL2・L1の差(外管2天端から本杭1天端の突出長)から、図9をもとに決定する。この関係は、本杭1と外管2からなる杭頭補強構造の室内構造実験に基づいて定めた。
4) Calculate the interaction coefficient α (step S4).
As shown in FIG. 8, the interaction coefficient α, which is the influence coefficient of the main pile 1 on the outer pipe 2, is the depth L1 of embedding the outer pipe 2 in the pile cap 3, and the embedding of the main pile 1 and the outer pipe 2. It is determined based on FIG. 9 from the difference between the depths L2 and L1 (the protruding length from the top of the outer pipe 2 to the top of the main pile 1). This relationship was determined based on the indoor structure experiment of the pile head reinforcement structure composed of the main pile 1 and the outer pipe 2.

なお、相互作用係数αは、本杭1と外管2からなる杭頭補強構造の室内構造実験結果において、実験結果に対して、後述する評価式〔1〕による外管2の杭頭接合部曲げ耐力T1が安全側(実験結果が上回る)となるように定めた。 In addition, the interaction coefficient α is the pile head joint portion of the outer pipe 2 according to the evaluation formula [1] described later in the indoor structure test result of the pile head reinforcement structure including the main pile 1 and the outer pipe 2. The bending strength T1 was determined to be on the safe side (the experimental result exceeds).

実験結果と評価式〔1〕による杭頭接合部曲げ耐力T1の対比を図10に示す。 FIG. 10 shows a comparison of the bending strength T1 of the pile head joint by the experimental result and the evaluation formula [1].

図11は外管2の曲げ耐力算定のフローチャートで、先ず、定着筋5による曲げ耐力1を入力し(ステップS11)、その曲げ耐力1が設計曲げモーメント以上か否かを判別し(ステップS12)、以上であれば設計を終了する(ステップS13)。
また、ステップS12において、曲げ耐力1が設計曲げモーメント未満であれば、パイルキャップ3への外管2天端の埋め込みによる曲げ耐力2を入力し(ステップS14)、定着筋5による曲げ耐力1にパイルキャップ3への外管2天端の埋め込みによる曲げ耐力2を加えて(ステップS15)、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS16)、以上であれば設計を終了する(ステップS17)。
FIG. 11 is a flowchart for calculating the bending strength of the outer tube 2. First, the bending strength 1 by the fixing bar 5 is input (step S11), and it is determined whether or not the bending strength 1 is equal to or greater than the design bending moment (step S12). If so, the design is finished (step S13).
In step S12, if the bending strength 1 is less than the design bending moment, the bending strength 2 due to the embedding of the top end of the outer tube 2 into the pile cap 3 is input (step S14), and the bending strength 1 due to the fixing bar 5 is set. The bending proof strength 2 due to the embedding of the outer tube 2 top end into the pile cap 3 is added (step S15), and it is determined whether or not the total bending proof strength 1+2 is greater than or equal to the design bending moment (step S16). If there is, the design is finished (step S17).

また、ステップS16において、曲げ耐力1+2が設計曲げモーメント未満であれば、埋込み深さを増大して(ステップS18)、その埋込み深さに応じた曲げ耐力2を曲げ耐力1に加えて、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS19)、以上であれば設計を終了する(ステップS20)。ステップS19において、曲げ耐力1+2が設計曲げモーメント未満であれば、杭径を増大して(ステップS21)、その杭径に応じた定着筋5による曲げ耐力1を入力し(ステップS11)、以下同様の処理を行う。 If the bending strength 1+2 is less than the design bending moment in step S16, the embedding depth is increased (step S18), and the bending strength 2 corresponding to the embedding depth is added to the bending strength 1. It is determined whether the sum of the bending strength 1+2 is equal to or greater than the design bending moment (step S19), and if it is greater than or equal to the design end (step S20). In step S19, if the bending strength 1+2 is less than the design bending moment, the pile diameter is increased (step S21), the bending strength 1 by the anchoring bar 5 corresponding to the pile diameter is input (step S11), and so on. Process.

5)相互作用係数βを算定する(ステップS5)。
本杭1に及ぼす外管2の影響係数である相互作用係数βは、図8に示すように、パイルキャップ3への外管2の埋め込み深さL1と、本杭1と外管2の埋め込み深さL2・L1の差(外管2天端から本杭1天端の突出長)から、図13をもとに決定する。この関係は、本杭と外管からなる杭頭補強構造の室内構造実験に基づいて定めた。
5) Calculate the interaction coefficient β (step S5).
The interaction coefficient β which is the influence coefficient of the outer pipe 2 on the main pile 1 is, as shown in FIG. 8, the depth L1 of embedding the outer pipe 2 into the pile cap 3 and the embedding of the main pile 1 and the outer pipe 2. From the difference between the depths L2 and L1 (protruding length from the top of the outer pipe 2 to the top of the main pile 1), it is determined based on FIG. This relationship was established based on the indoor structural experiment of the pile head reinforcement structure consisting of the main pile and the outer pipe.

なお、相互作用係数βは、本杭1と外管2からなる杭頭補強構造の室内構造実験結果において、実験結果に対して、後述する評価式〔2〕による本杭1の杭頭接合部曲げ耐力T2が安全側(実験結果が上回る)となるように定めた。 In addition, the interaction coefficient β is a pile head joint portion of the main pile 1 according to the evaluation formula [2] described later in the indoor structure test result of the pile head reinforcement structure including the main pile 1 and the outer pipe 2. The bending strength T2 was determined to be on the safe side (the experimental result exceeds).

実験結果と評価式〔2〕による杭頭接合部曲げ耐力T2の対比を図14に示す。 FIG. 14 shows the comparison between the experimental results and the bending strength T2 of the pile head joint part according to the evaluation formula [2].

6)外管2の定着筋5の仕様・本数を決定する(ステップS6)。
外管2が負担する水平荷重による外管2頂部の杭頭曲げモーメントM1、外管2の杭頭接合部曲げ耐力T1、外管定着筋5の引張圧縮抵抗と外管2の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式〔1〕を満足するような外管定着筋5の仕様及び本数を決定する。
M1<T1=A×α ・・・式〔1〕
6) The specifications and the number of anchoring muscles 5 of the outer tube 2 are determined (step S6).
The pile head bending moment M1 at the top of the outer tube 2 due to the horizontal load borne by the outer tube 2, the pile head bending strength T1 of the outer tube 2, the tensile compression resistance of the outer tube anchoring muscle 5, and the vertical compression of the outer tube 2. In relation to the resistance A and the interaction coefficient α, the specifications and the number of the outer tube anchoring muscles 5 that satisfy the following expression [1] are determined.
M1<T1=A×α Equation [1]

ただし、外管定着筋5の引張圧縮抵抗と外管2の鉛直方向の圧縮抵抗Aは、図8に示すように、外管径D2+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力により算定する。 However, as shown in FIG. 8, the tensile compression resistance of the outer tube anchoring muscle 5 and the vertical compression resistance A of the outer tube 2 depend on the reinforced concrete cross section assuming a virtual cylinder with an outer tube diameter D2+(100 to 200) mm. Calculated by bending strength.

7)本杭1の定着筋4の仕様・本数、必要埋め込み深さを決定する(ステップS7)。
本杭1が負担する水平荷重による本杭1頂部の杭頭曲げモーメントM2、本杭1の杭頭接合部曲げ耐力T2、本杭定着筋4の引張圧縮抵抗と本杭1の鉛直方向の圧縮抵抗B、本杭側面抵抗C、相互作用係数βの関係において、下式〔2〕を満足するような本杭定着筋4の仕様及び本数を決定する。
M2<T2=B+C×β ・・・式〔2〕
7) The specifications and the number of anchoring lines 4 of the main pile 1 and the required embedding depth are determined (step S7).
The pile head bending moment M2 at the top of the main pile 1 due to the horizontal load borne by the main pile 1, the bending strength T2 at the pile head joint portion of the main pile 1, the tensile compression resistance of the main pile anchoring bar 4, and the vertical compression of the main pile 1. In relation to the resistance B, the main pile side surface resistance C, and the interaction coefficient β, the specifications and the number of the main pile anchoring streaks 4 that satisfy the following expression [2] are determined.
M2<T2=B+C×β... Formula [2]

ただし、本杭定着筋4の引張圧縮抵抗と本杭1の鉛直方向の圧縮抵抗Bは、図12に示すように、本杭径D1+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力により算定する。 However, the tensile compression resistance of the main pile anchoring bar 4 and the vertical compression resistance B of the main pile 1 depend on the reinforced concrete section assuming a virtual column with a main pile diameter D1+(100 to 200) mm, as shown in FIG. Calculated by bending strength.

また、本杭側面抵抗Cは、図12内に示すように、主に、外管2天端より突出した部分の側面コンクリートの支圧抵抗を考える。
すなわち、本杭側面抵抗Cは、外管2天端から突出している本杭1側面のコンクリート支圧抵抗であり、一般的に用いられている下式から算出される。
C=D×l/6×fc―Q×l/6
ここで、D:本杭径、l:外管天端から本杭の突出長、fc:パイルキャップコンクリートの短期許容圧縮応力度(さらに支圧係数を考慮する場合もある)、Q:本杭の負担水平力である。
As for the side surface resistance C of the pile, as shown in FIG. 12, the bearing pressure resistance of the side surface concrete of the portion protruding from the top end of the outer tube 2 is mainly considered.
That is, the main pile side surface resistance C is a concrete bearing pressure resistance of the side surface of the main pile 1 protruding from the top end of the outer pipe 2, and is calculated from the following formula that is generally used.
C=D×l 2 /6×fc-Q 0 ×l/6
Here, D: main pile diameter, l: protrusion length of the main pile from the outer pipe top end, fc: short-term permissible compressive stress level of pile cap concrete (there may also be a bearing coefficient), Q 0 : book It is the horizontal load on the pile.

図15は本杭1の曲げ耐力算定のフローチャートで、先ず、定着筋4による曲げ耐力1を入力し(ステップS31)、その曲げ耐力1が設計曲げモーメント以上か否かを判別し(ステップS32)、以上であれば設計を終了する(ステップS33)。
また、ステップS32において、曲げ耐力1が設計曲げモーメント未満であれば、パイルキャップ3への本杭1天端の埋め込みによる曲げ耐力2を入力し(ステップS34)、定着筋4による曲げ耐力1にパイルキャップ3への本杭1天端の埋め込みによる曲げ耐力2を加えて(ステップS35)、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS36)、以上であれば設計を終了する(ステップS37)。
FIG. 15 is a flowchart for calculating the bending strength of the main pile 1. First, the bending strength 1 by the fixing bar 4 is input (step S31), and it is determined whether or not the bending strength 1 is equal to or greater than the design bending moment (step S32). If so, the design is finished (step S33).
In step S32, if the bending strength 1 is less than the design bending moment, the bending strength 2 due to the embedding of the top end of the main pile 1 into the pile cap 3 is input (step S34), and the bending strength 1 due to the fixing bar 4 is set. The bending strength 2 due to the embedding of the top end of the main pile 1 into the pile cap 3 is added (step S35), and it is determined whether or not the bending strength 1+2 of the sum is greater than or equal to the design bending moment (step S36). If there is, the design is finished (step S37).

また、ステップS36において、曲げ耐力1+2が設計曲げモーメント未満であれば、埋込み深さを増大して(ステップS38)、その埋込み深さに応じた曲げ耐力2を曲げ耐力1に加えて、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS39)、以上であれば設計を終了する(ステップS40)。ステップS39において、曲げ耐力1+2が設計曲げモーメント未満であれば、杭径を増大して(ステップS41)、その杭径に応じた定着筋4による曲げ耐力1を入力し(ステップS31)、以下同様の処理を行う。 If the bending strength 1+2 is less than the design bending moment in step S36, the embedding depth is increased (step S38), and the bending strength 2 corresponding to the embedding depth is added to the bending strength 1. It is determined whether or not the bending strength 1+2 of the sum is equal to or greater than the design bending moment (step S39), and if it is greater than or equal to the design end (step S40). In step S39, if the bending strength 1+2 is less than the design bending moment, the pile diameter is increased (step S41), the bending strength 1 by the anchoring streak 4 corresponding to the pile diameter is input (step S31), and so on. Process.

8)図11、図15に示したように、外管2、本杭1ともに、定着筋4・5の曲げ耐力が不足する場合には、図15に示したように、例えば、定着筋4・5の本数を増やしたり、強度の大きい定着筋を用いたり、パイルキャップ3への埋め込み深さを大きくする。
なお、パイルキャップ3下端までの本杭1と外管2の間には、ソイルセメント8を掘削・排出してパイルキャップ3と同じコンクリートを打設する。
8) As shown in FIGS. 11 and 15, when the bending strength of the anchor bars 4 and 5 is insufficient for both the outer tube 2 and the main pile 1, as shown in FIG. -Increase the number of 5, increase the strength of the fixing streak, and increase the depth of embedding in the pile cap 3.
In addition, between the main pile 1 and the outer pipe 2 up to the lower end of the pile cap 3, the soil cement 8 is excavated and discharged, and the same concrete as the pile cap 3 is placed.

以上により、本杭1と外管2に生じる杭頭応力をパイルキャップ3に確実に伝達することが可能になる。 As described above, the pile head stress generated in the main pile 1 and the outer pipe 2 can be reliably transmitted to the pile cap 3.

以上の設計方法で杭頭接合部を構築することにより、本杭1と外管2それぞれが負担する荷重をパイルキャップ3に確実に伝達することが可能となるとともに、二重管の鉛直・水平力負担を担保することができる。 By constructing the pile head joint by the above design method, it becomes possible to reliably transmit the loads carried by the main pile 1 and the outer pipe 2 to the pile cap 3, and also in the vertical/horizontal direction of the double pipe. The burden of power can be secured.

以上、実施形態の杭頭部の二重管構造によれば、本杭1頭部の天端を外管2の天端よりも突出させて、その本杭1頭部の天端と外管2の天端をパイルキャップ3に埋め込んで、そのパイルキャップ3下の本杭1頭部と外管2の間にソイルセメント・水・泥水・土・空隙8が形成されるので、地震時水平力が外管2から本杭1に伝達されるのを低減することができる。 As described above, according to the double-pipe structure of the pile head of the embodiment, the top end of the main pile 1 head is projected more than the top end of the outer pipe 2, and the top end of the main pile 1 head and the outer pipe are formed. The top of No. 2 is embedded in the pile cap 3, and soil cement, water, muddy water, soil, and voids 8 are formed between the head of the main pile 1 under the pile cap 3 and the outer pipe 2. The force transmitted from the outer pipe 2 to the main pile 1 can be reduced.

(変形例)
以上の実施形態の他、具体的な細部構造や手法等について適宜に変更可能であることは勿論である。
(Modification)
It is needless to say that other than the above-described embodiment, specific detailed structures and methods can be appropriately changed.

1 本杭
2 外管
3 パイルキャップ
4 本杭定着筋
5 外管定着筋
6 先端根固め部
7 杭周固定部
8 ソイルセメントまたは水(もしくは土・泥水・空隙)
1 Pile 2 Outer pipe 3 Pile cap 4 Main pile anchoring line 5 Outer pipe anchoring line 6 Tip root fixing part 7 Pile circumference fixing part 8 Soil cement or water (or soil, muddy water, void)

Claims (3)

鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造であって、
前記本杭は外殻鋼管付きコンクリート杭、遠心力プレストレスト鉄筋コンクリート杭またはプレテンション方式遠心力高強度プレストレスコンクリート杭であり、
前記本杭頭部の天端を前記外管の天端よりも突出させて、前記本杭頭部の天端と前記外管の天端をパイルキャップに埋め込んで、
前記パイルキャップ下の前記本杭頭部と前記外管の間に一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントが形成されるか、または水・土・泥水もしくは空隙が形成されており、
前記外管の天端外周面に定着筋の下端を溶接して、この定着筋を前記パイルキャップに埋め込み、前記外管の前記パイルキャップへの埋め込み深さを、前記外管に溶接した前記定着筋の必要溶接長に被りを加えた値、かつ100mm以上とし、
前記本杭頭部の天端外周面に定着筋の下端を溶接、あるいは天端上面に定着筋の下端を溶接もしくはネジ嵌合して、この定着筋を前記パイルキャップに埋め込み、前記本杭の前記パイルキャップへの埋め込み深さを、前記外管の前記埋め込み深さに、100mm以上を加えたものとすることを特徴とする杭頭部の二重管構造。
A double-pipe structure of a pile head that is installed so as to cover the head of a main pile that supports a vertical load and that has an outer pipe that bears a part of horizontal force during an earthquake,
The main pile is a concrete pile with an outer shell steel pipe, a centrifugal force prestressed reinforced concrete pile or a pretension system centrifugal force high strength prestressed concrete pile,
By projecting the top end of the main pile head from the top end of the outer pipe, and embedding the top end of the main pile head and the top end of the outer pipe in a pile cap,
Soil cement having a uniaxial compressive strength of 0.1 to 5.0 N/mm 2 is formed between the pile head under the pile cap and the outer pipe , or water, soil, muddy water or voids are formed. Has been formed ,
The lower end of the fixing streak is welded to the outer peripheral surface of the top end of the outer tube, the fixing streak is embedded in the pile cap, and the depth of the outer tube embedded in the pile cap is welded to the outer tube by the fixing. A value obtained by adding a cover to the required welding length of the streak and 100 mm or more,
The lower end of the fixing bar is welded to the outer peripheral surface of the top end of the main pile head, or the lower end of the fixing bar is welded or screw-fitted to the upper surface of the top end, and the fixing bar is embedded in the pile cap. A pile head double pipe structure , wherein the depth of embedding in the pile cap is 100 mm or more added to the depth of embedding of the outer pipe .
請求項に記載の杭頭部の二重管構造を設計する方法であって、
前記外管が負担する水平荷重による前記外管頂部の杭頭曲げモーメントM1、前記外管の杭頭接合部曲げ耐力T1、前記外管に溶接した前記定着筋の引張圧縮抵抗と前記外管の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式
M1<T1=A×α ・・・式〔1〕
を満足するよう前記外管に溶接した前記定着筋の仕様及び本数を決定して設計することを特徴とする杭頭部の二重管構造の設計方法。
A method of designing a double pipe structure for a pile head according to claim 1 ,
The pile head bending moment M1 of the outer pipe top due to the horizontal load borne by the outer pipe, the pile head joint bending strength T1 of the outer pipe, the tensile compression resistance of the anchoring line welded to the outer pipe, and the outer pipe. In the relationship between the vertical compression resistance A and the interaction coefficient α, the following equation M1<T1=A×α (Equation [1]
A method of designing a double pipe structure for a pile head, characterized in that the specifications and the number of the anchoring bars welded to the outer pipe are determined and designed so as to satisfy the above condition.
請求項に記載の杭頭部の二重管構造を設計する方法であって、
前記本杭が負担する水平荷重による前記本杭頂部の杭頭曲げモーメントM2、前記本杭の杭頭接合部曲げ耐力T2、前記本杭に溶接あるいはネジ嵌合した前記定着筋の引張圧縮抵抗と前記本杭の鉛直方向の圧縮抵抗B、前記本杭の側面抵抗C、相互作用係数βの関係において、下式
M2<T2=B+C×β ・・・式〔2〕
を満足するよう前記本杭に溶接あるいはネジ嵌合した前記定着筋の仕様及び本数を決定して設計することを特徴とする杭頭部の二重管構造の設計方法。
A method of designing a double pipe structure for a pile head according to claim 1 ,
The pile head bending moment M2 of the top of the main pile due to the horizontal load borne by the main pile, the bending strength T2 of the pile head joint portion of the main pile, and the tensile compression resistance of the anchor bar welded or screw-fitted to the main pile. In the relationship of the vertical compression resistance B of the main pile, the side surface resistance C of the main pile, and the interaction coefficient β, the following formula M2<T2=B+C×β... Formula [2]
A method for designing a double pipe structure of a pile head, characterized in that the design and the number of the anchoring bars welded or screw-fitted to the main pile are determined so as to satisfy the above.
JP2016131481A 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method Active JP6733905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131481A JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131481A JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Publications (2)

Publication Number Publication Date
JP2018003432A JP2018003432A (en) 2018-01-11
JP6733905B2 true JP6733905B2 (en) 2020-08-05

Family

ID=60947778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131481A Active JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Country Status (1)

Country Link
JP (1) JP6733905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410505B2 (en) * 2018-06-29 2024-01-10 ジャパンパイル株式会社 Concrete piles with double steel pipes, their manufacturing equipment, pile cap joint structure and joint pile structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837263B1 (en) * 2007-02-16 2008-06-11 (주)석탑엔지니어링 Composite pile making method
JP4863120B2 (en) * 2007-03-05 2012-01-25 住友金属工業株式会社 Foundation pile
JP5109531B2 (en) * 2007-08-20 2012-12-26 Jfeスチール株式会社 Double pipe type pile head structure
JP2010248811A (en) * 2009-04-16 2010-11-04 Sansei:Kk Double tube-type pile head structure
JP6430147B2 (en) * 2014-05-20 2018-11-28 三谷セキサン株式会社 Construction method of foundation pile that reinforces pile head, foundation pile structure that reinforces pile head

Also Published As

Publication number Publication date
JP2018003432A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US20080196341A1 (en) Modular Column System Using Internally Confined Hollow Column Unit and Method of Constructing the Same
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
AU2009211249B2 (en) Masonry with vertical reinforced concrete strengthening
KR101684771B1 (en) Method for connection structure for internally confined hollow rc column-foundation connection reinforced with external tube
KR20110103000A (en) Precast bridge joint structure with composite hollow concrete filled tube and a construction method for the same
CN105332521A (en) Seismic hardening additional damping and reinforcing frame connected with joint region
KR101204040B1 (en) precast concrete member and assembled concrete abutment of bridge
Moehle et al. Seismic design of reinforced concrete special moment frames
Rehmat et al. Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete
JP5509380B1 (en) Seismic reinforcement method and structure for existing buildings
JP6733905B2 (en) Double pipe structure of pile head and its designing method
JP6102010B2 (en) Pile reinforcement structure of existing building and its construction method
JP6646206B2 (en) Joint structure of RC members
KR102017822B1 (en) Earthquake-registant column and beam constructing method using concrete filled tube and pre-assembled rebar cage
US10577796B1 (en) Concrete shearwall and assemblies thereof, and related methods
JP4017766B2 (en) Hollow cylindrical body and its construction method
CN106337512A (en) The bottom reinforced concrete-filled steel tubular frame high-strength concrete composite shear wall and manufacturing method
JP5036065B2 (en) Pile head joint structure
JP6461690B2 (en) Foundation structure and foundation construction method
JP5423134B2 (en) Foundation structure
JP6461457B2 (en) Pile and pile construction method
KR200427561Y1 (en) Multiful prestressed concrete file
JP5267242B2 (en) Pier foundation structure and bridge pier foundation construction method
KR102399298B1 (en) Lattice earthquake proof pile and construction method for the same
CN215483543U (en) Beam column dry type connecting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6733905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250